Monitor-Based Formal Specification of PCI

Kanna Shimizu!, David L. Dill', and Alan J. Hu?

! Computer Systems Laboratory, Stanford University, Stanford, CA 94305
{kanna.shimizu, dill}@cs.stanford.edu
http://radish.stanford.edu/pci
2 Dept. of Computer Science, Univ. of British Columbia, Canada ajh@cs.ubc.ca

Abstract. Bus protocols are hard to specify correctly, and yet it is often
critical and highly beneficial that their specifications are correct, com-
plete, and unambiguous. The informal specifications currently in use are
not adequate because they are difficult to read and write, and cannot be
functionally verfied by automated tools. Formal specifications, promise
to eliminate these problems, but in practice, the difficulty of writing them
limits their widespread acceptance. This paper presents a new style of
specification based on writing the interface specification as a formal mon-
itor, which enables the formal specification to be simple to write, and
even allows the description to be written in existing HDLs. Despite the
simplicity, monitor specifications can be used to specify industry-grade
protocols. Furthermore, they can be checked automatically for internal
consistency using standard model checker tools, without any protocol im-
plementations. They can be used without modification for several other
purposes, such as formal verification and system simulation of imple-
mentations. Additionally, it is proved that specifications written in this
style are receptive, guaranteeing that implementations are possible. The
effectiveness of the monitor specification is demonstrated by formally
specifying a large subset of the PCI 2.2 standard and finding several
bugs in the standard.

1 Introduction

Given the importance of conforming to bus protocols, it is surprising that the
current state of specification, even for widely used standards, is a long document
written in English. Natural languages are ill-suited for precise specification be-
cause they tolerate vagueness, and are difficult for computers to analyze. The
situation would be better if official standards, or even module interface spec-
ifications internal to companies, were written in a precisely-defined notation.
However, until now, due perhaps to language and tool barriers, industry has
largely ignored formally specifying interfaces. And so we present a specification
style where the user need not learn any language beyond Verilog or VHDL and
still be able to write formal specifications.

The style is based on writing the specification as a formal monitor (Figure 2).
A monitor is an observer in a group of interacting modules, or agents which
communicate via a set of protocol rules. It’s main task is to flag agents when
they fail to uphold the protocol. Writing the specification as a monitor enables
the specification to be written as a list of simple rules, thus, allowing formal
specification to be a relatively easy process. It also allows the specification to be
checked “stand-alone” where no implementation needs to be written to verify
the protocol. Furthermore, it results in a synthesizable specification which can
be directly used in testing environments where cycle-based models are needed.
Another direct use is for modeling environments when model checking an imple-
mentation. And despite its simplicity, a monitor specification can be written for
“real” protocols such as the widely-used PCI local bus protocol.

We also describe several highly effective debugging methods for monitor-style
specifications. It is explained how certain requirements on the specification style
discourages errors and how the debugging methods further ensure correctness
and absence of contradictions. One highlight with a monitor specification is that
debugging can be done on the protocol based on its internal consistency, before
any implementations are designed. Furthermore, if two easy-to-check properties
holds for the specification, it is guaranteed that the specification is receptive.
Receptiveness guarantees that an implementation exists for the specification,
and that there is no illusory freedom in the specification. On a practical level,
these debugging methods found several problems in the official PCI protocol
when they were applied to a specification of PCI.

The primary contributions of this paper are:

— the definition of a simple yet powerful specification style that is resistant to
specification errors;

— presentation of general specification debugging methodology, which does not
require any implementations;

— a report on the successful application of the specification style and debugging
methodology to PCI, and the resulting discovery of bugs in the protocol

— a theorem stating that the specification style together with a simple-to-check
property, guarantees the receptiveness of a specification.

Previous Work Some of the same ideas were explored in a 1998 paper by
Kaufmann, Martin, and Pixley [1], which proposed using logical constraints for
environment modeling. All of the contributions listed above go beyond the Kauf-
man et al. paper. In 1999, Chauhan, Clarke, Lu and Wang [5] specified PCI using
CTL and then model-checked the state machines that appeared in the appendix
of the official PCI specification document [2] against their CTL specification.
With our specification style, CTL is not used to specify the protocol; conse-
quently, along with simplicity, our specification is executable and it can be used
directly for a variety of applications, such as simulation, that a CTL specifi-
cation cannot. In 1998, Mokkedem, Hosabettu, and Gopalakrishnan formalized
and proved some higher-level properties of PCI involving communication over

bus bridges [8]. Their specification is almost unrelated to the one here, which
focuses on the low-level behavior of individual signals and ignores the higher-
level transaction ordering properties which Mokkedem et al. concentrate on; the
difference is in the levels of abstraction of the specifications. Many specification
languages for reactive systems and protocols have been proposed (too many to
cite). However, it is important to note that we are specifically not proposing a
new specification language, but a specification style that is simple enough to be
implemented in a number of existing hardware description languages.

Notation In the examples of the specification appearing in the paper, a log-
ical notation is used. Individual variables (e.g. frame) are true when asserted
and false when deasserted. This is a warning to readers who are accustomed
to control signals being low when asserted. Logical connectives “—”, “” and
“=” represent “IMPLIES”, “IFF”, and “NOT,” respectively. prev(z) means the
value of z in the previous cycle, prev(prev(x)) is the value two cycles ago. In an
HDL, prev(xz) would be a state variable which is assigned the current value of x
on each clock.

Structure of the Paper Section 2 describes the specification style, what such
a specification can be used for, and the rules for the style that ensures some of
the correctness. Section 3 outlines the debugging methods and the bugs founds
when applied to the PCI protocol. In section 4, the proof of receptiveness for a
monitor specification is given. Section 5 is the conclusion.

