
High-Level Specification and Automatic Generation of
IP Interface Monitors

�

Marcio T. Oliveira
Department of Computer Science

University of British Columbia

oliveira@cs.ubc.ca

Alan J. Hu
Department of Computer Science

University of British Columbia

ajh@cs.ubc.ca

ABSTRACT
A central problem in functional verification is to check that a circuit
block is producing correct outputs while enforcing that the environ-
ment is providing legal inputs. To attack this problem, several re-
searchers have proposed monitor-based methodologies, which offer
many benefits. This paper presents a novel, high-level specification
style for these monitors, along with a linear-size, linear-time trans-
lation algorithm into monitor circuits. The specification style nat-
urally fits the complex, but well-specified interfaces used between
IP blocks in systems-on-chip. To demonstrate the advantage of our
specification style, we have specified monitors for various versions
of the Sonics OCP protocol as well as the AMBA AHB protocol,
and have developed a prototype tool that automatically translates
specifications into Verilog or VHDL monitor circuits.

Categories and Subject Descriptors
B.5.2 [Register-Transfer Level Implementation]: Design Aids;
B.6.3 [Logic Design]: Design Aids; C.0 [Computer Systems
Organization]: General—Systems specification methodology; J.6
[Computer-Aided Engineering]: Computer-aided design (CAD)

General Terms
Documentation, Languages, Verification

Keywords
Formal Verification, Regular Expressions, Pipelining, Alternation

1. INTRODUCTION
Standard design practice is block-based — the design task is

carved into small pieces to be tackled by an individual designer or a
small team. In the past, block boundaries and interfaces have been
casually negotiated face-to-face among the designers. This infor-
mal negotiation does not scale with the push for higher productivity
and complexity. In addition, we would like to reuse pre-designed
and pre-verified IP blocks — either designed previously in-house
or purchased from third-party IP suppliers. As a result, the trend
is towards designing with large, complex blocks with well-defined
functionality and interfaces.

This trend generates two complementary verification problems:
how to verify that a block behaves properly in its intended environ-
ment without having to model and verify the rest of the system, and
�
This work was supported in part by an NSERC research grant and

the MITACS Network of Centres of Excellence.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2002, June 10–14, 2002, New Orleans, Louisiana, USA.
Copyright 2002 ACM 1-58113-461-4/02/0006 ...$5.00.

how to verify that a system behaves properly without having to in-
stantiate all blocks and flatten the design. Current verification prac-
tice for the first problem is to create by hand an abstracted environ-
ment model for formal verification or a testbench for simulation-
based verification. Current practice for the second problem is to
create by hand abstract models of the blocks and the system, or
else to attempt to verify the whole system and suffer from state ex-
plosion in formal verification or slow simulation speeds and poor
coverage during system-level simulation. In either case, this prac-
tice is labor-intensive, error-prone, and results in time-consuming
false error reports if the models are too flexible or missed bugs if
the models are too strict.

Several groups have proposed interface-monitor-based method-
ologies (e.g., [8, 13, 7]) to address this problem. The common
theme is to create a monitor circuit that watches the interface be-
tween a block and the rest of the system and flags any violations of
the interface protocol (Figure 1). The key insight, empirically con-
firmed in several case studies, is that designing a passive, declar-
ative monitor is easier than designing an active stub to model the
environment. Furthermore, because the monitor is symmetric be-
tween the block and the rest of the system, the same monitor can be
used to verify both the block with the system abstracted as well as
the system with the blocks abstracted, thereby supporting a compo-
sitional/hierarchical verification style. The monitor also provides
a precise documentation of the interface, on which formal sanity
checks can be applied. Finally, it is possible to convert a moni-
tor circuit automatically into a testbench (stimulus generator) for
simulation-based verification [15]. The advantages of a monitor-
based methodology are compelling.

Unfortunately, although impressive monitors have been
built [12], creating a monitor for a complex protocol is a chal-
lenging task. This paper introduces a high-level specification style
designed explicitly to simplify specification of interface monitors.
Our goal is to provide an extremely easy way to generate monitors
for common interface idioms. With numerous emerging standards
for system-on-chip interconnect, the need for a simple, concise,
and readable way to specify interface protocols is clear. Being
able to translate these high-level specifications automatically
into monitor circuits allows tapping the power of monitor-based
methodologies. By using our specification style, IP suppliers will
be able to formally verify that their cores conform to an interface
protocol as well as supply a monitor for that protocol that is both
easily human-readable and directly usable by verification tools.

