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Abstract. This paper presents a novel approach to bounded model checking. We
replace the SAT solver by an extended simulator of the circuit being verified.
Compared to SAT-solving algorithms, our approach sacrifices some generality in
selecting splitting variables and in the kinds of learning possible. In exchange,
our approach enables compiled simulation of the circuit being verified, while our
simulator extension allow us to retain limited learning andconflict-directed back-
tracking. The result combines some of the raw speed of compiled simulation with
some of the search-space pruning of SAT solvers. On example circuits, our pre-
liminary implementation is competitive with state-of-the-art SAT solvers, and we
provide intuition for when one method would be superior to the other. More im-
portantly, our verification approach continuously knows its coverage of the search
space, providing useful semi-formal verification results when full verification is
infeasible. In some cases, very high coverage can be attained in a tiny fraction of
the time required for full coverage by either our approach orSAT solving.

1 Introduction

Model checking [4, 10] has revolutionized formal hardware verification. The underlying
engine for model checking has evolved from the original explicit state enumeration to
symbolic model checking [3], and then bounded model checking [1]. Although none of
these approaches strictly dominates the others, each new approach has enabled applying
formal verification to problems that were previously intractable.

In this paper, we present a novel approach to bounded model checking. The ba-
sic bounded model checking construction reduces temporal logic model checking into
the problem of finding a satisfying input assignment for a combinational circuit. Nor-
mally, this combinational circuit is converted to CNF and handed to a SAT-solver. Our
approach, in contrast, searches for a satisfying assignment by explicitly simulating in-
put vectors on the constructed circuit. The advantage of a simulation-based engine is
that the circuit itself can be compiled into efficient machine code, resulting in very fast
simulation. Furthermore, our simulation-based engine canbe easily extended to handle
non-Boolean devices, such as tri-state drivers, whereas a SAT-solver cannot. The obvi-
ous disadvantage of a simulation-based approach is the exponential number of possible
input vectors. A key contribution of this work is our extended simulation algorithm that? This work was supported in part by a research grant and a graduate fellowship from the Nat-

ural Science and Engineering Research Council of Canada. Experiments were conducted on a
machine donated by Intel Corporation.



prunes the search space analogously to the learning and conflict-directed backtracking
of modern SAT-solvers, while still being amenable to compiled simulation.

As with previous model-checking innovations, our approachis inferior to existing
methods on some types of problems. On other problems, though, our new approach
is competitive with the state-of-the-art in bounded model checking. More importantly,
our bounded model-checking engine continuously maintainsa conservative bound on
the fraction of the search space that has been verified, allowing our method to be used in
a semi-formal manner when full, formal verification is infeasible. In somecases, very
high coverage can be attained in a tiny fraction of the time required for full coverage by
either our approach or SAT solving.

2 Background

Bounded model checking [1] forms the front-end for our verification approach, so
we start with a brief review. Bounded model checking consists of three key insights.
First, many practical verification properties are specifiedover finite-length sequences
of states, so one can define a restricted — but still practically useful — temporal logic
with only bounded temporal semantics. Doing so avoids expensive fixpoint computa-
tions in the model checking algorithms. Second, since the temporal logic has bounded-
time semantics, it is possible to convert the temporal logicmodel checking problem into
a non-temporal logic problem, and a bounded model checking algorithm for some tem-
poral logic must specify how to perform this conversion for any formula in that logic.
For example, to verify thatpUqholds for the next three clock cycles in a sequential cir-
cuit, one could “unroll” the circuit three times, creating apurely combinational circuit
with three copies of the inputs and outputs (one for each clock cycle), and then build
a small combinational network to check thatpUq holds in all three cycles. (See Fig-
ure 1.) The third key insight is that modern SAT solvers have become efficient enough
to solve the resulting combinational problem in many instances of practical importance.
This third insight is simply enabling technology for the practical relevance of bounded
model checking and is not integral to the idea. Indeed, a similar approach has been re-
ported using an ATPG tool rather than a SAT solver [2]. In the present work, we rely on
the first two insights of bounded model checking, but replacethe SAT solver with an en-
gine that offers competitive performance (but with different strengths and weaknesses),
and also provides coverage information to allow semi-formal, incomplete verification.

