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Abstract. Well-structured transition systemgWSTS) are a broad and
well-studied class of infinite-state systems, for which pineblem of verifying
the reachability of an upward-closed set of error stateseidable (subject
to some technicalities). Recently, Bingham proposed a dgarithm for this
problem, but applicable only to the special cases of bragdpeotocols and
petri nets. The algorithm exploits finite-state symbolicdmlochecking and was
shown to outperform the classical WSTS verification ald¢poniton a contrived
example family of petri nets.

In this work, we generalize the earlier results to handlergelaclass of WSTS,
which we dubnicely sliceable that includes broadcast protocols, petri nets,
context-free grammars, and lossy channel systems. We ddsaraoptimization
to the algorithm that accelerates convergence. In additea introduce a
new reduction that soundly converts the verification of peeterized systems
with unbounded conjunctive guards into a verification pealon nicely
sliceable WSTS. The reduction is complete if a certain dsalizlside condition
holds. This allows us to access industrially relevant emglé problems from
parameterized memory system verification. Our empiricallte show that,
although our new method performs worse than the classigabaph on small
petri net examples, it performs substantially better onldinger examples based
on real, parameterized protocols (e.g., German’s cacherenbe protocol, with
data paths).

1 Introduction

The widespread practical success of finite-state modekang§9, 29] has stimulated
interest in the algorithmic verification of infinite-statgsgems. The goal is to verify
systems that are naturally modelled as infinite state asageflystems that might be
finite-state in practice, but that are too large to be ver#¥iadinite-state methods in the
foreseeable future (e.g., pushdown automata to model agrogcall stack, parame-
terized memory system protocols to model a realisticaltgesmemory system).

Well-structured transition systenf@/STS) [19, 2, 20] are a broad class of infinite-
state systems, for which an extensive and elegant body earels has developed. In
particular, the verification problem of determining theateability of an upward-closed
set of error states is decidable (provided some side conditire satisfied) via an algo-
rithmic framework we call thelassical approacli2, 20, 18].

* This is an an extended version of [5] that differs from [5] wotways. First, an appendix
with proofs is added. Second, two minor typographical erieiSect. 6 and one in Def. 10 are
corrected. This work was supported in part by a UBC Li Tze Rulegnorial Fellowship and
a grant from the Natural Sciences and Engineering Researghdl of Canada.



Recently, Bingham proposed a new algorithm for this prof@mUnlike the clas-
sical approach, the new algorithm works by computing fixapoover a series of finite-
state systems of increasing size, allowing the leveragfngpphisticated techniques
from finite-state model checking. However, the theory wagbged only for a special
case of WSTS, namely, broadcast protocols (which subsunenges). Using finite-
state symbolic model checking [7], Bingham demonstratedrarived family of petri
nets for which the new algorithm substantially outperfodrtiee classical approach.

This paper generalizes and extends the earlier work in akewarys. We introduce
a new subclass of WSTS and generalize the earlier theorylgndthms to apply to
the subclass. We show how the new subclass subsumes pstribradcast protocols,
lossy channel systems, and context-free grammars. Welinteoan optimization to the
algorithm that accelerates convergence. We also providenareduction that allows
soundly applying our verification method to certain prolssaith unbounded conjunc-
tive guards, which are not WSTS, as commonly occurs in meragstem protocols.
Finally, we give experimental evidence on a variety of inérstate systems, includ-
ing German’s parameterized cache coherence protocold28iely cited verification
challenge problem.

Proofs of all theorems in this paper can be found in the apgend

2 Preliminaries

LetN denote the natural numbers. We use various notations feriogs:=< will denote
an arbitrary reflexive and transitive relation (which matisfg stronger requirements
depending on context), and we write< y to mearx < yAY A X. The symbokK will de-
note the usual ordering on the reals and subsets theredfpaady positive dimension
m, we extend< to be the usual point-wise vector ordering odt defined by < uiff
v; <y forall 1 <i < m. We also employ as the covering relation between petri net
markings.

The systems we consider are a certain typeaf-structured transition systerand
the “bad” states will be characterized by@pward-closedet. These and other relevant
notions are now defined, mostly following the terminology2].

Definition 1 (upward-closure,basis,upward-closed set).Let < be a reflexive
and transitive relation over a set X. For ¥ X, theupward-closuref Y is the set
1Y ={x|IyeY:y=<x}. WhenU=1Y we say that Y is hasisfor U. A set U is said
to be<-upward-closedor simplyupward-closed =< is clear from context) if U=1U.

Definition 2 (well-quasi-ordering). A well-quasi-ordering (wqo)s a reflexive and
transitive relation=< over a set X such that for any infinite sequengex Xz, ... over
X, there exists,ij € N such that i< j and % =< x;.

Lemma 1. [25] If < is a wqgo, then any-upward-closed set has a unique finite basis
B such that for all xy € B we have XX yAy A X.

Given upward-closet, we letbasis(U) denote the unique finite basis 0f, the
existence of which is guaranteed by Lemma 1.

Definition 3 (well-structured transition system). A well-structured transition system
(WSTS) is a tripl§S, —, <) such that



previousreachreach : finite subset of S
previousreach:= 0
reach:=genU)
whi | e TreachgTpreviousreach do
if INnTreach#0 then
exit with verification failure
previousreach:= reach
reach:= reachU Pred(Treach
exit with verification success

Fig. 1. The classical algorithm

S is a (possibly infinitejtate space

—C Sx S is called théransition relation

<isawqo over S

For all x,x',y € S such that x> X' and x=< y, there exists’yc S such that y- y'.!