1.1 Related Work
Verifying a block with respect to an environment has been a con-

cern since the beginnings of hardware verification. CTL Model
Checking [6], for example, assumes a closed system and implicitly
requires writing environment models. Theoretical results show that
modifying CTL model checking to explicitly handle environmental
inputs (rather than closing the system with an environment model)
imposes a large complexity cost [9]. For space reasons, we discuss
here only the two lines of research that are the immediate parents

Monitor
Error

Rest of System

Block

Monitor
Error

Rest of System

Arbitrary

Monitor
Error

Block
Arbitrary

Environment

Figure 1: A monitor circuit watches the interface and flags any violations of the protocol. The block and system can be formally
verified separately. The monitor can also be converted into a simulation testbench.

of the current work: interface monitors and regular expressions.
Using monitor circuits to encapsulate properties to be checked is

an established idea. Indeed, a practical, industrial-strength verifica-
tion methodology can be built on extensive use of monitors [4]. Our
work was directly motivated by the elegance and power of monitor-
based approaches to interface specification [8, 13, 7]. The emphasis
of those works was mainly on the value of this way of thinking; lit-
tle emphasis is on the specification language. Our focus is on the
specification language; we seek to harness those results by provid-
ing a shortcut to specifying monitors.

The other parent of our work is the use of extended regular ex-
pressions to generate finite-state machines. For property specifica-
tion, both Intel’s ForSpec[2] and IBM’s Sugar[3] include regular
expressions and have ardent adherents. The most direct influence
on the present work, however, is earlier work from the synthesis
community: Production-Based Specification [11]. This work uses
an extended regular expression language to specify state machines,
which are synthesized in polynomial time into circuits, never ex-
plicitly building a deterministic finite-state machine and thereby
avoiding a potential blowup. Production-based specification has
proven to be particularly well-suited to synthesizing protocol state
machines, and hence was a natural starting point for our research.

1.2 Contributions
The most obvious contribution of our research is the demonstra-

tion that regular expressions work very well for specifying IP in-
terface monitors. That statement, however, is actually false. Ex-
isting specification styles based on regular expressions do rather
poorly as soon as the interface protocol becomes as complex as
typical system-on-chip interconnect protocols. However, by intro-
ducing two novel extensions — storage variables and a pipelining
operator — we have created a specification style that does work
very well for interface monitors. The new extensions require a new
algorithm for translating specifications into monitor circuits. We
have implemented this algorithm in a prototype tool that translates
specifications into monitor circuits in Verilog or VHDL. Finally,
we have demonstrated the usefulness of our specification style by
developing monitors for two standards for system-on-chip inter-
connect: large portions of ARM’s AMBA AHB high-performance
bus protocol [1] and several versions of OCP (Open Core Protocol)
originated by Sonics [14].

2. SPECIFICATION STYLE
We introduce the specification style incrementally, starting with

regular expressions, and then introducing productions, storage vari-
ables, and pipelining. Examples taken from the AMBA AHB pro-
tocol will illustrate the concepts. We will try to provide enough
information for readers unfamiliar with AHB to understand the ex-
amples. The complete AHB models are too large to include in a
paper, but we will present a complete master monitor for a simple
variant of OCP in the next section.

Fundamentally, a regular expression specifies a language, which
is just a set of strings, which are sequences of characters, which
are drawn from some alphabet. Analogously, we start at the very
beginning with the alphabet of our specification style. The in-
terface between a block and the rest of the system consists of
a bunch of wires: some are inputs to the block; some are out-
puts. For example, an AHB slave device interfaces to the sys-
tem via several wires, such as HADDR[31:0], a 32-bit address in-
put; HRDATA[31:0], a 32-bit data output; HWRITE, HTRANS[1:0],
HSIZE[2:0], HBURST[2:0], which are control signals describ-
ing the type and size of a transfer; and HREADY, HREADYOUT, and
HRESP[1:0], which are hand-shaking and response signals. All of
these wires are inputs to the monitor, which passively watches their
values. Accordingly, the fundamental building-block of our speci-
fications is an assignment of values to the wires on the interface at
a given clock cycle.

