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Abstract

We present a novel surface reconstruction approach for generating
surfaces from animated particle data, targeting temporally coherent
surface reconstruction that can also approximate smooth surfaces
and capture fine details. Our beta mesh algorithm uses the union
of balls as a building block to reach temporal coherence. First we
construct mesh vertices from sphere intersection points, and declare
faces on the spheres surface guided by connectivity intelligence
derived from the alpha mesh. Then we smooth the beta vertices
positions to reflect smooth surfaces, and subdivide the mesh using
weighted centroids. We also highlight the strengths and weaknesses
of the related alpha mesh for animation purposes, and discuss ways
of leveraging its qualities. Open issues are discussed to outline what
is still lacking in order to make our algorithm a ready-to-use sur-
facing technique. Nevertheless, we advocate using the beta mesh
approach in future surface reconstruction research to benefit from
its unique properties.

Keywords: Temporal coherence, particle skinning, surface re-
construction, alpha shapes, union of balls, particle simulation, la-
grangian simulation, fluid simulation, surface smoothing.

1 Introduction

Fully three-dimensional liquid animation using physics-based sim-
ulation is now common in feature film, and is becoming attractive
for interactive applications. We focus on the geometric problem
of tracking, capturing, or reconstructing the surface of the liquid
throughout a free-surface liquid simulation.

We present exploratory work in the area of surface reconstruction
from particle fluids, both identifying an issue (temporal coherence)
which has yet to be thoroughly addressed, and proposing new al-
gorithms which bring us closer to a solution. We assembled a con-
vincing algorithm for 2D, and made progress in extending it to 3D,
while at the same time realizing new ideas will still be required
to fully address the challenges in 3D. In particular, we mean by
“temporal coherence” that we want the geometry to change contin-
uously in time w.r.t. the motion of the underlying particles, even
if the topology of its tessellation may discretely change arbitrar-
ily. The challenge we directly address is producing continuously
varying geometry despite the underlying topology used in the con-
struction algorithm changing abruptly in time.

Two classes of surfacing methods dominate the field of fully three-
dimensional free-surface liquid animation: implicit Eulerian meth-
ods and particle-based mesh-free methods. In the latter, also known
as Lagrangian methods, the liquid volume is sampled by particles
which are advected in space by the governing equations. From the
beginnings of liquid animation, these methods have been popular
due to various advantages such as inherent mass conservation and
ease of implementation. Note that we exclude heightfield methods,
very commonly used for ocean surfaces among other things, as be-
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ing 2.5 dimensional – here displacements applied to an underlying
surface mesh already work extremely well.

Particles fill the liquid volume roughly uniformly, generally with
some level of irregular sampling depending on the underlying sim-
ulation algorithm. The particles move by physical laws and hence
follow smooth trajectories (up to discretization limitations), can
form varying topologies through splitting and merging, and evolve
into smooth surfaces as well as fine features of various kinds.

SPH is a popular Lagrangian approach successfully used in
Computer Graphics to simulate a wide range of phenomena and ap-
plications, such as free surface flow [Müller et al. 2003], two-phase
flow [Müller et al. 2005; Solenthaler and Pajarola 2008], bubbles
[Hong et al. 2008], porous flow [Lenaerts et al. 2008], and even
viscoplastic solids [Desbrun and Cani 1996; Becker et al. 2009].
FLIP has also been a popular choice in recent years for
simulating different phenomena such as water and sand
[Zhu and Bridson 2005], smoke [Schechter and Bridson 2008],
and multi-phase flow [Boyd and Bridson 2012]. Particle-based
methods such as these do not guarantee homogenous distribution
among particles. In typical “weakly compressible” SPH the
stiffness of the Equation of State relating pressure to density
determines the level of compressibility, which is reflected in
sampling variations, as well as small-scale irregularities inherent in
the kernel-based smoothing approach and sometimes artifacts such
as clustering. FLIP enforces the fluid velocity incompressibility
on the scale of a background grid, but lacks a built-in mechanism
to control how particles are spread in the domain at a sub-grid
resolution; FLIP is also robust to quite irregular distributions
which is sometimes exploited deliberately by increasing particle
sampling in a thin shell next to the surface. Moreover, in both of
these techniques, once the liquid starts splashing and forming thin
features, or interacts with solid walls, the particles are likely to be
unevenly distributed in the domain.