POdE

The covering relationr< between petri net markings is a wgo. Given a finite set of
markingsM, the set]M includes all markings that cover at least ane M. Petri nets
are WSTS (with respect tg) [20].

The decision problem regarding WSTS we aim to solve is aevil

Definition 4 (WSTS Safety Problem).Given a WSTS = (S —, <), an <-upward-
closed set UC S, and a set ofnitial statesl C S, does there exists a sequengex

-+ — X¢ such that ¥ € | and x € U? We writeSafe(S,1,U) (resp.,—Safe(S,I,U)) if
the answer is “no” (resp. “yes”).

We have intentionally omitted any restrictions on the alistate set to avoid need-
lessly complicating this paper. In genetatan be infinite, hence a symbolic repre-
sentation is necessary; for example, [2, 4] require tHa a so-callegharametric set
Decidability of the WSTS Safety Problem depends (in partfh@nform ofl.

Theclassical approacto this problem is given in Fig. 1 [2, 18, 20]. On the surface,
this algorithm resembles the well-known finite-state baaidwreachability analysis,
i.e. least fix-point computatiqrthe difference being that the involved sets are upward-
closed (and hence infinite), so a symbolic representatienf{iite basis) is necessary.
For the approach to work, the following conditions are neags

— Given finitereachC S, we must be able to compute another finite$efuch that
X = {x| 3y €Treach: x — y}. We denoteX by Pred({reach.

— | must be represented in a form that permits the intersectienks of the f con-
ditional.

Necessary for practical implementation of the classiagb@athm is an efficient repre-
sentation ofeach since this set can become very large. Delzanno et al. peoysiag
a data structure callecbvering sharing tree§CST) for this purpose [12]. One draw-
back of this technique is that checking for convergence-iblBdchard in the size of the
involved CSTs.

1 This requirement is callemhonotonicityin [2] andstrong compatibilityin [20]. The latter paper
gives a slightly weaker definition of WSTS, requiring tiyabnly satisfyy —* y'.



3 Nicely Sliceable WSTS

Our algorithm works on a subclass of WSTS we cadlely sliceable WSTENSW).
To be deemed a NSW, a WSTS must satisfy three properties. ¥taléscribe each
intuitively and provide some motivation for why they areuegd, and then we present
the formal definitions.

— Discrete: The wqo must be discrete, meaning that for any elemethere is a
bound on the length of any strictly decreasing sequenctrgjarith x. We call the
length of the longest such sequexteweight Furthermore, discreteness requires
that the number of elements of a given weight be finite. Distress allows for
finite-state model checking to be applied to the subsystemdd by bounding the
weight of states.

— Weight-respecting: When a transition changes the weight, the same change in
weight can be effected by the transition relation for eletegneater than the start-
ing state of the transition. Weight-respectfulness is hri@al requirement needed
for the proof of the Convergence Theorem, which gives a teation condition for
our algorithm.

— Deflatable:Whenever we have a transition from outside an upward-clestkdi to
a state inJ, deflatability asserts the existence of a similar transiithwolving states
of bounded weight. Deflatability is similar to downward caatipility [20], though
the two are incomparable. Deflatability, like weight-regif@ness, is essential in
the proof of our Convergence Theorem.

Definition 5 (dwqo,weight function,base weight) A wqo is adiscrete wgo(dwqo)
over X if for all xe X there exists k N such for any sequencg X X < --- < X, =X we
havel? < k. Associated with a dwag is theweight functionw: X — N that maps each
x to the minimum such k. We also require that X | w(x) =i} be finite for each & N.
For <-upward-closed U, thbase weightfU isbw(U) = max({w(x) | X € basis(U)}).

Example 1.For m > 1, the point-wise vector ordering over N™ is a dwqo, and for
eachv e N™we havew(v) = 3", vi. The sef{0,1/2,2/3,3/4,...} U {1} along with<
is an example of a wqo that is not a dwqo, since takirgl violates Def. 5.

Definition 6 (discrete WSTS).Adiscrete WSTEDWSTS) is a WSTS, —, <) where
<is a dwqo.

In a DWSTS, the weight function slices the state space intuatable number of finite
partitions$, S1, S, . .., where§ = {x € S| w(x) =i}.

Example 2.Petri nets along with the marking dominance relatioare an example of
DWSTSs; the induced weight function simply counts the nunolbé&okens.

Definition 7 (weight respecting DWSTS)A DWSTS is said to beeight respecting
we may strengthen condition 4 of Def. 3 to require that'\w— w(x) = w(y') —w(y).

Example 3.Petri nets are weight respecting DWSTSs. Suppoesex’ by firing transi-
tiont, andx <y. Since firingt always changes the total number of tokens by the same
amount, we can obtain the approprigi®y firingt fromy.



Definition 8 (d-deflatable DWSTS).A DWSTSS, —, <) is said to bed-deflatabldor
0 € N if whenever x- X' and z= X, there exists y and wuch that all of the following
hold: 1) y=<x,2) y— VY, 3) z<y, 4) wy) <w(z) + 9, and 5) wWy') < w(z) +d. (See
Fig. 2.)

Fig. 2. A diagrammatic presentation of Def. 8. A DWSTS —, <) is said to be>-deflatable (for
d e N) if for all x,X',z € Sthat satisfy the depicted relations, there exjsys € Sthat satisfy the
depicted relations, and also botiy) andw(y') are not greater tham(z) + d.

Example 4.Petri nets aré-deflatable, wherg is the maximum over all in-degrees and
out-degrees of the petri net transitions. A suitable y' can be constructed by taking
only the tokens involved in the firing that takes~ X' and adding them ta.