2 The Monitor Specification

2.1 Description - the Specification Written as a Monitor

correct
<--9 e
01,02,03T D 00208 Q_rrgct_l_ Lo 3 3
@%% 1 1 are2 | Monitor |1
00,01,0202 ioo, o108 VT
correct3 [Agent
.<_ - -
QOutputs
Fig. 1. The System View Fig. 2. The Monitor

A bus protocol specification can be viewed as a specification for a complete,
closed system of agents using the bus. In Figure 1, agents 0,1,2,3 are using
the bus and 00, O1, 02, O3 are the corresponding output sets. Because of
the bus, the inputs for each agent are the outputs of other agents. (For agent

1, its inputs are 00, 02, and 03). A bus protocol specification dictates the
behavior of all the outputs relative to each other. A monitor that checks the
agents’ compliance to the protocol at each execution step, can be written. It is a
machine with the agent output signals as its inputs, and boolean correct; signals
as its outputs (figure 2). The monitor is such that as soon as an agent (or several
agents) breaks the bus protocol, it singles out the erring agent(s) by making the
corresponding correct; signal false. If correct; is true, agent i has upheld the
specification so far and its current outputs also conform to the specification.
If correct; is false, agent i has broken a specification requirement currently or
sometime in the past. Thus, correct; is “sticky”; once a rule has been broken,
the corresponding correct; stayes false forever. The specification style is based
on writing the specification as such a monitor.! After all, the monitor must have
exactly the protocol information to decide on agent compliance so it is natural
for the protocol specification to be in the form of a monitor; it differs from
the conventional view of a specification only because it is an active machine
as opposed to a passive documentation. The immediate benefits of this are the
direct applications of such a specification.

For Model Checking a Single Implementation To verify a single agent
implementation, one needs to create an environment for it, namely other agents
on the bus. This is a non-trivial, tedious task. However with a monitor, an
environment can be created without writing any implementation code. It does
this by specifying which input sequences to the agent are correct according to
the interface specification. Namely, one would model check the single agent by
conditioning all the properties to be verified, with “if the interfacing agents have
been correct so far according to the monitor”. For example, if p is the property
to be model checked, and agents ¢ and j form the environment, the property
to be model checked is “correct; A correct; = p” where correct; and correct;
correspond to the output signals of the monitor for ¢ and j. The monitor and the
condition in the model checking properties correctly constrain the inputs to the
agent. This is an example of assume guarantee reasoning where the specification
for one (or more) agent(s) is used to verify the implementation of another agent.
This use of the monitor is very similar to what is described in [1]. As an execution
example of this technique, Govindaraju used our PCI monitor to successfully
verify a PCI controller implementation [10].

For Simulating Complete System Implementations In a testing environ-
ment, an interface monitor, if written in the language of the implementation,
can be directly connected to a design and flag errors and correctly assign blame
to the erring module in a system-level simulation. Since monitors can be written
in synthesizable RTL, they can be used for tools that need cycle-level models
instead of event-based simulation models, such as formal verifiers or emulators.

! Only the monitor is written by the specification writer. The agents in the figure are to be later
implemented by someone else.

2.2 Construction of a Monitor Specification

A further advantage of the monitor-style specification is that they are very easy
to construct. First, it is noted that a specification is a list of rules. In particular,
the official PCI 2.2 specification is written that way. Thus, it is natural for the
monitor to check for each of these rules independently. For clarity, these rules
will be called constraints here. Here are some examples of PCI constraints,

¢ “TRDY# cannot be driven until DEVSEL# is asserted.’’ (section 3.3.1)
‘‘Only when IRDY# is asserted can FRAME# be deasserted’’ (section 3.3.1)

As logic formulas, these can be written as follows; trdy — devsel (if trdy is true,
then devsel must be true) and prev(frame) — frame V irdy (if frame is true in
the last cycle, then it must either be true in this cycle or if it’s not, irdy must
be true). The goal was to keep the constraints as simple as possible to prevent
the overall specification from getting complicated. When specifying PCI, it was
found that the following constraint characteristics can be kept true, and the
specification can still fully describe the protocol.

1. No CTL or LTL For the monitor specification, all of the PCI constraints can
be written without using any CTL [6] constructs nor is knowledge of any linear
time temporal logic (LTL) specifically needed. This is the basis for the claim
that the specification style can be used with HDLs such as Verilog. In Verilog,
the above example becomes, (where correct; is initialized to 1.)

if (trdy && !'devsel) {correct = 0;}

2. No complex state machines Only two types of very simple state ma-
chines were needed as auxiliary variables for the PCI constraints. One type is a
event-recoding state machine which becomes true when a set event happens and
remains true until a reset event occurs and is false otherwise. This is needed, for
example, to “remember” whether the transaction is a read or a write. The sec-
ond type is a counting state machine which starts to count after a set event, and
stops counting either when a reset event happens or a limit is reached, whichever
comes first.

3. Small time frames With the help of the state machines described above, all
of the constraints can be written with less than three time frames. Thus, the most
complicated PCI constraint looks like this: prev(devsel) A prev(prev(stop)) A
prev(stop) A prev(final_dphase_done) — —req. For most constraints, only two
time frames are needed, and thus, most are as follows: prev(stop) A—prev(devsel)A
—prev(dphase_done) — —devsel. This property keeps the constraints compact.

