
Structural Abstraction of
Software Verification Conditions ⋆

Domagoj Babić and Alan J. Hu

Department of Computer Science
University of British Columbia

Abstract. Precise software analysis and verification require tracking the exact
path along which a statement is executed (path-sensitivity), the different con-
texts from which a function is called (context-sensitivity), and the bit-accurate
operations performed. Previously, verification with such precision has been con-
sidered too inefficient to scale to large software. In this paper, we present
a novel approach to solving such verification conditions, based on an auto-
matic abstraction-checking-refinement framework that exploits natural abstrac-
tion boundaries present in software. Experimental resultsshow that our approach
easily scales to over 200,000 lines of real C/C++ code.

1 Introduction

Verification conditions (VCs) are logical formulas, constructed from a system and de-
sired correctness properties, such that the validity of verification conditions corresponds
to the correctness of the system. Proving validity of verification conditions is an essen-
tial step in software verification, and is the focus of this paper.

In general, proving software VCs requires interproceduralanalysis, e.g. of the prop-
agation of data-flow facts. Some properties, like proper nesting of lock-unlock calls,
tend to be localized to a single function and are amenable to simpler analysis. Many
others, especially pointer-related properties, tend to span through many function calls.

To handle the complexity of interprocedural analysis, the software analysis com-
munity has developed a number of increasingly expensive abstractions. For instance,
path-insensitive analysis does not track the exact path along which a certain statement
is executed, while context-insensitive analysis does not differentiate the contexts from
which a function is called. These abstractions work well in optimizing compilers, but
are not precise enough for verification purposes. Software verification analysis has to
be both path- and context-sensitive (*-sensitive) to keep the number of false errors low.

Precise *-sensitive software verification has two components: (1) we need an anal-
ysis that takes a piece of software as input and computes VCs as logical formulas in
some logic, and (2) once the VCs are computed, we need to checktheir validity. This
paper proposes a novel approach to checking the validity of *-sensitive VCs.

Our approach is an abstraction-checking-refinement framework that exploits the
natural function-level abstraction boundaries present insoftware. Programmers orga-
nize code into functions and use them as abstractions. They tend to ignore the details of

⋆ Research supported by a Microsoft Graduate Fellowship and an NSERC Discovery Grant.

the effects of the function on the caller’s context — the easiest invariant to remember
is to remember no invariant at all. Analogously, our approach initially treats individual
effects of a function call as unconstrained variables and incrementally adds constraints
corresponding to the effects of the function call. We demonstrate that such a structural
refinement approach works well, even on large general-purpose C/C++ applications.

1.1 Related Work

Interprocedural analysis can have many forms, and is commonly based on some form
of summarization. Usually, the more expressive the summaries are, the higher the com-
putational complexity. For instance, if the set of data-flowfacts is a finite set, and the
data-flow functions distribute over the confluence, interprocedural data-flow analysis
can be done in polynomial time [21]. If the summaries are composed of predicates over
arbitrary logic the analysis gets more complex, depending on the underlying logic.

If the number of predicates is relatively small, predicate abstraction [14] makes it
possible to represent summaries compactly as BDDs [5]. Thisapproach has been ef-
fectively used in SLAM [3] and BLAST [15, 16]. Predicate abstraction is very coarse,
and hasn’t been shown to scale well to large applications fordata-intensive properties.
Its advantage is that the VCs given to the theorem prover are relatively simple, cor-
responding to a conjunction of conditions on some path in theprogram. Saturn [25]
handles lock-properties in a similar way — by computing summaries as projections
onto a set of predicates, with the difference that it does notabstract VCs before passing
them to the theorem prover. In contrast to the above-mentioned approaches, the tech-
nique presented in this paper allows summaries to be arbitrary expressions, rather than
just projections onto a set of predicates.