Although our method replaces the SAT solver, the motivation, algorithms, and
weaknesses in our approach can be better understood againstthe backdrop of the tech-
niques and inefficiencies in typical, modern Boolean SAT solvers. The field of Boolean
satisfiability checking has a long and extensive research literature, but all of the lead-
ing, freely available, non-commercial SAT solvers used forbounded model checking
(e.g., [8, 12, 9]) are based on the approach of Davis, Putnam,Logemann, and Love-
land [6, 5]. The basic idea is tochooseheuristically a good variable on which to case
split, assign a value to that variable andpropagate any constraintsthat can be logi-
cally deduced from the assignment,backtrack if our choices and deductions lead to an
obviously unsatisfiable formula, and possiblylearn relationships among the variables
by memorizing variable choices that guarantee a non-satisfying truth assignment. This
process is repeated until either a satisfying assignment isfound, or the entire search
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Fig. 1. Converting a Temporal Property to a Combinational One. To verify pUq over three clock
cycles on a sequential circuit, we can unroll the circuit three times and create a combinational
circuit whose output is true for any counterexample sequence.

space has been exhausted. For example, consider the simple combinational circuit:
a
b

c

d
e

Standard SAT solvers work on formulas in conjunctive normalform (CNF), so if we
wish to find an input assignment that makes the output true, the typical translation cre-
ates the CNF formula:1(a+d)(b+d)(a+b+d)(c+e)(d+e)(c+d+e)e:
The first three clauses ensure the AND gate behaves as an AND gate, the next three
clauses handle the OR gate, and the last clause specifies thatthe output must be true.
The last clause has only the single literale. Such clauses are called “unit clauses”, and
all SAT solvers immediately assign unit clauses to their forced values, simplify the re-
sulting formula, and look for newly generated unit clauses to continue this process. For
example, after the unit clauseehas been propagated, we get the simpler CNF formula:(a+d)(b+d)(a+b+d)(c+d):
At this point, the choice heuristic might choose to try making d true, and unit clause
propagation will result in the satisfying assignment in whicha andb are true as well.

1 For such a small example, it is tempting to build the CNF for the output as a function of the
circuit inputs. However, the CNF for a function given as a circuit is in general exponentially
larger than the circuit. The typical translation we show here is linear in the size of the circuit,
but introduces variables for each internal wire.



The basic SAT algorithm appears to be little more than an explicit search through
the possible truth assignments. Progress on SAT solving, however, has produced in-
telligent heuristics for choosing the variables for case-splitting, faster implementations
for propagating constraints, clever ways to backtrack moreefficiently, and heuristics
for adding new clauses in order to learn not to repeat previous mistakes [8, 12, 9]. The
resulting tools can be amazingly efficient on many SAT instances.

Let us now compare SAT-solving to a brute-force attack for the problem of find-
ing an input assignment that satisfies a combinational circuit. The brute-force approach
would be to systematically try all possible input assignments to the circuit, evaluating
the circuit on each input assignment and looking for a satisfying assignment. Such an
approach actually has several advantages over the SAT solver. First, the search space
is much smaller, corresponding to only the inputs of the circuit, rather than to all the
variables the SAT solver uses to model the internal wires of the circuit. Next, given
an input assignment, propagating the results of that assignment from inputs to outputs
can be implemented extremely efficiently — for example, the circuit could be compiled
into straight-line code that needs at most a few machine instructions to evaluate each
gate. In contrast, constraint propagation for a SAT solver dominates the run time (over
90% [9]), and is slow, typically requiring several non-sequential (i.e., cache-miss-prone)
memory accesses to walk through the data structures storingthe formula, and several
data-dependent (i.e., hard-to-predict) branches. On modern processors, the penalty for
an L2 cache miss is around 50–100 cycles, and on a Pentium 4, the branch mispredict
penalty is at least 19 cycles, so the compiled circuit simulation enjoys an enormous
speed advantage. On the other hand, the SAT solver has several advantages over the
brute-force attack. First, the SAT solver has the freedom tochoose any variable in the
system for case-splitting, and the choice of the right splitting variable can sometimes
simplify a problem enormously. Empirical results, however, suggest that for bounded
model checking, an excellent strategy is usually to choose the variables in a breadth-first
manner moving exclusively forward from the inputs to the outputs, or exclusively back-
wards from the outputs to the inputs [11]. In the forward case, the strategy is essentially
a very slow implementation of circuit simulation. The backward case, on the other hand,
does give the SAT solver an option unavailable to the brute-force solver. The important
advantages in favor of the SAT solver are the backtracking and learning strategies. In
particular, modern SAT solvers use some form of non-chronologic or conflict-directed
backtracking, in which the tool backtracks all the way back to a relevant decision that
could avoid the unsatisfiable sub-problem, rather than simply to the most recent deci-
sion. Learning allows the SAT solver to remember combinations of decisions that led
to unsatisfiable sub-problems, so that they can be avoided inthe future. Our work es-
sentially adds non-chronologic backtracking and learningto the brute-force solver, in a
manner that still permits compiled simulation.