Definition 9 (NSW). A3-NSWis a DWSTS that is weight-respecting andeflatable.
ANSWis adNSW for somé.

We now give three examples of systems that are NSW.

Example 5.Broadcast protocols (BP), which model the composition ehtttal finite-
state processes, are 2-NSW. Here we roughly follow the diefif [18,17]. ABP is a
triple (L, Z,R), whereL is the set ofocal statesZ is the set ofabels andRC L x Z x L.
> is required to be of the for UZ,; x {!,?} UZ, x {!1,?7}, whereX), %, andX, are
disjoint sets ofactions respectively calledbcal, rendez-vousandbroadcastactions.
Labels of the forn(a,d) are written simply aad, i.e. (a,??) is writtena??. Intuitively,
labels of the forma! andal!, are outputs, while those of the fora? anda?? are inputs.
We make the following restriction dR: for anya!! € ¥ and anyse L, there exists € L
such thafs,a??s) e R.

The semantics of a BR, %, R) is the transition systerf, —) where the state space
Sis the set of all nonempty finite words over ands — ¢ iff s=/¢;...4, ands =
¢ ...ty, and one of the following hold.

— local transition there exists KX i < nand an actiom € % such tha{4j,a, ) € R,
and¢; = ¢jforall j € {1,...,n}\ {i}.

— rendez-vous transitiarthere exists distinctk € {1,...,n} and an actiora € %,
suchthatti,al, fj) € Rand(éy,a? 4,) € R andj = ¢j forall j € {1,...,n}\ {i,k}.



— broadcast transition there exists 1< i < n and an actiona € %, such that
(4i,all, ) € Rand, foreachj € {1,...,n}\ {i}, (¢;,a?2¢j) € R

The weight of a BP state is simply its length (i.e. the numidgsrocesses involved).
Weight respectfulness of a BP follows from the fact that s’ implies thatsands’ are
of the same weight. BPs are 2-deflatable; here 2 arises frefiath that a rendez-vous
transition is guarded by 2 processes.

Example 6.Lossy Channel Systems (LCS) [1] are 1-NSW. The state of  Io€S is

a paif (s,0), wheres an element in a finite state space, and * is a string over the
channel alphabét. The usual wqo defined b, 01) < (52,02) if s1 =5 andoy is a
(not necessarily contiguous) substringmefis a dwqd. The associated weight function
is w((s,0)) = length(a). A transition of a LCS can manipulate the channel string by
appending a symbol to the tail, removing a symbol from thedheanondeterministi-
cally deleting a symbol from anywhere in the string. The exaday verify that these
systems are 1-deflatable and weight-respecting.

Example 7.Context-free grammars (CFG) are NSW. A CFG is a trigle- (N, T,R)
whereN andT are disjoint, finite sets afionterminal symbolandterminal symbols
respectively, an® C N x X* is a finite set oproduction ruleswherex = NUT. A CFG
corresponds to the NSWE*, —, <), wherex — y iff there existx;, x2 € Z* and(a, ) €
R such thatk = x30%2 andy = x13X2. The dwqo=C >* x ¥* is such thak < y iff x can
be obtained by deleting zero or more symbols ffgmThe weight function isv(x) =
length(x). The system i$-deflatable, wherd = max({length(x) | 3y € N : (y,x) € R}).
Weight respectfulness comes from the fact that each pramtuatle induces a fixed
weight change.

4 Our Algorithm

This section develops our algorithm, which is shown in Figl'3e inputs are &NSW
(S —,=), a set of initial states, and an<-upward-closed set of target statds For
eachi =ip,ip+1,ip+2,..., (whereip = bw(U)) the algorithm computes the backward
reachable séir(U, i), which is the set of states from whithis reachable along a path
that never exceeds weight~ormally, we have the following definition.

Definition 10 (br). Given a WSTYS —,=), a set YC S, and i€ N we letbr(Y,i)
denote the set of all & S such that there exists a sequengexx; — --- — Xy such
that o =X, x € Y, and for all0 < j < ¢ we have Wx;) < i. We also definér(Y) =

UFO:O br(Y7 I)

Sincebr(U, i) is necessarily finite for all > 0, this set can be computed using clas-
sical finite-state symbolic model checking [7] based on B)&}sThe algorithm ter-
minates upon either of the following events:

2 For simplicity we include only a single channel, the usudirdéon allows for an arbitrary
(but finite) number of channels.
3 That this relation is a wqo is known &igman’s Lemmg5].



— Convergence occurs. Byonvergencewe mean that we have reachedrasuch
that Tbr(U,n) = br(U). How this is done is articulated in our Theorem 1 below.
The existence of such anis guaranteed by Theorem 2.

— Intersection with the initial states is detected. Since waeeheft the requirements
of the initial states undefined, we have necessarily leftthieck undefined in our
algorithm. In general, for this check to be computable, wstbe able to decide if
I Nbr(U) =0, givenbr(U,n), wheren is as in the previous item.

We now present two theorems. Theorem 1 gives us a necesshsyitient con-
dition for convergence, while Theorem 2 guarantees thatatgorithm will always
terminate.

Theorem 1 (Convergence)ror a >NSW, an upward-closed set U, anctrbw(U),
br(U,n+6) CTbr(U,n) (1)

if and only if
br(U) =Tbr(U,n) 2)

Theorem 2. For any DWSTS and upward-closed set U, there exists an fysagg2).

