
Pipelined Regular Expression Monitor Compiler
Manual

February 26, 2003

1 Introduction to PREMS

1.1 Overview

The Pipelined Regular Expression Monitor Specification (PREMS) is a high-level
specification style designed to facilitate the construction of interface monitors. The
PREMS compiler automatically translates the interface specification into a Verilog
or VHDL monitor. This manual describes the PREMS language and the usage of
the compiler.

1.2 Identifiers and Reserved Words

An identifier in the PREMS language is any sequence of alphabet letters, digits,
and underscores, where the first character must be an alphabet letter. Identifiers are
case-insensitive in order to facilitate the translation to VHDL, which is also case-
insensitive. Examples of legal identifiers are: grant (same as GrAnt), split_2,
data32. Examples of illegal identifiers are: _grant, 2_split, 32data.

The following is the list of PREMS reserved words:

internal input output in_out define monitor

Reserved words cannot be used as identifiers. Their meaning will be explained in
detail in the following sections.

1.3 Input Signals

The input signals of the monitor, are all the input and output signals of the block
being monitored. These signals must be declared at the beginning of the file, and
they can be any of the following three types:

� input: this signal is an input to the block being monitored.

� output: this signal is an output of the block being monitored.

� in_out: this signal is an input and an output to the block being monitored.

1

The actual implementation of the compiler does not make any distinction between
these types but in the future we intend to use these different types to be able to
blame the block responsible for causing an error.

The syntax for signal declarations is:
signal-type comma-separated-list-of-identifiers;
Arrays can be declared as identifier[begin:end]. A few examples of signal

declaration taken from the AMBA slave specification are shown below:

input HTRANS[1:0], HREADY, HSEL, HMASTER[3:0];
output HRESP[1:0], HSPLIT[15:0];

The signals HTRANS, HREADY, HSEL, and HMASTER are the slave inputs and signals
HRESP and HSPLIT are the slave outputs.

In order to access an element from an array, square brackets are used to index
the specific element. For example, HMASTER[2] refers to the third element of array
HMASTER which has size four.

1.4 Storage Variables

Storage variables are used in the PREMS language to facilitate the monitor spec-
ification. They can be seen as a type of memory. The main difference between a
signal and a storage variable is that the later can have values assigned to it accord-
ing to some conditions in the specification (see Section 1.10). Other than that, they
can be used in any place a signal is expected.

The declaration of storage variables has almost the same syntax as signal dec-
laration with the difference that they can be initialized. Initialization values are
constants (see Section 1.5), and in case no initial value is set, the default value is
0 (zero). In the PREMS compiler input file, the declaration of storage variables is
done in the beginning of the file together with signal declarations.

A few examples from the AMBA master specification are shown below:

internal i_grant = 0;
internal i_first = 1;
internal i_wdata[31:0] = 0;

The storage variables i_grant and i_first are used by the monitor to keep track
of the grant signals and i_wdata is used to guarantee that the master will not
change the data on the bus during a write transfer.

1.5 Constants

Constants in the PREMS language are unsigned integers represented in base ten.
A few examples usage of constants are shown below:

internal i_count[2:0] = 0
i_count != 7
i_count <- i_count + 1

2

In the first example the constants are used for declaring the size of the array and
to initialize it to 0. The second line shows a constant being used in a comparison
expression (see Section 1.6.3), and in the last line the constant is used in a action
expression (see Section 1.10) .

1.6 Primitive Expressions

There are three types of expressions defined in the PREMS language: primitive ex-
pressions (explained here), extended regular expressions (explained on section 1.7),
and action expressions (explained on section 1.10).

A primitive expression is a formula consisting of signals, storage variables,
unary operators, comparison operators and bitwise operators. The precedence of
all operators are listed in Table 1 from highest precedence to lowest precedence.

Precedence Operators

Highest !
��� ! �

Lowest
�

&

Table 1: Operator precedence.

1.6.1 Signals and Storage Variables

Any monitor input signal or storage variable of size one is a primitive expression.
Arrays are not considered primitive expressions but array elements are.

1.6.2 Unary Operators

The only unary operator in the PREMS language is the negation operator which
is represented by the symbol “!”. This operator can be used with any primitive
expression and it cannot be used with arrays. For example: if HTRANS[1:0] is an
array of size two then !HTRANS is illegal but !HTRANS[0] is legal.

1.6.3 Comparison Operators

The equality operator “==” and the not equal operator “!=” are the two comparison
operators present in the language.