Livshits and Lam [20] proposed a path- and context-sensitive points-to analysis
and used it for simple security checks. Their summaries represent definition-use chains
required for tracking pointers interprocedurally. They demonstrated their analysis on
small programs up to 13 thousand lines of code. Whaley and Lam[23] stressed the im-
portance of context-sensitive analysis and proposed a brute force approach to context-
sensitive, inclusion-based pointer alias analysis. Theiranalysis, implemented in the
bddbdd system, represents input-output relations as BDDs [5]. TheBDD-based ap-
proach seems to work well for tracking a set of locations, butit is not applicable to ver-
ification of assertions because BDDs are known to suffer fromexponential blow-up on
multiplication, division, and barrel shifters — all frequent operations in software. Both
works focused on the software analysis side, while our focusis on proving *-sensitive
VCs. We believe that our results could improve the scalability of their approach.

The CBMC tool [7, 6] verifies C programs, to bounded depth, with bit-accuracy and
*-sensitivity. The approach is direct symbolic execution of the C into a SAT instance,
unrolling all loops and inlining all function calls, so solving the generated VC is the
performance bottleneck for large software. Our results address that bottleneck.

In the domain of programs limited to static memory allocation, Astrée [4] has
been successfully applied to verification of mission-critical software systems. Although
context-sensitive over the chosen abstract domain(s), Astrée was designed for systems
that contain no goto statements, no dynamic memory allocation, no recursive calls, no

recursive data structures, and no pointer arithmetic. Since our focus is verification of
assertions in general purpose software, these constraintswere not acceptable.

Context-sensitivity is only one component of the problem. Path-sensitivity is the
other. The BLAST and SLAM software model checkers enumeratepaths one-by-one,
hoping that refinement will refute many paths with each addedpredicate. For each path,
the model checker constructs an abstracted theorem prover query, which can corre-
spond to a path that spans through many functions. Such path enumeration during the
abstraction-checking-refinement loop seems wasteful — SATsolvers are extremely ef-
ficient in path enumeration and refutation of infeasible paths, so we believe that path
enumeration should be left to the SAT solver.

Others have realized the importance of letting the theorem prover enumerate the
paths as well. For instance, software verification systems like Boogie [18] and ESC/Java
[12] do construct a single formula and let the theorem proverenumerate the paths.
However, these systems rely on the user to provide interfaceabstractions, and do not
attempt to abstract the formulas before calling the theoremprover.

Our approach to proving *-sensitive VCs merges both SAT-solver-based path enu-
meration and abstraction, yielding a precise, but practically efficient alternative to pre-
vious methods.

2 A Review of Verification Condition Generation

Traditionally, VCs are computed by Dijkstra’s weakest precondition transformer [10],
as is done for example in ESC/Java [12] and Boogie [18]. A naı̈ve representation of VCs
computed by the weakest precondition can be exponential in the size of the code frag-
ment being checked, but this blow-up can be avoided by the introduction of fresh vari-
ables to represent intermediate expressions [22, 13, 19]. Here, we give a quick overview
of weakest-precondition-based VC computation to illustrate the process, some common
problems, and an efficient representation.

Consider the following simple program (modified from [19]):

S1 : i f (x < 0) { y = −2∗x − y ; }
S2 : y = x + y ;
S3 : a s s e r t (0<= y) ;

The VC can be computed as the weakest liberal preconditionwlp() of a sequential
composition of those three statements with respect totrue, giving:

wlp(S1;S2;S3,true) = wlp(S1,wlp(S2,wlp(S3,true))) (1)

= wlp(S1,wlp(S2,0≤ y)) (2)

= wlp(S1,0≤ x+y) (3)

= 0≤ ITE(x < 0,−(x+y),x+y) (4)

whereITE is the if-then-else operator. Obviously, continuous application ofwlp() can
lead to exponential blowup in the size of the formula. To avoid the blowup, we can
perform renaming, which guarantees a single point of definition for each variable (as in
Single Static Assignment (SSA) form [9]):

<=

0

ITE

>

cond -

True

+

False

x y

Fig. 1. Graph Representation of the Verification Condition. Non-leaf nodes are labeled with op-
erators; leaf nodes, with variables and constants. Operator nodes are connected to their operands
by edges.

