CS520: NUMERICAL ODEs (CH.2)

Uri Ascher

Department of Computer Science
University of British Columbia
ascher@cs.ubc.ca
people.cs.ubc.ca/~ascher/520.html

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 1/ 60

Ordinary differential equations
OUTLINE

e ODEs

Forward and backward Euler

Linear multistep methods

Runge-Kutta methods
Stiffness

Adaptive step size selection

(In Chapter 6: geometric integration)

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 2/ 60

Ordinary differential equations
ORDINARY DIFFERENTIAL EQUATIONS

e.g. pendulum.

d?0 :
2= 0" = —gsin(0),

where g is the scaled constant of gravity, e.g., g = 9.81, and t is time.

e Write as first order ODE system: yi(t) = 0(t), y2(t) = 0'(t). Then
Y1 =1y2, yp=—gsin(y1).
e ODE in standard form:

y =f(t,y), a<t<b.

For the pendulum

f(t,y) = <_gs}i/fl()/1)> '

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 3/ 60

Ordinary differential equations
SIDE CONDITIONS

e.g.
y=-y =yt)=c-e".

o Initial value problem: y(a) given. (In the pendulum example: 6(0)
and 0'(0) given.)

e Boundary value problem: relations involving y at more than one point
given. (In the pendulum example: 6(0) and 6(7) given.)

We stick to initial value ODEs!

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 4 /60

OUTLINE -

e ODEs

Forward and backward Euler

Linear multistep methods

Runge-Kutta methods
Stiffness

Adaptive step size selection

@ (In Chapter 6: geometric integration)

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2)

eI Euler’s method
FORWARD AND BACKWARD EULER

@ Simplest method for the problem

y/:f(tvy)7 y(a):C'

@ Use to demonstrate general concepts:

Method derivation

Explicit vs. implicit methods

Local truncation error and global error
Order of accuracy

Convergence

Absolute stability and stiffness.

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 6/ 60

N -} E's method
FORWARD EULER: DERIVATION

@ Mesh points tp < t; < --- < ty with step size k = t,+1 — tp.
Approximate solution y, ~ y(t,).

@ Proceed to march from one mesh point to the next (step by step).

e By Taylor expansion

f(tm)/(tn)) - y/(tn) -)/(tn+1)k_ y(th) - gy//(gn)'

This is a forward difference. Obtain

2
Y{tnsn) = y(tn) + Kt Y (10)) + " (60).

@ So, set

Yo = ¢,
VYn+1 = Yn+ kf(tn,yn), n=0,1,...,N—1.

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 7 /60

N -} E's method
EXAMPLE: ADVECTION EQUATION

@ Recall advection equation u; + au, = 0.
o Discretize in space using the one-sided scheme:
dv; a
i _ . ,
ar —;(Vﬂrl —).
Obtain ODE system for v = (v, vi, va,...,vy) .
o Alternatively, discretize in space using the centred scheme:

dv; a
dﬁl - _ﬂ(‘/jﬂ — vj-1)-

Obtain ODE system for v = (vi,vo,...,v))".

e Applying forward Euler to the first semi-discretization, obtain
one-sided method from Chapter 1.

@ Applying forward Euler to the second semi-discretization, obtain the
(unstable) centred method from Chapter 1.

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 8/ 60

N -} E's method
EXAMPLE: ADVECTION EQUATION CONT.

Recall advection equation u; + auy, = 0.
@ Discretize in space using the one-sided scheme:

dvj_ a

dr 7%(‘/J.+1 o VJ)

Obtain ODE system for v = (vo, v, va,...,vy) "

Alternatively, discretize in space using the centred scheme:

dv; a
dar *ﬂ(vjﬂ —vj-1).

Obtain ODE system for v = (vi,vo,...,v))".

Caution: Note that these are very large ODE systems... In the limit

as h — 0, system size J — oo.

Although numerical ODE analysis is relevant to PDEs, too,
results do not extend automatically. Surprises do happen.

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 9/ 60

eI Euler’s method
BACKWARD EULER: IMPLICIT VS. EXPLICIT

@ Could use instead backward difference
Y(tn —yltn k
y/(tn-i-l) = (H)k() + Ey//(gn)'
Therefore,
/(2
Y(tn+1) - }/(tn) =+ kf(thrla)/(thrl)) - Ey//(gn)'

@ So, set

Yo = G,
Yn+1 = yn+kf(tn+1,yn+1), nzO,l,...,N—l.

e But now, unknown y, 1 appears implicitly!
More complicated and costly to carry out the stepping procedure.
e Forward Euler is an explicit method, backward Euler is an implicit
method.

