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Abstract—Parameterized heuristics abound in computer aided the exposed parameters or manually tune them in a manner
design and verification, and manual tuning of the respective similar to that used earlier by the developer.
parameters is difficult and time-consuming. Very recent reslts Not surprisingly, this manual configuration and tuning ap-

from the artificial intelligence (Al) community suggest that this . . .
tuning process can be automated, and that doing so can lead to proach typically fails to realize the full performance putel

significant performance improvements; furthermore, automated ~Of @ heuristic solver. In this paper, we present an altereati
parameter optimization can provide valuable guidance durhg approach based on automated parameter optimization ngethod
the development of heuristic algorithms. In this paper, we and demonstrate its benefits, which include substantiéper
study how such an Al approach can improve a state-of-the- ance improvements, valuable guidance to the algorithm de-

art SAT solver for large, real-world bounded model-checkirg . L . g
and software verification instances. The resulting, autonkcally- ~ S/9N€r, and new insights into specific types of (SAT-encpded

derived parameter settings yielded runtimes on average 4.8mes Verification problems.

faster on bounded model checking instances and 500 times Specifically, we explain how ARAMILS, a recent param-
faster on software verification problems than extensive ha+ eter optimization tool developed by Hutter et al. [7], was
tuning of the decision procedure. Furthermore, the availaliity used during the development oP8AR, a high-performance

of automatic tuning influenced the design of the solver, and ] . L .
the automatically-derived parameter settings provided a @eper modular arithmetic decision procedure and SAT solver, Whic

insight into the properties of problem instances. was developed in support of theaCrsTo static checker [8].
Index Terms—Decision Procedures, Boolean Satisfiability, Although the performance of an early, manually-tuned wersi
Search Parameter Optimization of SPEAR was comparable to that of a state-of-the-art SAT

solver (MiniSAT 2.0 [9]), the use of ARAMILS ultimately
lead to speedups between a factor of 4.5 and a factor of
The problems encountered in automated formal verificati®®0 due to the optimization of the search parameters. The
are typically hard. As with other computationally difficultuse of RRAMILS also influenced the design ofP8AR and
problems, the key to practical solutions lies in the use ghave us some important insights about differences between
heuristic techniques. In the context of verification, decis (SAT-encoded) hardware and software verification probjems
procedures, which might be embodied as a BDD [1] packagefor example, we found that the software verification insenc
Boolean satisfiability (SAT) solver (e.g., [2]), or an autted generated by the AysTo static checker required more
theorem prover based on the Nelson-Oppen framework [3], ajgressive use offEAR's restart mechanism than the bounded
make use of various heuristics that have a crucial impact arodel checking hardware verification benchmarks we studied
their performance. While the results of our case study are interesting in their
A high-performance decision procedure typically uses mubwn right, it should be noted that our overall approach and
tiple heuristics that interact in complex ways. Some exa&siplthe specific parameter optimization tool used in this stugdy a
from the SAT-solving world include decision variable andery general and can be applied to any parameterized heurist
phase selection, clause deletion, next watched literat8eh, algorithm; the performance criterion that is automaticall
and initial variable ordering heuristics (e.g., [4], [5B]]. optimized can be runtime, precision, latency, or any other
The behavior and performance of these heuristics is tylgicatomputable scalar metric.
controlled by parameters, and the complex effects anddoter
tions between these parameters render their tuning extyeme
challenging. There are almost no publications on automated parameter
During the typical development process of a heuristic splveptimization for decision procedures for formal verificaiti
certain heuristic choices and parameter settings aredt@ste Seshia [10] explored using support vector machine (SVM)
crementally, typically using a modest collection of benelkn classification to choose between two encodings of diffexenc
instances that are of particular interest to the develdgany logic into Boolean SAT. The learned classifier was able
choices and parameter settings thus made are “locked tn”choose the better encoding in most instances he tested,
during early stages of the process, and typically, only femesulting in a hybrid encoding that mostly dominated the two
parameters are exposed to the users of the finished solvempime encodings. The only other work we are aware of is
many cases, these users never change the default settinggnpiublished, ad hoc work in industry.

