
CPSC520: Solutions to Assignment 2, 2012

1. (a) Obviously this is a one-step method with two stages. In our RK notation
we have K1 = f(tn, yn) and K2 = f(tn+θ, yn + kθK1). In Tableau form

0 0 0
θ θ 0

0 1

(b) This method consists of two steps of forward Euler, so it is certainly first
order accurate for any 0 ≤ θ ≤ 1. The condition (2.13) in the text for 2nd
order accuracy holds only when θ = 1/2.

(c) For the test equation y′ = λy with z = kλ we have

yn+1 = yn + zyn+θ = yn + z(yn + θzyn) = (1 + z + θz2)yn.

So, R(z) = 1 + z + θz2. Next, let z = ıε for some real small ε, |ε| � 1.
Then R(z) = (1− θε2) + ıε, hence we are searching for values ε such that

|R(z)|2 = 1− 2θε2 + θ2ε4 + ε2 ≤ 1.

If θ 6= 1/2 then the O(ε4) is dominated by the O(ε2) term and may be
ignored. We obtain absolute stability if 1− 2θ < 0, i.e., θ > 1

2
. If θ = 1/2

then theO(ε2) term vanishes and we conclude no absolute stability because
1 + ε4 > 1.

2. (a) Non-negativity implies that the magnitudes are not needed in the usual
condition of absolute stability |yn+1| ≤ |yn|. This directly yields mono-
tonicity.

(b) For forward Euler R(z) = 1 + z ≥ 0 implies z ≥ −1.

(c) For backward Euler R(z) = 1
1−z ≥ 0 for any z ≤ 0.

(d) For trap R(z) = 1+z/2
1−z/2 ≥ 0 implies the condition 1 + z/2 ≥ 0, which holds

when z ≥ −2.

(e) At first yn+1/2 = 1+z/4
1−z/4yn. Plugging this into the expression for yn+1 the

condition for non-negativity is seen to be 41+z/4
1−z/4 − 1 ≥ 0 which yields

z ≥ −12
5

. This method is not unconditionally nonnegative although it is
L-stable.

(f) A symmetric implicit method based on quadratic instead of linear elements
would have

R(z) =
1 + z/2 + αz2

1− z/2 + αz2
.
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If α = 0, as in the trapezoidal and midpoint methods, then R(∞) = −1.
But if α > 0 then we can have R(∞) = 1, so at least in the limit R is
positive.

For instance, Gaussian collocation at two points (s = 2) has

R(z) =
1 + z/2 + z2/8

1− z/2 + z2/8
.

Like for the trapezoidal rule in item (d) we need investigate only whether
the denominator remains nonnegative for all z ≤ 0. Clearly that is so
at z = 0 and z = −∞. In between the minimum is where the derivative
vanishes, which is at 1/2+z/4 = 0, i.e. z = −2. But there 1+z/2+z2/8 =
(−2)2/8 > 0. So this scheme is unconditionally nonnegative.

3. (a) This is standard: set y1 = u1, y2 = u′1, y3 = u2, y4 = u′2. This gives the
first order ODE system of size m = 4

y′1 = y2,

y′2 = y1 + 2y4 − µ̂
y1 + µ

D1

− µy1 − µ̂
D2

,

y′3 = y4,

y′4 = y3 − 2y2 − µ̂
y3
D1

− µ y3
D2

, where

D1 = ((y1 + µ)2 + y23)3/2,

D2 = ((y1 − µ̂)2 + y23)3/2.

(b) Using ode45 with default tolerances, this necessitated 309 time steps with
maxn kn = .1892 and minn kn = 1.5921e-7.

(c) Using 1,000 steps yields nonsensical results. Even 5,000 uniform steps
yield qualitatively incorrect results. Only 10,000 uniform steps yield a
qualitatively correct figure, similar as far as the naked eye is concerned to
Figure 1.

Here, an adaptive step size selection obviously reaps great benefits. Indeed,
notice how small is the smallest step size used by ode45.