S1 : i f (x0 < 0) { y1 = −2∗x0 − y0 ; } e l s e { y1 = y0 ; }
S2 : y2 = x0 + y1 ;
S3 : a s s e r t (0<= y2) ;

Since each variable has a single point of definition, assignments can be replaced with
equivalences (passive commandsin [19]), and thenwlp(S1;S2;S3,0≤ y2) boils down
to:

(x0 < 0⇒ (y1≡−2x0−y0)) ∧ (x0 ≥ 0⇒ (y1 ≡ y0)) ∧ (y2 ≡ x0 +y1) ∧ (0≤ y2)

Exponential blowup is avoided at the expense of introduction of fresh variables.
The same VC can be represented in the form of a graph. In particular, we simply

represent a logical formula as a directed, acyclic graph, inwhich non-leaf nodes are
labeled with operators, their children are their operands,and the leaves are labeled with
variables or constants. A graph representation of a logicalformula such that all common
subexpression nodes have been merged will be called a maximally-shared graph. Figure
1 depicts a maximally shared graph representation of the computed VC in Eq. 4. The
advantage of using maximally-shared graphs for VC representation is that the elimina-
tion of common subexpressions is simple, while the graph is still linear in the size of
the code fragment.

The work in this paper is to support our static checker CALYSTO, which is being
designed to be a general-purpose, bit-precise assertion checker. CALYSTO implements
an efficient interprocedural symbolic execution algorithm[1] that converts SSA (com-
puted using the LLVM compiler framework [17]) into functionsummaries and VCs in
the form of acyclic maximally-shared graphs. For each location that a function modifies,
CALYSTO computes the resulting expression in terms of the function inputs (including
globals). Each such expression is represented as a separatesummary expression, which
gives fine-grained control during the refinement process (Sec. 3.3). Like other static
checkers, CALYSTO makes a few unsound approximations. For example, loops are un-
rolled a fixed number of times, with the additional assumption that the loop test fails
at the loop exit, as is done in ESC/Java [12], Saturn [25], andolder versions of Boo-
gie [18]. We could also handle loops soundly by using loop invariants (computed by any

technique), as is done in Boogie. Similarly, CALYSTO handles non-constant array in-
dices by unsoundly replacing them with constant indices. Inaddition, CALYSTO makes
the unsound assumption that pointers passed as function parameters are not aliased,
as in [20, 25]. However, CALYSTO’s computed VCs are *-sensitive, fully bit-accurate,
and support all standard operators (e.g., signed/unsigneddivision and multiplication on
bit-vectors, etc.), except that floating-point arithmeticis not yet implemented.

3 Exploiting Natural Abstraction Boundaries

We begin with an example that provides intuition about how our approach solves *-
sensitive VCs. The code used in the example is a simplified andslightly modified piece
of code from a real application.1 To prove an assertion, we need to prove either that the
assertion itself is unreachable, or that it always evaluates totrue. Through the example,
we shall follow a sequence of steps needed to prove the assertion on line 22.

1 i n t g loba l1 , g l o b a l 2 ;
2

3 / / I f ∗data<0, r e t u r n s t r u e and computes∗ data=abs (∗ data) .
4 bool f l i p (i n t ∗ d a t a) {
5 i f (∗ d a t a < 0) {
6 ∗ d a t a = −(∗ d a t a) ;
7 re tu rn t rue ;
8 }
9 re tu rn f a l s e ;

10 }
11

12 / / Assume i n i t i s a pure f u n c t i o n (no s ide−e f f e c t s) .
13 i n t i n i t (i n t x) {
14 / / Some e x p e n s i v e computa t i on . . .
15 }
16

17 / / I f g l o b a l 1 i s p o s i t i v e and g l o b a l 2 i s n e g a t i v e , s c a l e s
18 / / g l o b a l 1 by abs (g l o b a l 2) .
19 void s c a l e () {
20 g l o b a l 2 = i n i t (g l o b a l 1) ;
21 i f (f l i p (& g l o b a l 2)) {
22 a s s e r t (g l o b a l 2 != 0) ; / / Div by ze ro .
23 g l o b a l 1 /= g l o b a l 2 ;
24 }
25 }

As mentioned earlier, the symbolic execution will compute agraph representing
each effect of each function in terms of its parameters (and globals). For example, the
functionflip has two effects: a boolean return value and its effect on the location
pointed to by its parameter. At the caller’s side, the symbolic execution initially denotes
effects of a function call by a placeholder operator node. For example, the return value

1 The example is modified from our modular arithmetic theorem prover SPEAR.

(a) (b) (c) (d)

=>

flip:ret(.)