From a preliminary inspection of a more complex protocol than PCI, such as
Intel’s Merced bus, properties 1 and 3 seem to hold for other protocols. Thus, a
specification can be a list of compact constraints which are easy to maintain. And
to construct the desired monitor, the constraints are directly used to determine
the correct;’s. Assuming that each constraint constrains the behavior of only one
agent, the constraints are grouped by the agent which they constrain. When the

agent output signals make all the constraints of one agent true, the corresponding
correct; is true; otherwise, the correct; is false. Thus, correct; is a conjunction
of all the constraints specifying the behavior of agent 7. The following is the
assignment statement for correct;, where constraint! pertains to agent i.

if (constraint) A constraint} A ... A constraint?)
then correct; = true, else correct; = false

Therefore, the monitor is a list of propositional formulas, auxiliary state variable
assignments, and correct; assignments. There is no conversion of this to a state
machine; this is precisely the code for the monitor.

(propositional formulas)

constraint) = trdy — devsel

(state variable assignments and the two types of small state machines)
prev(trdy) = trdy

(correct; assignments)

2.3 Detailed Style Requirements for a Monitor-Style Specification

Some requirements on the constraints were discovered and developed. In this
section, the motivation behind them will be discussed.

Separability of the Constraints Rule
Each constraint can only constrain outputs of one agent.

For each constraint, there should only be one agent to blame when the constraint
is broken. Consequently, a constraint can only restrict the outputs of one agent; if
it dictates the output behavior of two or more agents, multiple agents can be held
responsible for a single broken constraint. Since it is exactly the current state
variables that are constrained by the constraints, all current state variables of a
constraint, must be outputs of the same agent. Equivalently, since for a particular
agent, outputs of other agents are its inputs, the constrained variables must all
be the agent’s outputs and not its current inputs.

This rule is called the separability rule because it allows constraints for different
agents to be separated and evaluated independently. This separability factor is
important for a specification because with it, a specification can be guaranteed to
have an implementation as proved in section 4. The main need for the separability
of a constraint is to uphold an important principle of specifications: it should be
possible to implement an agent based on information solely from the specification,
and know that the implementation can interact correctly with any other agent
upholding the specification.

Independent Implementability If multiple agents are responsible for uphold-
ing an inseparable constraint, the implementation of a single agent must be able

to do the impossible act of predicting the behavior of the other agents. Thus, the
only way such a system can be designed is for the different agents to be designed
together which runs counter to the above principle. For example, a bad, insep-
arable specification would be a = b, where a and b are outputs of two different
agents. An implementer of one of the agents cannot safely set the value of a
without knowing what the implementer of the other agent will set the value of
b to. Such a functionality is not independently implementable. Equivalently, a
monitor for such a specification cannot blame a single agent when the constraint
is broken. If a = b does not hold, it is impossible to decide whether a is wrong
or b is wrong. Thus, it is apparent why “a broken constraint can only blame one
agent” is a sufficient condition for the specification to uphold the above principle.

Removing Illusory Freedom Consider the specification “~(a A b),” where
a and b are outputs of different agents. Such a formula might result from an
attempt to specify mutually exclusion. In this case, an implementer can only set
a = 0 safely, in case the implementer of the other agent may set b = 1. But the
implementer of b can only safely set b = 0, too, so the specification could just
as well be a = b = 0. In other words, this specification allows illusory freedom,
which is also undesirable. The separability style rule disallows such situations.

Specifying Moore Machines As the clock speeds of busses gets faster and
faster, almost all bus interface protocols assume a Moore machine timing; namely,
it is expected that the interfacing agent needs at least one cycle to respond to
its inputs. The output separability rule can be thought of as a result of modeling
the agents as Moore machines. For example, machine A has an input in4 and
outputs 04 and r4 and is specified a constraint that breaks the separability style
rule: —ing Voy Ar 4. This can be interpreted as whenever in 4 is true, machine A
must react immediately and assert its outputs 04 and r 4 true. But since machine
A is a Moore machine, this is an unreasonable specification.

The example of mutual exclusion is interesting because although it is frequently
a desired property of a bus, “only one agent can be driving the bus at a time”,
the style rule disallows it as a constraint as outlined in the “Removing Illusory
Freedom” paragraph. Mutual exclusion is not a specification that can be im-
plemented independently by several agents. Instead, it is an emergent property
that is implied by other constraints that can be specified independently for the
agents. For example, in PCI only the agent that is the current master can drive
certain bus signals, which is a property that can be specified as a separable
constraint. The arbiter in the system ensures that only one agent is the master
at any time and this is also a separable constraint. Together, these separable
constraints ensure the non-separable mutual exclusion property of the bus.

An Un-Implementable PCI 2.2 Requirement

Interestingly, there is an official PCI 2.2 specification [2] requirement which does
not satisfy this separability rule, and is consequently un-implementable as stated.
However, there is an equivalent, implementable requirement to replace it.

| 3 3 frame
dress: 3 (input)
— ‘ | trdy

LT (outpuy

Fig. 8. trdy behavior during the address phase

The requirement, which is in section 3.2.4 of the official PCI documentation,
states that the signal ¢rdy must use the address phase as a turnaround cycle. The
“address phase” is when the signal frame is asserted when it was de-asserted in
the previous cycle (figure 3), and a “turnaround cycle” for a bus signal is a cycle
where no agent is allowed to drive that signal. Thus, the requirement translates
to “if frame just became asserted in this state, do not drive trdy.” The problem
is frame and trdy can be driven by different agents, and so both must decide
simultaneously how to meet the requirement together. And a Moore machine
agent cannot react (via the value of ¢rdy) to its input (in this case, frame) in
the same cycle. Thus, this requirement cannot be implemented in an agent as
stated in the standard. However, this requirement can be stated in a different
way with the same intended effect. The requirement should be “no agent may
drive trdy if frame and irdy were both deasserted in the previous state.?” This
obeys the output separability rule and it will enforce the desired property that
all agents not drive trdy in the address phase.

