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Abstract—Parameterized heuristics abound in computer aided
design and verification, and manual tuning of the respective
parameters is difficult and time-consuming. Very recent results
from the artificial intelligence (AI) community suggest that this
tuning process can be automated, and that doing so can lead to
significant performance improvements; furthermore, automated
parameter optimization can provide valuable guidance during
the development of heuristic algorithms. In this paper, we
study how such an AI approach can improve a state-of-the-
art SAT solver for large, real-world bounded model-checking
and software verification instances. The resulting, automatically-
derived parameter settings yielded runtimes on average 4.5times
faster on bounded model checking instances and 500 times
faster on software verification problems than extensive hand-
tuning of the decision procedure. Furthermore, the availability
of automatic tuning influenced the design of the solver, and
the automatically-derived parameter settings provided a deeper
insight into the properties of problem instances.

Index Terms—Decision Procedures, Boolean Satisfiability,
Search Parameter Optimization

I. I NTRODUCTION

The problems encountered in automated formal verification
are typically hard. As with other computationally difficult
problems, the key to practical solutions lies in the use of
heuristic techniques. In the context of verification, decision
procedures, which might be embodied as a BDD [1] package, a
Boolean satisfiability (SAT) solver (e.g., [2]), or an automated
theorem prover based on the Nelson-Oppen framework [3], all
make use of various heuristics that have a crucial impact on
their performance.

A high-performance decision procedure typically uses mul-
tiple heuristics that interact in complex ways. Some examples
from the SAT-solving world include decision variable and
phase selection, clause deletion, next watched literal selection,
and initial variable ordering heuristics (e.g., [4], [5], [6]).
The behavior and performance of these heuristics is typically
controlled by parameters, and the complex effects and interac-
tions between these parameters render their tuning extremely
challenging.

During the typical development process of a heuristic solver,
certain heuristic choices and parameter settings are tested in-
crementally, typically using a modest collection of benchmark
instances that are of particular interest to the developer.Many
choices and parameter settings thus made are “locked in”
during early stages of the process, and typically, only few
parameters are exposed to the users of the finished solver. In
many cases, these users never change the default settings of

the exposed parameters or manually tune them in a manner
similar to that used earlier by the developer.

Not surprisingly, this manual configuration and tuning ap-
proach typically fails to realize the full performance potential
of a heuristic solver. In this paper, we present an alternative
approach based on automated parameter optimization methods
and demonstrate its benefits, which include substantial perfor-
mance improvements, valuable guidance to the algorithm de-
signer, and new insights into specific types of (SAT-encoded)
verification problems.

Specifically, we explain how PARAM ILS, a recent param-
eter optimization tool developed by Hutter et al. [7], was
used during the development of SPEAR, a high-performance
modular arithmetic decision procedure and SAT solver, which
was developed in support of the CALYSTO static checker [8].
Although the performance of an early, manually-tuned version
of SPEAR was comparable to that of a state-of-the-art SAT
solver (MiniSAT 2.0 [9]), the use of PARAM ILS ultimately
lead to speedups between a factor of 4.5 and a factor of
500 due to the optimization of the search parameters. The
use of PARAM ILS also influenced the design of SPEAR and
gave us some important insights about differences between
(SAT-encoded) hardware and software verification problems;
for example, we found that the software verification instances
generated by the CALYSTO static checker required more
aggressive use of SPEAR’s restart mechanism than the bounded
model checking hardware verification benchmarks we studied.

While the results of our case study are interesting in their
own right, it should be noted that our overall approach and
the specific parameter optimization tool used in this study are
very general and can be applied to any parameterized heuristic
algorithm; the performance criterion that is automatically
optimized can be runtime, precision, latency, or any other
computable scalar metric.

II. RELATED WORK

There are almost no publications on automated parameter
optimization for decision procedures for formal verification.
Seshia [10] explored using support vector machine (SVM)
classification to choose between two encodings of difference
logic into Boolean SAT. The learned classifier was able
to choose the better encoding in most instances he tested,
resulting in a hybrid encoding that mostly dominated the two
pure encodings. The only other work we are aware of is
unpublished, ad hoc work in industry.