For convenience, we allow the user to specify any Boolean for-
mula on the interface wires. For example, the AHB protocol defines
encodings for the different transfer and response types, so we allow
the user to specify:

define idle = !HTRANS[0] & !HTRANS[1];
define busy = HTRANS[0] & !HTRANS[1];
define nonseq = !HTRANS[0] & HTRANS[1];
define seq = HTRANS[0] & HTRANS[1];

define okay = !HRESP[0] & !HRESP[1];
define error = HRESP[0] & !HRESP[1];
define retry = !HRESP[0] & HRESP[1];
define split = HRESP[0] & HRESP[1];

Any Boolean formula on the interface wires (and defined formu-
las) is a primitive expression.

Given primitive expressions, we can define regular expressions
recursively in the usual manner. Any primitive expression is a reg-
ular expression. A regular expression concatenated to another reg-
ular expression is a regular expression. We use a comma as our
concatenation operator. For example, the AHB specification de-
fines different response codes for a slave to signal to the master:

wait_state -> !HREADY & okay;
okay_resp -> HREADY & okay;
error_resp -> (!HREADY & error) , (HREADY & error);
retry_resp -> (!HREADY & retry) , (HREADY & retry);
split_resp -> (!HREADY & split) , (HREADY & split);

The error, retry, and split responses take two cycles: the first with
HREADY low, the second with HREADY high. The choice (denoted by
||) between regular expressions is a regular expression. For exam-
ple, to specify that a transfer can be one of four different kinds, we
can write:

transfer -> idle_trans || busy_trans ||
nonseq_trans || seq_trans;

Finally, we have the Kleene closure to denote repetition:

resp -> wait_state* , (okay_resp ||
error_resp || split_resp || retry_resp);

The above expression specifies the response phase to be any num-
ber of wait states, followed by one of the response types.

For notational convenience, we use productions as they were de-
fined in production-based specifications [11]. We have actually
been using productions already in the preceding paragraph. The
symbol to the left of the -> operator is defined to be an abbrevia-
tion for the regular expression on the right-hand side. To guarantee
that specifications correspond to finite-state machines, productions
cannot be recursive.

The above definitions are the same as earlier regular-
expression specification styles and appear to be convenient
for describing protocols. The behavior of an AHB slave
device, for example, is simply a sequence of transfers or
idle periods: slave -> (slave_idle || transfer)* where
slave_idle means HREADY is low or the slave is not selected, and
transfer is defined as above. Describing the full details of typical
IP block interface protocols, however, quickly reveals the limita-
tions of a pure regular-expression specification style.

The first major obstacle is persistent storage of information. In
AHB, for example, a slave device can reply with a split response,
indicating that it needs a long time to complete the request. The
interface monitor for a split-capable slave should remember the ID
numbers of all masters who have splits pending, to ensure that a
slave does not signal completion of a split transaction that has not
happened. Encoding such information with regular expressions is
possible, but painful: for every possible value of the saved infor-
mation, the user must write a slightly modified version of every
production that is affected. Instead, we propose storage variables
as a simple alternative. The user can declare finite-state variables
as part of the specification. At any point in a regular expression,
values can be assigned to the storage variables. The values of the
storage variables are available in any Boolean formula defining a
primitive expression. The monitor for an AHB slave could have
a 16-bit storage variable, with one bit for each possible master to
indicate whether it has had a request that has been split. Whenever
the slave issues a split, the corresponding bit is set; whenever the
slave issues a split completion, the corresponding bit is checked.

The other major obstacle is pipelining. Almost all high-
performance interfaces are pipelined to some degree. Most spec-
ifications describe the cycle-by-cycle behavior of an interface, but
unfortunately, pipelining is extremely hard to specify (or under-
stand) at the cycle-by-cycle level. Trying to specify pipelining via
regular expressions or any other cycle-by-cycle style requires the
user to entangle all the possible parallel behaviors by hand, result-
ing in a difficult, error-prone specification process and an unread-
able specification. Instead, pipelining is most naturally understood
as an operation that overlaps sequential operations (Figure 2). In
the AHB protocol, the arbitration phase, address (request) phase,
and data (response) phases are all pipelined. The official AMBA
specification document [1] describes these phases sequentially in
English, and then presents timing diagrams to attempt to show how
they entangle in pipelined operation. Our solution is to provide an
explicit pipelining operator, similar to the concatenation operator.
For example, for an AHB slave monitor, a transfer has an address
phase followed by a response phase:

idle_trans -> (idle & HSEL & HREADY) , okay_resp;
busy_trans -> (busy & HSEL & HREADY) , okay_resp;
nonseq_trans -> (nonseq & HSEL & HREADY) , resp;
seq_trans -> (seq & HSEL & HREADY) , resp;

