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Abstract. This paper presents a novel approach to bounded model cigetke
replace the SAT solver by an extended simulator of the difoeing verified.
Compared to SAT-solving algorithms, our approach sacsfsmne generality in
selecting splitting variables and in the kinds of learniggible. In exchange,
our approach enables compiled simulation of the circundeerified, while our
simulator extension allow us to retain limited learning andflict-directed back-
tracking. The result combines some of the raw speed of cahpimulation with
some of the search-space pruning of SAT solvers. On exanplgts, our pre-
liminary implementation is competitive with state-of-the SAT solvers, and we
provide intuition for when one method would be superior ® dther. More im-
portantly, our verification approach continuously knovgibverage of the search
space, providing useful semi-formal verification resultsew full verification is
infeasible. In some cases, very high coverage can be altaireetiny fraction of
the time required for full coverage by either our approacBAT solving.

1 Introduction

Model checking [4, 10] has revolutionized formal hardwaesgfication. The underlying
engine for model checking has evolved from the original iexdtate enumeration to
symbolic model checking [3], and then bounded model chegldih Although none of
these approaches strictly dominates the others, each nwagh has enabled applying
formal verification to problems that were previously intedite.

In this paper, we present a novel approach to bounded moeekitty. The ba-
sic bounded model checking construction reduces tempagal model checking into
the problem of finding a satisfying input assignment for a borational circuit. Nor-
mally, this combinational circuit is converted to CNF andhitied to a SAT-solver. Our
approach, in contrast, searches for a satisfying assighoyesxplicitly simulating in-
put vectors on the constructed circuit. The advantage ofnalation-based engine is
that the circuit itself can be compiled into efficient ma@h@ode, resulting in very fast
simulation. Furthermore, our simulation-based enginebeaeasily extended to handle
non-Boolean devices, such as tri-state drivers, where@g-a®&ver cannot. The obvi-
ous disadvantage of a simulation-based approach is thenerfial number of possible
input vectors. A key contribution of this work is our extedds#mulation algorithm that
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prunes the search space analogously to the learning andctalifected backtracking
of modern SAT-solvers, while still being amenable to comghimulation.

As with previous model-checking innovations, our approadhferior to existing
methods on some types of problems. On other problems, thawgmew approach
is competitive with the state-of-the-art in bounded modwelaking. More importantly,
our bounded model-checking engine continuously maintaiosnservative bound on
the fraction of the search space that has been verified,iatjppur method to be used in
a semi-formal manner when full, formal verification is infeasible. In sooases, very
high coverage can be attained in a tiny fraction of the tinggired for full coverage by
either our approach or SAT solving.

2 Background

Bounded model checking [1] forms the front-end for our vesdfion approach, so
we start with a brief review. Bounded model checking cossidtthree key insights.
First, many practical verification properties are specifigdr finite-length sequences
of states, so one can define a restricted — but still pradticaeful — temporal logic
with only bounded temporal semantics. Doing so avoids esigerfixpoint computa-
tions in the model checking algorithms. Second, since tmpteal logic has bounded-
time semantics, it is possible to convert the temporal lagddel checking problem into
a non-temporal logic problem, and a bounded model checkgugithm for some tem-
poral logic must specify how to perform this conversion fay dormula in that logic.
For example, to verify thgbU g holds for the next three clock cycles in a sequential cir-
cuit, one could “unroll” the circuit three times, creatingarely combinational circuit
with three copies of the inputs and outputs (one for eachkabycle), and then build
a small combinational network to check that g holds in all three cycles. (See Fig-
ure 1.) The third key insight is that modern SAT solvers hagedme efficient enough
to solve the resulting combinational problem in many inséeof practical importance.
This third insight is simply enabling technology for the gtieal relevance of bounded
model checking and is not integral to the idea. Indeed, dairapproach has been re-
ported using an ATPG tool rather than a SAT solver [2]. In trespnt work, we rely on
the first two insights of bounded model checking, but reptheeSAT solver with an en-
gine that offers competitive performance (but with differstrengths and weaknesses),
and also provides coverage information to allow semi-fdrmaomplete verification.
Although our method replaces the SAT solver, the motivatmlgorithms, and
weaknesses in our approach can be better understood ataitstckdrop of the tech-
niques and inefficiencies in typical, modern Boolean SATVa. The field of Boolean
satisfiability checking has a long and extensive reseatetature, but all of the lead-
ing, freely available, non-commercial SAT solvers usedifounded model checking
(e.g., [8,12,9]) are based on the approach of Davis, Puthagemann, and Love-
land [6, 5]. The basic idea is tthooseheuristically a good variable on which to case
split, assign a value to that variable ami@pagate any constraintsthat can be logi-
cally deduced from the assignmebacktrack if our choices and deductions lead to an
obviously unsatisfiable formula, and possibdarn relationships among the variables
by memorizing variable choices that guarantee a non-gatgsfruth assignment. This
process is repeated until either a satisfying assignmefoiisd, or the entire search
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Fig. 1. Converting a Temporal Property to a Combinational One. TdyeU g over three clock
cycles on a sequential circuit, we can unroll the circuieéhtimes and create a combinational
circuit whose output is true for any counterexample segeienc

