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Differential equations The problem

.. Differential equations

Arise in all branches of science and engineering, economics, computer
science.

Relate physical state to rate of change. e.g., rate of change of particle
is velocity

dx

dt
= v(t) = g(t, x), a < t < b.

Ordinary differential equation (ODE): one indenpendent variable
(“time”).

Partial differential equation (PDE): several independent variables.
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Differential equations Simplest PDEs

.. Partial differential equations

Simplest elliptic PDE: Poisson.

∂2u

∂x2
+

∂2u

∂y2
= g(x , y).

Simplest parabolic PDE: heat.

∂u

∂t
=

∂2u

∂x2
.

Simple hyperbolic PDE: wave.

∂2u

∂t2
− ∂2u

∂x2
= 0.
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Differential equations ODEs

.. Ordinary differential equations

e.g., pendulum.

θ

r

q1

q2

Uri Ascher (UBC) CPSC 520: Introduction (Ch. 1) Fall 2012 5 / 38



Differential equations ODEs

.. Ordinary differential equations

e.g., pendulum.

d2θ

dt2
≡ θ′′ = −g sin(θ),

where g is the scaled constant of gravity, e.g., g = 9.81, and t is time.

Write as first order ODE system: y1(t) = θ(t), y2(t) = θ′(t). Then
y ′1 = y2, y ′2 = −g sin(y1).

ODE in standard form:

y′ = f(t, y), a < t < b.

For the pendulum

f(t, y) =

(
y2

−g sin(y1)

)
.

Uri Ascher (UBC) CPSC 520: Introduction (Ch. 1) Fall 2012 6 / 38



Differential equations ODEs

.. Side conditions

e.g.
y ′ = −y ⇒ y(t) = c · e−t .

Initial value problem: y(a) given. (In the pendulum example: θ(0)
and θ′(0) given.)

Boundary value problem: relations involving y at more than one point
given. (In the pendulum example: θ(0) and θ(π) given.)

We stick to initial value ODEs!
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PDE example PDE example

.. A simple PDE

Consider

ut = νuxx − 3ux .

t and x are independent variables, t ≥ 0 time, 0 ≤ x ≤ b space, and
ν is a parameter.
Subscripts denote partial derivatives, so PDE is

∂u

∂t
= ν

∂2u

∂x2
− 3

∂u

∂x
.

Initial conditions:

u(0, x) = u0(x), 0 ≤ x ≤ b.

Boundary conditions: e.g. Dirichlet

u(t, 0) = g0(t), u(t, b) = gb(t).
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PDE example PDE example

.. Simple analysis

Ignore boundary conditions, seek special solution of the form

u(t, x) = û(t, ξ)eıξx ,

where ı =
√
−1.

ξ is wave number; eıξx is mode; |û(t, ξ)| is amplitude.

For this special solution

ux = ıξûeıξx ; uxx = −ξ2ûeıξx ; ut = ûte
ıξx .

Obtain ODE
ût = −

(
νξ2 + 3ıξ

)
û.
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PDE example PDE example

.. Simple analysis cont.

The solution of the initial value ODE problem

ût = −
(
νξ2 + 3ıξ

)
û,

is

û(t, ξ) = e−
(
νξ2+3ıξ

)
t û(0, ξ).

Hence
|û(t, ξ)| = e−νξ2t |û(0, ξ)|,

so also
|u(t, x)| = e−νξ2t |u(0, x)|.
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PDE example PDE example

.. Different cases of ν

If ν > 0, the solution magnitude decays in time, faster for larger wave
numbers (typical for parabolic PDEs).

If ν = 0, the solution magnitude remains constant in time (typical for
hyperbolic PDEs).

But... why do we care so much about such a special solution?!
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PDE example PDE example

.. ASIDE: Fourier transform

The continuous version of the Fourier transform:

v̂(ξ) =
1√
2π

∫ ∞

−∞
e−ıξxv(x)dx .

The corresponding inverse transform:

v(x) =
1√
2π

∫ ∞

−∞
eıξx v̂(ξ)dξ.

ξ is called wave number when x is a space variable, and frequency
when x is time.

Note Parseval equality

∥v∥2 =
∫ ∞

−∞
|v(x)|2dx =

∫ ∞

−∞
|v̂(ξ)|2dξ = ∥v̂∥2.
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PDE example PDE example

.. Return to simple PDE

Apply Fourier transform in x

u(t, x) =
1√
2π

∫ ∞

−∞
eıξx û(t, ξ)dξ.

Then

ux(t, x) =
1√
2π

∫ ∞

−∞
(ıξ)eıξx û(t, ξ)dξ,

uxx(t, x) =
1√
2π

∫ ∞

−∞
(ıξ)2eıξx û(t, ξ)dξ,

ut(t, x) =
1√
2π

∫ ∞

−∞
eıξx ût(t, ξ)dξ.

So, our simple PDE can be written as

1√
2π

∫ ∞

−∞
eıξx

[
ût + (νξ2 + 3ıξ)û

]
dξ = 0.
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PDE example PDE example

.. Return to simple PDE cont.