In order to use Theorem 1 in our algorithm, we must have a nmeatecide (1). Our
approach requires the use of a computéfilag operator, which intuitively “lifts” a set
br(U,i) to a truncated version of its upward-closure. The truncadimits everything
with weight strictly greater than some givdre N; hence finiteness is preserved.

Definition 11 (lifting operator). Given a dwqo< over a set X, the associatdifting
operatoiis the functiorLift : X x N — 2% defined by

Life(x,d) = {y [ x 2 yAw(y) < d}
We extend.ift to act on sets by decreeingft(Y,d) = Uycy Lift(y,d).

The following theorem explains how the lifting operatoredevant to deciding contain-
ments along the lines of (1). For a finite 3&tlet maxw(X) = max{w(x) | x € X})

Theorem 3. Let < be a dwqo over a set X, and let X and X be finite subsets of
X such thatmaxw(X_1) <i—1 and maxw(X;) <i. Then X C1X_1 if and only if
Xi C Lift(Xi—1,i).

4.1 An Optimization

In this section we propose an optimization to the algorittifsig. 3. Note that in Fig 3,
the computation obr(U, i) involves an iterative fix-point computation, starting wétt

U<i = {xeU |w(x) <i}. In some sense, much of the work of this computation was
already performed when computibg(U,i — 1); since this is a subset &f(U,i), it is
redundant to “rediscover” these states. Also note that

U< C Lift(br(U,i—1),i) C br(U)



1 i:=bw(U)

2 n:=i

3 Ti_1:=0

4 while (n>i—-29) do

5 conpute T :=br(U,i)

6 if intersection(l,l) then

7 exit with verification failure
8 if (I ZLift(Tj_1,i)) then

9 n:=i

10 i=i+1

11 exit with verification success

Fig. 3. Our algorithm, which, given &NSW S, an upward-closed sét, and a set of initial states
I, decidesSafe($,1,U) using finite-state model checking. The variablepresents the maximum
weight of the states computed in each iteration of the wloitgs. i is initially the base weight
of U and is incremented each iteration. The variabteacks the last value affor which “new”
states were found ibr(U,i) (see Def. 10), i.e. statesthat weren't already "covered” by the
existence ofy € br(U,i — 1) such thay < x. The condition of the while loop (line 4) will only fail
when (1) holds, which by Theorem 1 indicates convergenceh Earation of the loop involves
computingbr(U, i), which is done in a nested backward reachability loop (ioifah line 5). Line

6 tests to see if the initial states have been reached, and lierminates if so. Line 8 determines
if something “new” was found this iteration, if sois updated to bé& If the condition of line 8
fails & times consecutively, by Theorem 3 we hdiyg 5 CIM,.5_1 € --- € I'n and thus (1) holds
and verification is successful. Theorem 2 guarantees tisavth eventually happen.

It follows that we can eliminate the unnecessary overhealdiying the fix-point com-
putation fromLift(br(U,i — 1),i), a set which we need to compute anyway for the con-
tainment check of line 8. Our optimization involves replagiines 3 and 5 of Fig. 3
with the following, respectively:

3’ Tj_1:=basis(U) 3)
5 conpute T :=br(Lift(li_1,i),i)

This optimization has the potential to greatly reduce thmber of iterations performed
in the fix-point computations. As an extreme example, in aratton of the outer loop
for which br(U,i) C Lift(br(U,i — 1),i) holds, the computation df; will involve only
a single backward image computation.

Theorem 4. The optimization (3) preserves correctness of our algarith

5 Implementation Using Symbolic Model Checking

Given an NSW(S,—, <), our algorithm manipulates finite subsetsfo, in theory,
we can directly apply standard finite-state symbolic modheloking. In practice, we
must provide a state encoding for the the finite-state sslaset a way to compute the
tasks needed by our algorithm:

— the fix-point computation of line 5 or'5



— the intersection check of line 6
— the lifting operation of line 8
— the containment check of line 8

This section sketches how we implemented the algorithm &oious types of NSW.
Our current implementation uses a very straightforward Biz3ed approach, but our
algorithm should be able to harness the many advances indimtodel checking.

5.1 Parameterized Protocols

For petri nets and extensions such as broadcast protokets, is a natural notion of
local state i.e., the (finite) state of each process in the broadcasbguog or the place
(out of a finite number) occupied by each token in a petri nat.éhcoding follows [4]
and useoncrete global states.e. tuples over local states. The weight is simply the
number of processes, so we can represent subs&dygfsets ovet.!, whereL is the
local state space. It is straightforward to construct a B@Dthe transition relation
in this framework, and hence the fix-point computation. Tifimy) operation is called
existential liftingand can be computed using standard BDD operations. Firjd]ly,
shows that whehis a so-callegharametric setthe intersection check of line 6 can also
be performed using standard operations.

5.2 Lossy Channel Systems

As explained in Example 6, the infinite state space of a LCS4sC x Z*, where

C is the finite state space of the control, abds the channel alphabet. L& =
{(c,0) € S| length(o) < i}. Similarly to our encoding for parameterized protocols, we
represent a subset 8k by a collection of tuples of the forr(s,cy,cy,...,ci), where
se Sand eacltj € XU {empty. Herecy, ..., ¢ stores the contents of the channel, and
the new symboémptyindicates that the channel “slot” does not contain a mesSdue
lifting operator simply inserts an elementdt) {empty nondeterministically into the
channel, hence (possibly) increasing the number of@roptyslots by 1. The intersec-
tion and containment checks are also straightforward srépresentation.

5.3 Comparison to Standard Approach

Comparing our approach to the classical approach (i.e. sE&Dvides intuition about
when each approach is likely to perform better.