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 10 / 60

eI Euler’s method
FORWARD AND BACKWARD EULER

@ Simplest method for the problem

y/:f(tvy)7 y(a):C'

@ Use to demonstrate general concepts:

Method derivation

Explicit vs. implicit methods

Local truncation error and global error
Order of accuracy

Convergence

Absolute stability and stiffness.

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 11/ 60

N -} E's method
LOCAL TRUNCATION ERROR AND GLOBAL ERROR

@ Local truncation error, d; = the amount by which the exact solution
fails to satisfy the difference equation, written in divided difference
form.

o For forward Euler, d; = £y"(&).

@ The order of accuracy is g if max; |d;| = O(k9).

(So, the Euler methods are 1st order accurate.)
o Global error
en=y(th) —yn, n=0,1,... N.

@ The method converges if maxg< <y |e,| — 0 as kK — 0.
e For all the methods and problems we consider, there is a constant K
s.t.
len] < Kmax|dj|, n=0,1,..., N.
1

So, order of accuracy is also order of convergence.

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 12/ 60

N -} E's method
EULER CONVERGENCE THEOREM

Let 7(t,y) have bounded partial derivatives in a region

D={a<t<b, |yl <oo}.

Note that this implies Lipschitz continuity in y: there exists a constant L
such that for all (t,y) and (t,¥) in D we have

[f(t,y) — (£,)] < Lly = .

Then Euler's method converges and its global error decreases linearly in k.
Moreover, assuming further that

') <M, a<t<b,

the global error satisfies

len| < —[et®=2) — 1], n=0,1,...,N.

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 13 / 60

eI Euler’s method
FORWARD AND BACKWARD EULER

@ Simplest method for the problem

y/:f(tvy)7 y(a):C'

@ Use to demonstrate general concepts:

Method derivation

Explicit vs. implicit methods

Local truncation error and global error
Order of accuracy

Convergence

Absolute stability and stiffness

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 14 / 60

NGl Euler's method
ABSOLUTE STABILITY

e Convergence is for k — 0, but in computation the step size is finite
and fixed. How is the method expected to perform?
o Consider simplest, test equation

y' = Ay.
Solution: y(t) = y(0)e*. Assuming \ real, solution increases for

A > 0, decreases for A\ < 0.
e Forward Euler:

Yn+1 = Yn t+ k)\)/n - (]- + k)‘)yn == (1 + kk)n+1y(0)

@ So, approximate solution does not grow only if |1 + kA| < 1.
Important when A < 0.
@ For A < 0 must require

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 15/ 60

N -} E's method
ABSOLUTE STABILITY AND STIFFNESS

The restriction on the step size is an absolute stability requirement.

Note: it's a stability, not accuracy, requirement.

If absolute stability requirement is much more restrictive than
accuracy requirement, the problem is stiff.

Example
y' = —1000(y — cos(t)) —sin(t), y(0) =1,

The exact solution is y(t) = cos(t): varies slowly and smoothly.

e Here A = —1000, so applying forward Euler, must require

2
< —— =
ks 1000 002

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 16 / 60

eI Euler’s method
BACKWARD EULER AND IMPLICIT METHODS

o Apply backward Euler to the test equation:

Yn+1 = Yn + k)\}/n+1-

Hence
1

I = T

e Here |y 11| < |ya| for any kK > 0 and A < 0: no annoying absolute
stability restriction.

o For the example, integrating from 0 to 1 using forward Euler with
k = .0021 obtain solution blowup (error 5.8e+13).
Using backward Euler with k = .01 obtain error 2.7e-6.
Using backward Euler with k = .1 obtain error 2.4e-5.
Using forward or backward Euler with kK = .001 obtain comparable
accuracy, with error ~ 7

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012

17 / 60

eI Euler’s method
MORE GENERALLY

o Stiff systems do arise a lot in practice.

o If problem is very stiff, explicit methods are not effective.

@ Simplest case of a system: y' = Ay, A a constant m x m
diagonalizable matrix.