(HSEL indicates this slave is selected; HREADY is the handshake that
indicates the address phase is complete.) However, the address and
response phases are pipelined, so that the response phase of one
transfer occurs at the same time as the address phase of the next
transfer. In our specification style, we simply replace the concate-
nation operator with the pipeline operator @:

idle_trans -> (idle & HSEL & HREADY) @ okay_resp;

req resp

req resp

req resp

Time

Figure 2: This figure shows multiple pipelined transactions,
where each transaction has a request phase and a response
phase: (req@resp)*. Our pipeline operator marks the point
where the next computation overlaps the current one. At that
point, we fork a new “thread” to complete the current trans-
action (dotted arrow), while the current thread continues with
the rest of the regular expression, if any (solid arrow).

busy_trans -> (busy & HSEL & HREADY) @ okay_resp;
nonseq_trans -> (nonseq & HSEL & HREADY) @ resp;
seq_trans -> (seq & HSEL & HREADY) @ resp;

The semantics of the pipeline operator are that the thread of control
forks into two sub-threads when the pipeline operator is encoun-
tered: one sub-thread continues with the regular expression as if
the right-hand operand of the pipeline operator did not exist, the
other sub-thread focuses only on the right-hand operand, ignoring
the rest of the regular expression. The thread accepts a string only if
both sub-threads accept (Figure 2). Multistage pipelines are easily
specified as (a @ (b @ (c @ ...))).

The ability to generate multiple threads where all threads must
accept (pipelining) or at least one thread must accept (choice) re-
sembles alternating automata, which in general require a double-
exponential state-space blow-up to convert into ordinary au-
tomata [5]. To guarantee efficient translation into monitor circuits,
we impose a few restrictions. First, we require the expression con-
tained within a Kleene star not to accept the empty string. Known
constructions can normalize regular expressions to obey this re-
striction [10], but our implementation does not currently include
this step. Second, we forbid non-deterministic choice: we allow
the choice operator, but the choices must be distinguishable within
the first clock cycle. In practice, this restriction is not a problem be-
cause protocols are typically designed to make it easy to determine
immediately what action is occurring. Finally, we allow at most
one thread at a time to execute in a pipeline stage. For example, the
expression (a@(b,c))* generates an error when the second repe-
tition arrives at the b while the first repetition’s pipeline sub-thread
is still at the c. This restriction corresponds to allowing only one
transaction at a time to use the hardware resources devoted to a
pipeline stage.

We close this section with an example of the clarity of our
specification. The official AMBA AHB specifications require a
two-cycle response for a retry (shown above in the production
for retry_resp), but also require an immediate OK response
to a busy transfer. In August 2001, the question arose in the
comp.lang.verilog and comp.sys.arm newsgroups of what
happens if a slave starts to issue a retry (to the previous transfer)
in the same cycle that the master issues a busy transfer, e.g.:

Clock Cycle: 1 2 3
Request: Sequential Busy
Response: Retry1 Retry2 or OK??

The sequential transfer at cycle 1 needs a two-cycle retry response

/* Inputs and Outputs of Master */
/* The monitor treats these as inputs. */
input SCmdAccept, SResp[1:0], SData[31:0];
output MAddr[31:0], MCmd[2:0], MData[31:0];

/* Response codes defined in standard. */
/* NULL, Data VAlid, and ERRor */
define null_resp = !SResp[0] & !SResp[1];
define dva_resp = SResp[0] & !SResp[1];
define err_resp = SResp[0] & SResp[1];

/* Commands defined in standard. */
define cmd_idle = !MCmd[0] & !MCmd[1] & !MCmd[2];
define cmd_write = MCmd[0] & !MCmd[1] & !MCmd[2];
define cmd_read = !MCmd[0] & MCmd[1] & !MCmd[2];

master -> (cmd_idle || transfer)*;

transfer -> write_transfer || read_transfer;