space has been exhausted. For example, consider the siomplanational circuit:
a

b d
C 7e

Standard SAT solvers work on formulas in conjunctive norfoain (CNF), so if we
wish to find an input assignment that makes the output trgetythical translation cre-
ates the CNF formulé:

(a+d)(b+d)(@+b+d)(c+e)(d+e)(c+d+ee

The first three clauses ensure the AND gate behaves as an AiDtlga next three
clauses handle the OR gate, and the last clause specifighehatitput must be true.
The last clause has only the single liteeaSuch clauses are called “unit clauses”, and
all SAT solvers immediately assign unit clauses to theicédrvalues, simplify the re-
sulting formula, and look for newly generated unit claugesdantinue this process. For
example, after the unit clausdhas been propagated, we get the simpler CNF formula:

(a+d)(b+d)(@+b+d)(c+d).

At this point, the choice heuristic might choose to try makéhtrue, and unit clause
propagation will result in the satisfying assignment in ette.andb are true as well.

1 For such a small example, it is tempting to build the CNF far tutput as a function of the
circuit inputs. However, the CNF for a function given as a&uwit is in general exponentially
larger than the circuit. The typical translation we showehisrlinear in the size of the circuit,
but introduces variables for each internal wire.



The basic SAT algorithm appears to be little more than anigkgkarch through
the possible truth assignments. Progress on SAT solvingewer, has produced in-
telligent heuristics for choosing the variables for cagkiting, faster implementations
for propagating constraints, clever ways to backtrack naffieiently, and heuristics
for adding new clauses in order to learn not to repeat previnistakes [8,12,9]. The
resulting tools can be amazingly efficient on many SAT instsn

Let us now compare SAT-solving to a brute-force attack fer pnoblem of find-
ing an input assignment that satisfies a combinationalitirEhe brute-force approach
would be to systematically try all possible input assigntada the circuit, evaluating
the circuit on each input assignment and looking for a satigfassignment. Such an
approach actually has several advantages over the SATrsBlva, the search space
is much smaller, corresponding to only the inputs of theuifreather than to all the
variables the SAT solver uses to model the internal wireshefdircuit. Next, given
an input assignment, propagating the results of that assghfrom inputs to outputs
can be implemented extremely efficiently — for example, theuét could be compiled
into straight-line code that needs at most a few machineuisbns to evaluate each
gate. In contrast, constraint propagation for a SAT soleenithates the run time (over
90% [9]), and is slow, typically requiring several non-senqtial (i.e., cache-miss-prone)
memory accesses to walk through the data structures stibrinfprmula, and several
data-dependent (i.e., hard-to-predict) branches. On mquecessors, the penalty for
an L2 cache miss is around 50-100 cycles, and on a Pentiure #raimch mispredict
penalty is at least 19 cycles, so the compiled circuit sitmhaenjoys an enormous
speed advantage. On the other hand, the SAT solver has lsadeemtages over the
brute-force attack. First, the SAT solver has the freedochtmose any variable in the
system for case-splitting, and the choice of the right ptitvariable can sometimes
simplify a problem enormously. Empirical results, howewemggest that for bounded
model checking, an excellent strategy is usually to chdosedriables in a breadth-first
manner moving exclusively forward from the inputs to thepauti$, or exclusively back-
wards from the outputs to the inputs [11]. In the forward ¢cése strategy is essentially
a very slow implementation of circuit simulation. The baekdcase, on the other hand,
does give the SAT solver an option unavailable to the brateefsolver. The important
advantages in favor of the SAT solver are the backtrackirblearning strategies. In
particular, modern SAT solvers use some form of non-chmgiolor conflict-directed
backtracking, in which the tool backtracks all the way batk trelevant decision that
could avoid the unsatisfiable sub-problem, rather than Igitgpthe most recent deci-
sion. Learning allows the SAT solver to remember combimatiof decisions that led
to unsatisfiable sub-problems, so that they can be avoid#dwifuture. Our work es-
sentially adds non-chronologic backtracking and leartirtpe brute-force solver, in a
manner that still permits compiled simulation.