To satisfy

1√
2π

∫ ∞

−∞
eıξx

[
ût + (νξ2 + 3ıξ)û

]
dξ = 0

for all x , what’s in square brackets must vanish, so we obtain the
ODE

ût = −
(
νξ2 + 3ıξ

)
û,

for each wavenumber ξ.

The symbol of this PDE is

P(s) = νs2 − 3s,

so
P(ıξ) = −(νξ2 + 3ıξ).
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Well-posed problems initial value PDEs

.. Well-posed initial-value problems

Next, consider the more general case – a constant-coefficient Cauchy
problem

ut = P(∂x)u, −∞ < x < ∞, t > 0

u(t, 0) = u0(x).

The initial value problem is well-posed if there are constants K and α
such that

∥u(t)∥ ≤ Keαt∥u(0)∥ = Keαt∥u0∥, ∀u0 ∈ L2.
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Well-posed problems initial value PDEs

.. Condition using Fourier transform

To check well-posedness, apply Fourier transform as before.

Obtain well-posedness iff there are constants K and α such that

sup
−∞<ξ<∞

|eP(ıξ)t | ≤ Keαt .
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Well-posed problems initial value PDEs

.. Heat equation

The simplest parabolic PDE:

ut = uxx .

we get the symbol

P(ıξ) = −ξ2.

Hence

|eP(ıξ)t | = |e−ξ2t | ≤ 1 ∀ξ.

So, K = 1, α = 0.

Moreover, higher wave numbers are attenuated more! Thus, the heat
equation operator is a smoother.

Note ill-posedness for t < 0: heat equation is not reversible.
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Well-posed problems initial value PDEs

.. Example: heat equation smoothing effect

fig1 4
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Well-posed problems initial value PDEs

.. Advection equation

A simple hyperbolic PDE:

ut + aux = 0

we get

P(ıξ) = −aıξ.

Hence

|eP(ıξ)t | = |e−ıaξt | = 1 ∀ξ.

Note no attenuation of any wave number. No smoothing of solution
in time. Also, advection equation is reversible.
Solution is constant along characteristics x = at with wave speed
dx
dt = a, so exact solution is:

u(t, x) = u0(x − at).
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Well-posed problems initial value PDEs

.. Example: advection equation solution

fig1 3
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Well-posed problems initial value PDEs

.. Wave equation

A better behaved hyperbolic PDE, the classical wave equation:

wtt − c2wxx = 0.

Define u1 = wt , u2 = cwx , u = (u1, u2)
T , obtain

ut −
(
0 c
c 0

)
ux = 0.

The eigenvalues of this matrix are ±c . They are real, hence the wave
equation is hyperbolic.
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Well-posed problems initial value PDEs

.. Laplace equation

The simplest elliptic equation is

wtt + wxx = 0.

Same analysis as above but c = ı not real.

the initial-value problem for Laplace and other elliptic PDEs is not
well-posed.

But the boundary-value problem for elliptic equations is well-posed.
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Well-posed problems initial value PDEs

.. Systems of PDEs

Consider the PDE system

ut = Auxx .

This is a parabolic system if A is symmetric positive definite (SPD).
Then the initial value problem (IVP) is well-posed.

The PDE system

ut = Aux

is a hyperbolic system if A is diagonalizable and has real eigenvalues
(like the wave equation). Then IVP is well-posed.
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Well-posed problems initial value PDEs

.. Introduction

Differential equations: ODEs and PDEs

PDE example

Well-posed initial value PDE problems

Numerical methods: a taste of finite differences
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Finite differences Advection equation

.. Discretization mesh

Step sizes ∆t = k, ∆x = h

vnj = v(tn, xj) ≡ v(nk , jh) ≈ u(nk , jh)

0 x

t

h

k
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Finite differences Advection equation

.. Three discretizations for advection equation

Advection equation: ut + aux = 0.
...1 One sided

1

k
(vn+1

j − vnj ) +
a

h
(vnj+1 − vnj ) = 0.

...2 Centered in x

1

k
(vn+1

j − vnj ) +
a

2h
(vnj+1 − vnj−1) = 0.

...3 Leap-frog

1

2k
(vn+1

j − vn−1
j ) +

a

2h
(vnj+1 − vnj−1) = 0.

These schemes are all explicit: knowing {vn} march forward to {vn+1}.
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Finite differences Advection equation

..

Three discretizations: molecular
representation

Set µ = k/h.

vn+1
j = vnj − µa(vnj+1 − vnj )

vn+1
j = vnj − µa

2 (vnj+1 − vnj−1)

vn+1
j = vn−1

j − µa(vnj+1 − vnj−1)
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Finite differences Advection equation

.. Simple example

Set a = 1, so ut + ux = 0; consider Cauchy problem (pure IVP on half
space)

u(0, x) = u0(x) =

{
1, x ≤ 0

0, x > 0
.

The exact solution is u(t, x) = u0(x − t), so

u(1, x) =

{
1, x ≤ 1

0, x > 1
.

