
Early Cutpoint Insertion for High-Level Software vs. RTL
Formal Combinational Equivalence Verification ∗

Xiushan Feng Alan J. Hu
Department of Computer Science, University of British Columbia

{xsfeng, ajh}@cs.ubc.ca

ABSTRACT
Ever-growing complexity is forcing design to move above RTL.
For example, golden functional models are being written as clearly
as possible in software and not optimized or intended for synthe-
sis. Thus, equivalence verification between the high-level software
functional model and the RTL is needed. The typical approach
is to convert the high-level software into RTL or gate-level hard-
ware, via software path enumeration, symbolic execution, or high-
level synthesis techniques, and then use hardware combinational
equivalence checking. The principle contribution of this paper is to
introduce cutpoints — as in gate-level combinational equivalence
verification — early during the analysis of the software model,
thereby avoiding exponential path enumeration and the potential
logical complexity blow-up of merging execution paths that can
occur in the usual approach. The method is conservative, but in
our experiments, we did not encounter spurious counterexamples,
and the method showed large improvements in runtime and mem-
ory usage on a family of IA-32 subset instruction length decoders,
an industry-suggested challenge problem.

Categories and Subject Descriptors: J.6 [Computer-Aided Engi-
neering]: Computer-Aided Design

General Terms: Verification

Keywords: software, RTL, formal equivalence checking, cutpoints

1. INTRODUCTION
Increasing complexity is forcing design to move above RTL.

Growing adoption of ESL, transaction-level models, MATLAB
models, and C-based HDLs are all examples of this trend. The
higher-level model is typically in software or a software-like lan-
guage, so equivalence verification between the high-level software
model and the RTL is needed, analogous to the current use of RTL-
to-gate combinational equivalence verification. Koelbl et al. pro-
vide a recent tutorial overview of this area [14].

∗This work was supported in part by research grants from Intel
Corporation and the Natural Sciences and Engineering Research
Council of Canada.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2006, July 24–28, 2006, San Francisco, California, USA.
Copyright 2006 ACM 1-59593-381-6/06/0007 ...$5.00.

Our focus is on high-level, functional models for verification.
We have observed that several companies have adopted a methodol-
ogy for complex designs that starts with a golden functional model
written in C. This model is meant to be the definitive specification
of correct functional behavior and isn’t meant for synthesis. Ac-
cordingly, it is written as clearly and simply as possible. Optimiza-
tion for synthesis occurs in lower-level software or RTL models.

Verifying equivalence between the high-level and RTL models
is an extremely hard problem, so we further focus on the simplest
version of this problem: the case where the software model is pin-
and cycle-accurate, making this a combinational equivalence prob-
lem. This simplified problem is directly useful for verifying highly
complex combinational circuits, and is also a necessary building
block for high-level-vs.-RTL sequential equivalence verification.
Even in the combinational case, the problem is challenging because
the clearest way to express a functionality in software is generally
not the most efficient way to implement it in hardware. For ex-
ample, difficult verification problems arise in superscalar processor
designs, where complex sequences of computations are executed in
a single cycle on highly parallel hardware. The correct functional-
ity is easy to describe sequentially in software, but the correspon-
dence to the hardware is not at all obvious.

The direct approach to this verification problem is first to convert
the high-level software into RTL or gate-level hardware, and then to
leverage highly successful techniques from RTL or gate-level com-
binational equivalence verification — in particular, the introduction
of cutpoints — to verify the equivalence of the two low-level mod-
els. Unfortunately, as Gupta et al. [8] point out, most high-level
synthesis has targeted creating multicycle, resource-constrained de-
signs, rather than creating single-cycle hardware from software
models with complex control flow, so off-the-shelf high-level syn-
thesis isn’t applicable to our problem. With symbolic simulation,
the challenge is complexity blow-up. To handle the control flow of
software, symbolic simulation explores all paths through the code.
If this exploration is done explicitly, execution time can blow up
with the exponential number of paths. If paths are merged to avoid
this blow-up, then there is a potential blow-up in the logic that
tracks the different results that are computed on the different paths.