3 \Verification Algorithm

We first present the brute-force compiled simulation attponi and then show how it
can be modified to incorporate intelligent backtracking kaaning.



3.1 Brute-Force Compiled Simulation

We assume we are given a gate-level sequential circuit, iial istate, a verification
wire, and a time bounk. The verification problem is to find a sequence of inputs that
causes the verification wire to be true at tikeDifferent bounded model checking
constructions can be handled by pre-unrolling the ciraut & combinational circuit,
and then using our algorithm with= 0.

More formally, letC be a sequential circuit with input variables{xo,...,Xn-1}
andm state variable$so, . . ., Sm-1}. We use superscripts to denote time indices, so the

initial statel is an assignment of Boolean value$?of0r i=0,...,m—1. Label the
verification wiref, so we seek an input sequence that cadi$es 1.
The brute-force approach would take an instance of the eatifin problem and

generate a program with the following structure:

whil e (vector=choose_an_untried_vector()) {
set _inputs(vector); // Assign vector to circuit inputs
simulate_circuit(k); // Simulate time 0 through k
if (circuit.f.value==TRUE) return SATI SFl ABLE;
record_unsuccessful _trial (vector,...);

}
return UNSATI SFI ABLE;

The heart of the program is thed nul at e_ci r cui t function. For a combinational
circuit, the code generator declares a variable for each inithe circuit, then does a
topological sort on the gates, and generates code thatdgalihe output of each gate as
a function of its inputs. For example, if our circuit contsithe gata = AND( b, c),
the emitted code could be as simple as:

circuit.a.value = circuit.b.value & circuit.c.val ue;
which would compile to as little as one instruction and at hefew instructions in
machine code. The generated simulator has no expensivetdatture for storing and
manipulating the circuit and performs no traversals overdincuit; instead, the only
representation of the circuit is embedded in the evaluatiate itself. To simulate sev-
eral cycles of a sequential circuit, we simply simulate thetrstate logic combination-
ally, update the state variables, and repeat. The simpbgstaxchoose an untried vector
and record unsuccessful trials is to count sequentialtyutn all possible vectors. Ob-
viously, we will need to introduce more effective ways to tist but any method that
makes progress on each iteration will produce the corressvan

3.2 Skip Cubes

The key idea behind the advanced backtracking techniqeesinsnodern SAT solvers
is that many of the decisions (assignments to variablesgrhatbre reaching a conflict
have no effect at all on that conflict. Therefore, the badkishould not bother revising
irrelevant decisions. Analogously, we will now introducenachanism, which we call
“skip cubes”, by which the circuit simulator can tell whiaiput variables did not affect
the value offk. Note that this computation is done for the specific inputeebeing

simulated, so this reduction is more specific than the cdfieflmence reduction, which



can only eliminate portions of the circuit which do not affék for any possible input
vector. For each vector simulated, therefore, we also coegpotentially large set of
other vectors that are guaranteed to produce the sameaesidtin therefore be pruned
from further consideration.

