CPSC520: Solutions to Assignment 1, 2012

1. (a) We have to look at

e |olommensptave)

for t > 0, —oo < £ < co. Now, for ¢ sufficiently large the first term in the
exponent dominates. Further, if R(2™p,,) is positive then we have for very
large & that |eP(9] x eR07Pm)E™ grows unboundedly. Hence the Cauchy
problem is ill-posed.

(b) Here we have only odd derivatives, and this yields

P(€) = & +1°ps& +0°psE0 + ..
= ;€ —ps& +psE”+..) =g,

where ¢ is real. Hence |eP(9)?] = |e | = 1.

This solution operator is not a smoother because higher wave numbers are
not attenuated. Furthermore, letting ¢t « —t gives |e™"| = 1. Hence
integrating backwards in time is a well-posed problem.

2. (a) Note first that the transformation z = FEe? (i.e. y = log(z/FE)) takes [0, c0)
to (—o0,00). Likewise, when ¢ < T we have s > 0, and the terminal-value
problem becomes an initial-value problem.

Next, 0, = —%288, Oy = %ay, Ope = i(ﬁyy — 0y). The given PDE becomes
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o? o?

— 5 Us 7(%?} —vy) +rv, —rv=0.

The desired result follows by defining k = 2r/c?. The transformation of
the initial conditions is straightforward by substitution.

(b) Straightforward.

(c) For w we have a well-posed initial-value problem as per the class notes.
Now, the transformation from u to w is well-conditioned (i.e., it and its
inverse are bounded), so the same applies to the original formulation.

3. The amplification factor is

9(¢) = cos(¢) — suasin(C).

Thus, assuming p|a| < 1 we have

19(Q)* = cos®(¢) + pa”sin®(¢) < cos®(¢) +sin®(¢) = 1

for any (.



4. This is the advection equation u; + au, = 0, with a = —2. Here are the results:

n h  —ap Errorin (1.15a) Error in (1.15b) Error in (1.15¢)
2 r 0.8 2.0e-1 1.2 7.4e-2
Olr 0.8 2.4e-2 1.0e-1 9.4e-4
0017 0.8 2.5e-3 * 9.5e-6
We observe:

e The error in the method (1.15a) looks like O(k) + O(h), and the error in

(1.15¢) looks like O(k?) + O(h?).

e The error in the unstable method (1.15b) looks large yet sort of OK for

(d)

larger k values but blows up for smaller £ when more time steps are taken
to reach t = 1.

Upon carrying additional experiments with different 7, the errors are larger
in absolute value than those obtained for the slowly varying ug with n =1
and smaller than those for the rapidly varying ug(x) with n = 10.

We have [ evaluated at 3 arguments, namely y,, Yny1/2 and y,41. Hence
there are three stages. Note also

AWni1/2 = Yn = 3Yn + k(f(Yn)) + f(Wnt1/2)).

Hence we get the tableau
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Since A is lower triangular but its diagonal elements are not all zero, it is
diagonally implicit.

For yy,41/2 it is the trapezoidal rule which is 2nd order. The third stage is
the same as y,1. For 4,1 the order is obviuosly 2 because it is composed
of two second order methods. (This can also be verified directly by the
tableau and (2.13).)

Substituting f = Ay, z = kX in (5a) yields Y412 = —yn for z large. Then
into (5b) this yields

R(z)=5/z—0 asz— —oc.

Stiff decay follows similarly.

Consider
y/ = _1000y7 Yn = 17



and use k = .1, say. The BDF2 method yields y,+1 > 0 that is close to
0 but still nonnegative. The trapezoidal method would yield a negative

Yn+1-
Now consider the system

Yy = —1000y;, ys = log(ys).

The BDF2 method will complete the step successfully, whereas the featured
method will get stuck, being unable to evaluate y,,, 5.