The principle contribution of this paper is a novel way to intro-
duce cutpoints early, during the analysis of the software model,
rather than after a low-level hardware-equivalent has been gener-
ated. By doing so, we avoid the exponential enumeration of soft-
ware paths as well as the logic blow-up of tracking merged paths.
We evaluate our method on a challenge problem suggested to us by
colleagues in industry: a family of instruction length decoders for
varying subsets of the IA-32 instruction set architecture (described
in Section 2). Experimental results show large improvements in
runtime and memory usage due to our early insertion of cutpoints.

f g

c
d

b x c
d

b x

a a

Figure 1: Simple Cutpoint Example. To introduce cutpoint x,
we first verify that (b∧ c)∧d is equivalent to b∧ (c∧d). Then,
we can verify that f is equivalent to g because both are equal to
a⊕x.

1.1 Related Work
Most work in this area leverages the success of RTL and gate-

level combinational equivalence checking, and we assume familiar-
ity with these concepts. Some excellent surveys of this material are
available, e.g., [12, 10]. A key technique behind this success is the
idea of cutpoints [1, 2]: Since the two combinational circuits are
presumed to be structurally similar, there should be intermediate
points in the two circuits that are logically equivalent. Heuristics
search for such possibly equivalent intermediate points, and the tool
first tries to prove such points equivalent. If successful, the equiv-
alent logic is cut out of the circuits and replaced by a new primary
input, thereby simplifying the verification problem. (Figure 1.) In
general, the method is conservative (i.e., success proves equiva-
lence, but failure doesn’t prove inequivalence) because constraints
on the cutpoint “inputs” are lost; various techniques re-introduce
constraints to reduce this problem, e.g., [2, 12, 16]. In the present
paper, we also use the concept of cutpoints, but we introduce them
much earlier, during the analysis of the software, rather than apply-
ing them between two hardware models.

Given the success of lower-level combinational equivalence
checking, an obvious approach to our verification problem is to try
high-level synthesis on the software model, to reduce the problem
to RTL or gate-level. Unlike most high-level synthesis systems,
Gupta et al.’s Spark system was specifically designed for the sorts
of high-level models we need (highly unoptimized, complex soft-
ware into single-cycle hardware) [8]. Indeed, they demonstrated
the capabilities of their system on a (much simpler than ours, but
with the same essential characteristics) IA-32 instruction length de-
coder, the same challenge problem we use. Unfortunately, the cur-
rent version of Spark was not able to handle our examples, so we
cannot evaluate how well this approach would work.1 In our ini-
tial software analysis phase, we assume that certain standard pro-
gram analyses (e.g., CFG construction, data flow analyses) have
been done. We believe optimizations and analyses as done in Spark
could enhance the initial phases of our verification flow.

With the growing importance of C models of hardware, several
groups in recent years have published results that verify C against
RTL hardware. For example, Séméria et al. [20] reported verify-
ing C against Verilog as part of a C-based design flow. However,
their C model was already in RTL C, so the verification aspect
was straightforward. More relevant is work by Saito et al. [19]
and Clarke and Kroening [5], both of which consider higher-level
C models. The former work relies on scanning for textual differ-
ences to reduce problem complexity, and then enumerates execu-
tion paths and applies symbolic simulation and word-level uninter-
preted functions. The latter work provides full support for arbi-
trary code in full ANSI-C, also via path enumeration and symbolic
simulation, but at a fully bit-accurate level and using SAT as the
computation engine. A limitation of both of these works is the enu-
meration of execution paths in the software: the number of paths
grows exponentially in the number of branches.

1Spark v1.2, released Feb 5, 2004.

Our idea to apply cutpoints early in the analysis of the soft-
ware, rather than generating a hardware model first, comes from
our adaptation of cutpoints to software verification [7]. However,
that work also enumerates software paths, and suffers the resulting
scalability problem.