There is, however, a fair amount of previous work on opti-
mizing SAT solvers for particular applications. For example,
Shtrichman [11] considered the influence of variable and phase
decision heuristics (especially static ordering), restriction of
the set of variables for case splitting, and symmetric replication
of conflict clauses on solving bounded model checking (BMC)
problems. He evaluated seven strategies on the Grasp SAT
solver, and found that static ordering does perform fairly well,
although no parameter combination was a clear winner. Later,
Shacham and Zarpas [12] showed that Shtrichman’s conclu-
sions do not apply to zChaff’s less greedy VSIDS heuristic on
their set of benchmarks, claiming that Shtrichman’s conclu-
sions were either benchmark- or engine-dependent. Shacham
and Zarpas evaluated four different decision strategies onIBM
BMC instances, and found that static ordering performs worse
than VSIDS-based strategies. Lu at al. [13] exploited signal
correlations to design a number of ATPG-specific techniques
for SAT solving. Their technique showed roughly an order of
magnitude improvement on a small set of ATPG benchmarks.

The automated parameter optimization tool used in our
study has been recently introduced by Hutter et al. [7];
however, that work was more focused on theoretical properties
of the algorithm and did not consider an application to a state-
of-the-art solver for real-world problems. That work and the
study presented here complement each other and also address
two different communities. Very broadly, automated parameter
optimization can be seen as as a stochastic optimization
problem that can be solved using a range of generic and
specific methods [14], [15], [16]. However, these are either
limited to algorithms with continuous parameters or algorithms
with a small number of discrete parameters.

III. A LGORITHM DEVELOPMENT AND MANUAL TUNING

The core of SPEAR is a DPLL-style [17] SAT solver,
but with several novelties. For example, SPEAR features an
elaborate clause prefetching mechanism that improves memory
locality. To improve the prediction rate of the prefetching
mechanism, Boolean constraint propagation (BCP) and con-
flict analysis have been redesigned to be more predictable.
SPEAR also features novel heuristics for decision making,
phase selection, clause deletion, and variable and clause
elimination. In addition, SPEAR has several enhancements for
software verification, such as support for modular arithmetic
constraints [18], incrementality to enable structural abstrac-
tion/refinement [8], and a technique for identifying context-
insensitive invariants to speed up solving multiple queries
that share common structure [19]. Given all of these features,
extensions, and heuristics, many components of SPEAR are
parameterized, including the choice of heuristics, as well
as enabling (or disabling) of various features: e.g., pure-
literal rule, randomization, clause deletion, and literalsorting
in freshly learned clauses. Thus, the optimization of these
parameters is a challenging task.

After the first version of SPEAR was written and its
correctness thoroughly tested, its developer, Domagoj Babić,
spent one week on manual performance optimization, which

involved: (i) optimization of the implementation, resulting in
a speedup by roughly a constant factor, with no effects on
the search parameters, and (ii) manual optimization of roughly
twenty search parameters, most of which were hard-coded and
scattered around the code at the time.

The manual parameter optimization was a slow and tedious
process done in the following manner: the SPEAR developer
collected several medium-sized benchmark instances whichit
could solve in at most 1000 seconds and attempted to come up
with a parameter configuration that would result in a minimum
total runtime on this set. The benchmark set was very limited
and included several medium-sized BMC and some small soft-
ware verification (SWV) instances generated by the CALYSTO

static checker [8].1 Such a small set of test instances facilitates
fast development cycles and experimentation, but has many
disadvantages.