@ There is a similarity transformation T so that

T AT = diag(\1, ..., Am)-
Then for x = T~y obtain m test equations

/ -
Xj=Nxj, Jj=1,...,m.

For forward Euler must require

14+ kN[<1, j=1,2,....m.

e Big complication: the eigenvalues \; may be complex!

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012

18 / 60

N -} E's method
ABSOLUTE STABILITY IN THE COMPLEX PLANE

3
b i
forward Euler backward Euler
stability inside stability outside
1k red disk cyan disk -
= L 4
£ 0
= i
2L i
-3 I I I I I I
4 -3 -2 -1 1 2 3 4

0
Re(z)

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 19 / 60

LI Euler's method

SIMPLE EXAMPLE
o Consider
, (0 1

Note that the matrix A is skew-symmetric.
Eigenvalues \; =1, \p = —1.
For forward Euler stability need

11+ ko < 1.

But 12 + k? > 1 for any k > 0! So forward Euler is unconditionally
unstable and cannot be used.
@ For backward Euler need

1+ k|t <1

This occurs for all k, so method is unconditionally stable.
However, note decay introduced by method, which is unmatched by
exact solution.

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 20 / 60

N -} E's method
EVEN MORE GENERALLY

e For a nonlinear ODE system y’ = f(t,y) let y, ¥ be two nearby
trajectories and consider the progress of the perturbation
w(t) = y(t) — (1).

e By Taylor f(y) = f(§) + J(§)w + O(||w||?), with the Jacobian matrix

ofp Ofi
o £
of : .
oy | o
Ofm Ofm
. ..

So
w = J(§)w + (9(HWH2) ~ J(y)w.

@ Hence, must consider the eigenvalues of the Jacobian matrix along
the solution trajectory!

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 21/ 60

LI Euler's method
EXAMPLE: SEE ASCHER & GREIF BOOK (2011)

e Problem from plant physiology
f(t,y) = (bla) ", y(0) = (1,0,0,0,0,0,0,.0057) ", 0 < t < 322.

Then the Jacobian matrix is J(y) =

171 43 832 0 0 0 0 0
171 —875 0 0 0 0 0 0
0 0 -1003 .43 .035 0 0 0
0 832 171 -112 0 0 0 0
0 0 0 0 —1.745 43 43 0
0 0 0 69 171 0 69 0
0 0 0 0 0 —280ys—.43 0 —280y
0 0 0 0 0 280ys ~1.81 280y
0 0 0 0 0 —280ys 1.81 —280ys

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 22/ 60

EXAMPLE CONT.

The 6th solution component:

0
0 50 100 150 200 250 300 350
t

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2)

eI Euler’s method
EXAMPLE CONT.

e Eigenvalues of J(yo) are
0,—10.48,—-8.28, —0.26, —0.51, —2.67 + 0.15¢, —2.31.
@ So, for forward Euler, k = .1 appears to be a safe step size choice.

o ...But it's not: a huge error results.
@ Indeed, at t = 10.7, the eigenvalues equal

—211.77,—10.48, —8.28, —2.39, —2.14, —0.49, -3 x 107 °, =3 x 10712,

So, k = .005 appears to be a safe step size choice for forward Euler.

@ ... And it works! However, many steps are now required to reach
t = 322. To improve efficiency, use either a variable, adaptive step
size, or backward Euler.

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 24 / 60

N -} E's method
SOLVING NONLINEAR SYSTEMS

e Upon discretizing y’ = f(y) using (an implicit method such as)
backward Euler, obtain at each time step n

Yn+1 — kf(Yn—H) =Yn,

which is a nonlinear algebraic system for y, ;1.
@ Use an iterative method.
Good news: usually y, (which is known at this stage) is a good
initial guess for y,.1.
Bad news: for a stiff problem, k% is not small, so a simple fixed
point iteration will not work.
@ So, use some variant of Newton’'s method: starting, e.g., with
y?,_H =y, forv=0,1,...,
@ Solve the linear system
(1~ k5,)dy = (v~ Kf(5) - ¥.)

for the correction Jy, where y =y ;.

@ Update y” /1 =y . + dy.
Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012

25 / 60

N -} E's method
NEWTON’S METHOD VARIANTS

@ Solve the linear system

of

(1 - kafy)cSy = —(y — kf(y) — yn)

for the correction dy, wherey =y} ;.