|. INTRODUCTION

II. RELATED WORK



There is, however, a fair amount of previous work on optiavolved: (i) optimization of the implementation, resabiin
mizing SAT solvers for particular applications. For exae)pl a speedup by roughly a constant factor, with no effects on
Shtrichman [11] considered the influence of variable anégghahe search parameters, and (ii) manual optimization ofiyug
decision heuristics (especially static ordering), restsn of twenty search parameters, most of which were hard-coded and
the set of variables for case splitting, and symmetric oapilbn  scattered around the code at the time.
of conflict clauses on solving bounded model checking (BMC) The manual parameter optimization was a slow and tedious
problems. He evaluated seven strategies on the Grasp Sdcess done in the following manner: thee3Rr developer
solver, and found that static ordering does perform fairgflw collected several medium-sized benchmark instances which
although no parameter combination was a clear winner. Lateould solve in at most 1000 seconds and attempted to come up
Shacham and Zarpas [12] showed that Shtrichman’s concluith a parameter configuration that would result in a minimum
sions do not apply to zChaff’s less greedy VSIDS heuristic dotal runtime on this set. The benchmark set was very limited
their set of benchmarks, claiming that Shtrichman’s concland included several medium-sized BMC and some small soft-
sions were either benchmark- or engine-dependent. Shachaane verification (SWV) instances generated by the X310
and Zarpas evaluated four different decision strategid8bh static checker [8}.Such a small set of test instances facilitates
BMC instances, and found that static ordering performs worfast development cycles and experimentation, but has many
than VSIDS-based strategies. Lu at al. [13] exploited digndisadvantages.
correlations to design a number of ATPG-specific techniquesQuickly it became clear that implementation optimization
for SAT solving. Their technique showed roughly an order afave more consistent speedups than parameter optimization
magnitude improvement on a small set of ATPG benchmarl&ven on such a small set of benchmarks, the variations due

The automated parameter optimization tool used in oto different parameter settings were huge. We even found one
study has been recently introduced by Hutter et al. [7¢ase (Alloy analyzer [20] instance handshake.als.3) wthere
however, that work was more focused on theoretical progeertdifference of floating point rounding errors between Irstel’
of the algorithm and did not consider an application to aestatnon-standard 80-bit and IEEE 64-bit precision resultedrin a
of-the-art solver for real-world problems. That work an@ thextremely large difference in the runtimes on the same pro-
study presented here complement each other and also addcessor. The same instance was solved in 0.34 sec with 80-bit
two different communities. Very broadly, automated partne precision and timed out after 6000 sec with 64-bit precision
optimization can be seen as as a stochastic optimizatiohe difference in rounding initially caused minor diffeoers
problem that can be solved using a range of generic aimdvariable activities, which are used to compute the dywcami
specific methods [14], [15], [16]. However, these are eithelecision ordering. Those minor differences quickly diwstg
limited to algorithms with continuous parameters or altjonis  pushing the solver into two completely different parts cirsh
with a small number of discrete parameters. space. Since most parameters influence the decision hesirist
in some way, the solver might be equally sensitive to paramet
changeg.

The core of ®EAR is a DPLL-style [17] SAT solver, Given the costly and tedious nature of the process, no furthe
but with several novelties. For examplepthR features an manual parameter optimization was performed after finding a
elaborate clause prefetching mechanism that improves memeonfiguration that seemed to work well on the chosen test set.
locality. To improve the prediction rate of the prefetching To assess the performance of this manually tuned version
mechanism, Boolean constraint propagation (BCP) and ca@i- SPEAR, we ran it against MiniSAT 2.0 [9], the winner
flict analysis have been redesigned to be more predictalie.the industrial category of the 2005 SAT Competition and
SPEAR also features novel heuristics for decision makingf the 2006 SAT Race. In this experiment, we used two
phase selection, clause deletion, and variable and claisstance sets introduced in detail later in Sec. V: bounded
elimination. In addition, 8EAR has several enhancements fomodel checking (BMC) and software verification (SWV). As
software verification, such as support for modular arithitnetcan be seen from the runtime correlation plots shown in
constraints [18], incrementality to enable structuraltadts Figure 1, both solvers perform quite similarly for bounded
tion/refinement [8], and a technique for identifying coritex model checking and easy software verification instances. Fo
insensitive invariants to speed up solving multiple queriglifficult software verification instances, however, MiniBA
that share common structure [19]. Given all of these featurelearly performs better. This seems to be the effect of fiogus
extensions, and heuristics, many components REAR are the manual tuning on a small number of easy instances.
parameterized, including the choice of heuristics, as well For most decision procedures, the process of finding default
as enabling (or disabling) of various features: e.g., purgor hard-coded) parameter settings resembles the mamual tu
literal rule, randomization, clause deletion, and litesaiting ing described above. Furthermore, most users of these tools
in freshly learned clauses. Thus, the optimization of these
parameters is a challenging task. ISmall instances were selected becausa Y370 tends to occasionally