ConvergenceGiven two CST<C; andC,, the problem of checking i€, subsumes
C (i.e. if the upward-closed set representedlyyis a superset of that @) is co-NP
hard in the size of the involved CSTs [12]. Unfortunatelyecking subsumption is an
integral part of the classical algorithm (cf. thki | e condition in Fig. 1). To combat
this problem, Delzanno et al. develop a sophisticated ktigolution in which certain
CST simulation relations facilitate pruning of an (expotiedrtime) exact subsumption
check [13]. In contrast, subsumption between two BDDs casdo@ded in time propor-
tional to the product of their sizes [6]. In fact, we can cothereplace the containment
of line 8 of Fig. 3 with an equality test; # Lift(li_1,i). This test can be donie
constant timausing a reasonable BDD library, such as CUDD [30].



Data Structure Size The main efficiency difference is likely to derive from the
sizes of the underlying data structures. Predicting theathios of the sizes is a com-
plex problem. Though BDDs compactly represent many pralchoolean functions,
the worst case size is exponential in their height (i.e. thalmer of boolean variables).
Similarly, although bounds on the size of CST have not beenettin the literature
(to our knowledge), any such bound is at least exponenttakeight of the structure.
Here, we consider data structure height as a coarse medsuoesb-case size.

The CST-based approachis applicable to both petri netsraad bast protocols. Let
L be the set of local states (i.e. petri net places). Then weldahedimensionalityf a
parameterized protocol. The height of the CSTs is fixed andlgq the dimensionality,
while the height of the BDDs is at mogt + d) [log, [L|], wherens is the final value
of nin our algorithm. This suggests that our approach might pesar when(ns +
0) [log, |L|] is much less than the dimensionality, since under such ristances the
CSTs are more likely to blow-up.

For other NSW, such as LCS and CFG, we expect our ability toéatarge control
states spaces and/or large alphabets compactly using Bbpovtide our approach
with an advantage for systems with these characteristics.

6 Conjunctive Guard Reduction

Though WSTS (and indeed NSW) encompass a broad and impaohéasstof infinite
state systems, there are common system attributes thaigeaxell-structuredness. An
example of such an attribute is the so-caltehjunctive guardCG). CG are used in
parameterized systems of processes when a transition éeadbled only if the local
states ofall processes satisfy some predicate. This contrasts withr@dtor broadcast
protocols, in which only a fixed, finite number of processey gaard a transition.
Unfortunately, endowing petri nets or broadcast protoadatls CG renders even safety
property verification undecidable [15]. In this section veeelop a sound reduction that
reduces a BP with conjunctive guards with to a BP.

Emerson and Kahlon have proposed a scamdicompleteerification technique for
a class of protocols with CG [16], however it is unclear if #pproach will scale beyond
systems with small local state. For example, their subsgdueatment of German’s
protocol requires a nontrivial amount of manual reasonii.[

BPs were defined formally in Example 5; here we extend thantiefi to define
conjunctively guarded broadcast protocqlSGBP). A CGBP is a tupléL,> R g),
where (L,Z,R) is a BP, andy : ¥, — 2-. For each actiora € 3|, g(a) is called the
conjunctive guardThe semantics are changed so that a local transitioray occur
only if all other processes are in states that satisfy thguomtive guard ofa®. For-
mally, we conjoin the following condition to the local tratien semantics presented in
Example 5¢; € g(a) forall j € {1,...,n}\ {i}.

4 Our definition of CGBP allows only local actions to have camjiive guards. The definition
and the reduction can be generalized to support conjuhgtinmrded rendez-vous and broad-
casts.



Local actiona is said to beconjunctively guardedf g(a) # L. Hence a BP is a
CGBP in which no action is conjunctively guarded, since iis ttase the additional
requirement on each local transition is tautological.

Our reduction transforms a CGBB = (L,%,R g) into a BP®' = (L',¥' R). In-
tuitively B’ replaces conjunctively guarded local actions with broaticalrhese new
broadcasts allow all processes to check if thveyld havepermitted the transition i,
i.e. if their local state satisfies the CG. Whenever a prodetects a violation of a CG
in this manner, it refuses to participate in any future axtiby “resigning”; resigned
processes are stuck in that state forever.

Formally, we defineB’ as follows. We denote b¥.q the set of conjunctively
guarded actions itB, i.e. X = {a|ac X Ag(a) #L}.

— L’ = LU {resigned, whereresignedis a new local state not ih. A process will
enterresignedif it notices (through a broadcast) that a conjunctive gwead vio-
lated.

— Y is defined byX] = 3 \ 3¢q, 3 = %, and X = Zp U 3¢, i.€. all conjunctively
guarded local actions are replaced with broadcasts.

— R contains exactly the following transitions

e for each(/,a,¢') € R such thata € {al,a?al!,a??|ac 2, UZp} UZ we
have(¢,a,¢") € R. Hence all rendez-vous, broadcast, and non-conjunctively
guarded local transitions are unchanged.

o foreach(/,a, (') € Rsuch that e Zc,qgwe have(l,al!, (') € R. Hence conjunc-
tively guarded local actions become broadcasts.

o foreachac Zcgwe have(?,a?? (') e R, where!’ = ¢if ¢ € g(a) otherwise/’ =
resigned Hence, upon receiving a broadcast corresponding to a G/Giticn,

a process is unaffected if it satisfied the conjunctive guatfterwise it enters
resigned

o for eacha e 3 we have(resigneda??resigned € R. These transitions serve
only to satisfy the restriction that broadcasts must alwsey/seceived.