Quickly it became clear that implementation optimization
gave more consistent speedups than parameter optimization.
Even on such a small set of benchmarks, the variations due
to different parameter settings were huge. We even found one
case (Alloy analyzer [20] instance handshake.als.3) wherethe
difference of floating point rounding errors between Intel’s
non-standard 80-bit and IEEE 64-bit precision resulted in an
extremely large difference in the runtimes on the same pro-
cessor. The same instance was solved in 0.34 sec with 80-bit
precision and timed out after 6000 sec with 64-bit precision.
The difference in rounding initially caused minor differences
in variable activities, which are used to compute the dynamic
decision ordering. Those minor differences quickly diverged,
pushing the solver into two completely different parts of search
space. Since most parameters influence the decision heuristics
in some way, the solver might be equally sensitive to parameter
changes.2

Given the costly and tedious nature of the process, no further
manual parameter optimization was performed after finding a
configuration that seemed to work well on the chosen test set.

To assess the performance of this manually tuned version
of SPEAR, we ran it against MiniSAT 2.0 [9], the winner
of the industrial category of the 2005 SAT Competition and
of the 2006 SAT Race. In this experiment, we used two
instance sets introduced in detail later in Sec. V: bounded
model checking (BMC) and software verification (SWV). As
can be seen from the runtime correlation plots shown in
Figure 1, both solvers perform quite similarly for bounded
model checking and easy software verification instances. For
difficult software verification instances, however, MiniSAT
clearly performs better. This seems to be the effect of focusing
the manual tuning on a small number of easy instances.

For most decision procedures, the process of finding default
(or hard-coded) parameter settings resembles the manual tun-
ing described above. Furthermore, most users of these tools

1Small instances were selected because CALYSTO tends to occasionally
generate very hard instances that would not be solved withina reasonable
amount of time.

2This emphasizes the need to find parameter settings that leadto more
robust performance, with different random seeds, as well asacross instances.
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(a) Bounded model checking
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(b) Software verification

Fig. 1. MiniSAT 2.0 vs. SPEAR using its original, manually tuned default parameter settings. (a) The two solvers perform comparably on bounded model
checking instances, with average runtimes of 298 seconds (MiniSAT) vs. 341 seconds (SPEAR) for the instances solved by both algorithms. (b) Performance
on easy and medium software verification instances is comparable, but MiniSAT scales better for harder instances. The average runtimes for instances solved
by both algorithms are 30 seconds (MiniSAT) and 787 seconds (SPEAR).

do not change these settings, and when they do, they typically
apply the same manual approach.

IV. PARAMETER OPTIMIZATION BY LOCAL SEARCH

The tool we chose to use for automatically optimizing
parameter settings in SPEAR has recently been developed in
the Artificial Intelligence community [7]; in the following, we
briefly introduce the underlying PARAM ILS algorithm (further
details and some theoretical background can be found in the
paper by Hutter et al. [7]).

PARAM ILS is motivated by the following manual parameter
tuning technique often used by algorithm developers:

• Start with some parameter configuration
• Iteratively, modify one algorithm parameter at a time,

keeping the modification if performance on a given
benchmark set improves and undoing it otherwise.

• Terminate when no single parameter modification yields
an improvement, or when the best configuration found so
far is considered “good enough”.

Notice that this is essentially a simple hill-climbing local
search process, and as such it will typically terminate in a
locally, but not globally optimal parameter configuration,in
which changing any single parameter value will not achieve
any performance improvement. However, since parameters of
heuristic algorithms are typically not independent, changing
two or more parameter values at the same time may still
improve performance.

The problem of local optima is ubiquitous in local search,
and many approaches have been developed to effectively
deal with them; one of these approaches isIterated Lo-
cal Search (ILS)[21], [22], which provides the basis for
PARAM ILS. ILS essentially alternates a subsidiary local

search procedure (such as simple hill-climbing) with a per-
turbation phase, which lets the search escape from a local
minimum. Additionally, an acceptance criterion is used to
decide whether to continue the search from the most recently
discovered local minimum or from some earlier local min-
imum. More precisely, starting from some initial parameter
configuration, PARAM ILS first performs simple hill-climbing
search until a local minimumc is reached, and then it cycles
through the following phases:

1) apply perturbation (in the form of multiple random
parameter changes);

2) perform simple hill-climbing search until a new local
minimum c

′ is reached;
3) accept the better of the two configurationsc and c

′ as
the starting point of the next cycle.