Only input signals, storage variables and constants can be compared. An array
can be compared to another array only if both have the same size and the begin
and end positions match. Arrays can also be compared to constants if their size
is big enough to hold the constant. As an example, the following code shows the
declaration of four arrays A, B, C, D:

input A[0:1], B[0:2], C[1:2], D[0:2];

3

The only valid comparison of two arrays is between B and D. Even though arrays
A and C have the same size, they cannot be compared because the initial position
of A (0) is different of initial position of C (1) and their end positions (1 and 2) are
also different. B and D can be compared to any constant which has a value less than
8 and, A and C can be compared to any constant which has a value less than 4. In
summary:
B == C is legal
B != A is illegal because of size difference
A == C is illegal because of initial and end positions difference
A != 3 is legal
A == 4 is illegal because A can only represent values from 0 to 3

1.6.4 Bitwise Operators

The two bitwise operators in the language are the and operator “&” and the or
operator “|”.

The left-hand-side and right-hand-side of the operators can be any primitive
expression (arrays are not primitive expressions). The semantics for both operators
is the same semantics used for logic circuits. The following is an example form the
AMBA AHB slave specification:

!HTRANS[0] & !HTRANS[1] & HSEL & HREADY

The previous expression corresponds to the control signals for a slave being se-
lected to perform an idle transfer.

1.7 Extended Regular Expressions

A extended regular expression is a formula containing primitive expressions and
extended regular expression operators. The precedence of all operators are listed
in Table 2 from highest precedence to lowest precedence.

Precedence Operators

Highest +
ˆ
*
||
,

Lowest @

Table 2: Extended regular expression operator precedence.

1.7.1 Primitive Expressions

Any primitive expression is an extended regular expression.

4

1.7.2 Choice

The choice operator “||” is used to describe two possible behaviors. At least one
of the two sub-expressions must be in a matching state in order for the monitor not
to generate an error.

The following is an example from the AMBA AHB slave:

transfer -> idle_transfer ||
busy_transfer ||
nonseq_transfer ||
seq_transfer;

Each transfer can be one of the four possible types: idle, busy, non-sequential and
sequential.

1.7.3 Concatenation

The concatenation operator “,” concatenates the behavior of two sub-expressions
in a time sequence. The monitor watches the left-hand-size and as soon as this
sub-expression is over, it starts to watch the right-hand-side. If a mismatch occurs
in any of the two sub-expressions the monitor will generate an error.

The following is an example from the AMBA AHB slave:

error_response -> (!HREADY & a_error) , (HREADY & a_error);

An error response consists of two cycles, the first one with HREADY low and the
second one with HREADY high.

1.7.4 Multiple Concatenation

The multiple concatenation operator “ˆ” is used to concatenate the behavior of a
sub-expressions a given number of times in a time sequence. The actual implemen-
tation of the compiler expands the expression into a sequence of concatenations.
For example, the following expression:

frame_header -> oneˆ5, zeroˆ3;

is expanded in the sequence below by the compiler:

frame_header -> one, one, one, one, one, zero, zero, zero;

1.7.5 Pipeline

The pipeline operator “@” makes the monitor watch the left-hand sub-expression
and as soon as the parsing of this expression is done, the monitor starts two new
threads, the first will watch the right-hand sub-expression and the second will
watch the sub-expression that comes after the pipeline expression. Both threads
must not generate an error in order for the monitor to not generate an error.

The following is an example based on the ARM AMBA slave:

5

transfer -> ((a_nonseq & HSEL_1 & HREADY) @ response)*;

A transfer consists of an address phase (a_nonseq & HSEL_1 & HREADY) fol-
lowed by a pipelined response phase (@ response). As soon as the left-hand-side
sub-expression is done, the monitor starts two new threads, the first will watch the
response sub-expression and the second will watch the a_nonseq & HSEL_1 & HREADY
sub-expression because of the Kleene star operator. This way we can get the ex-
pected pipelined behavior, on every cycle an address phase and a response phase
take place.

1.7.6 Kleene Star

The Kleene star operator “*” is used to represent zero or more repetitions of the
behavior described by the associated sub-expression.

The following is an example from the AMBA AHB slave:

response ->
wait_state* ,
(okay_response || error_response ||
split_response || retry_response);

A slave response may include any number of wait states before the actual response
is set.

1.7.7 One-or-more

The one-or-more operator “+” is used to represent one or more repetitions of the
behavior described by the associated sub-expression. The compiler expands the
one-or-more expression into a concatenation followed by a Kleene star expression.
For example, the following expression:

write_sequence -> write+;

is expanded into the expression below:

write_sequence -> write, write*;

1.7.8 Extended Regular Expression Restrictions

In order to be able to automatically build a monitor from the specification, we
impose a few restrictions on the extended regular expressions.

First, we require the expression contained within a Kleene star not to accept
the empty string. Known constructions can normalize regular expressions to obey
this restriction [1], but our implementation does not currently include this step.

Second, we forbid non-deterministic choice: we allow the choice operator, but
the choices must be distinguishable within the first clock cycle. In practice, this

6

restriction is not a problem because protocols are typically designed to make it
easy to determine immediately what action is occurring.