3 Verification Algorithm

We first present the brute-force compiled simulation algorithm, and then show how it
can be modified to incorporate intelligent backtracking andlearning.



3.1 Brute-Force Compiled Simulation

We assume we are given a gate-level sequential circuit, an initial state, a verification
wire, and a time boundk. The verification problem is to find a sequence of inputs that
causes the verification wire to be true at timek. Different bounded model checking
constructions can be handled by pre-unrolling the circuit into a combinational circuit,
and then using our algorithm withk= 0.

More formally, letC be a sequential circuit withn input variablesfx0; : : : ;xn�1g
andm state variablesfs0; : : : ;sm�1g. We use superscripts to denote time indices, so the
initial stateI is an assignment of Boolean values tos0

i , for i = 0; : : : ;m�1. Label the
verification wire f , so we seek an input sequence that causesf k = 1.

The brute-force approach would take an instance of the verification problem and
generate a program with the following structure:

while (vector=choose_an_untried_vector()) {
set_inputs(vector); // Assign vector to circuit inputs
simulate_circuit(k); // Simulate time 0 through k
if (circuit.f.value==TRUE) return SATISFIABLE;
record_unsuccessful_trial(vector,...);

}
return UNSATISFIABLE;

The heart of the program is thesimulate_circuit function. For a combinational
circuit, the code generator declares a variable for each wire in the circuit, then does a
topological sort on the gates, and generates code that evaluates the output of each gate as
a function of its inputs. For example, if our circuit contains the gatea = AND(b,c),
the emitted code could be as simple as:
circuit.a.value = circuit.b.value & circuit.c.value;

which would compile to as little as one instruction and at most a few instructions in
machine code. The generated simulator has no expensive datastructure for storing and
manipulating the circuit and performs no traversals over the circuit; instead, the only
representation of the circuit is embedded in the evaluationcode itself. To simulate sev-
eral cycles of a sequential circuit, we simply simulate the next-state logic combination-
ally, update the state variables, and repeat. The simplest way to choose an untried vector
and record unsuccessful trials is to count sequentially through all possible vectors. Ob-
viously, we will need to introduce more effective ways to do this, but any method that
makes progress on each iteration will produce the correct answer.

3.2 Skip Cubes

The key idea behind the advanced backtracking techniques used in modern SAT solvers
is that many of the decisions (assignments to variables) made before reaching a conflict
have no effect at all on that conflict. Therefore, the backtrack should not bother revising
irrelevant decisions. Analogously, we will now introduce amechanism, which we call
“skip cubes”, by which the circuit simulator can tell which input variables did not affect
the value off k. Note that this computation is done for the specific input vector being
simulated, so this reduction is more specific than the cone-of-influence reduction, which



can only eliminate portions of the circuit which do not affect f k for any possible input
vector. For each vector simulated, therefore, we also compute a potentially large set of
other vectors that are guaranteed to produce the same resultand can therefore be pruned
from further consideration.

Define the universal setU to consist of all binary vectors of lengthN = n(k+1).
An elementv= v0 : : :vN�1 2U corresponds to an input sequence overk+1 time steps
with xt

i = vtn+i , so we will use the terms “vector” and “input sequence” interchangeably.
Starting in initial stateI and given somev2U , let wt

v represent the value on a wirew
of the circuitC at time stept.