/* SCmdAccept indicates that the slave
has accepted the command. */

write_transfer ->
(cmd_write & !SCmdAccept)*, (cmd_write & SCmdAccept);

read_transfer ->
(cmd_read & !SCmdAccept)* ,
(wait_state_resp || instant_resp);

wait_state_resp ->
(cmd_read & SCmdAccept & null_resp) ,
null_resp* , response;

instant_resp -> (cmd_read & SCmdAccept & dva_resp) ||
(cmd_read & SCmdAccept & err_resp);

response -> dva_resp || err_resp;

Figure 3: A complete interface monitor for a Basic OCP master
that can only handle one outstanding transaction at a time.

during cycles 2 and 3, but a busy transfer at cycle 2 demands an
immediate OK response at cycle 3. Because of the pipelining, the
questioner was unsure what would happen. Of the several answers
offered in the newsgroup, most were wrong. In our specification,
the seq_trans and nonseq_trans productions have a pipelined
resp phase, which means that one sub-thread enforces that the re-
sponse phase behaves correctly while another sub-thread continues
to the next transaction. For a retry response, the retry_resp pro-
duction shows that HREADY must be low in cycle 2, whereas the
busy_trans production shows that HREADY must be high in cycle
2. Since the slave controls HREADY, this means that the busy trans-
fer cannot occur at cycle 2, regardless of what the master requests.
The only legal behavior is for the request at cycle 2 to be ignored
(slave_idle in the productions above), and for the second cycle
of the retry response to occur at cycle 3.

3. EXAMPLE: OCP
In the preceding section, we actually saw most of the specifica-

tion for an AMBA AHB slave monitor. The AHB master monitor
is too complex to present here, but for the sake of completeness, we
would like to present a complete monitor for the interface between
a master device and the rest of a system. Figure 3 shows the entire
monitor for a master in a simple version of the Open Core Protocol
(OCP) [14]. OCP is actually a very broad, parameterized family
of protocols, spanning an enormous range of performance and cost
objectives. The interface monitor shown is for a Basic OCP master

with only one transaction in-flight at a time.
In Basic OCP, the master presents a command at the same time

as the address, as well as the data if the command is a write. These
values must be held constant until the slave accepts the command
by asserting SCmdAccept, which could happen in the same cycle
that the command is presented. Writes are posted (no response
required once the slave accepts the command), but read commands
have a response phase during which the slave sends data back to
the master. The slave can insert zero or more wait states by keeping
SResp set to the null response. The slave terminates the response
phase by setting SResp to indicate that the data is valid or an error
occurred. SResp can go non-null in the same cycle as SCmdAccept
is asserted, which can be in the same cycle as the master presents a
command.

Our specification in Figure 3 starts by declaring the interface
wires, and then defining the command and response encodings. The
first production defines the behavior of the monitor — in this case,
we declare that the master’s interface should exhibit a sequence of
idle commands or transfers. A transfer can be a write or a read. A
write transfer consists of zero or more states waiting for the slave to
accept the command, followed by the slave’s accepting the write.
The read transfer is a bit more complicated, starting with zero or
more states waiting for the slave to accept the command, followed
by either an instantaneous response or a response with zero or more
wait states.

For simplicity, the specification in Figure 3 does not check that
the master holds the address and data values constant if the slave
does not accept the command immediately. To enforce this require-
ment, we need only make a few changes to the specification. First,
we would declare some storage variables to remember the values
of the address and data:

internal hold_addr[31:0] = 0;
internal hold_data[31:0] = 0;

Next, we modify the transfers so that if the slave does not accept
the command immediately, we remember the address (and data if
applicable):

write_transfer ->
(cmd_write & SCmdAccept) /* Same cycle accept */
||
(
(cmd_write & !SCmdAccept)

/* Store original address and data. */
{ hold_addr <- MAddr; hold_data <- MData; } ,

(cmd_write & !SCmdAccept &
(hold_addr == MAddr) & (hold_data == MData)

) * ,
(cmd_write & SCmdAccept &

(hold_addr == MAddr) & (hold_data == MData))
);

The read transfer production is modified similarly. To enforce the
same constraints using regular expressions without storage vari-
ables would require separate read and write productions for each
possible value of the address and data.

4. TRANSLATION INTO CIRCUITS
The translation process starts by macro-expanding all produc-

tions, since the productions cannot be recursive, resulting in a sin-
gle (extended) regular expression for the monitor. In theory, this
expansion can produce an exponential size blow-up, but in prac-
tice, this is often not a problem. The translation from an extended
regular expression to circuits can best be understood as recursively
building a circuit for each sub-expression, so the structure of the
circuit exactly matches the structure of the regular expression. The
circuit passes activation signals from sub-circuit to sub-circuit, cor-

responding to possible parses of the input string by the regular ex-
pression. We will elaborate on this construction below.