PARAM ILS thus performs a biased random walk over lo-
cally optimal parameter configurations. To determine the better
of two configurations, it can use arbitrary scalar performance
metrics, including expected runtime, expected solution quality
(for optimization algorithms), or any other statistic on the
performance of the algorithm to be tuned when applied to
instances from a given benchmark set. This benchmark set is
called thetraining set, in contrast to thetest setswe used later
for evaluating the final parameter configurations obtained from
PARAM ILS (as is customary in the empirical evaluation of
machine learning algorithms, training and test sets are strictly
disjoint).

Clearly, the choice of the training set has important con-
sequences for the performance of PARAM ILS. Ideally, a
homogenous training set would be chosen, i.e., one in which
the impact of parameter settings on the performance of the
algorithm to be tuned (here, SPEAR) is similar for all in-



stances in the set. In that case, it would be sufficient and
‘safe’ to evaluate and compare parameter configurations by
running the solver on a small number of instances. In practice,
however, ‘interesting’ instance sets may not be homogenous,
and therefore larger training sets may be required to achieve
a reasonably unbiased evaluation of parameter configurations.

BASICILS(N ) is a simple version of PARAM ILS that uses
a training set ofN instances, where the choice ofN has
a major impact on the efficacy of the tuning process. For
small N , there is a risk of over-fitting, i.e., good parameter
configurations determined for the corresponding small sets
may be overly specific to the training set and not work well
for any other problem instances. For largeN , however, the
evaluation of each parameter configuration becomes costly,
which can severely limit the number of search steps that can
be practically performed by PARAM ILS (and hence reduce
the quality of the final parameter configuration returned by
the tuning algorithm).

FOCUSEDILS is a more advanced version of PARAM ILS. It
adaptively chooses the number of training instances to use for
each parameter setting: while poor settings can be discarded
after a few algorithm runs, promising ones are evaluated on
more instances. This mechanism avoids over-fitting to the
instances in the training set. (For details, see [7].) In tuning
SPEAR, we initially used BASICILS(300) and later employed
the more advanced FOCUSEDILS.

V. AUTOMATED PARAMETER OPTIMIZATION

We performed two sets of experiments: automated tuning
of SPEAR on a general set of instances for the 2007 SAT
competition and application-specific tuning for two real-world
benchmark sets.

A. Benchmark Sets and Experimental Setup

We employed two sets of problems of immense practical
importance: hardware bounded model checking and software
verification. Specifically, our set of BMC instances consists of
754 IBM BMC instances created by Zarpas [23], and our SVW
benchmark set is comprised of 604 verification conditions
generated by the CALYSTO static checker [8].

Both instance sets, BMC and SWV, were split 50:50 into
disjoint training and test sets. Only the training sets wereused
for tuning, and all results in this paper are for the test sets.
All reported experiments were carried out on a cluster of 55
dual 3.2GHz Intel Xeon PCs with 2MB cache and 2GB RAM,
running OpenSuSE Linux 10.1. Reported times are CPU times
per single CPU. Runs are terminated after 10 CPU hours or
when they run out of memory and start swapping; we count
both of these conditions as time-outs.

B. Search Parameters

The availability of automatic parameter tuning encouraged
us to parameterize many aspects of SPEAR. The first automat-
ically tuned version exposed only a few important parameters,
such as restart frequencies and variable priority increments.
The results of automated tuning of those first versions of

SPEAR prompted its developer to expose more and more
search parameters, up to the point where not only every single
hard-coded parameter was exposed, but also a number of new
parameter-dependent features were incorporated. This process
not only significantly improved SPEAR’s performance, but also
has driven the development of SPEAR itself.