!=

init:ret(.)

flip:global2(.) 0

global1

=>

< !=

0

init:ret(.)

flip:global2(.)

global1

=>

<

!=

0init:ret(.)

ITE

-

cond True

False

global1

=>

<

!=

0...

ITE

-

cond T

F

Fig. 2.Sequence of Refinements of the Computed VC. Summary nodes arestructurally refined in
the following sequence:flip:ret, flip:global2, and finallyinit:ret. The subgraph
obtained by the refinement ofinit:ret is represented by a triangle. For simplicity, these fig-
ures do not show pointer references and dereferences.

of a call toflipwill be an operator node labeledf lip : ret whose child is the argument
to flip.

The VC will be an implication: if line 22 is reachable, then the asserted condition
must hold. Let us ponder the structure of the computed VC. Theantecedent contains
two nested function calls. The consequent is a simple comparison of zero with the effect
of flip on the global variable. Observe that the expression is written in terms of the
initial values of all involved variables, facilitating common subexpression elimination
by simple graph rewriting. Graphically, the VC can be represented as a maximally-
shared graph (Fig. 2a). Summaries of the individual effectsof each called function are at
first represented as unconstrained fresh variables. Those nodes will be called summary
nodes. Interpretation of a summary node corresponds to replacing the node with a node
that represents the summarized expression. Such expansioncorresponds to a round of
inlining.

To be fully context-sensitive, the obvious approach is to completely inline all calls.
Such inlining leads to exponential blow-up even on small applications. We found that
aggressive inlining of non-recursive function calls worksonly on several very small
applications, resulting in roughly 50-180X increase in thesize of the code.

A better approach is to track the individual effects of a function separately. This fine-
grained approach makes it possible to expand only the slice of the called function that is
actually in the cone of influence of the verified property. We consider this approach to be
the state of the art and shall use it as the base case for comparison with our abstraction-
based approach in Sec. 4. Together with the common subexpression elimination, this
approach is more scalable, but does not offer satisfactory performance.

The crux of the problem is that interprocedural analysis can’t decide when to stop
inlining. After only three refinements, *-sensitive analysis would expand computation-

ally expensiveinit, rendering the problem much harder for the decision procedure.
However, the VC can be proved to be valid after only two refinements

Letx = init : ret(global1)
x < 0⇒ ITE(x < 0,−x,x) 6= 0

which simplifies totrue, no matter whatinit returns. Cases like this appear frequently
in practice, especially during *-sensitive verification ofdata-intensive properties, like
checking of assertions or global pointer properties.

Our approach gradually refines the maximally-shared graph,until the VC becomes
valid, or the decision procedure finds a falsifying assignment that does not depend on
any summary nodes. The rest of this section gives the detailsof our approach.

3.1 Algorithm Overview

The proposed approach follows the general paradigm of automatic, counter-example-
guided, abstraction refinement [8], but unlike typical CEGAR approaches, our abstrac-
tion and refinement operations are entirely structural, andthe refinement works incre-
mentally on abstract counterexamples (rather than concretizing the abstract counterex-
ample, proving it spurious, and then analyzing the proof). Locations modified by a func-
tion call (either indirectly through a pointer, or directlyvia returned values) are initially
considered to be unconstrained variables. Those unconstrained variables are incremen-
tally refined until the formula represented by the graph becomes valid, or the falsifying
assignment does not depend on any unconstrained variables.In our case, incremental
refinement is structural refinement on the maximally-sharedgraph. The refinement step
replaces an unconstrained variable with a subgraph that represents the summary expres-
sion and the edges that were pointing to the unconstrained variable are relinked to point
to the newly constructed expression. We shall say that refinementexpandssummary
nodes.

Algorithm 1 Main abstraction-checking-refinement loop.
1: LetF be a node in the maximally-shared graph representing some VC.
2: f = encode(F)
3: while ¬solve(f) do ⊲ solvereturnsfalse if a solution (falsifying assignment) is found.
4: if ¬REFINE(F,current solution) then
5: Report solution and exit.

6: Report VALID and exit.