The last step in such a simulation pipeline is rendering the liquid
surface reconstructed from particles to form a realistic animation.
Creating a surface representation from the particles is necessary to
use standard rendering techniques. Moreover, representing the sur-
face as a mesh, that presumably forms a tessellation of a smooth
limit surface, is more amenable to further geometric processing,
rendering with displacement textures, specular reflection and re-
fraction, motion blur, etc.

The crucial surface characteristics we aim for can be classified in
two groups. The first family of properties is related to the fluid
geometry at an instant in time. We desire smooth liquid surfaces
(particularly apparent in specular reflection or refraction), as well
as the maintenance of interesting details, such as ripples, droplets,
tendrils, and thin sheets. These properties have been the focus
of sustained research throughout the years, and is relatively well-
explored even if still under-appreciated in the academic graphics
research community. The second family of properties relates to the
temporal coherence of the animated surface. We want the surface
to evolve smoothly in time while performing natural fluid merges
and splits, and avoiding any pops or jitters that reflect surfacing
limitations. Opposed to the spatial surface properties, the temporal
property has had very little attention in related research, and is the
primary focus of our work.

We here propose a surfacing technique dubbed the “beta mesh”, for



skinning particles in a temporally coherent manner, while attempt-
ing to capture smooth surfaces and fine features. At present it does
not quite achieve all goals, but we believe it introduces some tech-
niques worthy of further study and shows promise in many common
scenarios.

Two prior surfacing techniques which inspired our work are es-
sential building blocks. The union of balls introduced in the
early stages of computer graphics research, is totally faithful to
particle positions, and hence evolves smoothly in time. How-
ever only in an infinitesimal limit it can capture the flatness of
the surface, and in a standard simulation flow the surface will
have spherical bumps. The alpha shape [Edelsbrunner et al. 1983;
Edelsbrunner and Mücke 1994] is a dual form of the union of balls
[Edelsbrunner 1993], can be directly converted to a mesh form, the
alpha mesh, by keeping vertices and connectivity, and replacing
arcs with edges. The alpha mesh can reproduce flat surfaces de-
spite irregularity in particle sampling, and in fact no other method
known to us can do it similarly. On the other hand, the alpha mesh
lacks temporal coherence as we will explain later: moving a set of
vertices in the mesh by an arbitrarily small amount can cause an
edge flip in a non-planar region, thin features can connect and dis-
connect from one step to the next, and new vertices can appear or
disappear from the mesh in a nonsmooth manner.

The beta mesh algorithm attempts to benefit from the best prop-
erties of these two techniques. While we define it in terms of the
union of balls, and thus inherit many of the good properties of the
union of balls, our algorithm for construction is based on the alpha
mesh, making use of duality. We also include a temporally-coherent
smoothing post-processing operation which admits a temporally-
coherent and spatially smooth limit surface, potentially of use to
other constructions.

Our beta mesh technique is not fully resolved yet. While in 2D it
clearly demonstrates the desired properties, our 3D implementation
still requires further research in order to meet our goals. In 3D the
beta mesh has a lot more topological problems. The bigger chal-
lenge is the definition of beta faces: while it is unambiguous in 2D
and moreover provides a unique transversal on the alpha mesh ver-
tices, in 3D ambiguity is present, especially on thin sheets, surface
holes, and their stitching to the fluid volumetric parts. The con-
struction can reveal beta faces that are not connected at all, or are
not connected in straightforward way, which makes the mesh design
very challenging. This also leads to difficulties in post-processing
tasks such as expanding the beta mesh volume to include all the
alpha mesh vertices. In addition, thin features such as tendrils, rep-
resented in the alpha mesh as degenerate edges (i.e. with no trian-
gles), do not have a representation in the beta mesh in its current
form.

2 Related Work

Since the introduction of particle systems, direct particle render-
ing has always been a popular choice for certain applications
[Reeves 1983; Sims 1990]. In the context of liquids, this is ap-
propriate for spray or foam, but for smoother, more coherent liquid
surfaces — especially with reflection and refraction effects — this
is a nontrivial undertaking.