An alternative to path enumeration is to merge execution paths as
much as possible, keeping track of the different path conditions and
possible values in the symbolic expressions. For example, given:

if (c1) x=a;
else x=b;
if (c2) x++;
else x--;

rather than analyzing each of the four execution paths separately,
we could compute some sort of symbolic expression for x after the
first if statement that merges the two branches, e.g., ite(c1,a,b),
and then merge again after the second if statement, producing
ite(c2, ite(c1,a,b)+1, ite(c1,a,b)−1). Merging paths converts the
exponential path enumeration into logical complexity in the sym-
bolic expressions. Early work along these lines [9, 17] suffered
from BDD blow-up for non-trivial software models. Very recently,
Koelbl and Pixley have proposed a more scalable approach [15].
They use an acyclic circuit representation for the symbolic expres-
sions, greatly reducing blow-up. Furthermore, blow-up of the path
conditions is reduced by a two-level representation: branching con-
ditions in the program are abstracted as Boolean variables, and the
path condition is stored as a BDD over those variables. This two-
level representation allows some fast approximate reasoning, but
accurate computation of path conditions is expensive, requiring a
combined decision procedure for — or else flattening — the two-
level representation. No implementation is publicly available, but
we believe their approach is more efficient than the BDDs used
in our initial software analysis phase. We also believe that our
early cutpoint idea should be readily applicable to their construc-
tion, promising substantial savings in verification complexity.

2. INDUSTRIAL CHALLENGE PROBLEM
Academic research on software-to-RTL verification has been

stymied by the lack of good benchmark examples. Companies are
loath to give away such valuable intellectual property, and sub-
stantial engineering effort is required to create examples. Fortu-
nately, we had a well-defined, industrial challenge problem sug-
gested to us, which epitomizes this class of verification problem: an
instruction length decoder for Intel’s IA-32 instruction set architec-
ture [11]. The circuit’s functionality (described below) is concep-
tually simple and easy to describe in software, although the actual
code is long and has complex control flow. The RTL implemen-
tation does not resemble the high-level software. We have created
a public set of example software and RTL models, implementing
increasingly larger and more complete decoders. (See Section 4.)

The IA-32 instruction set architecture (ISA) descends directly
from the 16-bit Intel 8086/8088 through the latest Pentium pro-
cessors, and this line has dominated desktop computing for over
two decades and several orders of magnitude increase in process-
ing power. Backwards software compatibility has always been im-
portant, so the ISA has grown by accretion, resulting in extremely
complex instruction encodings. Instructions can range from 1 byte
to over 15 byes in length. All IA-32 instruction encodings obey the
format shown as Figure 2. The actual length of an IA-32 instruc-
tion depends on the operating mode (protected mode, real-address
mode and system management mode), the prefix bytes (if any), the
opcode byte(s), the ModR/M byte (if present), and the Scale In-
dex Base (SIB) byte (if present). For example, in protected mode,

Prefix Opcode ModR/M SIB Displacement Immediate Data

Prefix: 0~4 Bytes

ModR/M: 0~1 Byte
Opcode: 1~2 Bytes

SIB: 0~1 Byte

Immediate: 0~4 Bytes
Displacement: 0~4 Bytes

Figure 2: IA-32 General Instruction Format

the default operand and address sizes are both 32 bits. But the
operand-size override prefix (66H) and the address-size override
prefix (67h) allow a program to switch to non-default operand and
addressing sizes, which are 16 bits. For some instructions, with
a current operand-size attribute determined by the operating mode
and operand-size override prefix (if present), the size of operands
can further be changed by the operand size bit (w) of the opcode. If
w is 0, the operand size is 1 byte regardless of the current operand-
size attribute. If w is 1, it has no change on the current operand
size. In addition, if there is a ModR/M byte field in an instruc-
tion, the 256 values of ModR/M will define different addressing
forms which will affect the length of displacement field and decide
whether there is an SIB byte to follow. The addressing forms are
different for different addressing modes (16-bit or 32-bit).

Because of the complex instruction encoding, a high-
performance IA-32 implementation must pipeline instruction de-
coding. A piece of this puzzle is the instruction length decoder
(ILD). (Our description is based on [13].) Each cycle, the ILD is
given an n-byte parcel of the next bytes in the instruction stream,
enough additional lookahead bytes in the instruction stream to de-
termine the end of the last instruction in the current parcel (which
can extend into the next parcel), and a wrap pointer that indicates
how far the last instruction from the previous parcel extends into
this parcel. The output is two n-bit vectors begin and end, which
indicate the beginning and end of each instruction in the parcel, and
the wrap pointer for the next parcel.