An abstract rendition of our algorithm is given in Alg. 1. Thechecked verification
condition is represented by a rootF in the maximally-shared graph. The algorithm en-
codesF on the fly into formulaf and passes it to the decision procedure (solve()). In
our case,F is bit-accurately translated to CNF by the standard Tseitintransform [22],
but from the maximally shared graph after common subexpressions have been elimi-
nated. Summary nodes are encoded as unconstrained variables. If the decision proce-
dure provesf valid, we are done. Otherwise, refinement takesF and the table of current

assignments to variables represented by nodes in the support of F , and returnstrue if
the graph was refined, andfalse otherwise. If the graph was not refined, then all the
summary nodes related to the falsifying assignment have been expanded, and the main
loop terminates. Otherwise, the abstraction-checking-refinement cycle continues. Since
maximally-shared graphs are acyclic, the algorithm necessarily terminates.

The algorithm interacts gracefully with incremental decision procedures — each ex-
pansion of a summary node replaces only a single node with theexpression represented
by the summary node, monotonically increasing the set of constraints.

Our lazy approach to interpretation of function summaries resembles the intuition
behind lazy proof explication [11], a technique used to bridge between different theo-
ries in a theorem prover. The shared intuition is to abstractaway expensive reasoning
— expanding a function summary or solving a sub-theory query— as unconstrained
variables, and then constrain them lazily, only as needed torefute solutions to the ab-
stracted problem. The specifics of what to abstract and how torefine, of course, are
different, since we are solving different problems.

3.2 Checking

Since critical software bugs (e.g. [2]) are often caused by the finite nature of bit-vector
arithmetic, it is important to maintain the bit-level behavior of the verified software.
CALYSTO computes bit-precise VCs, which are translated to CNF directly — even ex-
pensive 64-bit arithmetic operations, like division and remainder, are handled precisely.
The bit-vectors are represented with the same bit-width as in the compiled code. In our
case that means that integers and pointers are represented with 64 bits.

Path enumeration is completely left to the SAT solver. We found that it is important
for the SAT solver to process the variables in an order that roughly corresponds to
reverse preorder traversal (all predecessors are visited before the successors). If the
opposite traversal is used, the solving phase typically requires 7-10X more time. This
supports our conclusion that most of the paths become infeasible close to the VC root
node.

3.3 Structural Refinement

The first few iterations of the main loop of Alg. 1 will likely return false counterexam-
ples, since the initial abstraction is usually very crude. So, the refinement algorithm has
to identify very quickly a set of summary nodes that are relevant to the found solution.

The algorithm attempts to minimize the number of expanded summaries to avoid
expensive computation. Given a falsifying assignment, ourrefinement scheme searches
the graph and selects a single summary node to expand, thereby refining the model.
In particular, the algorithm starts traversing the formulafrom the VC root. During the
traversal, the algorithm detects don’t-care values — values that are irrelevant to the
current solution and can therefore be ignored.2 To formalize the concept of don’t-care
values, we define absorptive element as:

2 The anonymous reviewers noted a connection between our analysis and strictness analysis in
functional programming, as well as the work of Wilson and Dill [24]. The commonality is
the goal of finding cases in which a value is not used or needed.For example, in an ITE in a

Definition 1 (Absorptive Element). If there exists an element a for some operator⋆,
such that∀x : a⋆x= a, then a is an absorptive element of⋆, denoted asabelem(⋆) = a.

For instance,abelem(∧) = false,abelem(∗) = 0, and so on.
If the decision procedure returns a falsifying assignment,each nodeF in the graph

representing the checked VC has some assigned value, which we shall denote asval(F).
If F is an operator⋆, our algorithm checksval(x) for each operandx of F . If val(x) is an
absorptive element of⋆, it is a sufficient explanation of the value ofF in the falsifying
assignment (the other operand is a don’t-care). Hence, it suffices to refine onlyx. Our
refinement procedure is given in Alg. 2. As is usual for graph traversal, visited nodes
are marked during traversal to avoid re-visiting nodes; marking is not shown in the
pseudocode.