4. (a) This claim follows straight from the definition of the composite quadrature
rules of midpoint and trapezoidal, i.e., upon writing

T =
J−1∑
i=0

∫ xi+1

xi

[
a(u′)2 − 2uq

]
dx

and applying the basic rules to each short integral.

2



(b) For each j, j = 1, . . . , J , we set ∂Th
∂vj

= 0. (Note v0 is not an unknown, but

vJ is.) We get contributions from i = j and from i = j − 1, and these add
up as specified.

(c) Here v = (v1, v2, . . . , vJ)T , and the right hand side is likewise q = (q1, q2, . . . , qJ)T ,

where qj =
hj+hj−1

2
q(xj).

Denoting the (k, l)th element of A by ak,l, the matrix A is tridiagonal and
symmetric, with the main diagonal elements

aj,j =
a(xj−1/2)

hj−1
+
a(xj+1/2)

hj
, j = 1, 2, . . . , J − 1, aJ,J =

a(xJ−1/2)

hJ−1
,

and the super-diagonal elements

aj,j+1 = −
a(xj+1/2)

hj
, j = 1, 2, . . . , J − 1.

(The sub-diagonal elements are determined likewise by symmetry.)

Furthermore we have, since a(x) > 0, that ai,i > 0, while ai,i+1 = ai+1,i < 0,
for all relevant i, and thus ai,i ≥

∑
j 6=i |ai,j|, i = 1, 2, . . . , J . (In fact, ai,i =∑

j 6=i |ai,j|, i = 1, 2 . . . , J .) This yields the conclusion (by Gerschgorin’s
Theorem) that the eigenvalues are all nonnegative. To see that the matrix
is nonsingular, we can consider directly solving Av = 0. Back-substitution
for all but the first row shows that v must be a constant vector, but this
does not agree with the first row, hence there is no solution and 0 is not an
eigenvalue. Therefore, all eigenvalues are positive. Thus, A is symmetric
positive definite.

(d) The necessary conditions clearly approximate to 2nd order the differential
equation −(au′)′ = q on subintervals (xj−1, xj+1). So, the truncation error
is O(h2). Stability (which is trickier to prove) then leads to the conclusion
that v is a second order approximation of u at mesh points as well.

For a numerical example I used a(x) = (2 +x)/(1 +x), q(x) = 2x+ 1, and
hence u(x) = x−x3/3. A nonuniform mesh is constructed using the script

x(1) = 0; count = 1;

while (x(count) < 1-hun)

x(count+1) = x(count) + hun; count = count + 1;

if (mod(count,2) == 0),

x(count+1) = x(count) + hun/2; count = count + 1;

x(count+1) = x(count) + hun/2; count = count + 1;

end

end

if (x(count) < 1), x(count+1) = 1; end
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Thus, every second subinterval (or element) is halved.

For hun = .1 the maximum error is 1.8e-3, whereas for hun = .05 the error
is 4.27e-4, and for hun = .025 the error is 1.1e-4. The trend is clearly 2nd
order.

5. (a) The hat functions are defined to be linear on each mesh subinterval (el-
ement), so they are each piecewise linear. Also, φi(xj) = δi,j, i.e., = 1
when j = i and = 0 otherwise. The function w(x) is a sum of piece-
wise linear functions so it also is one. Furthermore, indeed using δi,j,
w(xj) =

∑
w(xi)φi(xj).

(b) The Galerkin equations are

J∑
j=1

b(φi, φj)vj =
∑
j

ai,jvj =
∑
j

∫ 1

0

a(x)φi(x)φj(x)dx =

∫ 1

0

q(x)φi(x)

= (q, φi), i = 1, 2, . . . , J.

This gives a matrix A with elements ai,j. Note that φi(x)φj(x) = 0,∀x,
unless j = i or j = i±1. In fact, it is not difficult to see that A is tridiagonal
and symmetric. Indeed, upon using the midpoint rule to approximate these
integrals we obtain the matrix A of Exercise 4. Likewise, by applying the
trapezoidal rule to the integrals of (q, φj) we obtain the vector q of the
previous exercise.
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