After the first version of BEAR was written and its genera:eofvgrr%/ehard instances that would not be solved wahieasonable
correctness thoroughly tested, its developer, DomagojéBaban;?l'L}:ri]s empha.sizes the need to find parameter settings thattéeatbre
spent one week on manual performance optimization, whiebust performance, with different random seeds, as wedicasss instances.

IIl. ALGORITHM DEVELOPMENT AND MANUAL TUNING
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Fig. 1. MiniSAT 2.0 vs. $EAR using its original, manually tuned default parameter sgfti (a) The two solvers perform comparably on bounded model
checking instances, with average runtimes of 298 seconds$MT) vs. 341 seconds EEAR) for the instances solved by both algorithms. (b) Perforrean
on easy and medium software verification instances is cambfgrbut MiniSAT scales better for harder instances. Thegame runtimes for instances solved
by both algorithms are 30 seconds (MiniSAT) and 787 seCOBHEAR).

do not change these settings, and when they do, they typicakarch procedure (such as simple hill-climbing) with a per-
apply the same manual approach. turbation phase, which lets the search escape from a local
minimum. Additionally, an acceptance criterion is used to
decide whether to continue the search from the most recently

The tool we chose to use for automatically optimizingiiscovered local minimum or from some earlier local min-
parameter settings inP&EAR has recently been developed inmum. More precisely, starting from some initial parameter
the Artificial Intelligence community [7]; in the followingve  configuration, RRAMILS first performs simple hill-climbing

briefly introduce the underlying#RAMILS algorithm (further search until a local minimum is reached, and then it cycles
details and some theoretical background can be found in fgough the following phases:

IV. PARAMETER OPTIMIZATION BY LOCAL SEARCH

paper by Hutter et al. [7]). . 1) apply perturbation (in the form of multiple random
PARAMILS is motivated by the following manual parameter parameter changes);

tuning technique often used by algorithm developers: 2) perform simple hill-climbing search until a new local
« Start with some parameter configuration minimum ¢’ is reached;

o lteratively, modify one algorithm parameter at a time, 3) accept the better of the two configuratianand ¢’ as
keeping the modification if performance on a given the starting point of the next cycle.
benchmark set improves and undoing it otherwise. PARAMILS thus performs a biased random walk over lo-

« Terminate when no single parameter modification yieldsa|ly optimal parameter configurations. To determine théebe

an improvement, or when the best configuration found # two configurations, it can use arbitrary scalar perforoean
far is considered “good enough”. metrics, including expected runtime, expected solutioaligu

Notice that this is essentially a simple hill-climbing lbca(for optimization algorithms), or any other statistic oreth
search process, and as such it will typically terminate in gerformance of the algorithm to be tuned when applied to
locally, but not globally optimal parameter configuratiom, instances from a given benchmark set. This benchmark set is
which changing any single parameter value will not achiexalled thetraining sef in contrast to theest setsve used later
any performance improvement. However, since parametersfarf evaluating the final parameter configurations obtaimechf
heuristic algorithms are typically not independent, chiagg PARAMILS (as is customary in the empirical evaluation of
two or more parameter values at the same time may stitlachine learning algorithms, training and test sets aietlgtr
improve performance. disjoint).

The problem of local optima is ubiquitous in local search, Clearly, the choice of the training set has important con-
and many approaches have been developed to effectiveguences for the performance oARAMILS. Ideally, a
deal with them; one of these approacheslitsrated Lo- homogenous training set would be chosen, i.e., one in which
cal Search (ILS)[21], [22], which provides the basis forthe impact of parameter settings on the performance of the
PARAMILS. ILS essentially alternates a subsidiary localgorithm to be tuned (here,P8AR) is similar for all in-



stances in the set. In that case, it would be sufficient a®#EAR prompted its developer to expose more and more
‘safe’ to evaluate and compare parameter configurations $garch parameters, up to the point where not only everyesingl
running the solver on a small number of instances. In practihard-coded parameter was exposed, but also a number of new
however, ‘interesting’ instance sets may not be homogenoparameter-dependent features were incorporated. Thi€§s0
and therefore larger training sets may be required to aehiawt only significantly improved SEAR'S performance, but also

a reasonably unbiased evaluation of parameter configngatichas driven the development oPBAR itself.