@ Newton's method converges quadratically, but iteration may be
expensive and cumbersome to carry out. Possible simplifications:
e Calculate and decompose (I — kg—;) only once every few time steps.
o Take only one Newton step per time step:

Ynt+1 = Yn + 0y,

where the correction dy solves the above linear system at y = y,,.

e Use a mix of backward and forward Euler so that only stiff components
of problem are discretized implicitly, thereby simplifying %, making it
sparser, or symmetric positive definite, etc.

@ All of these simplifications are useful, but none is a cure-all!

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 26 / 60

OUTLINE -

e ODEs

Forward and backward Euler

Linear multistep methods

Runge-Kutta methods
Stiffness

Adaptive step size selection

@ (In Chapter 6: geometric integration)

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2)

R |] Higher order methods
HIGHER ORDER METHODS

@ The Euler methods are only first order accurate: want higher accuracy.
e Example: Implicit trapezoidal method

k
Yn+1 = Yn + E(f(tna.)/n) + f(tn+1a)/n+1))
o Easy to show that the local truncation error is d; = O(k?): Use
k2

—y"(tar1/2) + O(K?).

k
Y(tar1241/2) = ¥(tayay2) £ Ey/(tn+1/2) *t3

@ But resulting method is implicit!

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 28 / 60

R |] imear muitistep methods
LINEAR MULTISTEP METHODS

@ Use not only current solution but also s — 1 previous solution values
to approximate next one.

o Example: f(y,.1/5) = fri10 =~ %(31‘,, — fn—1), so expect 2nd order
from the two-step Adams-Bashforth method

k
Ynt1 = Yn + §(3fn - fnfl)'

o General form

S S
Z QjYnt1-j = k Z Bifnt1-j-
j=0 j=0

Here, fry1-j = f(thy1-j. Yatr1—j) and «;, [3; are coefficients, with
ap = 1 for definiteness.
e The method is explicit if Sy = 0 and implicit otherwise.

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 29 / 60

B NGol= Linear multistep methods
ORDER OF ACCURACY

@ Define local truncation error as
S S
1
d, =k Zajy(tn+1_j) — Zﬁjy’(tn+1_j).
=0 j=0

This is the amount by which the exact solution fails to satisfy the
difference equations divided by k.

@ The method has order of accuracy (or order for short) p if for all
problems with sufficiently smooth exact solutions y(t),

dp = O(kP).

e.g. the two-step Adams-Bashforth has order 2.

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 30 / 60

B NGol= Linear multistep methods
ADAMS-BASHFORTH AND ADAMS-MOULTON

@ Derived by considering integrating ODE

) = y(on) + | (e (1)) de

and approximating the integrand f(t,y) by an interpolating
polynomial through previously computed values of 7(t;,y;). Thus,
a;=-1,a,=0, [> 1.
o s-step Adams-Bashforth: explicit. Interpolate
(tm fn)7 (tnflz fnfl)a DRI (tn,5+1, fnfs+1)

(and extrapolate to [t,, ty+1]). The method has order s.
o s-step Adams-Moulton: implicit. Interpolate

(tn+17 fn+1)7 (tny fn); ceey (tn—s+17 fn—s—i—l)

The method has order s + 1.
e Often used as predictor-corrector (PECE)

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012

31/ 60

SR Linear multistep methods
BACKWARD DIFFERENTIATION FORMULAE (BDF)

e Evaluate f only at right end of the current step, (t,+1, ¥n+1), and
differentiate an interpolating polynomial of y through
t = thi1, thsth-1,---,thtr1—s. I he method has order s and is good
for stiff problems.

@ e.g., s = 1 yields Backward Euler

Yn+1 = Yn t+ kfn+1

@ e.g., s =2 yields

1
Ynt1 = §[4Yn — Yn—1+ 2kfpi1]

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 32/ 60

ABSOLUTE STABILITY REGIONS OF
ADAMS-BASHFORTH METHODS

s=1,2,3,4

Im(z)

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2)

o= Linear multistep methods
ABSOLUTE STABILITY REGIONS OF ADAMS-MOULTON

METHODS

s=2,3,4

Im(z)

-8 -6 -4 -2 0
Re(z)

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 34 / 60

B NGol= Linear multistep methods
ADAMS METHODS

@ Good only for nonstiff problems.