The following theorem states th@ is a sound reduction aB, and can be proved by
observing that any reachable statefotorresponds to a reachable stateBdfn which
no process is in local statesigned

Theorem 5. For CGBP B, Safe(B,1,U) impliesSafe(B,1,U).

This reduction is “complete” if a certain decidable side d@ition holds. For each
conjunctively guarded local transitiamof B, let §(a) C L be the set of local states
¢ such that there exists a sequence of zero or more non-cdnjlgguarded local
transitions takind to a state’’ € g(a); note thag(a) C g(a). We construct a broadcast
protocolB” that modifiesB’ as follows. A new local staterror is added, and when a
process in local statéreceives broadcast(corresponding to a conjunctively guarded
local action inB), its next state i¢’, defined by

error if £¢g(a)
¢ = ¢ resignedif /€ g(a) Al & g(a)
14 if £€g(a)



|Petrinet  [Our runtimgCST runtim¢Max BDD heighfCST height (dimensionality)

Multipool 301d 2.09 50 18

CSM 95 0.0§ 36 14

Mesh(2x 2) >1300 1.30 >40 32
Table 1. Experiments involving selected petri nets from [13]. Fors@x 2), our tool spaced

out.

Let Error be the set of all broadcast protocol states such that atdeasprocess is in
local stateerror. We note thaError is upward-closed. The following theorem states
that if Error is unreachable iB”, then the conjunctive guard reduction is both sound
and complete.

Theorem 6. For CGBP B, suppose&afe(B”,1,Error). ThenSafe(B,1,U) if and only
if Safe(B/,1,U).

7 Experiments

In this section, we present experimental results for sépeta nets, a MESI cache pro-
tocol, a lossy channel system, and a more elaborate cactotacpl. All experiments
were run on a machine with an Intel Pentium 4 at 2.6GHz and 4&d temory. The
implementation of the classical approach we compare agaibased on an extension
of CSTs callednterval sharing tree$21].

7.1 Petri Nets

In [13], Delzanno et al. run their CST-based implementatibthe classical approach
against several petri nets. These nets have small dimejorso, as discussed in
Sect. 5.3, we do not expect our approach to perform well.ddd€&able 1 shows that the
CST-based implementation outperforms our approach byaesalers of magnitude.
Recall from Sect. 5.3 that we anticipated that our approashidvhave an advantage
when the height of our BDDs is dwarfed by the height of the GSWfsch is not the

case here. In fact, for all three petri nets, the CSTs enjtypeer height than the BDDs.

7.2 MESI Protocol

MESI is a common variety of cache coherence protocol. In a MEStocol, each
client has a cache block in one of four statesdified(M), exclusivgE), shared(S), or
invalid (). Although many MESI protocols are conceivable, here \we the standard
version used by computer architects (e.g., [10]), whichahesnjunctive guard, so we
use our reduction from Sect. 6.

We wanted a “knob” that would give us some control over the sizhe local state
space. Since cache protocols are typically used to oretiedtie sharing of multiple
blocks, we instantiated the MESI protocol oveblocks’, for me {1,2,3,4}.

5 In this case, since the “sub-protocols” controlling eaattklare independent, correctness for
m= 1 entails correctness for ati > 1. In practice, however, such a simplification is often not



||# of blockgOur runtimgCST runtim¢Hytech runtim¢Max BDD heighfdimensior]

1 0.0 0.0 0.0 9 5
2 0.1 0.2 380.Q 18 25
3 0.7 131.9 >7989.( 27 125
4 4.6 36 625

Table 2. Results for the MESI protocol with conjunctive guards ovedtiple blocks. Run times
are in seconds. The colundimensiorindicates the height of the CST data structures in the CST
approach, and also the width of the real vectors processeétlytgch in Delzanno’s polyhedral
approach.

Results are given in Table 2. Our CG reduction allowed thdigation to succeed,
so there was no need to verify the side condition. We comparessult against both
the CST-based classical approach and another variant ofetbsical approach based on
the polyhedral model checker hytech [11, 24]. The resuétarty indicate the superior
scalability of our approach as the local state grows. Theéhabased approach aborts
even form= 3, reporting “Out of memory”. The parser of the CST tool catrfmndle
the size of the description of MESI with 4 blocks, which is M8s. This large size
arises because the broadcast matrices used by the claggicahch grow quadratically
in the dimension of the problem. This contrasts with the n89eKB of SMV that
constitutes our tool’s input.

7.3 Alternating Bit Protocol

As an experiment with lossy channel systems, we selectedltidating bit protocol
(ABP). ABP involves two unbounded, lossy channels, one tlaaties data and se-
quence bits from the sender to the receiver, and anothecdinds acknowledgements
from the receiver to the sender. Our ABP model is based onrdgeptation in [27],
and we verify that whenever the sender receives an ackngeteent, the previously
sent data (a copy of which is saved by the sender) matchegte#&er's data buffer.
As a complexity knob, we vary the numbaaita count which specifies the number of
different data values that may be sent. Results are showalle B.