BASICILS(N) is a simple version of /RAMILS that uses  The resulting version of AR used for the experiments
a training set of N instances, where the choice of has reported in the following has 26 parameters:

a major impact on the efficacy of the tuning process. For, 7 types of heuristics (with the number of different heuris-
small NV, there is a risk of over-fitting, i.e., good parameter tjcs available shown in parentheses):

configurations determined for the corresponding small sets
may be overly specific to the training set and not work well
for any other problem instances. For largge however, the
evaluation of each parameter configuration becomes costly,
which can severely limit the number of search steps that can
be practically performed by ARAMILS (and hence reduce
the quality of the final parameter configuration returned by
the tuning algorithm).

FocusedLS is a more advanced version cARAMILS. It
adaptively chooses the number of training instances toarse f
each parameter setting: while poor settings can be disgdarde
after a few algorithm runs, promising ones are evaluated on
more instances. This mechanism avoids over-fitting to the
instances in the training set. (For details, see [7].) Inrgn
SPEAR, we initially used B\sIcILS(300) and later employed
the more advancedd€UsEDLS.

Variable decision heuristics (20)
Heuristics for sorting learned clauses (20)
Heuristics for sorting original clauses (20)
— Resolution ordering heuristics (20)

— Phase selection heuristics (7)

Clause deletion heuristics (3)

— Resolution heuristics (3)

« 12 double-precision floating point parameters, including
variable and clause decay, restart increment, variable and
clause activity increment, percentage of random variable
and phase decisions, heating/cooling factors for the per-
centage of random choices, etc.

« 4 integer parameters which mostly control restarts and
variable/clause elimination.

« 3 Boolean parameters which enable/disable simple opti-
mizations such as the pure literal rule.

V. AUTOMATED PARAMETER OPTIMIZATION For each of 8EARs floating point and integer parameters
We performed two sets of experiments: automated tuniM¢ chose lower and upper bounds on reasonable values and

of SPEAR on a general set of instances for the 2007 SAgonsidered a number of values spread uniformly across the
competition and application-specific tuning for two reaild  respective interval. This number ranges from three to eight

benchmark sets. depending on our intuition about importance of the paramete
_ The total number of possible combinations after this diszae
A. Benchmark Sets and Experimental Setup tion is 3.78 x 10'8. By exploiting some dependencies between

We employed two sets of problems of immense practicaframeters, we reduced the number of configurations that we
importance: hardware bounded model checking and softw&@nsider in this paper t8.34 x 10'7.
verification. Specifically, our set of BMC instances corssist . i
754 IBM BMC instances created by Zarpas [23], and our Sv\y- SAT Competition Tuning
benchmark set is comprised of 604 verification conditions The first round of automatic parameter optimization was
generated by the &YsTO static checker [8]. done in the context of preparing a version oPE3R for

Both instance sets, BMC and SWV, were split 50:50 intsubmission to the 2007 SAT Competition. The first two authors
disjoint training and test sets. Only the training sets wesed used this as a case study in parameter optimization for real-
for tuning, and all results in this paper are for the test.setworld problem domains: the FEAR developer provided an
All reported experiments were carried out on a cluster of Fxecutable of BEAR and information about its parameters
dual 3.2GHz Intel Xeon PCs with 2MB cache and 2GB RAMas well as approximate ranges of reasonable values for each
running OpenSuSE Linux 10.1. Reported times are CPU timek them; the default parameter configuration, however, was
per single CPU. Runs are terminated after 10 CPU hours ot revealed. The goal of this study was to see whether
when they run out of memory and start swapping; we couifte performance achieved with automatic methods could riva
both of these conditions as time-outs. the performance achieved by the manually engineered defaul
parameters.