The Importance of Isolating Current Variables in a Constraint

If the constraint spans more than one time frame (i.e. involves at least the pre-
vious state) the constraint must be written in the form “past_conditions — cur-
rent_state”. Thus, all multi-state constraints must be written as implications, and
all prior states variables must be in the antecedent and current state variables
must be in the consequent.

Example: ‘ ‘Only when IRDY# is asserted can FRAME# be deasserted.’’
Correct : prev(frame) — frame V irdy
Incorrect : prev(frame) A —frame — irdy

Unlike the previous rule, this rule is not required for the implementability of the
specification, but writing the constraints in this form makes the specification eas-
ier to understand and debug. This style rule separates the conditioning element,
the past history, from the constraining element, the current constraint. Also, this
form makes contradictions in the constraints easier to spot, as demonstrated in
section 3.1.

2A note to PCI experts: for an address phase following a back-to-back transaction, which won’t
have frame and irdy deasserted in the previous state, other constraints ensure that there is a
turnaround cycle for trdy.

3 Debugging the Monitor Specification

A very important practical question is how to debug a specification. The follow-
ing debugging methods work with the monitor-style specification without requir-
ing any implementations to be written. Once the specification is written, these
methods can be immediately and directly applied to it. They check whether the
monitor is overly restrictive where it flags correct actions as errors, or under-
restrictive where it does not catch incorrect actions. Therefore, they check for
contradiction and completeness, respectively.

This section also includes the bugs found by these methods in the monitor-style
formal PCI specification. Some were translation errors which are significant be-
cause they support the claim that an informal specification is prone to misin-
terpretations. However more importantly, some inherent problems in the official
PCI protocol were discovered. These discovered bugs further stress the impor-
tance of using a formal specification style to develop and review a protocol. For
these debugging methods, a CTL model checker is needed. Good model check-
ing tools exist (such as CMU’s SMV [3] and Cadence’s SMV [4] which were
both used successfully with the PCI specification) that will take a monitor-style
description and answer queries about the defined state graph. The queries are
written in the branching-time temporal logic CTL [6].

3.1 Dead State Check

correct_i =1 .
correct_j = correct i =1 correct =0
,,,,,,, correctj=1 correct_i =0
4>©/ correct_i =1
correct j =1 correct_i =0

correct_i =0
Monitor Machine
Dead state

Fig. 4. A dead state for agent ¢

Dead states arise due to contradictions in the specification. For example, if one
constraint for agent ¢ requires p to be true in the current state and another
requires —p to be true in the same state, there is a dead state. Defining dead states
precisely requires defining a few other concepts first. A transition in the monitor
machine from a state is said to be correct for agent i if the monitor asserts
correct; during the transition. A monitor state s is correctly reachable, if there
exists a sequence of agent outputs that causes the monitor state to enter s from
the initial state, while all correct; signals are continuously asserted. A dead state
of the monitor for agent i is a correctly reachable state that has no correct exiting
transitions for agent ; for all outgoing transitions of the dead state, correct; is

false. Intuitively, a good specification should have no correctly reachable dead
states because then, all possible agent outputs are incorrect according to the
monitor. (Others have observed the importance of dead states [1].)

To ensure the absence of a dead state in a monitor specification, a certain char-
acteristic needs to hold for all the agents in the specification: “for every state in
the monitor where no constraints for any agent have been broken so far, there
must exist at least one next state where all of the constraints for the particular
agent hold”. This characteristic can be checked easily using a CTL model checker

with the formula, for a particular agent i, AG(A correct; - EX correct;).
jEAgents
If there are any contradictions in the specification, the model checker for this

property returns a counterexample indicating a dead state.

The following is an incorrect logical translation of some PCI requirements, a
mistake actually made by the first author. The dead state check found a dead
state which resulted from the conflicting constraints,

prev(address_phase) — —trdy

prev(trdy) — trdy V (irdy A (stop V trdy)) V prev(irdy A (stop V trdy))

prev(trdy) — (prev(stop) < stop)
The contradiction is not obvious from the expression above but if it is re-written
to obey the Isolate Current Variables rule, and the values of the state variables
in the dead state are known from the dead state check, it is possible to see that
there is no legal next state when prev(address_phase A —irdy A trdy A —stop)
holds because —trdy A (trdy V (stop Airdy)) A —stop is unsatisfiable.

prev(address_phase) — —trdy

prev(—irdy A trdy) — trdy V (stop A irdy)

prev(trdy A —stop) — —stop

prev(trdy A stop) — stop
Since the dead state check returns the dead state as “..., address_phase =
true,irdy = false,trdy = true,stop = false, ...”, these variable assignments
can be used to see which constraints are in effect, by plugging these values
into the left-hand-side of the implications (the antecedents). In this case, the
first three constraints are in effect and their consequents form the contradiction.
This process is effective if the constraints follow the Isolate... rule and the dead
state check can return the dead state’s state variable values. One advantage this
check has over the other checks is its simplicity. No creativity or expertise is
required; only the CTL formula given above and a model checker are needed.

[43

Another similar check tests for under-restriction in the specification. It is rea-
sonable to assume that in all states, at least one constraint is in effect. The check
searches for correctly reachable states where all possible outputs for agent i are
correct according to the monitor. The monitor can be checked for this property

with the CTL formula, EF((A correct;) A AXcorrect;) “There is a cor-
i€ Agents
rectly reachable state where all the possible next states for an agent are correct.”

Although this check turned up no bugs in the PCI monitor specification, it is still

a worthwhile check. Like the dead state check, this check requires no creativity
or extra work.

The bus agents are assumed to be Moore machines in this paper but Bryant,
Chauhan, Clarke, and Goel define and describe inconsistencies for combinational
Mealy machine circuits in [11].