Definition 1 (Skip Set) The skip set of a wire w at time t with respect to input vector v
is definedSv(wt) = fu j u2U ^wt

v = wt
ug.

Intuitively, Sv(wt ) is the set of all vectors that causewt to have the same value as whenC
is simulated with the input sequencev. Specifically, simulating the circuit with a vector
v will drive f k to the same value as any other vector inSv( f k), so if f k

v is false, we may
skip any subset of these vectors when searching for a satisfying assignment.

ComputingSv(wt) for each gate output could be done in a straightforward manner
at the same time that the output value is computed. For example, if w is the output of an
AND or NAND gate with inputsa andb, then

Sv(wt ) =8>><>>:Sv(at)[Sv(bt) if at
v = 0^bt

v = 0
Sv(at)[Sv(bt) if at

v = 0^bt
v = 1

Sv(at)[Sv(bt) if at
v = 1^bt

v = 0
Sv(at)\Sv(bt) if at

v = 1^bt
v = 1

Other gate rules are similar. Note, however, thatSv(wt) is simply either the on-set or
the off-set ofwt , so any exact computation of skip sets amounts to computing the exact
functionality of each wire, which will blow-up for many practical examples.

Instead, in our approach we propagate conservative approximationsAv(wt ) such
thatfvg � Av(wt) � Sv(wt) and whereAv(wt ) has a succinct representation. The con-
servative approximations to the skip sets are special sets calledcubes:

Definition 2 (Cube) A cube is simply the Boolean subspace generated by assigning
constants to some variables. Specifically, a set B�U is a cube if B= fv j vi1 = b1;vi2 =
b2; : : :vi` = b`g, where0� i1 < i2 < � � � i` � N� 1 and the bi are arbitrary Boolean
constants. The indices i1; i2; : : : ; i` are called thespecified bits; all others are called
unspecified. If bit i j is specified, then bj is called thespecified value.

We may express a cubeB as a lengthN vector over the alphabetf0;1;�g, whereBi

is the specified value of biti if specified, or “�” if unspecified. We now defined theskip
cubeof a wire:

Definition 3 (Skip Cube) Theskip cubeAv(wt) of a wire w at time t with respect to
input vector v is defined depending on the type of gate drivingw:



1. If w is a two-input gate with controlling value µ (e.g., an AND gate with µ= 0 or
an OR gate with µ= 1) and input wires a and b, then

Av(wt) =8>><>>:Av(at)\Av(bt) if at
v = µ ^ bt

v = µ
Av(bt) if at

v = µ ^ bt
v = µ

Av(at) if at
v = µ ^ bt

v = µ
max(Av(at);Av(bt)) if at

v = µ ^ bt
v = µ

wheremax(: : :) returns the set of greater cardinality.
2. If w is the output of an inverter with input a, then

Av(wt ) = Av(at)
3. If w is a state holding element with next state signal a, then

Av(wt) =�Av(at�1) if t > 0
U if t = 0

4. If w is an input xi , then

Av(wt ) = (B0; : : : ;BN�1);whereB j =�wt
v if j = tn+ i� otherwise

5. If w is a two-input gate without a controlling value (i.e.,exclusive-OR or exclusive-
NOR), with input signals a and b, then

Av(wt ) = Av(at)\Av(bt)
Theorem 1. Av(wt ) as defined in Definition 3 is always a cube.

Proof: The intersection of two cubes is always either another cube or the empty set.
The latter case occurs only if the two cubes disagree on at least one specified bit. In
Definition 3, all specified bits always agree with the input vectorv.

Theorem 2. Let Sv(wt ) andAv(wt) be defined as in Definitions 1 and 3. Then,fvg � Av(wt )� Sv(wt):
Proof: The base cases are that the skip cube for a primary input wire has that input bit
specified and all other bits unspecified, which is clearly in the skip set for that input
wire, and that the skip cube for a latch at time 0 is completelyunspecified, which is
clearly in the skip set for that wire (because the inputs don’t affect the reset state of
the latch). For the inductive step, assume that the skip cubes for the inputs of any gate
are contained in their skip sets, and therefore that any vector in that cube would not
change the value of that input. Then, the skip cube for the output of the gate computed
according to Definition 3 contains only vectors that would not change the value of that
output, and are therefore contained in the skip set. This canbe easily verified by a case
analysis of all the rules.