The resulting version of SPEAR used for the experiments
reported in the following has 26 parameters:

• 7 types of heuristics (with the number of different heuris-
tics available shown in parentheses):

– Variable decision heuristics (20)
– Heuristics for sorting learned clauses (20)
– Heuristics for sorting original clauses (20)
– Resolution ordering heuristics (20)
– Phase selection heuristics (7)
– Clause deletion heuristics (3)
– Resolution heuristics (3)

• 12 double-precision floating point parameters, including
variable and clause decay, restart increment, variable and
clause activity increment, percentage of random variable
and phase decisions, heating/cooling factors for the per-
centage of random choices, etc.

• 4 integer parameters which mostly control restarts and
variable/clause elimination.

• 3 Boolean parameters which enable/disable simple opti-
mizations such as the pure literal rule.

For each of SPEAR’s floating point and integer parameters
we chose lower and upper bounds on reasonable values and
considered a number of values spread uniformly across the
respective interval. This number ranges from three to eight,
depending on our intuition about importance of the parameter.
The total number of possible combinations after this discretiza-
tion is 3.78×10

18. By exploiting some dependencies between
parameters, we reduced the number of configurations that we
consider in this paper to8.34 × 10

17.

C. SAT Competition Tuning

The first round of automatic parameter optimization was
done in the context of preparing a version of SPEAR for
submission to the 2007 SAT Competition. The first two authors
used this as a case study in parameter optimization for real-
world problem domains: the SPEAR developer provided an
executable of SPEAR and information about its parameters
as well as approximate ranges of reasonable values for each
of them; the default parameter configuration, however, was
not revealed. The goal of this study was to see whether
the performance achieved with automatic methods could rival
the performance achieved by the manually engineered default
parameters.

Since the optimization objective was to achieve good perfor-
mance on the industrial benchmarks of the 2007 SAT Compe-
tition (which were not disclosed before the solver submission
deadline), we used a collection of instances from previous
competitions for tuning: 176 industrial instances from the2005
SAT Competition, 200 instances from the 2006 SAT Race, as



well as 30 SWV instances generated by the CALYSTO static
checker. A subset of 300 randomly selected instances was used
for training, and the remaining 106 test instances providedan
unbiased performance estimate of SPEAR’s performance with
the tuned parameter configuration. Since the SAT competition
rules reward per-instance performance relative to other solvers,
the optimization objective used in this phase was geometric
mean speedup over SPEAR with the (manually optimized)
default parameter settings.

We ran a single run of BASICILS(300) for three days on
the 300 designated training instances, and used the parameter
configuration with the best training set performance found
within that time; we refer to this parameter configuration as
Satcomp. During tuning, we took the risk of setting a low
cutoff time of10 seconds for each single algorithm run in order
to save time. This bore the possibility of over-tuning the solver
for good performance on short runs but poor performance
on longer runs, and we expected that parameter configuration
Satcomp may be too aggressive and might perform poorly
on harder instances.

However, our experimental results indicate that the opposite
is the case, namely that SPEAR’s performance scales better
with the Satcomp parameter settings than with the default
settings. The fact that these results contradicted the intuition of
the algorithm’s developer illustrates clearly the limitations of
even an expert’s ability to comprehend the complex interplay
between the many parameters of a sophisticated heuristic
algorithm such as SPEAR.

On the 106 test instances used to assess the result of
our SAT competition tuning,Satcomp achieved a geometric
mean speedup of 21% over SPEAR’s default parameter settings
and showed much better scaling with instance hardness. Fig-
ure 2 demonstrates that this speedup carries over to both our
verification benchmark sets:Satcomp performs better than
the SPEAR default on BMC (with an average speedup factor of
about two) and clearly dominates it for SWV (with an average
speedup factor of about 78).