The union of balls algorithm wraps each particle in a sphere of a
given radius. Given smooth particle trajectories, the outer surface
of the union of balls also changes smoothly in time as it is entirely
faithful to particle positions. However by construction it cannot rep-
resent flat surfaces other than in the theoretical limit of infinitesimal
particle spacing, and with nonzero spacing the surface suffers from
kinks (discontinuous normals) at the intersection between overlap-
ping spheres.

To the best of our knowledge the union of balls representation has
not been directly used for rendering, however it is often used as a
guide in various contexts, e.g. cell fraction computation in MAC
grids for accurate pressure solves [Batty 2010], clipping a Voronoi
diagram of the particles [Sin et al. 2009], and determining the
signed distance field in a one phase flow [Foster and Fedkiw 2001]
and a two phase flow [Boyd and Bridson 2012].

The foundational algorithm for smooth surface reconstruction from
particles was introduced by Blinn [Blinn 1982]. A summation of
Gaussian density distribution functions is used, resulting in a sur-
face that is often called “metaballs”, or “blobbies”, since it gener-
alizes balls. It too is temporally coherent, but while the surface is
smooth (in fact, with Gaussians, it is infinitely differentiable) it has
a hard time simultaneously approximating flat surfaces and thin fea-
tures. Typically there is no middle ground between bumpy “cottage
cheese”-like reconstruction and overly “blobby” but smooth recon-
struction which loses features. Blinn’s approach has been the basis
for various later works which attempt to overcome this difficulty.

Edelsbrunner et al. [1983] introduced the alpha shape in 2D, which
was extended to 3D later on [Edelsbrunner and Mücke 1994]. Its
associated mesh captures flat surfaces exceptionally well, and pro-
vides an extremely sharp and detailed reconstruction of tendrils and
thin features. However, it does not transition in time smoothly,
which is critical for surfacing simulation data. Edelsbrunner et al.
[Edelsbrunner 1993] demonstrated its properties as the dual form
of the union of balls, which is of particular interest for us, raising
the question of how the good properties of the union of balls and
the alpha mesh can be merged in a single algorithmic framework.

Solving for an implicit levelset function without re-initialization
has been used in [Premože et al. 2003] to reconstruct the surface.
Avoiding levelset re-initialization helps to get smooth transitions,
however may deviate in time from the real surface due to numeri-
cal errors. Moreover the surfacing computation time in this method
was significantly more than the actual simulation time, which is un-
desirable, and constituted a time-dependent problem in itself ruling
out the possibility of parallel reconstruction across all frames inde-
pendently.

Several works in the past decade focused on improving the surface
smoothness in direct surface reconstruction from particles. Müeller
et al. [Müller et al. 2003] defined the surface as an isosurface of a
scalar field that is smoothed using an isotropic kernel. Zhu and
Bridson [Zhu and Bridson 2005] used an implicit function of dis-
tance to a sphere, replacing the actual position and radius with a
computed weighted sum position of nearby particle centers, and a
weighted sum radius of particle radii. The distance function is then
sampled on a grid, a smoothing pass over the grid is performed, and
an isosurface is then extracted from the grid. Their results are con-
siderably smoother than the classic blobby spheres surface when
extracting detailed features. Adams et al. [Adams et al. 2007]
refined the algorithm by tracking the particle-to-surface distances
over time, and using it in the weighted distance to sphere equa-
tion. They experimented with their technique on adaptively-sized
particle radii, as well as on homogenous radii. Further improve-
ment was introduced by Yu and Turk [Yu and Turk 2010]. They
detect the anisotropy direction of particle positions by performing
a Principal Component Analysis over the covariance matrix of par-
ticle neighborhood. Then they perform a smoothing step that re-
positions the centers of these smoothing kernels. Compensating for
the anisotropy in the flow significantly reduces the surface bumpi-
ness. The above direct surfacing from particles improve the re-
constructed surface smoothness, however none of them enforces or
handles the temporal coherence requirement.

An alternative approach for surface reconstruction was proposed



by Williams [Williams 2008]. A nonlinear optimization problem
is solved iteratively to achieve optimal smoothness for the surface
mesh, while constrained to lie between two union of balls sur-
faces of different radii centered at the particles. Bhatacharya et
al. [Bhatacharya et al. 2011] introduced a variant of this technique
using level sets rather than meshes. Perfectly flat surfaces can be
generated using these methods under certain conditions, however
some drawbacks are present. First, small changes in particle posi-
tions may lead to quite large surface changes since the optimization
is global and only geared towards surface flatness. As a result there
is no guarantee on reaching smooth transitions of the surface in
time.