A high-level software model of the ILD is straightforward, if
a bit convoluted. The software simply starts at the wrap pointer
and scans the parcel byte-by-byte, parsing each instruction one at a
time. Figure 3 gives pseudocode for the main loop of the software
ILD. The loop body is basically a simple syntax-directed parser for
the instruction format, with the various functions communicating
via global variables, such as wrap pointing to the current loca-
tion in the parcel or the lookahead bytes, current byte being
the content of that location, and the mode variables remembering
the current operand and address sizes. The handle helper func-
tions consist of nested if statements that continue the parsing for
as many bytes as needed into the details of the instruction format.
Note that the loop body can end with wrap being incremented by
many different values, from 1 to the longest instruction length, de-
pending in a complex manner on the input parcel.

The RTL model is very different. For performance reasons, all
decoding must be done in parallel. One can easily imagine the
logic required to decode the length of an instruction starting at a
fixed location. This logic is replicated for each possible instruction
alignment in the parcel, speculatively computing the length assum-
ing that an instruction starts there. A priority-encoding network
determines which blocks of instruction-length logic are the valid
ones: the length computed at the input wrap position is valid, and
the length starting at a position j is valid iff the length starting at a
position i is valid and j = i+ length from(i).

The verification task is to prove the two models compute the
same output begin and end vectors, for all possible input parcels
and wrap values. Given the large difference between software spec-

while (wrap < PARCEL_SIZE) {
begin[wrap]=1; /* Start of instruction */

/* Set default sizes. */
operand_mode = INIT_OPERAND_MODE;
address_mode = INIT_ADDRESS_MODE;

get_next_byte();
ret = handle_prefixes();
/* If there were any prefixes,

get the next byte for opcode. */
if (ret) get_next_byte();

if (current_byte != ESCAPE) {
handle_one_byte_opcodes();

} else { /* Escape to two-byte opcode */
/* Skip over the escape code. */
get_next_byte();
handle_two_byte_opcodes();

}
}
Figure 3: Software Model Main Loop Pseudocode. The soft-
ware model parses instructions one byte at a time, updating
wrap depending on the parsed instruction.

ification and hardware implementation, verifying functional equiv-
alence is a challenge.

3. VERIFICATION ALGORITHM
The verification algorithm we have implemented compares a

high-level model, given as an annotated control-flow graph (CFG),
to a gate-level model, given in BLIF. The translation from a pro-
gramming language like C or C++ to a CFG is well-known; start-
ing from the CFG keeps our tool language-neutral and saves con-
siderable front-end implementation effort. We also assume that
functions have been inlined, and a simple, intraprocedural dataflow
analysis has been done. Algorithms for these steps are available in
any compiler reference, e.g., [18].

Proceeding from the annotated CFG, the verification algorithm
has two main phases: a preliminary analysis of the software to un-
roll loops, merging paths where possible; and the actual formal
equivalence check, where we try to insert cutpoint during the pro-
cessing of the unrolled CFG.

3.1 Preliminary Software Analysis
Because we are treating the software as “combinational,” we

perform a preliminary pass to unroll loops and obtain an acyclic
CFG. Simple loops, e.g., with constant bounds and increments, can
be unrolled in the obvious manner (cf. [15]). For more complex
loops, such as the main instruction length decoder loop (Figure 3),
more sophisticated techniques are needed, as in advanced com-
piler/synthesis optimization (cf. [8]). In our method, the dataflow
analysis tells us that wrap is the only loop-carried dependence.
Therefore, we know that wrap is the only information that must
be tracked in distinguishing different iterations of the loop body.
Accordingly, as we unroll the loop, any two paths that (re)enter the
loop with the same value of wrap can be merged. The net result is
that the tool automatically unrolls the original CFG into the graph
shown in Figure 4.

There are two key points about this preliminary phase. First is
that the construction, and the resulting graph, are linear in the size
of the software (with loops unrolled). There is no exponential blow-

...