Finally, we allow at most one thread at a time to execute in a pipeline stage.
For example, the expression (a@(b,c))* generates an error when the second rep-
etition arrives at the b while the first repetition’s pipeline sub-thread is still at the
c. This restriction corresponds to allowing only one transaction at a time to use the
hardware resources devoted to a pipeline stage.

1.8 Define Statement

The define statement is used to declare an abbreviation for a primitive expression.
These definitions must be done after the signal and storage variable declaration
section and before the monitor statement section. An example from the AMBA
AHB slave specification is shown below:

define idle = !HTRANS[0] & !HTRANS[1];
define busy = HTRANS[0] & !HTRANS[1];
define nonseq = !HTRANS[0] & HTRANS[1];
define seq = HTRANS[0] & HTRANS[1];

The identifiers on the left-hand-side of the “=” operator are the abbreviation for the
four possible transfer types, idle, busy, nonsequential, and sequential.

1.9 Productions

A production is an abbreviation for an extended regular expression. Its name is an
identifier that can be used in other extended regular expressions. In fact, we have
already been using productions in the previous examples. In order to be able to
obtain a finite state machine, recursive productions are not allowed.

The syntax for a production declaration is:
production-name � extended-regular-expression;

The example below shows the usage of productions in the specification of an
AMBA AHB master that performs only idle transfers:

master_bus -> (idle || idle_transfer)*;
idle -> !i_grant;
idle_transfer ->

(a_idle & !HREADY & i_grant)* ,
(a_idle & HREADY & i_grant);

master_bus, idle, and idle_transfer are the production names.
The first production in the input file is the top-level production of the monitor.

If the file contains the specification of more than one monitor, then the monitor
statement must be used to indicate which production is the top-level production for
each monitor. The example below shows the usage of the monitor statement in the
AMBA AHB master spec:

7

monitor master_bus, grant;

The productions master_bus and grant are the top-level productions of the two
monitors described in the AHB master specification.

1.10 Variable Assignment

Storage variables can have values assigned to them in an extended regular expres-
sion. The assignment is triggered when the extended regular sub-expression as-
sociated with it is matched. The following is an example from the AMBA AHB
master:

grant -> ((HGRANT_1 & HREADY {i_grant <- 1;}) ||
(!HGRANT_1 & HREADY {i_grant <- 0;}) ||
(!HREADY))*;

The storage variable i_grant is assigned the value 1 every time the sub-expression
HGRANT_1 & HREADY is matched and it is assigned the value 0 when the sub-
expression !HGRANT_1 & HREADY is matched. If the sub-expression !HREADY is
matched, i_grant remains unchanged.

The right-hand-side of an assignment is an action expression. The action ex-
pression can be a constant, a signal/variable, or a signal/variable array. Arithmetic
addition “+” and subtraction “-” are also available.

The same storage variable may have different values assigned to it in the same
cycle. The result of simultaneous assignments is implementation specific. In the
current implementation, the order of assignments is defined by the parse tree of the
regular expression, with assignments done in the order of a pre-order traversal of
the parse tree.

1.11 Input File Format

The PREMS compiler input is a file consisting of four sections: Signal/Variable
Declaration, Define Declaration, Monitor Declaration, and Productions. The or-
der of the sections cannot be changed and the Define Declaration and Monitor
Declaration parts are optional. The Signal/Variable Declaration section is where
all input signals and storage variables are declared. The Define Declaration part
contains the declaration of all primitive expression abbreviations. If a file describes
more than one monitor than the Monitor Declaration statement indicates which
production is the top-level production for each monitor. The last part is a list of
productions that describes the behavior of the interface being specified. A more
detailed explanation of each part is given in the following sections.

8

2 Running the PREMS Compiler

2.1 Command Line Syntax and Options

The PREMS compiler takes one file as input and it generates one file as output.
The input file is the specification of the monitor and the output file is a Verilog or
VHDL monitor. The command line syntax is:

premsc [options] � input-file �
where options are:

� -t <verilog, vhdl>: Set output language. The default value is verilog.

� -o <output-file>: Write output to output-file. The default value is
stdout.

2.2 Output File

The compiler generates a Verilog file or a VHDL file as output. If the chosen
language is Verilog, the file contains one module called MONITOR. If VHDL is the
chosen language, the file contains one entity called MONITOR and one architecture
description called MONITOR_BEHAVIOUR.

The input signal declaration follows the same order they were declared in the
specification. In addition to these signals there are two more inputs and one output
to the monitor. The first additional input is the clock signal and the second is the
reset signal. The only output is the OK signal which, when high, indicates that
there have not been any violations to the protocol yet. These additional signals are
declared after the ones declared in the specification, and they follow the order they
were presented here.

References

[1] Pascal Raymond. Recognizing regular expressions by means of dataflow net-
works. In 23rd International Colloquium on Automata, Languages, and Pro-
gramming, pages 336–347. Springer, 1996. Lecture Notes in Computer Sci-
ence Number 1099.

9