Another group of works deals with surface reconstruction from a
point cloud, e.g. Alexa et al. [Alexa et al. 2001]. We believe
that these works face different challenges than ours. While they
deal with denoising point positions in order to construct proper ge-
ometry, our objective is in some sense opposite. In our case the
particle positions are the ground truth, and our goal is to stick to
it while constructing a surface surrounding them in the best way
and conforming to certain requirements. On the other hand, some
tools and techniques are common to the two classes of surfacing
problems. We would like to highlight three works from this group
that are of a particular relevance to our work. Bernardini et al.
[Bernardini et al. 1999] build a manifold subset of the alpha shape
similar to our alpha mesh construction, but they do it incrementally.
Amenta et al. [Amenta et al. 2001] approximate the medial axis and
its inverse and then compute the surface that lies between them. The
power diagram used in their construction is closely related to the al-
pha mesh that we use. Tam and Heidrich [Tam and Heidrich 2004]
compute the dual shape of the weighted Delaunay triangulation,
extract singular points, and triangulate guided by the dual shape tri-
angles. The Delaunay dual shape is in fact the alpha mesh, which
drives the triangulation of both their technique and ours. Neverthe-
less several major differences are present. First, our main purpose
is processing data originating from an actual particle simulation,
and addressing the temporal coherence requirement. This poses
new challenges in our case, particularly in the interpretation of thin
sheets of different kinds, and dealing with unique geometrical lay-
outs of fine simulation features that are not likely to be present in a
given well defined geometry. We cannot fill in gaps in the particle
data to compensate for poor distribution sections, and our algorithm
needs to handle such segments robustly. In addition we aim pro-
ducing a smooth limit surface that approximates the liquid’s natural
smoothness, and yet providing a proper geometrical representation
for degenerate alpha simplices.

3 The Algorithm

3.1 Overview

We assume we are in d-dimensional Euclidean space: points can
be drawn from R

d, and the distance between points is the usual
Euclidean distance. We are most interested in d = 3, but the case
of d = 2 is also instructive.

A closed ball of radius r centered on a point p is the set of points
within distance r of p: {x : ‖x− p‖ ≤ r}.

The open ball is where the distance is strictly less than r: {x :
‖x− p‖ < r}.

The open ball is the interior of the closed ball.

The points at distance exactly r from p form the boundary of the
ball (whether open or closed).

For the following we will assume a set of n special points {xi}
n
i=1

which we will call particles. For our application these will in fact
be fluid particles from a simulation.

An empty ball is an open ball with no particles in its interior.

The union of balls of the particles is the union of n closed balls
centered on each of the particles. It defines a surface around
the particles that is temporally coherent, but cannot characterize
flat surfaces. The balls have the same radius r, which is fixed
ahead of time and is correlated with the particles typical spacing dx.

The algorithm proceeds in three steps: the alpha mesh construc-
tion described in Section 3.2, the alpha graph processing described
in Section 3.3, and the beta mesh construction described in Section
3.4. Each of these sections includes an overview/definitions subsec-
tion that provides mathematical definitions and algorithm overview,
and a detailed algorithm subsection that discusses the practical im-
plementation in 3D, provides 2D/3D illustrations, and outlines a
pseudocode of the algorithm or parts of it.

3.2 Alpha Mesh

3.2.1 Alpha Mesh - Overview and Definitions

The alpha shape for a set of vertices S = {xi}
n
i=1 is a subset of

vertices and arcs connecting them, s.t. every arc is part of a closed
ball that contains d vertices of S and its open ball form is an empty
ball. It may be easier to think of it as the complement of the union
of all empty balls.

We say a particle is an alpha vertex if it appears on the boundary of
the alpha shape.

We will from now on assume the alpha vertices are in “general po-
sition”. In particular, we will assume:

• no two alpha vertices are coincident,

• no more than d may lie on the boundary of an empty ball
where d is the dimension of the space, and

• for each set of d alpha vertices, if there is any ball whose
boundary contains them then the center of the ball cannot be
on the (hyper-)plane through the alpha vertices.