..

wrap = 0

loop body loop body
wrap = 1

loop body
wrap = 2

loop body
wrap = k

loop body

C(0, 1)

C(1, 2)

C(1, k)

wrap >= n
exit loop

...

..

.

C(k, k+1)

...

C(k, 2k)C(0, 2)

...

C(0, k)

...

...
wrap = k + 1

C(2,k+2)

.
.

..

C(1, k+1)

.
C(2,3)

Figure 4: Unrolled and Merged Control Flow Graph. C(i, j) denotes the logical condition such that the loop iteration with wrap= i
will continue to the loop iteration with wrap= j. For clarity, we haven’t drawn the graph edges and vertices inside the loop bodies;
the actual CFG, of course, does have those details.

up of path enumeration, because the algorithm explores each edge
once, not each path. The second key point is that we haven’t per-
formed a full symbolic simulation yet. Symbolic simulation would
compute expressions giving the values of all the variables of the
circuit, e.g., the begin and end vectors. These outputs do depend
on the path taken to reach a given point in the graph. For example,
whether the kth byte in a parcel is the start of an instruction depends
on where the previous valid instruction ended. Thus, symbolic sim-
ulation requires computing, for each variable at each point in the
unrolled graph, a logical expression that gives the correct value de-
pending on the path taken to arrive there. These expressions are
liable to blow-up.

3.2 Formal Equivalence Check
We now proceed to the main phase of the verification algorithm.

To formally verify equivalence between the software and hardware
models, the algorithm must derive some representation of the func-
tion computed at the output of each model. For both gate-level
hardware or an execution path in software, symbolic simulation
is the standard method to derive these representations. We use
BDDs [4] to represent the functions in symbolic simulation: they
are reasonably efficient, and canonicity makes proving equivalence
and finding cutpoints easy.

As mentioned above, the value of a variable at a given point in the
program depends on the path taken through the program to reach
that point. A direct approach is to enumerate all paths through the
software and verify equivalence for each path individually. Unfor-
tunately, the number of paths can be exponential.

Alternatively, to avoid enumerating all the paths, we can merge
paths during symbolic simulation, using conditional expressions to
track the different values possible along different paths. Path merg-
ing, therefore, requires computing what input conditions will cause
a given point in the program to execute (and affect the variables).
For example, in Figure 4, the software code in loop body k will
affect the values of the variables iff the execution starting from the
initial value of wrap followed a path that eventually reached loop
body k, i.e., there is some sequence of values v0, . . . ,vl , where v0
equals the initial value of wrap when the code starts, vl = k, and
for all i, the edge conditions C(vi,vi+1) are all true. (And the condi-
tions for control flow within the loop bodies, not drawn in Figure 4,
have to be true as well.)

Fortunately, we can compute these conditions in a number of
BDD operations linear in the graph size. The algorithm works as
follows: Let N(k) denote the node condition for basic block k, i.e.,
the logical expression that indicates what inputs will cause the soft-

ware to execute basic block k. We can compute N(k) recursively:
N(k) =

∨
i(N(i)∧C(i,k)), i.e., for basic block k to execute, it

must be true that some basic block i executed and then the branch-
ing condition C(i,k) that control flowed from i to k was also true.
Because the unrolled CFG is acyclic, this computation examines
each edge exactly once, yielding the linear complexity. This lin-
ear construction is a state-of-the-art symbolic simulation approach
to converting the software model into BDDs or some other func-
tion representation. We are now ready to consider early cutpoint
insertion.

The key idea of early cutpoint insertion is to look for cutpoints
during the above computation of N(k) rather than after it is com-
pleted. If we find some N(i) (or any other BDD during symbolic
simulation) that is equal to some point in the gate-level circuit, we
can cut out the equivalent logic in the software and the hardware,
and introduce a new primary input in its place. This eliminates the
complexity of the logic for N(i) in subsequent computations. As
with gate-level cutpoints, if we can continue this process to the out-
puts of the software and hardware models, then we have formally
verified equivalence.

For example, Figure 5 shows some cutpoints added to Figure 4.
If we prove that the node condition for loop body 0 is the same as
some logic in the gate-level circuit, we can cut out the logic and
introduce a new primary input x0 at the cut. Repeating the process
introduces cuts at x1, x2, etc. With cutpoints, the logic for node
condition N(k) is simplified from

∨
i(N(i)∧C(i,k)) to:

∨

i

(xi ∧C(i,k)).