D. Application-specific Tuning

While general tuning on a mixed set of instances as per-
formed for the 2007 SAT Competition resulted in a solver with
strong overall performance, in practice, one often mostly cares
about excellent performance on a specific type of instances,
such as BMC or SWV. For this reason we performed a second
set of experiments — tuning SPEAR for these two specific
sets of problems. Since users typically care most about an
algorithm’s total runtime, we used average (arithmetic mean)
runtime as our optimization objective in this tuning phase.

For both sets, during training we chose a cutoff of 300
seconds, which according to SPEAR’s internal book-keeping
mechanisms turned out to be sufficient for exercising all
techniques implemented in the solver. In order to speed up
the optimization, in the case of BMC we removed 95 hard
instances from the training set that could not be solved by
SPEAR with its default parameter configuration within one
hour, leaving 287 instances for training.

We performed parameter optimization by running 10 paral-
lel copies of FOCUSEDILS on a cluster, for three days in the
case of SWV and for two days for BMC. For each instance set,
we picked the parameter configuration with the best training
performance after that time.

Figure 3 demonstrates that these application-specific pa-
rameter configurations perform even better than the optimized
settings for the SAT competition,Satcomp. SPEAR’s perfor-
mance is boosted for both application domains, by an average
factor of over 2 for BMC and over 20 for SWV; the scaling
behavior also clearly improves, especially for SWV.

Figure 4 shows the total effect of automatic tuning by
comparing the performance of SPEAR with the (manually
optimized) default settings against that achieved when using
the parameter configurations tuned parameters for the BMC
and SWV benchmark sets. For both sets, the scaling behavior
of the tuned version is much better and on average, large
speedups are achieved — by a factor of 4.5 for BMC and
500 for SWC. SPEAR with the default settings even times out
on four SWV instances after 10 000 seconds, while the tuned
version solves every single instance in less than 20 seconds.

Figure 5 summarizes the performance of MiniSAT 2.0
(which we used as a baseline) and SPEAR with parameter
settings default,Satcomp, and specifically tuned for BMC
and SWV. Notice that the versions of SPEAR specifically tuned
for BMC and SWV also clearly outperform MiniSAT: for
BMC, SPEAR solves two additional instances and is faster by a
factor of three on average; for SWV, the speedup factor is over
100. For both benchmark sets, scatter plots (not shown here)
also reveal much better scaling behavior of the specifically
tuned versions of SPEAR.

VI. D ISCUSSION

Automated parameter tuning provided us with new insights
into properties of the benchmark instances used in our study
and influenced the design of SPEAR. These insights arise from
considering characteristic differences between the optimized
parameter configurations for the BMC and SVW instances.

Although we have limited knowledge about the high-level
features of the IBM BMC instances, we made some interesting
observations. The best decision heuristic that we found for
these instances picks variables with higher activity, and ties
are resolved by choosing the one with a smaller product of
positive and negative occurrences. We also found that the IBM
BMC instances favor less aggressive restarts than the SVW
instances, implying that the decision heuristic tends to find
better variable orderings. The best phase selection heuristic
we found for BMC instances aggressively picks the phase so
as to minimize the number of watched clauses that need to
be traversed in order to find the next watched literal. This
heuristic minimizes the number of clauses that BCP needs
to analyze, and its effectiveness on this hard set of instances
did not surprise us. Finally, we observed that a small amount
of randomness helps performance — roughly 5% of phase
and variable decisions were done randomly before the first
restart. The most effective strategy scales down the percentage
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Fig. 2. Improvements by automated parameter optimization on a mix of industrial instances: SPEAR with the original default parameter configuration vs.
SPEAR with configurationSatcomp. (a) Even though a few instances can be solved faster with theSPEAR default, parameter configurationSatcomp is
considerably faster on average (mean runtime 341 vs. 223 seconds). Note that speedups are larger than they may appear in the log-log plot: for the bulk of
the instancesSatcomp is about twice as fast. (b)Satcomp improves much on the scaling behavior of the SPEAR default, which fails to solve four instances
in 10 000 seconds. Mean runtimes on the remaining instances are 787 seconds vs. 10 seconds, a speedup factor of 78.
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Fig. 3. Improvements by automated parameter optimization on specific instance distributions: SPEARwith configurationSatcomp vs. SPEARwith parameters
optimized for the specific applications BMC and SWV. Resultsare on independent test sets disjoint from the instances used for parameter optimization. (a)
The parameter configuration tuned for set BMC solved four instances for which configurationSatcomp timed out after 10 000 seconds. For the remaining
instances, mean runtimes are 223 seconds (Satcomp) and 96 seconds (specific tuning for BMC), a speedup by more than a factor of two. (b) Both parameter
settings solved all 302 instances, mean runtimes are 36 seconds (Satcomp) and 1.5 seconds (tuned for SWV), a speedup factor of 24.
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Fig. 4. Overall improvements achieved by automatic tuning:SPEAR with its manually engineered default parameter configuration vs. the optimized versions
for sets BMC and SWV. Results are on test sets disjoint from the instances used for parameter optimization. (a) The default timed out on 90 instances after
10 000 seconds, while the tuned configuration solved four additional instances. For the instances that the default solved, mean runtimes are 341 seconds
(default) and 75 seconds (tuned), a speedup factor of4.5. (b) The default timed out on four instances after 10 000 seconds, the tuned configuration solved
all instances in less then 20 seconds. For the instances thatthe default solved, mean runtimes are 787 seconds (default)and 1.35 seconds (tuned), a speedup
factor of over 500.