@ Even then, Adams-Bashforth regions too restrictive for higher order
methods.

So, want to use Adams-Moulton: for non-stiff problems can apply
fixed-point iteration.

(i) Predict y,+1 using Adams-Bashforth, (ii) Evaluate 7(y,+1), (iii)
Correct for better y,,1 using Adams-Moulton of same order or one
order higher, (iv) Evaluate f(y,+1).

@ For this PECE obtain order and stability like Moulton, plus estimation
of local error: good for adaptive step size selection.

Highly effective for smooth problems.

But incorporating events and restarts are cumbersome: for nonstiff
problems, Runge-Kutta methods are currently more in vogue.

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 35/ 60

B NeloJ Linear multistep methods
ABSOLUTE STABILITY REGIONS OF BDF METHODS

s=1,2,3

Im(z)
o

stability OUTSIDE
shaded areas

Re(z)

Uri Ascher (UBC)

CPSC 520: ODEs (Ch. 2)

Fall 2012

36 / 60

B NeloJ Linear multistep methods
ABSOLUTE STABILITY REGIONS OF BDF METHODS

@ Very stable methods for s =1,2,...,6.
e Highly damping for large k|A|. For R(\) < —1 this is L-stability:
highly desirable.

e Leading candidates for stiff problems because in addition, the
nonlinear system is “only” of the size of the given ODE system.

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 37 / 60

OUTLINE -

e ODEs

Forward and backward Euler

Linear multistep methods

Runge-Kutta methods
Stiffness

Adaptive step size selection

@ (In Chapter 6: geometric integration)

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2)

I Nels]= Runge-Kutta methods
SIMPLE EXPLICIT RUNGE-KUTTA METHODS

o “Bootstrap” implicit trapezoidal: use forward Euler to approximate
f(tn+]_,yn+]_) first.

Y = Yn+kf(tn7YH)a
k
Yoyl = Yn+§(f(tn7Yn)+f(tn+1vY))'

@ Obtain explicit trapezoidal, a special case of an explicit Runge-Kutta
method.

@ Can do the same based on midpoint method:

k
Y = VYn + Ef(tn,yn),

Yn+1 = Yn+ kf(th+ h/2,Y).

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 39 / 60

R -} Runge-Kutta methods
EXPLICIT TRAPEZOIDAL & MIDPOINT METHODS

o Can write explicit trap as

Kl — f(tn).yn)a
Ko = f(tar1,yn + kK1),

k
Yn+t1 = Ynt §(K1+ K2)'

o Can write explicit midpoint as

Ki = f(tnaYn))
Ky = f(t,+ .5k, yn+ .5kK1),
Ynt1 = Yn+ kK>.

o Both are explicit 2-stage methods of order 2.

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 40 / 60

EXPLICIT s-STAGE RK METHOD -

Method is defined by coefficients a;;, b;, 1<i<s, 1<;<i—1:

Ki = f(t,,,y,,),
Ky = f(tn+kc2aYn+ka2,1K1)a

i—1
Ki = f(tat+kci,yn+ kY aijKj), 1<i<s
=1

S
yn+1 — yn+k2b,K,
i=1

i—1 s
where ¢; =3 " a;;, 1=5"" b .

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2)

GENERAL s-STAGE RK METHOD -

e Method is defined by coefficients a; ;, b;, 1 </<s, 1<) <s:

S
K,' = f(tn‘i‘kCi,yn‘FkZai,jl{j)a].SISS
=1

S
Vi1 = Yot kY biKi.
i—1

where ¢; =377 1 ai;, 1=>"_,b;.
o Alternatively,

ti = t,+ ke,
s
Yi = yn—i—kzai’jf(tj,Y'), 1<i<s
j=1
s
Yar1 = Yn+ kY bif(t:, Yi).
i=1

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2)

NGl Runge-Kutta methods
GENERAL s-STAGE RK METHOD

@ Observe notational convention: the indices / and j in

ti th + kC,‘-/

Yi = yat+ k> aif(t,Y), 1<i<s
j=1

S
Yat1 = Ya+ kY bif(t;, Yi)
i=1

are internal to current subinterval [t,, t,1+1]. Only the end result
Yn+1 (and perhaps f(tp+1, ynt1) as well) gets reported when moving
on to the next step.

e Thus, Y; are internal stages in current subinterval [t,, t,+1].
Generally, Y; approximates y(t;) to a lower order than y, 1
approximates y(t,+1).