Corollary 1. Let B=Av(wt). For all i = 0; : : : ;N�1, if Bi is a specified bit, then Bi = vi



The above results establish the correctness of the optimization that, upon completion of
simulating vectorv and findingf k

v = 0, skips simulation of all vectors inAv( f k).
We now consider how the computation of the skip cubes can be efficiently inte-

grated into compiled simulation. During simulation ofC against inputv, we storev as
a string ofN bits in memory, padded to the nearest machine word boundary.A skip
cubeB can also be stored as a same-sized bit string, with biti = 1 in memory if and
only if bit i is specified inB. If Bi is specified, the specified value isvi by Corollary 1
and is thus readily available. Note from Definition 3 that theskip cube computation
propagates from the inputs to the outputs of each gate, exactly as the value computation
does. Accordingly, the code generator can allocate a (value, skip cube) pair for each
wire in the original circuit, and thesimulate_circuit function will contain code
to compute both the value and the skip cube for each wire. In most cases, computing
the skip cube ofwt is a straightforward copy of the array storing the skip cube of one
of the gate inputs. The cases pertaining to a primary input oran initial state variable
are also trivial to compute. The cube intersection operations required in cases 1 and 5
of Definition 3 can be achieved by computing a bitwise OR of thebit strings for the
respective gate input skip cubes. The max operation of case 1is the only slower opera-
tion, consisting of selecting the skip cube with the fewer specified bits. We implement
this step by performing a population count on the skip cube bit strings.

For example, consider the circuit of Figure 2. This circuit has two latchess and
r with initial statess0 = r0 = 0. The table gives the skip cubes for all relevant wires
with respect to the input vectorv= 011110100, where the bits ofv from left to right
respectively give the input values forx0;y0;z0;x1;y1;z1;x2;y2; andz2. The leftmost two
columns give the wire name/time index and the bit value, respectively. The column
labeled “skip cube” gives the skip cube for the wire. The rightmost two columns state
the source of the skip cube and the rule from Definition 3 applied to obtain the skip
cube. This example demonstrates the power of the skip cube technique. Suppose we
wish to verify that latchr must be 0 at time 2, i.e.,r2 = 0. Observe that the skip cube
for r2 is Av(r2) = fv j y0 = 1g andr2

v = 0. Thus, we know that any vector withy0 = 1
implies r2

v = 0, so we can skip all other vectors withy0 = 1. Hence, our search space
has been reduced by a factor of 2.

3.3 Learning and Coverage

Upon simulating any vectorv and finding that the value at timek of the verification wire
f k
v is false, the skip cubeAv( f k) that we have simultaneously computed gives us a set of

vectors that also would have madef k
v false. The search procedure should remember this

skip cube to ensure that it will never again try any vectors inthis cube, thereby pruning
the search space analogously to the learning and non-chronologic backtracking of con-
ventional SAT procedures. For example, if some inputx0

i always causes the verification
wire to be false regardless of the other inputs, the first vector that we simulate with
x0

i true will generate a skip cube forf k
v that shows this fact, and our search procedure

will never try any other vectors withx0
i true. Thus, the search procedure has effectively

backtracked non-chronologically to the decision forx0
i , and learned the relationship that

x0
i implies f k.
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case
from
Def. 3