Since the optimization objective was to achieve good perfor

The availability of automatic parameter tuning encouragedance on the industrial benchmarks of the 2007 SAT Compe-
us to parameterize many aspects @ESR. The first automat- tition (which were not disclosed before the solver subrissi
ically tuned version exposed only a few important paransetedeadline), we used a collection of instances from previous
such as restart frequencies and variable priority incresaencompetitions for tuning: 176 industrial instances from 2005
The results of automated tuning of those first versions &AT Competition, 200 instances from the 2006 SAT Race, as

B. Search Parameters



well as 30 SWV instances generated by thelL €10 static We performed parameter optimization by running 10 paral-
checker. A subset of 300 randomly selected instances wals uket copies of ©OCUSEDLS on a cluster, for three days in the
for training, and the remaining 106 test instances provaed case of SWV and for two days for BMC. For each instance set,
unbiased performance estimate ofE3R's performance with we picked the parameter configuration with the best training
the tuned parameter configuration. Since the SAT competitiperformance after that time.
rules reward per-instance performance relative to otHeess Figure 3 demonstrates that these application-specific pa-
the optimization objective used in this phase was geometremmeter configurations perform even better than the opéichiz
mean speedup overP8AR with the (manually optimized) settings for the SAT competitioigat conp. SPEAR's perfor-
default parameter settings. mance is boosted for both application domains, by an average
We ran a single run of BsicILS(300) for three days on factor of over 2 for BMC and over 20 for SWV, the scaling
the 300 designated training instances, and used the paamiethavior also clearly improves, especially for SWV.
configuration with the best training set performance found Figure 4 shows the total effect of automatic tuning by
within that time; we refer to this parameter configuration asomparing the performance ofPSAR with the (manually
Sat conp. During tuning, we took the risk of setting a lowoptimized) default settings against that achieved whengusi
cutoff time of 10 seconds for each single algorithm run in ordethe parameter configurations tuned parameters for the BMC
to save time. This bore the possibility of over-tuning thlveo and SWV benchmark sets. For both sets, the scaling behavior
for good performance on short runs but poor performancé the tuned version is much better and on average, large
on longer runs, and we expected that parameter configuratgpeedups are achieved — by a factor of 4.5 for BMC and
Sat conp may be too aggressive and might perform poorlg00 for SWC. $EAR with the default settings even times out
on harder instances. on four SWV instances after 10000 seconds, while the tuned
However, our experimental results indicate that the ogposiersion solves every single instance in less than 20 seconds
is the case, namely thatPBARS performance scales better Figure 5 summarizes the performance of MiniSAT 2.0
with the Sat conp parameter settings than with the defaulfwhich we used as a baseline) an@e3R with parameter
settings. The fact that these results contradicted th&ionwof —settings defaultSat conp, and specifically tuned for BMC
the algorithm’s developer illustrates clearly the limibas of and SWV. Notice that the versions oPSAR specifically tuned
even an expert’s ability to comprehend the complex intgrpldor BMC and SWV also clearly outperform MiniSAT: for
between the many parameters of a sophisticated heuri®iIC, SPEAR solves two additional instances and is faster by a
algorithm such as B=AR. factor of three on average; for SWV, the speedup factor is ove
On the 106 test instances used to assess the resultl@®. For both benchmark sets, scatter plots (not shown here)
our SAT competition tuningSat conp achieved a geometric also reveal much better scaling behavior of the specifically
mean speedup of 21% ovePSAR's default parameter settingstuned versions of SEAR.
and showed much better scaling with instance hardness. Fig-
ure 2 demonstrates that this speedup carries over to both our
verification benchmark set8at conp performs better than  Automated parameter tuning provided us with new insights
the SEARdefault on BMC (with an average speedup factor dfito properties of the benchmark instances used in our study
about two) and clearly dominates it for SWV (with an averagend influenced the design oPBAR. These insights arise from
speedup factor of about 78). considering characteristic differences between the dptich
parameter configurations for the BMC and SVW instances.
Although we have limited knowledge about the high-level
While general tuning on a mixed set of instances as pdeatures of the IBM BMC instances, we made some interesting
formed for the 2007 SAT Competition resulted in a solver witbbservations. The best decision heuristic that we found for
strong overall performance, in practice, one often mosilgs these instances picks variables with higher activity, aed t
about excellent performance on a specific type of instancese resolved by choosing the one with a smaller product of
such as BMC or SWV. For this reason we performed a secopdsitive and negative occurrences. We also found that the 1B
set of experiments — tuning PEAR for these two specific BMC instances favor less aggressive restarts than the SVW
sets of problems. Since users typically care most about iastances, implying that the decision heuristic tends td fin
algorithm’s total runtime, we used average (arithmetic meabetter variable orderings. The best phase selection lieuris
runtime as our optimization objective in this tuning phase. we found for BMC instances aggressively picks the phase so
For both sets, during training we chose a cutoff of 308s to minimize the number of watched clauses that need to
seconds, which according toP8AR's internal book-keeping be traversed in order to find the next watched literal. This
mechanisms turned out to be sufficient for exercising dlleuristic minimizes the number of clauses that BCP needs
techniques implemented in the solver. In order to speed tganalyze, and its effectiveness on this hard set of ins&nc
the optimization, in the case of BMC we removed 95 hardid not surprise us. Finally, we observed that a small amount
instances from the training set that could not be solved lo§y randomness helps performance — roughly 5% of phase
SPEAR with its default parameter configuration within oneand variable decisions were done randomly before the first
hour, leaving 287 instances for training. restart. The most effective strategy scales down the ptrgen