Our translation is similar to previous work in efficiently convert-
ing regular expressions into circuits [11, 10]. The key differences
of our algorithm are building a monitor circuit, rather than a recog-
nizer circuit, handling storage variables, and handling pipelining.

The first difference is that we are interested in monitoring the
on-going behavior of an interface, rather than recognizing a reg-
ular language, which was the focus of previous work. A recog-
nizer asserts its “OK” output only when the input sequence is a
string in the language of the regular expression. A monitor, on the
other hand, asserts its OK output as long as the sequence seen so
far has not done anything not permitted by the regular expression.
Accordingly, our logic that tracks the correspondence between the
interface and the regular expression (the activation signals) is es-
sentially the same as previous work, but the logic to generate the
OK signal is completely different (described below).

Storage variables are simply registers in the circuit, whose output
are available to the logic generated for primitive expressions. As-
signments to storage variables are enabled by the same activation
signals that track the parsing of the input string.

Pipelining is the most difficult difference. Intuitively, we will
create a single thread for each pipeline stage, and the circuit for
each thread behaves roughly like previous translations of regular
expressions into circuits. The monitor is satisfied only if all active
threads are satisfied. Additional bookkeeping is required to track
the exact status of each thread.

More precisely, take the (macro-expanded) parse tree for the
monitor’s regular expression and delete the right-hand-operand
edges of all pipeline operators, resulting in several, disjoint parse
(sub-)trees. Our restrictions on the specifications (deterministic
choice and single thread per pipeline stage) guarantee that each
sub-tree will support exactly one thread. Each thread i will gen-
erate a thread enable output tenablei and a thread OK output toki.
The monitor is satisfied as long as for all threads, tenablei

� toki.
(We use � to denote logical implication.)

Each regular (sub-)expression is converted into a circuit that can
read all storage variables and interface wires. The circuit also has
an activate-in input ai, an activate-out output ao, a circuit-enabled
output e, an OK output ok, and an “OK-plus” output okp:

ai ao

e ok okp

...
interface wires and storage variables

Intuitively, the activate signals indicate where a thread is in the reg-
ular expression, the enabled signal e indicates if this sub-circuit is
enabled (is trying to match the interface signals), and the OK signal
indicates that the sub-circuit is enabled and agrees with the current
values on the interface wires. The OK-plus signal is a technical de-
tail needed to handle the possibility of recognizing the empty string
with a Kleene star; intuitively, it indicates that the sub-circuit is
OK at this point even if all stars (zero or more repetitions) became
plusses (one or more repetitions). Inductively, given an extended
regular expression:
Base Case: If the expression is a primitive expression, build the
combinational logic to evaluate the Boolean formula for the primi-
tive expression. Let f denote the output of this formula. The enable
output e is equal to the activate input ai. Both ok and okp are set to
ai
�

f . The activate-out signal is ai
�

f delayed by one clock signal
(one flip-flop in the circuit).

e[X] ok[X] okp [X]

e ok okp

X

Y

e[Y] okp [Y]ok[Y]

ai[X]

ai[Y] ao[Y]

ao[X]

ai ao

Figure 4: Circuits are built recursively from the circuits for
their sub-expressions. The dotted lines show the construction
for the activation signals for the choice operator X ���Y .

Choice: If X and Y are regular expressions with corresponding cir-
cuit translations, then build the circuit for X || Y from the circuits
for X and Y as follows: (Denote the signals for X’s circuit with � X � ,
similar for Y . See Figure 4.)