x0 0 0- - - - - - - - fu j u0 = 0g 4
y0 1 -1- - - - - - - fu j u1 = 1g 4
z0 1 - -1- - - - - - fu j u2 = 1g 4
s0 0 - - - - - - - - - U 3
r0 0 - - - - - - - - - U 3
a0 1 - - - - - - - - - A(r0) 2
b0 0 0- - - - - - - - A(x0) 1
c0 1 -1- - - - - - - A(y0) 1
d0 0 - -1- - - - - - A(z0) 1
x1 1 - - -1- - - - - fu j u3 = 1g 4
y1 1 - - - -1 - - - - fu j u4 = 1g 4
z1 0 - - - - - 0 - - - fu j u5 = 0g 4
s1 1 -1- - - - - - - A(c0) 3
r1 0 - -1- - - - - - A(d0) 3
a1 1 - -1- - - - - - A(r1) 2
b1 1 - -11- - - - - A(a1)\A(x1) 1
c1 1 - - - -1 - - - - max(A(b1);A(y1)) 1
d1 0 -1- - - - - - - A(s1) 1
x2 1 - - - - - - 1- - fu j u6 = 1g 4
y2 0 - - - - - - -0- fu j u7 = 0g 4
z2 0 - - - - - - - -0 fu j u8 = 0g 4
s2 1 - - - -1 - - - - A(c1) 3
r2 0 -1- - - - - - - A(d1) 3
a2 1 -1- - - - - - - A(r2) 2
b2 1 -1- - - - - -0 A(a2)\A(x2) 1
c2 1 -1- - - - - -0 A(b2) 1
d2 0 - - - -1 - - - - A(s2) 1

Fig. 2. Skip Cube Computation Example. We assume an input vectorv = 011110100, which
provides the values for the three inputsx, y, andz, over three time steps 0, 1, and 2. The table
shows the skip cubes that are computed by our algorithm.



Our current implementation maintains a BDD which represents the covered setV
of input vectors that have been either explicitly simulatedalready or else covered via
skip cubes. After each simulation iteration, the resultingskip cubeAv( f k) is disjoined
into V, and the next simulation vector is chosen randomly from the complement setV.
Note thatV is not directly related to the functionality of the circuit under verification,
and thus the BDD forV does not necessarily blow up even when the BDD for the
circuit would have exponential size. The algorithm completes when the entire spaceU
is covered, or when an input sequence is discovered to makef k true.

The use of a BDD to store the covered set has several advantages. First, all the op-
erations needed by the algorithm can be done efficiently: converting a cube to a BDD,
disjoining a BDD for the cube into the BDD for the covered set,and retrieving a ran-
dom vector not in the covered set. BDDs also provide an easy way to incorporate input
don’t-cares into the verification method, by initializingV to include all don’t-care vec-
tors. Most important is the fact that the ratioc=jSj = jU j can be computed in time lin-
ear in the number of BDD nodes. The coverage ratioc tells us the fraction of the search
space that has been explored and eliminated by our algorithm. Periodically computing
c allows the algorithm to communicate a progress metric to theuser. Furthermore, in
the event of a time-out or space-out, the coverage ratio provides an informative verifi-
cation result and increases confidence that the property being verified holds. Having an
accurate measure of progress and coverage greatly enhancesthe usability of verification
tools, especially on challenging problems that can’t be verified quickly or completely.

4 Experimental Results

We have implemented our algorithm to test its performance. The tool takes a sequential
circuit in a slightly modified version of ISCAS89 format and outputs the simulator
for that circuit as a C++ program. This translation step is virtually instantaneous. The
simulator is then compiled and run to perform the verification. We report compile and
run times for the simulator. All experiments were conductedon a PC with a 1.5Ghz
Intel Pentium 4 processor and 1GB of RDRAM. Memory usage is not reported, as it
was never significant. The operating system was Linux 2.4.9,and the compiler was
g++ version 2.95.2 using the-O3 optimization level. The compiler missed an obvious
peephole optimization (two adjacentaddl instructions modifying the stack pointer),
so we used a simple Perl script to perform this optimization,resulting in a performance
improvement of a couple percent.

For comparison, we ran against a leading, free, non-commercial SAT solver for
bounded model checking, Z-Chaff. Our experiments were conducted with version
Z2001.2.17. We used our own translator from ISCAS89 format to CNF, but ignore
the negligible translation time. We believe our translatorproduces CNF comparable
to other bounded model checking tools. For example, the multiplier in Section 4.1 is
closely modeled on the example presented by Biere et al. [1],and Chaff is able to solve
our generated CNF formulas slightly faster than the ones supplied by Biere.