Define the universal s&i to consist of all binary vectors of lengtth = n(k+ 1).
An elementv = vp...vy_1 € U corresponds to an input sequence deerl time steps
with X = vin+i, SO we will use the terms “vector” and “input sequence” ickemgeably.
Starting in initial staté and given some € U, let W}, represent the value on a wive
of the circuitC at time stefi.

Definition 1 (Skip Set) The skip set of a wire w at time t with respect to input vector v
is definedsy (W) = {ujue U Aw, =w}.

Intuitively, Sy(w!) is the set of all vectors that causkto have the same value as when

is simulated with the input sequeneeSpecifically, simulating the circuit with a vector

v will drive X to the same value as any other vectosinfX), so if f¥ is false, we may

skip any subset of these vectors when searching for a satisfgsignment.
ComputingsSy(w!) for each gate output could be done in a straightforward manne

at the same time that the output value is computed. For exaiifipl is the output of an

AND or NAND gate with inputsa andb, then

_ ) Su@)Us(b) if &, =0k, =
S@) NS0t if & =1AbL =1

Other gate rules are similar. Note, however, thg') is simply either the on-set or
the off-set oft, so any exact computation of skip sets amounts to compuimgxact
functionality of each wire, which will blow-up for many précal examples.

Instead, in our approach we propagate conservative appasixins.4, (W) such
that{v} C 4,(w) C S (W) and whered, (W) has a succinct representation. The con-
servative approximations to the skip sets are special atiesicubes

Definition 2 (Cube) A cube is simply the Boolean subspace generated by assigning
constants to some variables. Specifically, a setB is a cube if B= {v|v;, =b1,vi, =
bo,...vi, = by}, where0 <i; < iz < ---iy < N -1 and the p are arbitrary Boolean
constants. The indices, iy, ...,i; are called thespecified bitsall others are called
unspecifiedIf bit i} is specified, thenjlds called thespecified value

We may express a culiieas a lengttN vector over the alphabg0,1, —}, whereB;
is the specified value of hitif specified, or “-" if unspecified. We now defined trekip
cubeof a wire:

Definition 3 (Skip Cube) Theskip cube4,(w) of a wire w at time t with respect to
input vector v is defined depending on the type of gate driwing



1. If wis a two-input gate with controlling value p (e.g., aNB gate with p= 0 or
an OR gate with = 1) and input wires a and b, then

afe)nam)  ifa,-pAb=p
A if o= A b=
AW) =1 ) i = A b=
max( (), A, (b)) if a = A By = p

wheremax(...) returns the set of greater cardinality.
2. If wis the output of an inverter with input a, then

AwW) = a,d)

3. If wis a state holding element with next state signal anthe

_[a@ Y ift>0
ﬂv(""t)—{u if t =0

4. Ifwis aninput x then

B Cwhif j=tn+i
A4,W) = (Bo,...,Bn-1),WhereB; = { — otherwise

5. If wis a two-input gate without a controlling value (i.exclusive-OR or exclusive-
NOR), with input signals a and b, then

Ay(w) = ay(@) N A (b))
Theorem 1. 4,(W) as defined in Definition 3 is always a cube.

Proof: The intersection of two cubes is always either another cuttaeoempty set.
The latter case occurs only if the two cubes disagree on at teee specified bit. In
Definition 3, all specified bits always agree with the inputteev. i

Theorem 2. Let S, (W) and 4, (W) be defined as in Definitions 1 and 3. Then,
{v} C AW) C Su(w).