ai �X ��� ai ai �Y ��� ai ao � ao �X �
	 ao �Y �
connects that activation signals, and:

e � e �X ��	 e �Y � ok � ok �X ��	 ok �Y � okp � okp �X ��	 okp �Y �
generates the enable and OK signals.
Sequence: Similarly, build the circuit for X , Y as follows:

ai �X ��� ai ai �Y ��� ao �X � ao � ao �Y �
connect the activation signals so that X goes first, and then acti-
vates Y in sequence. The constructions e � e � X �	 e �Y � and okp �
okp �X �
	 okp �Y � are intuitive — the circuit is enabled or “OK-plus”
if either sub-circuit is enabled or OK-plus. The OK signal needs
extra clauses

ok ��� e �X � � ok �X ��� � � e �Y � � ok �Y ��� � � ok �X ��	 ok �Y ���
because X or Y might consist of a Kleene star, and the construction
for the Kleene star is always OK as soon as the circuit is activated,
regardless of the values on the interface wires (because the star al-
lows matching zero copies of the repeating expression). The extra
clauses prevent these empty-match OK signals from propagating
erroneously.
Pipeline: For X @ Y , all of X’s signals are connected to the corre-
sponding signals for the circuit for X @ Y , since the current thread
ignores Y . At the same time, a new thread for Y gets activated:
ai �Y ��� ao �X � .
Kleene Star: For X*, connect the activation signals as ai �X ���
ai 	 ao �X � and ao � !okp �X � � � ai 	 ao �X ��� . The enable output is
e � e � X ��	 ao �X � , the OK output is ok � ok �X �
	 ai 	 ao � X � , and the
OK-plus output is okp � okp � X � . Because of the repetition, the cir-
cuit self-activates, so the ao �X � signal appears in several formulas.
The Kleene star accepts the empty string, so the ai signal appears
combinationally in the equations for ok and ao (as well as indirectly
in e for the first cycle of X’s activation). Here, we see the use of
the okp signal: the activate output is disabled if X is truly matching
the interface (rather than vacuously matching because of a Kleene
star). The deterministic choice restriction prevents the case where
ao should be true at the same time as okp � X � .

Earlier, we imposed three restrictions to allow efficiently build-
ing a monitor: (1) normalization to eliminate empty strings within
Kleene stars, (2) deterministic choice, and (3) one thread per
pipeline stage. The first two can be handled statically using stan-
dard techniques. To enforce the third restriction, we augment our
monitor to generate a pipeline-violation error. Intuitively, for each
pipeline operator X @ Y , trying to activate Y when it is already
running generates a pipeline-violation error. A complication, how-
ever, is that the signals from the already running thread and the
new activation can interfere. The easiest way around this com-
plication is to generate three versions of every signal in the con-
struction above: the regular version as described already; a primed
version, which ignores any new activation; and a double-primed
version, which tracks only the first cycle of a new activation. The
formulas for the primed signals are identical to the ones above,
with primed signal names replacing unprimed signal names, ex-
cept for the initial thread activate signal a �i �Y ��� false instead of
ai �Y ��� ao �X � , and at the base case latches a �o is driven by the same
flip-flop (unprimed) that drives ao. The formulas for the double-
primed signals are also identical to the regular signals, except with
double-primed signal names and the base case a � �o is always false
rather than driven by the flip-flop. (Considerable redundancy could
be eliminated, but this construction is easy to explain and imple-
ment.) A pipeline-violation error occurs whenever ai �Y � � ok �p �Y � .
The thread enable and ok signals are defined as tenable � e �Y � and
tok ��� e ���Y � � ok � �Y ��� � � e � ���Y � � ok � � �Y ��� .

The size of the generated circuit and the runtime of the algo-
rithm are both linear in the size of the (macro-expanded) specifi-
cation, because the construction does constant work and generates
constant-sized circuitry for each operator in the specification. The
top-level tenablei

� toki circuitry can be accounted for in the cost
of the pipeline operators.

We have implemented the above translation into a tool that out-
puts Verilog or VHDL. Generating any output format that is as ex-
pressive as sequential circuits should be straightforward.

5. CONCLUSION AND FUTURE WORK
We have presented a novel, high-level specification style for in-

terface monitors, as well as a linear-size, linear-time translation al-
gorithm into monitor circuits. The specification style naturally fits
the interfaces used between IP blocks in systems-on-chip. We hope
that these results will facilitate the use and broaden the adoption of
monitor-based verification methodologies.

In the short term, we need to improve the translation tool. Our
current implementation is rather crude. A revised, more robust tool
would be better suited for public distribution. In addition, many
optimizations are possible and should be implemented. To access
the tool flows of other verification researchers, our tool will have to
be able to translate specifications into the lower-level specifications
used by other tools. In particular, we do not anticipate difficulties
translating from our specifications into the specifications used in
the interface-monitor research that inspired this work [8, 13, 7].