Solver Bounded model checking Software verification
#(solved) runtime for solved #(solved) runtime for solved

MiniSAT 2.0 289/377 360.9 302/302 161.3
SPEAR original 287/377 340.8 298/302 787.1
SPEAR general tuned 287/377 223.4 302/302 35.9
SPEAR specific tuned 291/377 113.7 302/302 1.5

Fig. 5. Summary of Results. For each solver and instance set,#(solved) denotes the number of instances solved within a CPU time of 10 hours, and the
runtimes are the arithmetic mean runtimes for the instancessolved by that solver. (Geometric means were not meaningfulhere, as all solvers solved a number
of easy instances in “0 seconds”; arithmetic means better reflect practical user experience as well.) If an algorithm solves more instances, the shown average
runtimes include more, and typically harder, instances. Note that the averages in this table differ from the runtimes given in the captions of Figures 1-4,
because averages are taken with respect to different instance sets: for each solver, this table takes averages over all instances solved by that solver, whereas
the figure captions state averages over the instances solvedby both solvers compared in the respective figure.

of random decisions by a factor of0.7 at each restart (which
resembles the idea of simulated annealing).

Since we are intimately familiar with the CALYSTO static
checker, we are able to provide a deeper analysis for the
software verification instances. CALYSTO performs aggres-
sive common subexpression elimination, virtually eliminating
all symmetries. It also propagates all constants. CALYSTO

queries correspond to path- and context-sensitive verification
conditions, which have deep and rich Boolean structure, with
many expensive operations (like division and multiplication)
sprinkled around. The queries can be represented at a high
level as single-rooted acyclic graphs. Experimental results (see
[8]) suggest that the probability of infeasibility of a single path
starting from the root of the formula is proportional to the
length of the path — the longer the path, the more likely it is
that it is infeasible. This can be exploited by a SAT solver by
focusing the search on the expressions that are closer to the
root of the tree.

SWV instances prefer an activity-based heuristic that re-
solves ties by picking the variable with a larger product of
occurrences. This heuristic might seem too aggressive, but
helps the solver to focus on the most frequently used common
subexpressions. It seems that a relatively small number of
expressions play a crucial role in (dis)proving each verifica-
tion condition, and this heuristic quickly narrows the search
down to such expressions. The SWV instances favored very
aggressive restarts (first after only 50 conflicts), which in
combination with our experimental results shows that most
such instances can be solved quickly if the right order of
variables is found. A simple phase selection heuristic (always
assignFALSE first) seems to work well for SWV, and also
produces more natural bug traces (small values of variablesin
the satisfying assignments). The SWV instances correspondto
NULL-pointer dereferencing checks, and this phase selection
heuristic attempts to propagateNULL values first (allFALSE),
which explains its effectiveness. SWV instances prefer no



randomness at all, which is probably the result of joint
development of CALYSTO and SPEAR as a highly optimized
tool chain for software verification.