7.4 German'’s Protocol

German’s protocol [23] is a challenge problem for paranieterverification that has
been previously tackled in several papers [28, 26, 8]. A8Jive include a one bit data
path. The original description [23] is a Mpmodel, and is almost a CGBP: the Mur
description involves a variable of typ#ient ID. We've encoded this variable by simply
giving each process an extra bit, which is true iff the orgyjivariable would point to
the process. This system is a CGBP, and our CG reduction i@dpp

As mentioned in Sect. 7.2, everscribinga BP in a format suitable for the classical
approach is problematic when the dimension is large. Dutstearious channels and

possible, because real protocols can exhibit nontriviedractions between different blocks.
This experiment measures how our approach handles thesilgrowth in local state re-
sulting from analyzing multiple blocks.



||data.counfour runtime]

3 0.2 [data.coun{TReX runtimg]

7 0.6 1 0.01]

15 1.9 2 0.02

31 5.7 3 0.05

63 23.1) 4 0.08

127 90.0 5 0.15
255 340.

Table 3. Alternating Bit Protocol Results. As a rough comparison, rese preliminary experi-
ments with TReX, a state-of-the-art verification tool fosdg channel systems [3]. We do not
intend a direct comparison, because of our inexperiende TReX (e.g., an internal data struc-
ture overflowed when we triedata.count= 6). However, the pattern is clear: TReX is faster
when the alphabet (analogous to dimensionality in brodagwasocols) is small, but the run time
is growing exponentially; our tool scales more gracefully.

[[Property (all passed) [Runtime (sed)
Encoding of curPtr 3
Conjunctive guard reduction 21
Data coherence 63

Table 4. Results for German’s Protocol. To convert the protocol toGB@, we needed to re-
encode the curPtr variable. Although this encoding wasgsttimrward, we verified the encoding
as a sanity check. The main verification task was “data coleefewhich verified that the value
of each read is the most recently written data value. Sire€th reduction is sound and the veri-
fication succeeded, we actually did not need to run the “aantjue guard reduction” verification
task. We have provided the run time simply to illustrate tihat side condition is verifiable in
practice.

the presence of data variables, our model of German’s prbhas a dimensionality of
6144. For this reason, we were unable even to run the CSTagmhst this example.
The results for our tool are given in Table 4.

8 Conclusions and Future Work

We have introduced the concept of NSW and provided a newittigofor verification
of these transition systems. The algorithm harnesses therpaf finite-state symbolic
model checking. We have also introduced a new reductioryiiems with unbounded
conjunctive guards. As predicted by our theory, experimleesults show that our new
verification algorithm greatly outperforms existing apgebes for systems that involve
large local state spaces, control state spaces, chanhaba{s, etc. We attribute this to
the ability of BDDs to encode such sets succinctly.

Our currentimplementation is fairly naive. We believe meoghisticated symbolic
model checking techniques can produce still better resOliser avenues for future
work include computing bounds on BDD sizes, finding addaiddSW applications,
and finding ways to apply our method semi-algorithmicallysystems that are not
NSW.



Very recently, Geeraerts et al. [22] have proposed a compedipproach to veri-
fication of WSTS based on forward reachability. This is thstfiound and complete
algorithm that performs forward analysis of WSTS. Similaiour approach, theirs is
based on a framework in which a sequence of finite-state stdrgg of increasing size
are examined until either a counterexample is found, or &@iceconvergence condi-
tion is reached. Convergence occurs when an abstractiochvilecomes more and
more precise, is tight enough to verify non-reachabilitpvidus directions for future
work include comparing our approach with that of Geeradrtd.eand investigating
the possibility of employing BDDs as we do for backward resaility in their forward
framework.
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Proofs

The proof of Theorem 1 requires the following lemma.

Lemma 2. For a weight respecting DWSTS and an upward-closed setdJyrzU, n)
and z=y imply ¥ € br(U,n+w(y) —w(2)).

Proof: Let d = w(y') —w(2). z € br(U,n) implies there exists a sequenge— z; —
-+ — 2z Wherezp = zandz, € U, andw(zj) < nforall 0 < j < ¢. We show by induction
on/thaty € br(U,n+d). If /=0, thenze U and thusy € U and we are done since



w(y') < n+d. For the inductive step, we note ttrat> z; implies that there existg such
thatw(y1) =w(z1) +d, Y — yi1, andz <y since the system is weight respecting. Note
thatz; € br(U,n), thus, by our inductive hypothesig, € br(U,n+w(y1) —w(z)) =
br(U,n+d), which impliesy’ € br(U,n+d).

O

Proof of Theorem 1: (<) Trivial. (=) br(U) 27br(U,n) holds trivially. To prove the
converse containment, suppose that (1) holds, but thestsexi 1 such that there exists
X € br(U,i) such thai ¢7br(U,n). Sincebr(U, j) C br(U,k) wheneverj <k,i <n-+90
impliesx € br(U,n+ 8) CTbr(U,n), thus we need only consider- n+ 0.

Letx=xp — X3 — --- — X, € U be a path fronx toU. SinceU C1br(U,n), there
must exisk € {1,...,¢} such that €Tbr(U,n) andxc_1 €Tbr(U,n). Then there exists
ze br(U,n) such thatz < xx. Now because the systemdsieflatable, there exisysand
y satisfying the five conditions of Def. 8, i.g=<x 1,y — Y, z=Y, W(y) <w(z2)+3,
andw(y) < w(z) + 6. From Lemma 2 we have thgt € br(U,n+ &) which implies
y € br(U,n—+9) sincew(y) < n+ 9. Sincey < X_1, this impliesx,_1 €7br(U,n), which
is a contradiction.

(I

Proof of Theorem 2: For anyx € br(U), let g(x) denote the minimunj such that €
br(U, j). Sincebr(U) is upward-closed [20], there exists a finite Bet basis(br(U)).
Now taken = max({g(x) | x € B}). To see that this satisfies (2), note that for any
i > n, if there existsc € br(U,i) such tha ¢ Tbr(U,n), then this contradictB being a
basis forbr(U), sinceB C br(U,n).