Results From Applying the Dead State Check to PCI This check proved
to be more effective in catching errors introduced in the monitor writing stage
rather than serious problems in the protocol itself. Specifically, the dead state
check pinpointed typos by the monitor specification writer, misinterpretations
by the monitor writer due to the ambiguous wording in the protocol text, and
exceptions to general rules not mentioned by the official specification. Because
this check proved to be effective in finding the exact intent of the requirement,
it proved indispensable for making the constraints precise. (See example below.)
Four bugs in the formal specification which were due to misinterpretation of
(arguably) ambiguous wording in the official documentation were found by dead
state checking. Furthermore, the test aids the specification writer in realizing
the boundary cases for general rules by demonstrating how a contradiction can
occur in special cases. Thus, the dead state check helps the specification writer
identify exceptions to the too generally-stated rules, which are not mentioned by
the official document. The dead state check discovered six such cases where the
monitor writer needed to refine the constraints to account for the special cases.

As an example of an ambiguously worded requirement which was misinterpreted
and thus caused a contradiction in the monitor, consider the following from sec-
tion 3.3.3.1: “IRDY# must remain asserted for at least one clock after FRAME#
is de-asserted” which seemingly translates to the constraint

1. prev(prev(frame)) A prev(—frame) — irdy

However, in section 3.3.3.2.1, it is stated that “the master must de-assert IRDY #
the clock after the completion of the last data phase.”

last_data_phase = —frame A irdy A (trdy V stop)
prev(last_data_phase) — —irdy
= 2. prev(—frame Airdy A (trdy V stop)) — —irdy

The conjunction of these two constraints causes a conflicting requirement on irdy
in the correctly reachable state where both antecedents are true: prev(—frame A
irdy A (trdy V stop) A prev(frame)). In the next state, the first constraint states
that irdy must be true and the second, irdy must be false. It was concluded
from guessing at the intention of the requirement that the first rule was mis-
interpreted and the correct interpretation of it is prev(frame) — irdy V frame
which admittedly is puzzling because this constraint doesn’t require the “one
clock after” part of the requirement.

3.2 Characteristic Check

Another more powerful debugging method is checking for specific properties,
or characteristics in the specification. These characteristics are mainly logical
statements about agent events. If the monitor is too constricting, certain agent
actions which should be possible will not be allowed by the monitor. This method
also catches loopholes in the specification which allow behavior that should be
illegal, and so completeness of the specification can be gauged. This debugging
method is not new but it furthers the case for formally specifying protocols and
more importantly, it found several bugs in the official PCI protocol standard.
These characteristics are expressed as CTL formulas and are checked against
the monitor using CTL model checking. It must be emphasized that the specifi-
cation constraints are simple, bounded, linear time properties and the checking
characteristics are more complex, unbounded, CTL formulas. This allows the
specification to be synthesizable and yet guarantee rich properties. One drawback
of this characteristic checking is that a user must come up with the character-
istic statements. They cannot be automatically deduced from the specification.
It is also subject to false error reports when the characteristics themselves are
incorrect.

Results From Applying the Characteristic Check to PCI 114 characteris-
tics were written in CTL and checked against the monitor-style PCI specification.
This checking method found sixteen bugs in the monitor which resulted from
errors in the monitor writing process, but more importantly, seven bugs in the
official standard were found by this method. For finding actual problems in the
official specification, this test proved to be more effective than the simple dead
state check. Here are some characteristics that exposed problems in the official
specification. These or similar characteristics are probably applicable for proto-
cols other than PCI and are considered general system properties that should
be checked for.

1. System Must Always, Eventually Return to the Idle State It is
reasonable to assume that the system should always be able to reset into the
idle state; if there are any deadlocks states which forbid this from happening,
checking for this characteristic should find such a problem. However, it is the
stronger property, “the system must always inevitably reset and go back to the

idle state” which found problems in the PCI protocol. This can be expressed in
CTLas AG(A correct; » -EG((N\ correct;) A —idle)) where idle is
i€Agents i€ Agents
defined as (—irdy A —frame). “If in a state where all agents have been correct
so far, then the system must eventually reach a state where all agents are still
correct and the bus is in the idle state.” This characteristic must be true for
the PCI protocol because only when the bus is idle, can a new agent start a
transaction. If the bus is never idle because one agent is constantly driving it,
this agent has effectively taken over the bus never allowing other agents to use
it. To avoid such a situation, the specification must force an agent to always,
eventually relinquish the use of the bus as a master and let the bus state be idle.

o

0 frame

Fig. 5. A non-Idle State

There are three legal ways the PCI protocol allows an agent to not relinquish
the bus. Essentially in all three cases, frame is deasserted while irdy is asserted
by the agent (Figure 5). An agent can keep the bus in this state because of the
following. There is a timer counter which counts the number of cycles frame has
been asserted and when it exceeds a preset value, the specification requires the
agent to deassert frame. Thus, the protocol intends to limit one agent’s use of
the bus by observing the assertion of frame. The protocol’s shortcoming is in
not recognizing that in an irdy A —frame state, —~frame keeps the timer counter
deactivated but irdy keeps the bus non-idle.

1. From an idle state, the protocol allows an agent to assert ¢rdy and remain in this
non-idle-bus state (irdy A —frame) forever. (Figure 5)

2. During the data phase of a single data phase transaction, frame is deasserted and
irdy is asserted. If a target doesn’t respond with a trdy or a stop, the agent can
remain in this non-idle-bus state forever.

3. During the last data phase of a transaction, frame is deasserted and irdy is asserted.
If a target doesn’t respond with a final ¢trdy or a stop, the agent can remain in this
non-idle-bus state forever.