Like most cutpoint methods, this approach is conservative: intro-
ducing cutpoints loses information and may result in being unable
to prove equivalent models equivalent. In the other direction, cut-
points won’t erroneously prove inequivalent models equivalent, but
the algorithm may not find enough cutpoints to reduce verification
complexity. Either failing is a theoretical possibility; the only way
to evaluate practical usefulness is via experiments.

4. EXPERIMENTAL RESULTS
We have run our experiments using 4 different versions of the

instruction length decoder.2

TOY is an example taken from [13] to describe what an instruc-
tion length decoder looks like. This toy example has only

2Examples are available at http://www.cs.ubc.ca/˜ajh.

..

wrap = 0

loop body loop body
wrap = 1

loop body
wrap = 2

loop body
wrap = k

loop body

C(0, 1)

C(1, 2)

C(1, k)

wrap >= n
exit loop

...

..

.

C(k, k+1)

...

C(k, 2k)C(0, 2)

...

C(0, k)

...

...
wrap = k + 1

C(2,k+2)

.
.

..

C(1, k+1)

.
C(2,3)

0

1

2

...

x

xx

Figure 5: Early Cutpoint Insertion. Possible cutpoints, like x0, etc. are checked against the hardware model and cutpoints are
inserted during the analysis of the software, not after.

Example Size (4-LUTs)

TOY-8 138
TOY-16 331
TOY-32 723

EX20-8 467
EX20-16 912
EX20-32 2251
EX20-64 9012

Example Size (4-LUTs)

EX97-8 1637
EX97-16 3255
EX97-32 6448
EX97-64 17540

EX251-12 6199
EX251-16 8312
EX251-32 16770
EX251-64 131002

Table 1: Circuit Sizes of Examples.

6 instructions: 3 one-byte opcode instructions, and 3 two-
byte opcode instructions. Furthermore, the size of a “byte” in
TOY is only 2 bits, and there are no prefixes, ModR/M, and
displacement bytes. The two-byte opcode instruction format
consists of an escape opcode byte followed by a second op-
code byte. For this example, we have 3 versions, with parcel
sizes of 8, 16 and 32 “bytes”.

EX20 has 20 IA-32 instructions with lengths from 1 to 6 (8-bit)
bytes. It includes three forms of instructions. Form one is a
simple one-byte opcode instruction form without ModR/M,
immediate, and displacement fields. Form two is a simple
two-byte opcode instruction form without ModR/M, imme-
diate, and displacement field. Form three is a one-byte op-
code instruction with “w” bit in its opcode and with immedi-
ate data, but without ModR/M and displacement fields.

EX97 has 97 instructions (lengths from 1–8 bytes). It includes all
the forms of EX20 and a new form that has a one-byte opcode
instruction and ModR/M byte field.

EX251 has 251 instructions (lengths between 1–11 bytes). It in-
cludes all forms of EX97 plus a form that allows immediate
data after the ModR/M byte field.

All IA-32 examples allow operand-size override and address-size
override prefixes. We have 4 different parcel sizes for each of the
IA-32 examples: 8 or 12, 16, 32, and 64 bytes. (The parcel size
must be larger than the longest instruction, so the smallest version
of EX251 uses a 12-byte parcel.)

The high-level software is given in C code, then manually trans-
lated into our CFG intermediate format. The hardware model is
given in Verilog. We use VIS [3] to translate it into BLIF and then

Path Enumeration Linear BDD
Example Time(s) Mem(MB) Time(s) Mem(MB)

TOY-8 2.25 57 0.02 56
TOY-16 time out 5.35 56
TOY-32 time out mem out

EX20-8 241.24 28 0.28 61
EX20-16 time out 89.01 1746
EX20-32 time out mem out
EX20-64 time out mem out

EX97-8 4229.44 183 1.46 92
EX97-16 time out 1187.72 1800
EX97-32 time out mem out
EX97-64 time out mem out

EX251-12 time out 309.18 1843
EX251-16 time out mem out
EX251-32 time out mem out
EX251-64 time out mem out

Table 2: Path Enumeration vs. Linear BDD.