Proof: The base cases are that the skip cube for a primary input @wgéhat input bit
specified and all other bits unspecified, which is clearlyhia $kip set for that input
wire, and that the skip cube for a latch at time 0 is completelgpecified, which is
clearly in the skip set for that wire (because the inputs tlafiect the reset state of
the latch). For the inductive step, assume that the skipsfdrehe inputs of any gate
are contained in their skip sets, and therefore that anyovéetthat cube would not
change the value of that input. Then, the skip cube for thpuwdudf the gate computed
according to Definition 3 contains only vectors that would cltange the value of that
output, and are therefore contained in the skip set. Thidbeasasily verified by a case
analysis of all the ruled

Corollary 1. LetB= 4,(w!). Foralli =0,...,N—1,if Bj is a specified bit, then;B- v;



The above results establish the correctness of the optirizthat, upon completion of
simulating vectowr and findingfX = 0, skips simulation of all vectors if, ( f¥).

We now consider how the computation of the skip cubes can figeetly inte-
grated into compiled simulation. During simulation@fagainst input/, we storev as
a string ofN bits in memory, padded to the nearest machine word boundasiip
cubeB can also be stored as a same-sized bit string, with it in memory if and
only if bit i is specified inB. If B; is specified, the specified valuevisby Corollary 1
and is thus readily available. Note from Definition 3 that #kip cube computation
propagates from the inputs to the outputs of each gate,lgxeacthe value computation
does. Accordingly, the code generator can allocate a (vakip cube) pair for each
wire in the original circuit, and thei nul at e_ci r cui t function will contain code
to compute both the value and the skip cube for each wire. Ist wa&ses, computing
the skip cube offt is a straightforward copy of the array storing the skip cuber@
of the gate inputs. The cases pertaining to a primary inpatnoinitial state variable
are also trivial to compute. The cube intersection openati@quired in cases 1 and 5
of Definition 3 can be achieved by computing a bitwise OR ofhifiestrings for the
respective gate input skip cubes. The max operation of casthi only slower opera-
tion, consisting of selecting the skip cube with the fewercified bits. We implement
this step by performing a population count on the skip cubsthings.

For example, consider the circuit of Figure 2. This circuashwo latches and
r with initial statess® = r® = 0. The table gives the skip cubes for all relevant wires
with respect to the input vectar= 011110100, where the bits @ffrom left to right
respectively give the input values fglt,y°, 2 x!, yt, 7t x? y?, andZ®. The leftmost two
columns give the wire name/time index and the bit value, @etiyely. The column
labeled “skip cube” gives the skip cube for the wire. The tigbst two columns state
the source of the skip cube and the rule from Definition 3 &ugblo obtain the skip
cube. This example demonstrates the power of the skip cubaitpie. Suppose we
wish to verify that latcir must be 0 at time 2, i.et? = 0. Observe that the skip cube
forr?is 4,(r?) = {v|y? = 1} andr? = 0. Thus, we know that any vector witf§ = 1
impliesrZ = 0, so we can skip all other vectors wigh = 1. Hence, our search space
has been reduced by a factor of 2.

3.3 Learning and Coverage

Upon simulating any vectarand finding that the value at tinkeof the verification wire
fKis false, the skip cubg,( f*) that we have simultaneously computed gives us a set of
vectors that also would have matfgfalse. The search procedure should remember this
skip cube to ensure that it will never again try any vectorthis cube, thereby pruning
the search space analogously to the learning and non-dogiabacktracking of con-
ventional SAT procedures. For example, if some infdlways causes the verification
wire to be false regardless of the other inputs, the firstoretttat we simulate with

xi0 true will generate a skip cube fd{ that shows this fact, and our search procedure
will never try any other vectors witiqO true. Thus, the search procedure has effectively
backtracked non-chronologically to the decisiondrand learned the relationship that

X implies fX.
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skip cube case