2. Definitions are Disjoint Protocols allow an agent to communicate to other
agents abnormal terminations when a transaction cannot be carried out. Usu-
ally, there are several different types of terminations and an agent asserts and
de-asserts different bus signals to indicate which termination type it is exe-
cuting. For example, in PCI, one termination type, target_abort is defined as
target_abort = —devsel A stop and another type, a retry as retry = stop A
—trdy A initial_data_phase in section 3.3.3.2 of the documentation. The other
agent involved in the transaction, namely the master agent, must react differ-
ently to each target termination type, so the ability to identify a termination
type uniquely from the signals of the terminating agent is important. We can
check whether these terminations are distinct by checking the CTL formula
AG-((AN correct;) A target_abort A retry), (“There is never a state where
i€ Agents

the specification holds and target_abort and retry are signaled simultaneously”)
which reveals that there is a correctly reachable state where —trdy A stop A
—devsel A initial _data_phase holds, which is consistent with either retry or tar-
get_abort. Therefore, the protocol allows an agent to signal both termination
types simultaneously. If the PCI protocol had been originally written in a for-
mal form and tested for this characteristic, this ambiguity in the protocol could
easily have been found and resolved before the protocol became a public stan-
dard.

3. Termination Types Should Not Change During a Single Transaction
The third characteristic checks whether termination types can change during one
transaction. For example, it checks whether an agent can signal a target abort
in one clock cycle and then a retry in the next clock cycle before the transaction

ends. Amazingly, checking the property AG-((A correct;) A target_abort A
i€Agents
EX((A correct;) Aretry) (“This never happens: the specification holds so
i€Agents
far when a target abort is signaled, and there is a possible next state where the

specification still holds and retry is signaled”) reveals that PCI allows this. It is
ambiguous, for example, how the master agent should be implemented to react
to a target which signals a target abort which indicates that the target is not
capable of handling the requested data but then, signals a disconnect with data
which allows the target to transfer data.

4 The Receptiveness Proof

00, 01, 02, 03
correctO, ..., correct3

The monitor isaMealy
machine with OO, ..., O3

as inputs and the correct signals
as outputs.

Fig. 6. A Mealy Machine

A Mealy machine has its inputs and its outputs on its edges; the output is not
associated with a state as with Moore machines. A monitor is a Mealy ma-
chine because in order to determine the output correct; values, a combinational
function on the input observed signals and internal state variables is sufficient
(Figure 2, 6).

correctMe Moni
1 Er onitor env
correctEnv — @
1
to env
3)
from env.

Fig. 7. One Agent and the Environment

One can view the system of agents such that one agent is an object of interest
and the other agents form its environment. Using the same monitor, we now have
outputs correct,,. for the former and a correctey, for the latter. (correct,,. can
be a particular correct; and correct.,, would be a logical conjunction of correct;
for i # j.) (Figure 7) This setup can be viewed as a game between the agent of
interest, me, and the environment, env. Agent me and env output signals in a
locked synchrony, and do not alternate driving an output. It is deemed that as
soon as env breaks a specification rule (correcte,, becomes false), me has “won”
and the monitor’s correcty,. value will remain true regardless of me’s outputs.
This is a reasonable restriction because an agent should not be required to uphold
the specification if the environment has fed it illegal inputs. It will be proven
that if two requirements hold for the specification of the system, it is guaranteed
that a Moore machine K exists where no matter what the environment outputs
to it, K will always output signals that will keep correct,,. true; K implements
the specification. With such a K, the environment will never be able to force K
to output an illegal sequence.

The first requirement on the monitor is the output separability rule (section 2.3)
which is restated here as “the function which determines correct; must only be
a function of the current state of the monitor machine and the current output
of agent i, and not the current outputs of any other agent.” The information
of the output values of the other agents is incorporated into the next state of
the monitor machine. The second requirement is that there are no dead states
(section 3.1) for agent me in the monitor. For every correctly reachable state of
the monitor, there is at least one transition out of that state with the correct,,.
on the edge as true.

Theorem 1. If a Mealy machine monitor, M, which obeys the following require-
ments exists for some specification, then a Moore machine implementation for
the single agent me is guaranteed to exist. The restrictions are,

1. The monitor must not have any dead states for agent me.

2. The monitor must observe the output separability rule.

And it is assumed that once the environment breaches the specification, correct, .
is infinitely true.

Proof Sketch: Because of assumption 2, a correct output for the agent can
be determined at every state independent of the current input. Assumption 1
guarantees the existence of a correct output for me for every correctly reachable
state.

Proof: Please see Appendix A for the full proof.

If one views this system once again as a multiple agent model (Figure 1), an
interesting corollary can be deduced from Theorem 1.

Corollary 1 : A Set of Implementations Exist for a Specification If a
Mealy machine monitor, M, which obeys the following restriction exists for some

specification, then a set of Moore machines which implement the specification is
guaranteed to exist. The restrictions are,

1. The monitor does not have any dead states for all agents in the specification.
2. The monitor observes the output separability rule.

Proof Sketch Apply theorem 1 to each agent in the specification and the theo-
rem guarantees a correct implementation of all agents. Since the theorem guar-
antees specification compliance, independent of the inputs to the agent, the
agents can be implemented independently and be guaranteed correctness when
composed together.

An implementation can always choose the left branch in the COFP&QQO”EH
specification to avoid the dead state. Receptiveness nor
disallows such illusory freedom in the specification.