SIS [21] with script.rugged to do optimization. As a rough indica-
tor of complexity, we have also mapped the optimized circuits into
4-input lookup tables using Flowmap/Flowpack [6] (Table 1).

All experiments were on a 2.6Ghz Pentium 4 with 4GB of RAM.
The runtime limit was 2 hours, and the memory usage limit was
2GB. Memory usage is the peak as reported by top. For BDD
experiments, memory usage varies depending on machine memory
size, because the CUDD package [22] aggressively pre-allocates
memory. However, runs with different memory sizes produced the
same comparative results. All times are for the full verification.
Verification was successful on all examples (i.e., no spurious coun-
terexamples), showing that the cutpoints were not too conservative.

Avoiding Path Enumeration: As mentioned earlier, we can al-
ways enumerate execution paths in the software model, and prove
the equivalence for each path: under the same path condition and
same inputs, prove that the software and hardware models have
equivalent outputs.

The first experiment is to compare path enumeration with the
linear BDD construction from Section 3.2. This measures the effect
of path merging in eliminating the exponential path enumeration at
the cost of a possible expression-size blow-up.

Table 2 gives the results. We can see that the execution time of
path enumeration blows up quickly. The linear-time BDD building
runs much faster by avoiding explicit exploration the paths.

Linear BDD Early Cutpoint
Example Time(s) Mem(MB) Time(s) Mem(MB)

TOY-8 0.02 56 0.01 56
TOY-16 5.35 56 0.02 56
TOY-32 mem out 0.06 56

EX20-8 0.28 61 0.11 58
EX20-16 89.01 1746 0.24 60
EX20-32 mem out 0.53 64
EX20-64 mem out 1.35 72

EX97-8 1.46 92 0.51 64
EX97-16 1187.72 1800 1.10 73
EX97-32 mem out 2.35 95
EX97-64 mem out 5.41 136

EX251-12 309.18 1843 0.64 66
EX251-16 mem out 1.09 71
EX251-32 mem out 7.45 170
EX251-64 mem out 16.81 327

Table 3: Linear BDD vs. Early Cutpoint

hw-CBMC Early Cutpoint
Example Time(s) Mem(MB) Time(s) Mem(MB)

TOY-8 6.84 38 0.01 56
TOY-16 502.59 522 0.02 56
TOY-32 time out 0.06 56

Table 4: hw-CBMC vs. Early Cutpoints

Effect of Early Cutpoints: Next, we examine the effect of in-
serting cutpoints early. Table 3 compares our verification tool using
the linear BDD construction without and with early cutpoint inser-
tion. We see that the early cutpoint method vastly reduces both
memory usage and run time.

Comparison to Other Tools: We know of only one freely avail-
able software-to-RTL verification tool that can handle the software
complexity of our challenge problem: hw-CBMC.3 As mentioned
earlier, hw-CBMC does path enumeration [5], so it can handle
only the smaller instances of our TOY example (Table 4). This is
not a fair comparison, since hw-CBMC parses arbitrary ANSI-C,
whereas we start from a CFG and exploit some assumptions about
program structure. Nevertheless, the benefit of early cutpoint inser-
tion and not enumerating paths is clear.

5. CONCLUSION AND FUTURE WORK
We have developed a novel way to introduce cutpoints early, dur-

ing the analysis of the software model, to reduce the complexity of
software-to-RTL equivalence verification. Experimental results on
an industry-suggested challenge problem show large improvements
in runtime and memory usage.

Early cutpoint insertion improves one point in the overall equiv-
alence verification flow. Important future work will be to com-
bine our contribution with the best ideas for other parts of this
flow, e.g., preliminary textual pruning [19], a full-fledged software
front-end [5], powerful software analyses and optimizations [8],
and more general and efficient symbolic representations [15].
Industrial-strength high-level-to-RTL equivalence verification will
require many advances; early cutpoint insertion is one.

3Version 1.6 from http://www.cs.cmu.edu/˜modelcheck/cbmc.