t=0 t=1 t=2 from
W wh X2 XYZ XY2 source Def. 3
X7 0 [0-------- {ulup =0} 4
Yl |-1------- {ujup =1} 4
ol B IEES EEREE {ulup =1} 4
S I U 3
0l 0| ----m---- U 3
O 1| --mmmn-e- A(r%) 2
O 0 [0-------- A(X0) 1
1 |-1------- a(y0) 1
| 0 |--1------ a(2) 1
Pl I T I IS {ujus =1} 4
vyl 1| ----1---- {ulug =1} 4
20| ----- 0--- {u]us =0} 4
st 1 |-1------- () 3
rt] o | --1------ 4(dO) 3
al | 1 ]--1------ Aa(rt) 2
bt | 1 |--11-----] Aa@)naxd) 1
1| ----1---- | maxAa(bl), a(yl)) 1
dt{ 0| -1------- a(sh) 1
Xl 1 ----- -1-- {ufug =1} 4
y2| 0 |-------0- {uju; =0} 4
Z|0|--------0 {u|ug =0} 4
|1 |----1---- Aa(ch 3
20 |-1------- 4(db) 3
a| 1]-1------- A(r?) 2
2| 1 |-1------0| A4(a®)nAa(x?) 1
| 1]|-1------0 Aa(b?) 1
| 0 |----1---- A(S) 1

Fig. 2. Skip Cube Computation Example. We assume an input vectei011110100, which
provides the values for the three inputsy, andz, over three time steps 0, 1, and 2. The table
shows the skip cubes that are computed by our algorithm.



Our current implementation maintains a BDD which represémé covered sat
of input vectors that have been either explicitly simuladdr@¢ady or else covered via
skip cubes. After each simulation iteration, the resulskip cube,(f¥) is disjoined
intoV, and the next simulation vector is chosen randomly from theglement sev.
Note thatV is not directly related to the functionality of the circuinder verification,
and thus the BDD foW does not necessarily blow up even when the BDD for the
circuit would have exponential size. The algorithm conmgdathen the entire spatk
is covered, or when an input sequence is discovered to ritakeae.

The use of a BDD to store the covered set has several advantags, all the op-
erations needed by the algorithm can be done efficientlywening a cube to a BDD,
disjoining a BDD for the cube into the BDD for the covered setd retrieving a ran-
dom vector not in the covered set. BDDs also provide an eagyaiacorporate input
don’t-cares into the verification method, by initializiWgto include all don’t-care vec-
tors. Most important is the fact that the ratie=| S| / | U | can be computed in time lin-
ear in the number of BDD nodes. The coverage ratals us the fraction of the search
space that has been explored and eliminated by our algorRendically computing
c allows the algorithm to communicate a progress metric touther. Furthermore, in
the event of a time-out or space-out, the coverage ratioigees\an informative verifi-
cation result and increases confidence that the propentyglverified holds. Having an
accurate measure of progress and coverage greatly enthaeesability of verification
tools, especially on challenging problems that can’t béfieerquickly or completely.

4 Experimental Results

We have implemented our algorithm to test its performanbe.tdol takes a sequential
circuit in a slightly modified version of ISCAS89 format andtputs the simulator
for that circuit as a C++ program. This translation step ituailly instantaneous. The
simulator is then compiled and run to perform the verifigatd/e report compile and
run times for the simulator. All experiments were conduateda PC with a 1.5Ghz
Intel Pentium 4 processor and 1GB of RDRAM. Memory usage isreported, as it
was never significant. The operating system was Linux 2ah8, the compiler was
g++ version 2.95.2 using theO3 optimization level. The compiler missed an obvious
peephole optimization (two adjaceatldl instructions modifying the stack pointer),
so we used a simple Perl script to perform this optimizatiesullting in a performance
improvement of a couple percent.

For comparison, we ran against a leading, free, non-comale3&T solver for
bounded model checking, Z-Chaff. Our experiments were goied with version
Z2001.2.17. We used our own translator from ISCAS89 forroa€CNF, but ignore
the negligible translation time. We believe our translgiosduces CNF comparable
to other bounded model checking tools. For example, theipfieltin Section 4.1 is
closely modeled on the example presented by Biere et akiffit] Chaff is able to solve
our generated CNF formulas slightly faster than the onepl&gby Biere.