Algorithm 2 Structural Refinement Algorithm.F is a node in the maximally-shared
graph, andx andy are its operands. The return value indicates whether a summary has
been expanded.
1: function REFINE(graph nodeF , values assigned to nodes)
2: if F is a summary nodethen
3: expand the summary forF ; returntrue

4: else ifF is a leaf nodethen
5: returnfalse

6: else ifF ≡ x⋆y then
7: if val(x) = abelem (⋆) then
8: returnREFINE(x)
9: else ifval(y) = abelem(⋆) then

10: returnREFINE(y)
11: else
12: returnREFINE(x) or REFINE(y)
13: (Theor is lazy: if either call succeeds, the other is skipped.)
14: (The order is arbitrary. Eitherx or y can be refined first.)

Some operators (like implication and if-then-else) do not have absorptive elements,
but allow similar don’t-care analysis. Our implementationperforms such reductions
according to the rules in Alg. 3.

Returning to the example in Fig. 2, in 2a, the checker treats the placeholder nodes as
unconstrained variables and finds a falsifying assignment wheref lip : ret is true and the
!= is false. Alg. 3 will derive the refinement in 2b, where a possible falsifying solution
gives theinit : ret node a negative value. Next, the algorithm might choose to expand
the f lip : global2 node, yielding the refinement in 2c, which is valid. We were able to
avoid the expensive expansion of theinit : ret node.

functional programming language, the condition argument is strict because it is always evalu-
ated, whereas the other two arguments are non-strict. In ourcase, we are refining a falsifying
solution, so we have much more don’t-care information available, e.g., we know the value of
the condition argument, so we know exactly which branch neednot be refined.

Algorithm 3 Additions to the Basic Refinement Algorithm
1: if F ≡ (x⇒ y) andval(x) ≡ false then returnREFINE(x)
2: else ifF ≡ (x⇒ y) andval(y) ≡ true then returnREFINE(y)
3: else ifF ≡ (x⇒ y) returnREFINE(x) or REFINE(y)
4:
5: if F ≡ ITE(c,x,y) andval(c) ≡ true returnREFINE(c) or REFINE(x)
6: else ifF ≡ ITE(c,x,y) returnREFINE(c) or REFINE(y) ⊲ val(c) must betrue or false.

Unlike other approaches, our approach to refinement does notrequire a theorem
prover. The downside is that our refinement might be less precise and result in more
refinement cycles. However, each refinement cycle only adds additional constraints to
the decision procedure incrementally, making the solving phase more efficient as well.

4 Experimental Results

To test our approach, we used CALYSTO to generate VCs for six real-world, publicly-
available C/C++ applications, ranging in size from 9 to 228 thousand lines of code
(KLOC) before preprocessing. The benchmarks are the Dspam spam filter, our boolean
satisfiability solver HYPERSAT, the Licq ICQ chat client, the OpenLDAP implemen-
tation of the Lightweight Directory Access Protocol, the Wine Windows OS emulator,
and the Xchat IRC client. For each program, for each pointer dereference, we generated
a VC to check that the pointer is non-NULL (omitting VCs that were solved trivially
by our expression simplifier).

CALYSTO has a simple, non-recursive expression simplifier that runsduring sym-
bolic execution. The simplifier rules are numerous, but straightforward. We noticed that
performing constant propagation during the simplificationreduces the memory foot-
print, but does not drastically speed-up the solving phase because our modular arith-
metic theorem prover SPEAR (like many others) performs aggressive constant propaga-
tion on its own. Other, slightly more complex rules, likeITE(c,x,¬c∧y) ≡ ITE(c,x,y)
do speed up the solving phase, but not drastically.

As the basis for comparison, we also solved the VCs using eager expansion of sliced
summaries (described in Sec. 3). The approaches were testedunder equal conditions:
the same simplification and common subexpression elimination were applied to both
approaches after every summary expansion, before calling the SAT solver. The same
SAT solver was used for both the base case and our approach.

Table 1 and Fig. 3 summarize the results. In a large majority of cases, the struc-
tural abstraction approach is superior to the eager approach, which suffers 81% more
timeouts, and 75% longer runtime. There are some cases, however, where the eager
approach performs significantly better. Analyzing those cases, we found that occasion-
ally our simplifier can simplify some expanded summaries to trivial constants, which
in turn can make the VC trivially easy to solve. For example, the most frequent case
we have seen is when an expanded summary, which is an antecedent in an implication,
trivially simplifies to false, rendering the whole implicationtrue. A priori, there is no
way to know whether or not an expanded summary will drastically simplify the VC
(akin to the classic debate of eager vs. lazy constraint propagation in SMT solvers).
Our experimental results, though, show that for solving software VCs, laziness wins.