Acknowledgments
We would like to thank Robert Jones of Intel Corporation for sug-
gesting the IA-32 instruction length decoder example, and Rajesh
Gupta and Sudipta Kundu of UC San Diego for assistance in ob-
taining and using the Spark system and examples.

6. REFERENCES
[1] C. L. Berman and L. H. Trevillyan. Functional comparison of logic

designs for VLSI circuits. ICCAD, 1989, pp. 456–459.
[2] D. Brand. Verification of large synthesized designs. ICCAD, 1993,

pp. 534–537.
[3] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli,

F. Somenzi, A. Aziz, S.-T. Cheng, S. Edwards, S. Khatri,
Y. Kukimoto, A. Pardo, S. Qadeer, R. K. Ranjan, S. Sarwary, T. R.
Shiple, G. Swamy, and T. Villa. VIS: A system for verification and
synthesis. Computer-Aided Verification: 8th Intl Conf, 1996,
pp. 428–432. LNCS 1102.

[4] R. E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Trans Computers, C-35(8):677–691, Aug 1986.

[5] E. Clarke and D. Kroening. Hardware verification using ANSI-C
programs as a reference. ASPDAC, 2003, pp. 308–311.

[6] J. Cong and Y. Ding. FlowMap: An optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA
designs. IEEE Trans CAD, 13(1):1–12, Jan 1994.

[7] X. Feng and A. J. Hu. Cutpoints for formal equivalence verification
of embedded software. 5th Intl Conf on Embedded Software, 2005,
pp. 307–316.

[8] S. Gupta, T. Kam, M. Kishinevsky, S. Rotem, N. Savoiu, N. Dutt,
R. Gupta, and A. Nicolau. Coordinated transformations for high-level
synthesis of high performance microprocessor blocks. 39th DAC,
2002, pp. 898–903.

[9] A. J. Hu, D. L. Dill, A. J. Drexler, and C. H. Yang. Higher-level
specification and verification with BDDs. Computer-Aided
Verification: 4th Intl Workshop, 1992. LNCS 663.

[10] S.-Y. Huang and K.-T. Cheng. Formal Equivalence Checking and
Design Debugging. Kluwer Academic Publishers, 1998.

[11] Intel Corporation. The IA-32 Intel Architecture Software Developer’s
Manual, 2004. Four volumes. Intel Order Numbers 253665–253668.

[12] J. Jain, A. Narayan, M. Fujita, and A. Sangiovanni-Vincentelli.
Formal verification of combinational circuits. Intl Conf on VLSI
Design, 1997.

[13] R. B. Jones. Applications of Symbolic Simulation to the Formal
Verification of Microprocessors. PhD thesis, Stanford Univ, 1999.

[14] A. Koelbl, Y. Lu, and A. Mathur. Embedded tutorial: Formal
equivalence checking between system-level models and RTL.
ICCAD, 2005, pp. 965–971.

[15] A. Koelbl and C. Pixley. Constructing efficient formal models from
high-level descriptions using symbolic simuluation. Intl J of Parallel
Programming, 33(6):645–666, Dec 2005.

[16] A. Kuehlmann and F. Krohm. Equivalence checking using cuts and
heaps. 34th DAC, 1997, pp. 263–268.

[17] S. Minato. Generation of BDDs from hardware algorithm
descriptions. ICCAD, 1996.

[18] S. S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

[19] H. Saito, T. Ogawa, T. Sakunkonchak, M. Fujita, and T. Nanya. An
equivalence checking methodology for hardware oriented C-based
specifications. Intl High-Level Design, Validation, and Test
Workshop, 2002, pp. 139–144.

[20] L. Séméria, A. Seawright, R. Mehra, D. Ng, A. Ekanayake, and
B. Pangrle. RTL C-based methodology for designing and verifying a
multi-threaded processor. 39th DAC, 2002, pp. 123–128.

[21] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai,
A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli. SIS: A system for sequential circuit
synthesis. Tech Report UCB/ERL M92/41, Electronics Research
Lab, Univ of California Berkeley, May 1992.

[22] F. Somenzi. CUDD: CU decision diagram package. Available from
ftp://vlsi.colorado.edu/pub/.