VI. DISCUSSION

D. Application-specific Tuning
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Fig. 2. Improvements by automated parameter optimizatiora anix of industrial instances: F&AR with the original default parameter configuration vs.
SPEAR with configurationSat conp. (a) Even though a few instances can be solved faster witlSHEAR default, parameter configuratiddat conp is
considerably faster on average (mean runtime 341 vs. 22$hdsf Note that speedups are larger than they may appehe ilodg-log plot: for the bulk of
the instance$at conp is about twice as fast. (tat conp improves much on the scaling behavior of theeaRr default, which fails to solve four instances
in 10000 seconds. Mean runtimes on the remaining instarreeg8¥ seconds vs. 10 seconds, a speedup factor of 78.
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Fig. 3. Improvements by automated parameter optimizatiospecific instance distributionsP8ARwith configurationSat conp vs. SPEARwith parameters
optimized for the specific applications BMC and SWV. Resalts on independent test sets disjoint from the instances fasgparameter optimization. (a)
The parameter configuration tuned for set BMC solved foutamses for which configuratioBat conp timed out after 10000 seconds. For the remaining
instances, mean runtimes are 223 secoSds$ ¢onp) and 96 seconds (specific tuning for BMC), a speedup by mane #éhfactor of two. (b) Both parameter
settings solved all 302 instances, mean runtimes are 3Gde@®at conp) and 1.5 seconds (tuned for SWV), a speedup factor of 24.
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Fig. 4. Overall improvements achieved by automatic tunBeEAR with its manually engineered default parameter configomnatis. the optimized versions
for sets BMC and SWV. Results are on test sets disjoint froeninistances used for parameter optimization. (a) The defiautd out on 90 instances after
10000 seconds, while the tuned configuration solved fouitiaddl instances. For the instances that the default splmeean runtimes are 341 seconds
(default) and 75 seconds (tuned), a speedup factat.f®@f (b) The default timed out on four instances after 10 000 s@gothe tuned configuration solved
all instances in less then 20 seconds. For the instanceshthatefault solved, mean runtimes are 787 seconds (defmudt)l.35 seconds (tuned), a speedup
factor of over 500.

Solver Bounded model checking Software verification
#(solved) | runtime for solved|| #(solved)| runtime for solved
MiniSAT 2.0 289/377 360.9| 302/302 161.3
SPEAR original 2871377 340.8| 298/302 787.1
SPEAR general tuned|| 287/377 223.4| 302/302 35.9
SPEAR specific tuned|| 291/377 113.7 | 302/302 15

Fig. 5. Summary of Results. For each solver and instance#slved) denotes the number of instances solved within d @Re of 10 hours, and the
runtimes are the arithmetic mean runtimes for the instasoeg&d by that solver. (Geometric means were not meanirigfié, as all solvers solved a number
of easy instances in “0 seconds”; arithmetic means betttactepractical user experience as well.) If an algorithmvesimore instances, the shown average
runtimes include more, and typically harder, instancesteNbat the averages in this table differ from the runtimegmwiin the captions of Figures 1-4,
because averages are taken with respect to different gestsets: for each solver, this table takes averages ovensadinices solved by that solver, whereas
the figure captions state averages over the instances sioyvbdth solvers compared in the respective figure.

of random decisions by a factor 6f7 at each restart (which SWV instances prefer an activity-based heuristic that re-
resembles the idea of simulated annealing). solves ties by picking the variable with a larger product of