Benchmark KLOC #VCs Base Approach with Struct. Abs./Ref.
Time (sec)Timeouts Time (sec) Timeouts

Dspam v3.6.5 37 8003 4451 12 3758 10
HyperSAT v1.7 9 427 32602 108 27025 81
Licq v1.3.4 20 5165 24103 50 4072 4
OpenLDAP v2.3.30 228 4935 738 0 572 0
Wine v0.9.27 126 8831 2598 0 2145 0
Xchat v2.6.8 76 24045 18914 13 10024 6

Total 496 55583 83406 183 47596 101
Table 1.The first column gives the name and version of the benchmark, KLOC is the number of
source code lines (in thousands) before preprocessing, and#VCs is the number of checked VCs.
The next four columns give the total run time in seconds (including timeouts) and the number
of timeouts, for the base approach and for our new structuralabstraction and refinement method.
The timeout limit was 300 seconds. Experiments were performed on a dual-processor AMD X2
4600+ machine with 2 GB RAM, running Linux 2.6.15.

Overall, our structural abstraction-checking-refinementapproach is able to quickly
verify *-sensitive, bit-accurate VCs from large software.Moving forward, we believe
there is additional structure to be exploited, and that is the direction of future work.

5 Discussion

We believe there are two main reasons behind the success of our approach: efficient
path enumeration and exploiting natural abstraction boundaries in software.

In our experience, path enumeration dominates the cost of software verification,
even when the loops are abstracted away. In the worst case, any path-sensitive analysis
has to analyze all the paths. We use our SAT-solver-based prover SPEAR to enumer-
ate paths efficiently, but the order in which any SAT solver processes constraints is
important. Most solvers add variables to the decision queuein the order in which the
variables are found in the clauses. So, by starting the SAT solver from a root of the
VC graph and letting it enumerate paths, we explore paths in abreadth-first manner.
In analyzing several open-source applications, we realized that most paths in an av-
erage program are infeasible, and this breadth-first path exploration prunes more paths
more quickly. Contemporary software model checkers do not exploit this fact, but rather
rely on depth-first search, performing numerous calls to thetheorem prover through a
counterexample-driven refinement process, just to refute apath that is most likely to be
infeasible anyway. Similarly, the lazy summary expansion prunes obviously infeasible
paths before function summaries are expanded and analyzed,decreasing the number of
paths that need to be explored even further.

The proposed abstraction-refinement approach exploits thenatural abstraction
boundaries in software that correspond closely to the programmer’s mental model. To
manage complexity, programmers tend to organize code into structural units (functions)
and use them as abstractions — whatever a function returns, the rest of the code should
work. This common programming tactic, which reduces the mental load on the pro-
grammer, inspired our approach. To the extent that programmers use functions effec-

Base approach
0 50 100 150 200 250 300

w
/ s

tr
uc

t.
ab

st
ra

ct
io

n/
re

fin
em

en
t

0

50

100

150

200

250

300

(a) Dspam

Base approach
0 50 100 150 200 250 300

w
/ s

tr
uc

t.
ab

st
ra

ct
io

n/
re

fin
em

en
t

0

50

100

150

200

250

300

(b) HyperSAT

Base approach
0 50 100 150 200 250 300

w
/ s

tr
uc

t.
ab

st
ra

ct
io

n/
re

fin
em

en
t

0

50

100

150

200

250

300

(c) Licq

Base approach
0 10 20 30 40 50

w
/ s

tr
uc

t.
ab

st
ra

ct
io

n/
re

fin
em

en
t

0

10

20

30

40

50

(d) OpenLDAP

Base approach
0 5 10 15 20 25 30 35 40

w
/ s

tr
uc

t.
ab

st
ra

ct
io

n/
re

fin
em

en
t

0

5

10

15

20

25

30

35

40

(e) Wine

Base approach
0 50 100 150 200 250 300

w
/ s

tr
uc

t.
ab

st
ra

ct
io

n/
re

fin
em

en
t

0

50

100

150

200

250

300

(f) Xchat

Fig. 3. Results presented as scatter plots. Timeouts are plotted at300secs.

tively as abstractions, our refinement algorithm can avoid expanding the details that
were abstracted away.