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 43 / 60

I Nels]= Runge-Kutta methods
RK IN TABLEAU FORM

C1|a11 a2 -+ adis
C | aix ax --- ax
Cs | ds1 ds2 - dss
by by --- b
where ¢; =37 a;j fori=1,2,... 5.

Explicit if the matrix A is strictly lower triangular: a;; = 0 if / <.

Implicit otherwise.
Necessary conditions for order p (sufficient if p < 3):
; [—1)! 1
bTAlcl—llz (: _ —,
(I+0t (1 +1)---(I+1)

(For each /, 1 </ < p, we have order conditions for i = 0,1, ..

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2)

1</+i<p.

Fall 2012

Lp—=1)

44 / 60

CLASSICAL 4TH ORDER RK -

@ The original 4-stage Runge method:
Ki = f(t,,,y,,),

k
Ky = f(thn+k/2,yn+ §K1),

k
K3 = f(ti+k/2,yn+ §K2),

Ky = f(tni1,yn+ kK3),

k
Yn+1 = yn+6(K1+2K2+2K3+K4).

@ Tableau form

ol o 0o o0 0
1/211/2 0 0 0
12 0 1/2 0 0

11 0o 0o 1 0

11/6 1/3 1/3 1/6

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2)

I Nels]= Runge-Kutta methods
RK4 COMPARED TO MULTISTEP

... for nonstiff problems... i.e., compare to a PECE method of order 4.
RK4:

@ Requires no starting procedure

e Easy to change step size or accommodate special event (e.g. solution
jump).
o Better absolute stability region, especially near imaginary axis.

Requires more function evaluations.
@ Showing that it is 4th order accurate is surprisingly painful.

@ Harder to extend to higher order methods.

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 46 / 60

SER=EN - Runge-Kutta methods

EXAMPLE WITH KNOWN SOLUTION

yY=-y% y(1)=1 = y(t)=1/t.

k Euler rate RK2 rate RK4 rate
0.2 4.7e-3 3.3e-4 2.0e-7

0.1 23e-3 101 74e5 215 1.4e-8 3.90
0.05 1.2e-3 1.01 18e5 207 8.6e-10 3.98
0.02 46e3 1.00 28e6 203 2211 4.00
0.01 23e4 1.00 6.8e-7 201 1.4e-12 4.00
0.005 1.2e-4 1.00 1.7¢-7 2.01 8.7e-14 4.00
0.002 4.6e5 1.00 27e8 200 1.9e15 4.19

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2)

Fall 2012

47 / 60

I Nels]= Runge-Kutta methods
LOTKA-VOLTERRA PREDATOR-PREY MODEL

yi = 2551 —.0lyiys, y1(0) =80,
yé = =¥+ .O].ylyQa _)/2(0) = 30.

Integrating from a = 0 to b = 100 using RK4 with step size h = 0.01:

40

351

301

Y,

25F

201

15 . h ! .
70 80 920 100 110 120 130

Yy

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 48 / 60

LORENZ EQUATIONS: POCKET-SIZE CHAOS-

vi = oly2—y),
}é = Iy1— Y2 —Yy1ys,
Y5 = yiys — bys,

Parameters: o = 10, b =8/3, r = 28.
Initial values: y(0) = (0,1,0)".

Run fig2_3

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2)

OUTLINE -

ODEs

Forward and backward Euler

Linear multistep methods
Runge-Kutta methods
Stiffness

Adaptive step size selection

(In Chapter 6: geometric integration)

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2)

ol stiff equations
ABSOLUTE STABILITY

Convergence is for k — 0, but in computation the step size is finite
and fixed. How is the method expected to perform?

Consider simple test equation for complex scalar A (representing an
eigenvalue of a system matrix)

y' = Ay.
Solution: y(t) = y(0)e*. So |y(t)| = |y(0)|e"(Mt. Magnitude
increases for 7t(\) > 0, decreases for %(\) < 0.

Let z = kA. For one-step method (such as RK) write y,11 = R(z)y,.
Require |R(z)| < 1 when R(z) < 0.

Example: for Forward Euler, R(z) =1+ kA =1+ z.

So, approximate solution does not grow only if |1 + z| < 1. Important
when R()\) < 0.