Fig. 8. How even with Dead States in the Specification, an implementation can exist

Corollary 2 : Receptiveness A monitor specification is defined to be recep-
tive [9] if for every correctly reachable state in the monitor, there exist agent
implementations, when connected to each other and to the monitor, can cause
the monitor to reach that state.®> Receptiveness ensures that there is no illusory
freedom in the specification. For example,

prev(a) — outy V outy
prev(out;) = —c
prev(out;) — ¢

outg and out; are outputs of one agent and so the agent can always choose to
assert outq instead of out; to avoid the inevitable error state caused by asserting
out; (because of the last two constraints). Thus, even with a dead state in the
specification, there exists an implementation; this example illustrates how the
absence of dead states is not a necessary condition for Theorem 1. Receptive-
ness is a tougher condition to satisfy than implementability, and ensures that
there is no illusory freedom in the specification such as “V out;” in the first con-
straint. Every correctly reachable state must have a correct next state in order
for receptiveness to hold for a specification.

A specification is receptive if

1. The monitor does not have any dead states for all agents in the specification.
2. The monitor observes the output separability rule.

3 Ed Clarke has also recognized the relevance of receptiveness to bus specifications, but proposes
using model checking algorithms that can check the property directly.

Proof Sketch : State s is a correctly reachable monitor state and the sequence
of correct agent i outputs {0}, 01, ..., 0!} which lead to state s is known for
Vi in Agents. These agents are individually constructed such that they output
this sequence. Thus, the set of agents can take the monitor to state s; it remains
to be shown that the agents implement the specification, namely, that their
outputs keep the correct;’s true. Up till state s, it is obvious that the agents
are correct because the output sequences were chosen along the edges where all
correct;’s are true. Such a sequence exists because s is correctly reachable. As
for after state s, there exists a next state s’ such that the transition from s to
s' is correct, because of assumption 1. The outputs along this transition can be
used for the agent implementations. Inductively, it can be shown that at each
step, a correct output can be independently chosen for all agents because of the
assumptions. Thus, the agents implement the specification.

5 Conclusion

The monitor-style specification of PCI consists of 83 rules. The entire description
file has 280 lines excluding comments. The specification covers almost all signal-
level requirements from section 3.1 to section 3.6 of the official 2.2 PCI speci-
fication documentation [2]. Bus bridges and 64 bit extensions are not included.
The PCI formal specification was fully debugged using the different checks in-
troduced in section 3. There are no dead states in the current specification and
all characteristics written, hold. Most of the model checking was done using
Cadence SMV [4] on a Pentium Pro system with 128M of memory where the
model checking runs took under 5 minutes and model checking the specification
was not a problem. The monitor-style PCI specification, written in Verilog, is
available at http://radish.stanford.edu/pci.

An obvious next step for this line of work would be to attempt specifications
of other interfaces, especially those with characteristics different from PCI, such
as pipelined busses. It is likely that different stylistic issues will arise, as well as
complexity issues. A second direction is to find additional uses for monitor spec-
ifications, to maximize their value. One possibility would be interface synthesis
for which work has been started by Clarke, Lu, Veith, Wang, and German [12]. A
more modest goal would be to extract don’t cares from the specification to aid in
optimizing a synthesizable description of an interface implementation. Another
possibility is to use the monitor as an activator which generates test vectors for
an implementation automatically from the monitor description, or as a checker
to measure testing coverage. This is to quantify the amount of testing that needs
to be done in order for the implementation to be considered thoroughly tested. A
third direction of interest is to develop better tools for debugging the specifica-
tion. For example, the dead state check is limited in that although it can return a
state description of the dead state, it cannot pinpoint the conflicting constraints.
The problem is exacerbated by the fact that any number of constraints can con-
tribute to an unsatisfiable specification. A greedy algorithm using satisfiability

on the constraints such that the conflicting requirements can be found, should
be developed for a more complete specification debugging tool environment.

Acknowledgements The authors will like to thank K. McMillan for help with Ca-
dence SMV, S. Berezin for help with CMU SMV, H. Kapadia for answering PCI ques-
tions, and our colleagues in the Gigascale Silicon Research Center (GSRC) for useful
feedback. This research was supported by GSRC contract SA2206-23106PG-2.

References

1.

2.

10.

11.

12.

M. Kaufmann, A. Martin, and C. Pixley. “Design Constraints in Symbolic Model
Checking” in International Conference on Computer-Aided Verification, 1998.
PCI Special Interest Group. PCI Local Bus Specification, Revision 2.2, December
18 1995.

J.R. Burch, E.M. Clarke, K.L. McMillan, and D.L. Dill. “Sequential circuit ver-
ification using symbolic model checking” in Proceedings of the 27th ACM/IEEE
Design Automation Conference, 1990.

K. McMillan. http://www-cad.eecs.berkeley.edu/~ kenmcmil /smv/.

P. Chauhan, E. M. Clarke, Y. Lu and D. Wang. “Verifying IP-Core based System-
On-Chip Designs” in Proceedings of the IEEE ASIC conference, September 1999.
E.M. Clarke and E.A. Emerson. “Synthesis of synchronization skeletons for branch-
ing time temporal logic” in Logic of Programs: Workshop, Yorktown Heights, NY,
May 1981 Lecture Notes in Computer Science, vol. 131, Springer-Verlag. 1981.
E.M. Clarke, E.A. Emerson, and A.P. Sistla. “Automatic Verification of Finite-
State Concurrent Systems Using Temporal Logic” in ACM Transactions on Pro-
gramming Languages and Systems 8(2):244-263, April, 1986.

A. Mokkedem, R. Hosabettu, and G. Gopalakrishnan. “Formalization and Proof
of a Solution to the PCI 2.1 Bus Transaction Ordering Problem” in Proceedings of
the Second International Conference, Formal Methods in Computer-Aided Design,
1998. Lecture Notes in Computer Science, vol. 1522, Springer-Verlag.

D.L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
independent Circuits, MIT Press, 1989.