Our simple abstraction does not rely on the standard abstraction domains. Hence,
the contributions of this paper can be applied to a wide rangeof software analysis tools
that require interprocedural analysis and a decision procedure. If further complexity re-
duction is needed, we believe our approach should be compatible with classical abstract
domains and other abstraction techniques.

References

1. D. Babić and A. Hu. Fast Symbolic Execution for Static Checking. Submitted for publica-
tion.

2. D. Babić and M. Musuvathi. Modular Arithmetic Decision Procedure. Technical Report
TR-2005-114, Microsoft Research Redmond, 2005.

3. T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic Predicate Abstraction of C
Programs.Programming Language Design and Implementation, pp. 203–213, 2001.

4. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,A. Miné;, D. Monniaux, and
X. Rival. A static analyzer for large safety-critical software.Programming Language Design
and Implementation, pp. 196–207, 2003.

5. R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans. Com-
put., 35(8):677–691, 1986.

6. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs.Tools and
Algorithms for the Construction and Analysis of Systems, LNCS 2988, pp. 168–176, 2004.

7. E. Clarke, D. Kroening, and K. Yorav. Behavioral consistency of C and Verilog programs
using bounded model checking.Design Automation Conference, pp. 368–371, 2003.

8. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement.Computer Aided Verification, LNCS 1855, pp. 154–169, 2000.

9. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently Com-
puting Static Single Assignment Form and the Control Dependence Graph. ACM Trans
Programming Languages and Systems, 13(4):451–490, October 1991.

10. E. W. Dijkstra and C. S. Scholten.Predicate Calculus and Program Semantics. Springer,
1990.

11. C. Flanagan, R. Joshi, X. Ou, and J. B. Saxe. Theorem proving using lazy proof explication.
Computer Aided VerificationLNCS 2725, pp. 355–367, 2003.

12. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, and R. Stata. Extended
static checking for Java.Programming Language Design and Implementation, pp. 234–245,
2002.

13. C. Flanagan and J. B. Saxe. Avoiding exponential explosion: generating compact verification
conditions.Principles of Programming Languages, pp. 193–205, 2001.

14. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. Computer Aided
Verification, LNCS 1254, pp. 72–83, 1997.

15. T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction. Principles of Pro-
gramming Languages, pp. 58–70, 2002.

16. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from proofs.
Principles of Programming Languages, pp. 232–244, 2004.

17. C. Lattner and V. Adve. LLVM: A Compilation Framework forLifelong Program Analysis
& Transformation. InCGO ’04: Proceedings of the International Symposium on CodeGen-
eration and Optimization, page 75, Washington, DC, USA, 2004. IEEE Computer Society.

18. K. R. M. Leino and P. Müller. A verification methodology for model fields. European
Symposium on Programming, LNCS 3924, pp. 115–130, 2006.

19. K. R. M. Leino. Efficient weakest preconditions.Inf. Process. Lett., 93(6):281–288, 2005.
20. V. B. Livshits and M. S. Lam. Tracking Pointers with Path and Context Sensitivity for

Bug Detection in C Programs.European Software Engineering Conference/International
Symposium on Foundations of Software Engineering, pp. 317–326, 2003.

21. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph
reachability.Principles of Programming Languages, pp. 49–61, 1995.

22. G. S. Tseitin. On the complexity of derivation in propositional calculus. In J. Siekmann
and G. Wrightson, editors,Automation of Reasoning 2: Classical Papers on Computational
Logic 1967-1970, pp. 466–483. Springer, 1983.

23. J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analysis using binary
decision diagrams.Programming Language Design and Implementation, pp. 131–144, 2004.

24. C. Wilson and D. L. Dill. Reliable verification using symbolic simulation with scalar values.
In 37th Design Automation Conference, pages 124–129. ACM/IEEE, 2000.

25. Y. Xie and A. Aiken. Scalable error detection using boolean satisfiability. Principles of
Programming Languages, pp. 351–363, 2005.