The use of automated parameter optimization also influ-
enced the design of SPEAR in various ways. An early ver-
sion of SPEAR featured a nascent implementation of clause
and variable elimination. Prior to using automated tuning,
these mechanisms did not consistently improve performance,
and therefore, considering the complexity of finalizing their
implementation, the SPEAR developer considered removing
them. However, these elimination techniques turned out to be
effective after parameter tuning found good heuristic settings
to regulate the elimination process. Another feature that was
considered for removal was the pure literal rule, which ended
up being useful for BMC instances (but not for SWV).
Similarly, manual optimization gave inconclusive resultsabout
randomness, but automated optimization found that a small
amount of randomness actually does help SPEAR in solving
BMC (but not SWV) instances.

VII. C ONCLUSIONS

In this work, we have demonstrated that by using a general
parameter optimization method, PARAM ILS, which is based
on the idea of iterated local search in parameter configu-
ration space, major performance improvements of a high-
performance SAT solver, SPEAR, can be achieved. We believe
that the resulting optimized version of SPEAR represents a
considerable improvement in the state of the art of solving
decision problems from hardware and software verification
using SAT-solvers. Tuning SPEAR on a general set of industrial
instances from previous SAT competitions already resultedin
large improvements when compared to SPEAR’s manually op-
timized default parameter setting. The greatest improvements,
however, were achieved when tuning was performed on a
specific, relatively homogenous class of problem instances.
Average runtimes were reduced by a factor of 4.5 for bounded
model checking instances and a factor of over 500 for software
verification instances (see Figure 4). It is worth noting that
prior to applying our automated tuning approach, considerable
time had been invested by its author to manually tune SPEAR.
This indicates that automated parameter optimization can be
considerably more effective than manual tuning, and that the
use of automated tuning procedures such as PARAM ILS not
only frees the algorithm designer (and user) from the typically
tedious and time-consuming manual tuning task, but also helps
to better exploit the full performance potential of a highly
parameterized heuristic solver.

Not too surprisingly, our experimental results suggest that
optimized search parameters are benchmark-dependent —
which highlights the advantages of automated parameter tun-
ing over the conventional manual approach. Furthermore, pa-
rameter tuning is obviously engine-dependent, due to complex
interactions between various mechanisms implemented in a
typical decision procedure.

We also illustrated how the use of automated parameter
optimization provided guidance in the development of SPEAR

and in particular encouraged its developer to expose a large
number of parameters that could then be optimized. We are
convinced that similar benefits will arise when applying our
general approach in the development of other heuristic algo-
rithms. Finally, comparing specifically optimized parameter
configurations, we gained some insights into which compo-
nents of SPEAR were particularly effective on the hardware
and software verification instances considered here.

In future work, we intend to further explore the role of
local search and machine learning strategies that support
algorithm design and engineering tasks. We believe that the
tuning procedure can be further improved, for example, by
combining ideas from our current local-search-based approach
with concepts from racing procedures, or by incorporating
techniques from experimental design. We also see significant
potential in instance-specific tuning methods, which use ma-
chine learning techniques to find good parameter settings for a
given problem instance [24], and in reactive tuning strategies,
which adapt parameter settings while a solver is running
(utilizing information gathered while trying to solve the given
instance) [25]. Finally, considering that many other design
and engineering tasks involve heuristic algorithms, we are
convinced that the use of automated algorithm configuration
and parameter optimization procedures can lead to similarly
substantial performance improvements as demonstrated here
and hope to collect further evidence for this claim in the near
future.
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