(]

Proof of Theorem 3: (<) Trivial, sinceLift(X;,i + 1) C1X. (=) Suppose§ C1X_1,
and letx € X;. Then there existg € X;_1 such thaty < x. Sincew(x) < i, this implies
x € Lift(Xi—1,i).

O

Proof of Theorem 4: For a seiX denoteX<; = {x € X | w(x) <i}. Letb=bw(U), and
letly 1,Tp,Mpy1,...andly_ 4, T 4, ... be the sequences of values assigned to the
variabled”; by the algorithm of Fig. 3 and the optimized version, respebt We first
show that for ali > b we have

M C T C br(U) (4)

(4) clearly holds when= b, sincel', = I'y,. Assume that (4) holds far>b. ' C br(U)
implies thatLift(l'{,i + 1) C br(U) (sincebr(U) is upward-closed [20]), and hence
i, =br(Lift(l,i+1),i+1) C br(U). Thus the second containment of (4) holds for
i+ 1. Also, sincdJ<; C I andi > bw(U), we have

U<ita,i+1)
Lift(U<i,i+1),i + 1)
C br(Lift(M,i + 1), + 1)
C br(Lift(rf,i+1),i+1)
=M

Fiy1=br
= br

NN S



Therefore the first containment of (4) holds for 1.

Now letN be the final value of the variabiein the unoptimized algorithm. Then, by
Theorem 1, we havély = br(U), which, along with (4) impliesTy = br(U). Since
Mk € I whenk < J, it follows that for each € {N+1,...,N + &} we have

M= Lift(T_1,1) = br(U)<i (5)

Therefore the optimized version also terminates with thal flalue ofn beingN, and
computed 'y such that Ty = br(U).
O

The proofs of Theorems 5 and 6 use the following terminol¥gy.call a sequence
of statesxg — X1 — --- — X apathof B’ (resp. ofB) if — is the transition relation of
B’ (resp.B).

Lemma 3. ¢ is a path ofB if and only ifa is a path ofB’ in which no process is ever
in the local state resigned.

Proof: Follows from the simple observations that any transitiorBa$ a transition of
B, and, conversely, any transitic#f in which no process starts or finishes@signed
is a transition ofB.

O

Proof of Theorem 5: By Lemma 3, the set of states reachable frbrim B’ over-
approximates the set of states reachabi8.in
O

Proof of Theorem 6: (<) Follows by Theorem 5.

(=) We assume —Safe(®,1,U) and Safe(B”,I,Error), and show that
—Safe(B,1,U) follows. Call a pathunsafeif it starts inl and ends inJ. For the
remainder of the proof~ will denote the transition relation @B’. For a statex of a
(CG) broadcast protocol (i.e. a finite word over the locatestgpace) and a process
p involved in this state (i.e. an indgxe {1,...,n}, wheren is the length ofx), we
denote byx(p) the local state op in x (i.e. x(p) is the pth symbol inx).

For a patho of B’ and a procesp, let rsl(a, p) be the length of the suffix af in
which p is in stateresigned Note thatrsl(o, p) = O precisely in the case thatnever
resigns. We show how, given an unsafe patbf B’, we can construct another unsafe
patht of B’ such that

Property 1 forall p€ {1,...,n} we haversl(t, p) <rsl(a, p), and
Property 2 there existg) € {1,...,n} such thatsl(t,q) < rsl(o,q),

wherenis the number of processes involvedirBy iterating this construction, one can
transform any unsafe path @& into an unsafe path @B’ in which no process resigns,
which, by Lemma 3, is an unsafe path®f

We now describe the construction. Suppose we have an uresthfef’’

Xo— Xp == Xy (6)



in which some process resigns. lgghe an earliest resigning process, gés such that
there exists > 1 wherex;_1(q) # resigned= x;(q), and further no process is resigned
in Xi—1. Then there exista € 24 (i.e. a is a CG local action of8 and hencea is a
broadcast action o’) such thatxi_1 — x; is a broadcast transition on the actian
SinceSafe(B”,1,Error), we have thax;_1(q) € g(a). Thus there exists a path &f

X=X ==y (7)

such that

- X =%, _ _
— foreachj € {1,...,m}, xijjll — x)_; involves a local transition of procegsand
= x21(9) € 9(a)

Hencex;_1 andx™, differ only in the local state o], and therefore the broadcast of
a may occur fromx™,, yielding a statey; which differs fromx; only in thaty;(q) =

x" ;(q) # resigned= x;(q). Note that no process is resigned in any state of (7). Startin
fromy;, there exists a path #’

Yi—=VYirr— o — Y (8)

such that for each€ {i,..., ¢}, y; differs fromx; in (at most) the local state of process
qg. For eachj € {i+1,...,¢}, the transitiory;_1 — y; involves the same local, rendez-
vous, or broadcast action ag_; — Xj, which is always possible becausg 1(q) =
resignedand thusg never performs an output in these transitions. Intuitiviely(8) q
is passive in the sense that it only receives inputs fromeenus and broadcasts,
possibly resigning at some point, but is definitely not raeijiny;. Also, sincex, € U
and no processes are resigned in any stabagi$(U ), we have thay, € U.

We may construct the desired patby concatenating the firststates of (6), all of
(7), and all of (8), as follows.

Xo—>X1—>"'—>Xi71—>X.-1,1—>"'—>X,n11—>Yi—>"'—>W (9)
It is easy to see that (9) is unsafe and satisfies propertiesl 2 aabove, hence this

completes the proof.
O