Compiled Simulation with Skip Cubes

Chaff | compile| full 0.9999 0.999 0.99
0.0 0.0 0.0 0.0 0.0 0.0
0.0 8.5 0.0 0.0 0.0 0.0
0.0 8.9 0.0 0.0 0.0 0.0
0.0 9.7 0.1 0.0 0.0 0.0

0.1 11.0 0.2 0.1 0.1 0.0
0.4 125 0.8 0.1 0.1 0.0
2.4 14.6 4.0 0.2 0.2 0.1
16.1 17.1| 19.6 0.4 0.3 0.1
89.7 20.1| 713 0.8 0.6 0.1
234.6 24.0| 126.4 2.2 0.8 0.7
10| 221.4 289 222.3 5.8 14 0.2
11| 165.4 345 332.7 11.4 1.2 0.3
12| 134.8 41.5| 502.2 28.7 28 04
13| 99.2 48.6 | 662.6 48.3 2.7 01§
14| 34.9 58.8 | 840.4 74.9 4.4 0.6
15| 26.3 69.5| 946.7 1153 39 0.7
Table 1.16 x 16 Multiplier Results with Original Specification (Eq. 1)o@pile and run times
are in seconds. The column labeled “compile” gives the ctatiph time for the simulation
program, while the rightmost four columns give the runniimget required of our tool to reach
the indicated coverages, e.g., 126.4 seconds to fullyweiif9, and only 2.2 seconds to attain
99.99% coverage.

©Co~NOoOOOTh~, WNEOIT

4.1 Original 16 x 16 Multiplier Example

Our first example is a 1& 16-bit multiplier with 16-bit output. We designed this prob
lem instance closely following the one reported in the arddbounded model checking
paper [1]. The specification verified was

(doneA —over flow) — (out, = out)) (1)

wheredoneis asserted when the output register has converged to thieviihae,
over flowis asserted if the product exceeds 16 bits, @umg andout, are thebth output
bits of a reference combinational multiplier and the segjaémultiplier under verifica-
tion, respectively. Separate runs were performedfer0,...,15, and the time bound
used in each case whs= b+ 1.

Table 1 gives the results for our tool and for Chaff. For séwninal verification
(rightmost three columns), our tool gives very high coveragtremely quickly. This
illustrates the effectiveness of the skip cube propagattoquickly eliminating large
parts of the search space. For complete, formal verificationtool is competitive with
Chaff up to bit 9, but then, surprisingly, the Chaff run tintesp sharply. One normally
expects output bih — 1 of ann x n multiplier to be the most difficult bit, but this curi-
ous behavior can be explained by the presenceavkr flowin the antecedent of the
specification (Eq. 1) in conjunction with the time boumg 1. Although the circuit cor-
rectly computes the values of all output bits for all inpuless, almost all input word
pairs actually rais@ver flow making the specification vacuously true. A SAT solver



Compiled Simulation with Skip Cubes

b | Chaff | compile full 0.9999 0.999 0.99

0 0.0 8.1 0.0 0.0 0.0 0.0

1 0.0 8.4 0.0 0.0 0.0 0.0

2 0.0 8.9 0.0 0.0 0.0 0.0

3 0.0 9.7 0.0 0.0 0.0 0.0

4 0.1 10.7 0.1 0.1 0.0 0.0

5 0.4 12.3 0.7 0.5 0.0 0.0

6 2.2 14.4 3.6 3.1 0.0 0.0

7 17.1 16.9 18.2 17.5 7.4 0.0

8| 111.3 20.2 102.1 100.5 69.9 0.

9| 1081.2 23.9 533.7 519.4 447.6 0.Q
10 time 28.4 2797.9 2928.4 2667.0 855)p
11 time 34.1| time(0.9776) time(0.9776) time(0.9776) time(0.9776)
12 time 40.8 | time(0.9418) time(0.9418) time(0.9418) time(0.9418)
13 time 48.8 | time(0.8769) time(0.8769) time(0.8769) time(0.8769)
14 time 58.2 | time(0.7509) time(0.7509) time(0.7509) time(0.75019)
15 time 68.9 | time(0.5004) time(0.5004) time(0.5004) time(0.5004)

Table 2. Full-Sized 16x 16 Multiplier Results with Specification (Eq. 2). “time” irwhtes timeout

after 1 hour. When our tool times out, the attained coveragelicated in parentheses. For bit 10,
we actually ran Chaff to completion, which took over 17 ho@sr result for bit 10 with 0.9999
coverage is anomalous, taking slightly longer than fullezage. This might be explained by
extra floating-point comparisons performed by our tool whearget coverage is specified, and
we have also observed slightly different page fault behrabiat we are still investigating.

can propagate constraints backwards from the overflow flagkly pruning the circuit
down to essentially an 8 8 multiplier, making the high-order bits easy to verify.