Consider the one-sided difference scheme.
If x0 = 0 then v0j = 0, ∀ j > 0, implying v1j = 0, ∀ j > 0, then

v2j = 0, ∀ j > 0, etc.

So for Nk = 1 obtain vNj = 0, ∀ j > 0, which has the error

|vNj − u(1, xj)| = 1 for 0 < xj ≤ 1.
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Finite differences CFL condition

.. Simple example cont.

Note domain of dependence (triangle spanned by black dots) of numerical
method. The charactristic line arrives from outside it.

0 x

t

.3 .6 .9 1.2

.25

.5

.75

1
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Finite differences CFL condition

.. Another simple example

Setting a = −1, so ut − ux = 0, likewise have inconsistency if µ > 1.

0 x

t

.2 .4 .6 .8 1

.25

.5

.75

1
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Finite differences CFL condition

.. Courant-Friedrichs-Lewy (CFL) condition

The domain of dependence of the PDE must be contained in the
domain of dependence of the difference scheme

0 x

t
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Finite differences Stability

.. Stability of numerical method

CFL condition is necessary but not sufficient for scheme to be
well-behaved.

Require stability: For fixed h > small enough, solution norm should
not increase in time: as k → 0, nk ≤ tf , must have ∥vn+1∥ ≤ ∥vn∥.

∥vn∥ =

√
h
∑
j

(vnj )
2.

This condition for the numerical method parallels well-posedness for
the PDE problem.

So, consider the same sort of analysis for

v(t, x) =
1√
2π

∫ ∞

−∞
eıξx v̂(t, ξ)dξ.
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Finite differences Stability

.. Stability of one-sided scheme

For advection equation ut + aux = 0 consider one-sided scheme.

Substituting in one-sided scheme,∫ ∞

−∞
eıξx v̂(t + k, ξ)dξ =

∫ ∞

−∞

[
eıξx − µa

(
eıξ(x+h) − eıξx

)]
v̂(t, ξ)dξ.

Integrands must agree:

v̂(t + k, ξ) =
[
1− µa

(
eıξh − 1

)]
v̂(t, ξ).

Set ζ = ξh and g(ζ) = 1− µa
(
eıζ − 1

)
. So, each Fourier mode is

multiplied by a g(ζ) over each time step.

For stability, require amplification factor to satisfy

|g(ζ)| ≤ 1, ∀ζ.
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Finite differences Stability

.. Stability of one-sided scheme cont.

Need |g(ζ)| = |1− µa
(
eıζ − 1

)
| ≤ 1, −π ≤ ζ ≤ π.

Must have a ≤ 0.

For a ≤ 0, circle centred at 1 + µa with radius −µa must be
contained in unit disk.

This implies (−a)µ ≤ 1, obtaining stability iff CFL condition holds!

Uri Ascher (UBC) CPSC 520: Introduction (Ch. 1) Fall 2012 34 / 38



Finite differences Stability

.. Stability of space-centred scheme

For the scheme

(vn+1
j − vnj ) +

µa

2

(
vnj+1 − vnj−1

)
= 0,

(forward in time, centred in space), apply same analysis.

Obtain

v̂(t + k , ξ) =
[
1− µa

2

(
eıξh − e−ıξh

)]
v̂(t, ξ).

So,

g(ζ) = 1− µa

2

(
eıζ − e−ıζ

)
= 1− ıµa sin ζ.

Here, |g |2 = 1 + µ2a2 sin2 ζ > 1 so this scheme is unconditionally
unstable.
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Finite differences Stability

.. Stability of leap-frog scheme

For the leap-frog scheme

(vn+1
j − vn−1

j ) + µa
(
vnj+1 − vnj−1

)
= 0,

(centred in time, centred in space), apply same analysis.
Obtain

v̂(t + k, ξ) = v̂(t − k , ξ)− µa
(
eıξh − e−ıξh

)
v̂(t, ξ).

Ansatz: try to solve this with v̂(tn, ξ) = κn.
Substitute and divide by κn−1, obtaining

κ2 = 1− 2
(
ıµa sin ζ

)
κ.

Solve quadratic equation:

g(ζ) ∼ κ = −ıµa sin ζ ±
√

−µ2a2 sin2 ζ + 1.
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Finite differences Stability

.. Stability of leap-frog scheme cont.

Ansatz: try to solve this with v̂(tn, ξ) = κn.
Substitute and divide by κn−1, obtaining

κ2 = 1− 2
(
ıµa sin ζ

)
κ.

Solve quadratic equation:

g(ζ) ∼ κ = −ıµa sin ζ ±
√

−µ2a2 sin2 ζ + 1.

To get |κ| ≤ 1, must have nonnegative argument under square root
sign. Obtain stability iff

µ|a| ≤ 1

(which again agrees with the CFL condition).
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Finite differences Stability

.. Numerical example

ut = ux , u0(x) = sin(ηx), periodic BC.

Run fig1 12

Play with step sizes k, h, oscillation parameter η.

Check stability and accuracy

See Figure 1.12 and Table 1.1 in text.
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