For A < 0 must require k < 2/(—\).

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 51 / 60

ABSOLUTE STABILITY REGIONS: EXPLICIT ;-

Four p-stage methods of order p. Red circle: forward Euler. Cyan kidney:
RK4.

Stability regions in the complex z-plane
T T T

Im(z)
o

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2)

ol stiff equations
SIMPLE EXAMPLE

o Recall

Eigenvalues Ay =1, \p = —u.
o For forward Euler method was shown to be unconditionally unstable.

@ However, RK4 is conditionally stable! For this reason it is popular in
CFD.

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 53 / 60

ol stiff equations
STIFF PROBLEM

@ The ODE is stiff if an unreasonably small step size k must be used for
forward Euler.

@ In this case explicit methods are inadequate — resort to implicit
methods.

@ Method is A-stable if absolute stability region contains entire left half
plane.
Both backward Euler and implicit trapezoidal are A-stable

e Method is L-stable if |R(z)| — 0 as R(z) — —oo.
Backward Euler is L-stable, implicit trapezoidal is not.

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 54 / 60

ol stiff equations
SUMMARY OF 4 METHODS

Forward Euler
Yn+1 =Yn + kf(y,,).

e Explicit; simple

@ 1st order accurate; one-sided

o Limited utility for stiff equations; unstable for imaginary eigenvalues.

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 55 / 60

AL stiff equations

SUMMARY OF 4 METHODS

Backward Euler
Yn+1 = Yn + kf(}/nJrl)-

o Implicit; simple but requires solution of algebraic equations each time
step

@ 1st order accurate; one-sided

o A-stable, L-stable; highly damping for imaginary eigenvalues.

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 56 / 60

ol stiff equations
SUMMARY OF 4 METHODS

RK4
k
Vi1 = yn+g[f(vl)+2f(Y2)+2f(Y3)+f(Y4)], where
Yl = Yn
k
Yo = ya+ =f(Y1)

2

k
Y3 - yn+§f(y2)
Yo = yn+kf(Y3)

o Explicit; straightforward but more expensive
@ 4th order accurate; non-symmetric

e Limited utility for stiff eqns; conditionally stable for imaginary eigs.

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 57 / 60

ol stiff equations
SUMMARY OF 4 METHODS

y'=1(y)

Trapezoidal

k
Ynt1 = Yn + §[f()/n) + f(}/nJrl)]-

o Implicit; simple but requires solution of algebraic equations each time
step
@ 2nd order accurate; symmetric

@ A-stable; good for imaginary eigenvalues.

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 58 / 60

R Y] A dptive step size
ADAPTIVE STEP SIZE SELECTION

o Intuitively, want small time steps (for accuracy) where solution varies
rapidly, but large steps (for efficiency) where solution varies slowly.
So, k = k,.

Indeed, local truncation error d,, of a method of order p behaves like

|dp| ~ (k,,)p\%i{(tn)\. Typically, want these quantities to be roughly
the same for all n.

Ideally, we want to control the global error e, = y(t,) — y,. However,
this implies inflexibility for interactive time step estimation as the
integration proceeds.

So, estimate local error instead. At (t,,y,) and current step size

k = k,, integrate next step twice: once with method of order p,
obtaining y, 11, and once with method of order p + 1, obtaining ¥, 1.
The difference /p+1 = |Vn+1 — Ynt1| estimates local error in y,. 1.

Try to make /,.1/k fall below a given tolerance by adjusting step size
k (knowing p).

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 59 / 60

LI Adaptive step size
PAIRS OF METHODS OF ORDERS p AND p + 1

@ The Adams methods provide natural pairs using the PECE
arrangement.

e For BDF or Runge-Kutta, require two separate methods.
o In the RK context, seek a pair of methods that share internal stages!

@ MATLAB's ode45 uses the Dormand-Prince pair of methods with
p = 4 which requires only 6 function evaluations.

Once step is accepted, cheat by setting y,11 = Vnr1-

This procedure usually works very well; however, if applied carelessly
it may occasionally fail miserably in producing a qualitatively correct
solution.

Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall 2012 60 / 60

	Differential equations
	Ordinary differential equations

	ODEs
	Euler's method

	ODEs
	Higher order methods
	Linear multistep methods

	ODEs
	Runge-Kutta methods
	Stiff equations
	Adaptive step size