4.2 Full-Sizel6 x 16 Multiplier Example

In the preceding multiplier example, the combinationagrehce multiplier is actually a
full-size 16x 16 multiplier with 32-bit output. Similarly, the sequentiaultiplier would
correctly compute all 32 output bits if the output registerrev wider. Accordingly,
we removed the overflow logic from the preceding examplegtang a true, full-sized
16 x 16 multiplier, and verified the specification:

done— (out, = out))

2)
Table 2 presents the results for this experiment. This pralié much more difficult

than that of Section 4.1. Here, we observe our approachmgrabiout as fast as Chaff

for the low-order bits, and beating Chaff for bits 8, 9, andHAdr the higher-order bits,

both tools timeout, but the compiled simulator providesghldoverage while the SAT
solver reveals no information.

4.3 SRT Divider Example

Our last experiment is the most difficult. We verify a-Bit by n-bit radix-2 SRT di-
vider with redundant quotient representation [7] againsb@binational divider. The



specification asserts that if the SRT divisor is normalized] if the the combinational
divider does not overflow, then the two dividers produce #imaes result. In particular,
we verify all bits of the quotient and remainder in a single.ru

The results fon=4,...,8 are given in Table 3, which clearly demonstrate that our
approach is more effective than Chaff on this problem.ri=er7, we find our approach
to be almost 4 times faster than Chaff even when compilatioe is included. For
n= 8, both tools time-out (again set at 1 hour), but our tool regthe coverage attained.

Compiled Simulation with Skip Cubes
n| Chaff compile full
4 12 7.2 0.4
5 7.5 10.8 4.7
6 98.1 15.7 56.8
7 | 2848.4 22.3 735.2
8 time 30.4 time(0.7737)

Table 3.2n-bit by n-bit Radix-2 SRT Divider Results

5 Conclusion and Future Work

We have presented a novel approach to bounded model che€kingearch procedure
has competitive performance with state-of-the-art SAVesa on many problems. In-
tuition and experimental results suggest that SAT solvave lthe advantage on smaller
circuits and on circuits in which clever case-splitting histics can quickly establish un-
satisfiability, whereas our new method has the advantagariger circuits that aren’t
amenable to such attacks. Furthermore, our method coffitimpravides coverage in-
formation, which is useful as a progress indicator for leggterification runs, and as
a semi-formal verification result for runs that time out. ®work provides a valuable
additional tool for model checking when other methods (8BDs, SAT) fail.

We believe our implementation could be substantially oféd. For example, our
implementation generates C++, which introduced many itieficies. A production
tool should generate the simulator machine code directpabsing the compiler, which
is not tuned for the very large, simply structurdnul at e_ci r cui t function that
we generate. There is little need for global optimizati@mesthe code generation would
be straightforward.

More algorithmic directions for further research are tolexpvarious design trade-
offs. For example, we could compute more conservative agmations of the skip
cubes using branchless code, which might run faster, but mewe vectors. Alterna-
tively, we could compute more accurate approximations efgkip sets, reducing the
number of vectors needed, but slowing down the simulatiomels In some cases, it
would be useful to shift between strategies, starting wkip subes, for example, and
then switching to an alternative if the skip cubes becomesiall.

From a theoretical perspective, we would like to understahdt factors influence
the rate of convergence of the coverage ratio. Intuitiviél{here exists a vector that
produces a large skip cube, it is plausible that many othetove (such as the other
vectors in the skip cube) would also generate a large skie,csi large skip cubes



would be covered early. If this intuition is true, one coudtimate statistically the total
run time based on the first few coverage ratios computed hwhauld further enhance
the usability of the model checker.
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