G.S. Govindaraju and D.L. Dill. “Counterexample-guided Choice of Projections
in Approximate Symbolic Model Checking” in Proceedings of IEEE International
Conference on Computer Aided Design (ICCAD), 2000. (under review).

R.E. Bryant, P. Chauhan, E.M. Clarke, and A. Goel. “A Theory of Consistency for
Modular Synchronous Systems” in Proceedings of the Third International Confer-
ence, Formal Methods in Computer-Aided Design, 2000. (under review).

E.M. Clarke, Y. Lu, H. Veith, D. Wang, and S. German. “Executable Protocol
Specification in ESL” in Proceedings of the Third International Conference, Formal
Methods in Computer-Aided Design, 2000. (under review).

6 Appendix A

A proof of the Theorem stated in section 4.

Proof: The monitor, M, can be characterized as
follows.

Inputs : Ing = I X O

Outputs : Onr = correctme X correctens

Start State : q%; € Qum

States : Qs

Transition function, das : I X O X Qv — Qum
Output function, AT;® : I X Qar — {true, false}
Output function, A57" : OXQnm — {true, false}

The states are characterized by vectors of in-
ternal history variables. Thus, if ho,h1,...,hn
are the history variables, state ¢, of Qs is de-

scribed by the values of (hj, h%,...,h%).

1. If the agent commits an illegal action while
the environment is still correct, the monitor en-
ters and stays in a state where no matter what
the observed signals are, correctme s false and
correcteny 18 true. Furthermore, this state is
entered only when this particular event hap-
pens. “Once the agent makes a mistake, the en-
vironment wins.”

For Vi € I,Yo € O,Vq € Q,
v (0,q) = false AA37Y (4, q) = true
(i, 0,q) = qmeErraT

meError

and for gy, , for Vi € I,Vo € O,
N (0, 55°5777) = False,
Aenv(z q}\n/}eError) = true

Thus, consequgntly, for Vi EEI, Yo € O,
801 (i, 0, g ETTET) = gmeError

2. “Once the environment makes a mistake, the
agent wins.”

For Vi € I,Vo € O,Vq € Q,
Asr ' (i, q) = false A ATy (0, q) = true
= (4, 0,q) = qSPvETTOT

meError

and for qf; , for Vi € I,Vo € O,
ASRY (i, qenuErrcr) = False,
AT (O’QEMEMM) — true

Thus, consequently, for Vi € I,Vo € O,
(SM(Z o, qenvErra'r-) — qenvEr'r'or

3. When both the agent and the environment
make a mistake at the same time.

For Vi € I,Vo € O,Vq € Q,
AszV (i, q) = false A AT (0,q) = false
> Snli0,q) = ¢othEmor

and for ¢meErmoT for Vi € I,VYo € O,
ASRY (i, qbothErrar) = false

)\m"‘(o qbathErrar) — false ’

Thus, consebqus%tly, for Vibe ;{I,EVO € 0,
6M(Z O,q ot rror — q]\;t rror

4. The monitor does not cause “dead states”

for the agent. “As long as the agent has been

correct so far, there always exists a legal action
for the agent.

For Vg € Q — {qB™™" ¢
Jo € Osuch that A;°(0, q) = true

bothE'rrar}

Given such a specification M, the construction of
the implementation, K, can be done as follows.
Let the characterization of Moore machine K be

Inputs : I Outputs : O
Start State : qO States : Q
Transition function, § : I X Q — Q
State labeling function, A : Q — O

Let Q be of the same type as Qaz. Thus, if hg, h1,
, hn are the history variables of the monitor,

K has the same history variables and state q" of

Q is described by the values of (hg, hY, ..., h;,).

Construction

Basic Idea : Start with the same initial state as
the monitor. Use the monitor’s correct func-
tions, Ay;° to determine the outputs at each
state. The transitions are determined by the in-
puts, outputs, and the current state wusing the
monitor’s transition function.

0. Initially, Q is empty. Q=0
1. Let initial state ¢° = q%,. Add ¢° to Q.
0

2. For ¢°, o0 such that,)\ﬁg‘(oo, q°) = A75% (00, 43)
= true. (because of property 4 of the monitor,
step 1 in the construction, and qM # q’"EE"”’T,
g8gthError) Let A(¢°) = oo and define transi-
tions for all possnble inputs. 6(1, q°) = 6 (4, 00, ¢°)
for Vi € I. If 6(i, ¢°) is not in @, add to Q.

Any new addition to Q, q', is guaranteed to be a
member of Qps because

i) if ¢ € Qum and ¢' = 6(4, ¢), for some i € I,
then ¢’ € Q because ¢' = dap(i, 0, q) for some
0 € O and 6 (4, 0, q) is defined for all ¢ € I and
o€ O forq€eQum.

i) ¢° € Qum-

Thus, by induction on i) and ii), for Vq,q € Q =
g € Qum . [property a]

Furthermore, because dpr(i,0,q) = gpeZ7m",

g{othEToT only for o such that AT° (o, q) = false
(due to property 1 and 3 of the monitor), for any
meBError bothError

new addition to Q, ¢', ¢’ # ajy » dnr
[property b]

3. For every newly added ¢ € @, pick o € O such
that AT;°(0, q) = true and let A(q) = o. (because
of property 4, property a, and property b, it is
guaranteed that such a o exists.) and for every
i € I, define §(i, q) such that §(4, ¢) = drm (4, 0, q)
and if §(4, ¢) is not in Q, add to Q.

4. Iterate back to step 3 and stop when no new
q is added to Q.

Thus,
° Q C QM ° qmeE'r"ro'r qg;thEr'r*or ¢ Q

e Vg€ Q,A(g) =0 = Ay (0,q) =true
And so, K implements the specification M.