The macro-expansion of productions can blow-up the size of the
regular expressions. Additional research is needed to see if there
are practical ways to avoid this problem, such as by introducing
new language features to simplify the expressions or better transla-
tions that schedule reuse of circuitry.

On the theoretical side, the precise semantic model and expres-
sive power of our specification style are worth exploring. Is our
unrestricted specification style exactly equivalent to alternating au-
tomata? How much power do we lose by imposing restrictions?
Are there other trade-offs between expressive power and efficiency
that would be practically useful?

Exploring the theory and semantics would also clarify obscure
points in our work. For example, in our current language, the in-
teraction between storage variables and pipelining is analogous to
multiprogramming with shared variables. If a variable is used by
only a single thread, the results are intuitive, but if multiple threads
access a variable, subtle interactions can result. The language may
need to be augmented with different classes of storage variables
that behave differently with respect to pipelining. In some cases,
we want the current behavior, with threads able to communicate
across pipeline stages by accessing shared variables. In other cases,
we want each pipeline stage to have its own copy of a variable,
with values forwarded from one stage to the next when threads are
activated. In this model, the variable holds values that follow a
transaction through the pipeline.

An important line of future work is to gain experience with this
specification style on additional, real interface protocols. Applying
the specification style in practice is the only way to validate the
adequacy of the specification style, or determine what additional
features are needed.

6. REFERENCES
[1] ARM Limited. AMBA Specification (Rev 2.0). 13 May 1999.
[2] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A.

Landver, S. Mador-Haim, E. Singerman, A. Tiemeyer, M. Y. Vardi,
Y. Zbar. The ForSpec temporal logic: A new temporal
property-specification language. Tools and Algorithms for the
Construction and Analysis of Systems: 8th Intl Conf, pp. 296–311.
LNCS 2280. Springer, 2002.

[3] I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, Y. Rodeh.
The temporal logic sugar. Computer-Aided Verification: 13th Intl
Conf, pp. 363–367. LNCS 2102. Springer, 2001.

[4] L. Bening, H. Foster. Principles of Verifiable RTL Design. 2nd Ed.
Kluwer, 2001.

[5] A. K. Chandra, D. C. Kozen, L. J. Stockmeyer. Alternation. JACM,
28(1):114–133, 1981.

[6] E. M. Clarke, E. A. Emerson. Design and synthesis of
synchronization skeletons using branching time temporal logic.
Workshop on Logics of Programs, pp. 52–71, 1981. Published as
LNCS 131. Springer, 1982.

[7] M. S. Jahanpour, E. Cerny. Compositional verification of an ATM
switch module using interface recognizer/suppliers (IRS). Intl
High-Level Design, Validation, and Test Workshop, pp. 71–76. IEEE,
2000.

[8] M. Kaufmann, A. Martin, C. Pixley. Design constraints in symbolic
model checking. Computer-Aided Verification: 10th Intl Conf,
pp. 477–487. LNCS 1427. Springer, 1998.

[9] O. Kupferman, M. Y. Vardi. Module checking. Computer-Aided
Verification: 8th Intl Conf, pp. 75–86. LNCS 1102. Springer, 1996.

[10] P. Raymond. Recognizing regular expressions by means of dataflow
networks. 23rd Intl Coll on Automata, Languages, and
Programming, pp. 336–347. LNCS 1099. Springer, 1996.

[11] A. Seawright, F. Brewer. High-level symbolic construction
techniques for high performance sequential synthesis. 30th Design
Automation Conf, pp. 424–428. ACM/IEEE, 1993.

[12] K. Shimizu, D. L. Dill, C.-T. Chou. A specification methodology by
a collection of compact properties as applied to the Intel Itanium
Processor Bus protocol. Correct Hardware Design and Verification
Methods: 11th IFIP WG 10.5 Adv Research Working Conf,
pp. 340–354. LNCS 2144. Springer, 2001.

[13] K. Shimizu, D. L. Dill, A. J. Hu. Monitor-based formal specification
of PCI. Formal Methods in Computer-Aided Design, pp. 335–353.
LNCS 1954. Springer, 2000.

[14] Sonics Incorporated. Open Core Protocol Specification 1.0.
Document Version 1.2.

[15] J. Yuan, K. Shultz, C. Pixley, H. Miller, A. Aziz. Modeling design
constraints and biasing in simulation using BDDs. Intl Conf on
Computer-Aided Design, pp. 584–589. IEEE/ACM, 1999.