Since we are intimately familiar with the ALysTo static occurrences. This heuristic might seem too aggressive, but
checker, we are able to provide a deeper analysis for thelps the solver to focus on the most frequently used common
software verification instances.ACYSTO performs aggres- SUbeXpreSSionS. It seems that a relatively small number of
sive common subexpression elimination, virtually elinting €xpressions play a crucial role in (dis)proving each veaific
all Symmetries_ It also propagates all constantaLX&TO tion Condition, and this heuristic quCkly narrows the sdar
queries correspond to path- and context-sensitive vetiita down to such expressions. The SWV instances favored very
conditions, which have deep and rich Boolean structureh widggressive restarts (first after only 50 conflicts), which in
many expensive Opera’[ions (||ke division and mu|t|p||oa)| combination with our eXperimental results shows that most
sprinkled around. The queries can be represented at a higigh instances can be solved quickly if the right order of
level as single-rooted acyclic graphs. Experimental teggke Variables is found. A simple phase selection heuristic ggwv
[8]) suggest that the probability of infeasibility of a slagrath assignFALSE first) seems to work well for SWV, and also
starting from the root of the formula is proportional to th@roduces more natural bug traces (small values of variaibles
length of the path — the longer the path, the more likely it e satisfying assignments). The SWV instances corresfwond
that it is infeasible. This can be exploited by a SAT solver bjlULL-pointer dereferencing checks, and this phase selection

focusing the search on the expressions that are closer to fig&iristic attempts to propagailLL values first (allFALSE),
root of the tree. which explains its effectiveness. SWV instances prefer no



randomness at all, which is probably the result of joirdnd in particular encouraged its developer to expose a large
development of @LYSTO and SPEAR as a highly optimized number of parameters that could then be optimized. We are
tool chain for software verification. convinced that similar benefits will arise when applying our
The use of automated parameter optimization also inflgeneral approach in the development of other heuristic-algo
enced the design of FEAR in various ways. An early ver- rithms. Finally, comparing specifically optimized paraaret
sion of SPEAR featured a nascent implementation of clauseonfigurations, we gained some insights into which compo-
and variable elimination. Prior to using automated tuningents of $EAR were particularly effective on the hardware
these mechanisms did not consistently improve performaneed software verification instances considered here.
and therefore, considering the complexity of finalizingithe In future work, we intend to further explore the role of
implementation, the SEAR developer considered removinglocal search and machine learning strategies that support
them. However, these elimination techniques turned outto Algorithm design and engineering tasks. We believe that the
effective after parameter tuning found good heuristiciisg$t tuning procedure can be further improved, for example, by
to regulate the elimination process. Another feature that wcombining ideas from our current local-search-based ampro
considered for removal was the pure literal rule, which endevith concepts from racing procedures, or by incorporating
up being useful for BMC instances (but not for SWV)techniques from experimental design. We also see significan
Similarly, manual optimization gave inconclusive resalt®ut potential in instance-specific tuning methods, which use ma
randomness, but automated optimization found that a smetiine learning techniques to find good parameter settings fo
amount of randomness actually does helESR in solving given problem instance [24], and in reactive tuning stria&g
BMC (but not SWV) instances. which adapt parameter settings while a solver is running
(utilizing information gathered while trying to solve thevgn
instance) [25]. Finally, considering that many other desig
In this work, we have demonstrated that by using a geneegld engineering tasks involve heuristic algorithms, we are
parameter optimization methodARAMILS, which is based convinced that the use of automated algorithm configuration
on the idea of iterated local search in parameter configsnd parameter optimization procedures can lead to similarl
ration space, major performance improvements of a higbubstantial performance improvements as demonstrated her

performance SAT solver,’EAR, can be achieved. We believeand hope to collect further evidence for this claim in thernea
that the resulting optimized version ofPBAR represents a fyture.

considerable improvement in the state of the art of solving
decision problems from hardware and software verification
using SAT-solvers. TuningiEAR 0N a general set of industrial
instances from previous SAT competitions already resutied
large improvements when compared teE3R'S manually op-

timized default parameter setting. The greatest improvesye [2]
however, were achieved when tuning was performed on a
specific, relatively homogenous class of problem instanceg
Average runtimes were reduced by a factor of 4.5 for bounded
model checking instances and a factor of over 500 for soétwar?!
verification instances (see Figure 4). It is worth notingt tha

VII. CONCLUSIONS
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