Compiled Simulation with Skip Cubes
b Chaff compile full 0.9999 0.999 0.99
0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 8.5 0.0 0.0 0.0 0.0
2 0.0 8.9 0.0 0.0 0.0 0.0
3 0.0 9.7 0.1 0.0 0.0 0.0
4 0.1 11.0 0.2 0.1 0.1 0.0
5 0.4 12.5 0.8 0.1 0.1 0.0
6 2.4 14.6 4.0 0.2 0.2 0.1
7 16.1 17.1 19.6 0.4 0.3 0.1
8 89.7 20.1 71.3 0.8 0.6 0.1
9 234.6 24.0 126.4 2.2 0.8 0.2

10 221.4 28.9 222.3 5.8 1.4 0.2
11 165.4 34.5 332.7 11.4 1.2 0.3
12 134.8 41.5 502.2 28.7 2.8 0.4
13 99.2 48.6 662.6 48.3 2.7 0.5
14 34.9 58.8 840.4 74.9 4.4 0.6
15 26.3 69.5 946.7 115.3 3.9 0.7

Table 1. 16�16 Multiplier Results with Original Specification (Eq. 1). Compile and run times
are in seconds. The column labeled “compile” gives the compilation time for the simulation
program, while the rightmost four columns give the running time required of our tool to reach
the indicated coverages, e.g., 126.4 seconds to fully verify bit 9, and only 2.2 seconds to attain
99.99% coverage.

4.1 Original 16�16Multiplier Example

Our first example is a 16�16-bit multiplier with 16-bit output. We designed this prob-
lem instance closely following the one reported in the original bounded model checking
paper [1]. The specification verified was(donê :over f low)! (outb = out0b) (1)

where done is asserted when the output register has converged to the final value,
over f lowis asserted if the product exceeds 16 bits, andoutb andout0b are thebth output
bits of a reference combinational multiplier and the sequential multiplier under verifica-
tion, respectively. Separate runs were performed forb= 0; : : : ;15, and the time bound
used in each case wask= b+1.

Table 1 gives the results for our tool and for Chaff. For semi-formal verification
(rightmost three columns), our tool gives very high coverage extremely quickly. This
illustrates the effectiveness of the skip cube propagationat quickly eliminating large
parts of the search space. For complete, formal verification, our tool is competitive with
Chaff up to bit 9, but then, surprisingly, the Chaff run timesdrop sharply. One normally
expects output bitn�1 of ann�n multiplier to be the most difficult bit, but this curi-
ous behavior can be explained by the presence of:over f low in the antecedent of the
specification (Eq. 1) in conjunction with the time boundb+1. Although the circuit cor-
rectly computes the values of all output bits for all input values, almost all input word
pairs actually raiseover f low, making the specification vacuously true. A SAT solver



Compiled Simulation with Skip Cubes
b Chaff compile full 0.9999 0.999 0.99
0 0.0 8.1 0.0 0.0 0.0 0.0
1 0.0 8.4 0.0 0.0 0.0 0.0
2 0.0 8.9 0.0 0.0 0.0 0.0
3 0.0 9.7 0.0 0.0 0.0 0.0
4 0.1 10.7 0.1 0.1 0.0 0.0
5 0.4 12.3 0.7 0.5 0.0 0.0
6 2.2 14.4 3.6 3.1 0.0 0.0
7 17.1 16.9 18.2 17.5 7.4 0.0
8 111.3 20.2 102.1 100.5 69.9 0.0
9 1081.2 23.9 533.7 519.4 447.6 0.0

10 time 28.4 2797.9 2928.4 2667.0 855.2
11 time 34.1 time(0.9776) time(0.9776) time(0.9776) time(0.9776)
12 time 40.8 time(0.9418) time(0.9418) time(0.9418) time(0.9418)
13 time 48.8 time(0.8769) time(0.8769) time(0.8769) time(0.8769)
14 time 58.2 time(0.7509) time(0.7509) time(0.7509) time(0.7509)
15 time 68.9 time(0.5004) time(0.5004) time(0.5004) time(0.5004)

Table 2.Full-Sized 16�16 Multiplier Results with Specification (Eq. 2). “time” indicates timeout
after 1 hour. When our tool times out, the attained coverage is indicated in parentheses. For bit 10,
we actually ran Chaff to completion, which took over 17 hours. Our result for bit 10 with 0.9999
coverage is anomalous, taking slightly longer than full coverage. This might be explained by
extra floating-point comparisons performed by our tool whena target coverage is specified, and
we have also observed slightly different page fault behavior, but we are still investigating.

can propagate constraints backwards from the overflow flag, quickly pruning the circuit
down to essentially an 8�8 multiplier, making the high-order bits easy to verify.

4.2 Full-Size16�16Multiplier Example

In the preceding multiplier example, the combinational reference multiplier is actually a
full-size 16�16 multiplier with 32-bit output. Similarly, the sequential multiplier would
correctly compute all 32 output bits if the output register were wider. Accordingly,
we removed the overflow logic from the preceding example, creating a true, full-sized
16�16 multiplier, and verified the specification:

done! (outb = out0b) (2)

Table 2 presents the results for this experiment. This problem is much more difficult
than that of Section 4.1. Here, we observe our approach running about as fast as Chaff
for the low-order bits, and beating Chaff for bits 8, 9, and 10. For the higher-order bits,
both tools timeout, but the compiled simulator provides a high coverage while the SAT
solver reveals no information.

4.3 SRT Divider Example

Our last experiment is the most difficult. We verify a 2n-bit by n-bit radix-2 SRT di-
vider with redundant quotient representation [7] against acombinational divider. The



specification asserts that if the SRT divisor is normalized,and if the the combinational
divider does not overflow, then the two dividers produce the same result. In particular,
we verify all bits of the quotient and remainder in a single run.

The results forn= 4; : : : ;8 are given in Table 3, which clearly demonstrate that our
approach is more effective than Chaff on this problem. Forn= 7, we find our approach
to be almost 4 times faster than Chaff even when compilation time is included. For
n= 8, both tools time-out (again set at 1 hour), but our tool reports the coverage attained.

Compiled Simulation with Skip Cubes
n Chaff compile full
4 1.2 7.2 0.4
5 7.5 10.8 4.7
6 98.1 15.7 56.8
7 2848.4 22.3 735.2
8 time 30.4 time(0.7737)
Table 3.2n-bit by n-bit Radix-2 SRT Divider Results

5 Conclusion and Future Work

We have presented a novel approach to bounded model checking. Our search procedure
has competitive performance with state-of-the-art SAT solvers on many problems. In-
tuition and experimental results suggest that SAT solvers have the advantage on smaller
circuits and on circuits in which clever case-splitting heuristics can quickly establish un-
satisfiability, whereas our new method has the advantage forlarger circuits that aren’t
amenable to such attacks. Furthermore, our method continually provides coverage in-
formation, which is useful as a progress indicator for lengthy verification runs, and as
a semi-formal verification result for runs that time out. Ourwork provides a valuable
additional tool for model checking when other methods (e.g., BDDs, SAT) fail.

We believe our implementation could be substantially optimized. For example, our
implementation generates C++, which introduced many inefficiencies. A production
tool should generate the simulator machine code directly, bypassing the compiler, which
is not tuned for the very large, simply structuredsimulate_circuit function that
we generate. There is little need for global optimizations,so the code generation would
be straightforward.

More algorithmic directions for further research are to explore various design trade-
offs. For example, we could compute more conservative approximations of the skip
cubes using branchless code, which might run faster, but need more vectors. Alterna-
tively, we could compute more accurate approximations of the skip sets, reducing the
number of vectors needed, but slowing down the simulation aswell. In some cases, it
would be useful to shift between strategies, starting with skip cubes, for example, and
then switching to an alternative if the skip cubes become toosmall.

From a theoretical perspective, we would like to understandwhat factors influence
the rate of convergence of the coverage ratio. Intuitively,if there exists a vector that
produces a large skip cube, it is plausible that many other vectors (such as the other
vectors in the skip cube) would also generate a large skip cube, so large skip cubes



would be covered early. If this intuition is true, one could estimate statistically the total
run time based on the first few coverage ratios computed, which would further enhance
the usability of the model checker.
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