The first and last assumptions imply that if d alpha vertices appear
on the boundary of a ball, they appear on exactly two such balls
— one on each side of the plane through the alpha vertices, corre-
sponding to the two possible normal vectors for the plane. Using
some variation of the right-hand-rule, we can similarly associate
each of the two balls with one of the two orientations of the d alpha
vertices.

The alpha mesh is an oriented mesh formed on the alpha vertices,
with simplex facets (triangles in 3D) corresponding to the ball-
shaped sections on the boundary of the alpha shape. More pre-
cisely, an oriented facet of d alpha vertices appears in the alpha
mesh if they appear on the boundary of an empty ball, and in fact
the unique ball associated with the oriented facet as above is empty.
The normal of the face points towards the center of that empty
ball, or in other words is an outward-pointing normal. See Fig-
ure 1 for an illustration of the alpha shape and the alpha mesh, or
[Edelsbrunner et al. 1983] for more illustrations.

Note that there may be degenerate simplices in the alpha mesh that
are not part of any facet: maximal collections of d − 1 or less ver-
tices which appear on the boundary of an empty ball. These are
not naturally oriented, or can be thought of as appearing with all
possible orientations. An isolated vertex is not connected to any
other vertex. In particular, every closed ball containing the vertex



(a) (b)

Figure 1: Alpha Shape and Alpha Mesh. Particles are shown in
black dots. (a) Alpha shape (blue). (b) Alpha mesh (back): alpha
shape arcs were converted to edges.

is empty of other particles. An isolated edge in the alpha mesh is
a pair of alpha vertices distance r or less apart for which every ball
containing them is empty of all other particles.

3.2.2 Alpha Mesh - Algorithm Details

Our algorithm runs through all the particles in the set. For for ev-
ery particle and for every ordered pair in the set within specified
distance from the particle, it examines the circumscribing sphere of
the ordered triplet. If no other particle in the set is contained in the
sphere it declares the ordered triplet as a triangle in the mesh. A
pseudocode for the alpha mesh construction in 3D is given in Al-
gorithm 1, and the circumscribing sphere criterion is described in
Algorithm 2.

Algorithm 1 Alpha mesh construction

Input: set of particle positions P = {pi}, radius r
Output: set of triangles T = {ti}

1: for all pi ∈ P do
2: let Ni = {p

′
i} s.t. p′

i 6= pi, dist(p
′
i,pi) <= 2r

3: for all pair pj ,pk ∈ Ni s.t. pj 6= pk do
4: (succeeded, c) = build sphere(< pi,pj ,pk >, r)
5: if succeeded then
6: if dist(p, c) > r ∀p ∈ Ni \ {pj ,pk} then
7: t =< pi,pj ,pk >
8: T ← T ∪ {t}

Algorithm 2 Build circumscribing sphere

Input: triplet < x0,x1,x2 >, radius r
Output: flag succeeded, center c

1: n = (x0− x1)× (x1− x2)

2: radiusx = dist(x0,x1)dist(x1,x2)dist(x2,x0)
2‖(n)‖

3: if radiusx > r then
4: return false
5: else

6: α = dist(x1,x2)2((x0−x1)·(x0−x2))

2‖n‖2

7: β = dist(x0,x2)2((x1−x0)·(x1−x2))

2‖n‖2

8: γ = dist(x0,x1)2((x2−x0)·(x2−x1))

2‖n‖2

9: l = αx0+ βx1+ γx2

10: t =
√

(radiusx
2 − r2)/‖n‖2

11: c = l+ tn
12: return true

Our algorithm does not rely on a Delaunay triangulation
preprocess like Edelsbrunner’s original alpha mesh algorithm
[Edelsbrunner et al. 1983; Edelsbrunner and Mücke 1994]. This
leads to several advantages:

• Our algorithm runs in O(n) computation time where n is
the number of particles, assuming reasonably well-distributed
particles. The overhead of the full Delaunay construction is
avoided, which takes O(n log(n)) or even worse with 3D thin
tendrils particle data.

• Our method is trivial to parallelize: any triple can be tested
independently of the other triples.

• We find the degenerate parts of the alpha mesh that are missed
in the obvious Delaunay construction, and hence can directly
address them.

The choice of the search radius has a critical impact on the re-
sulting alpha mesh, as was illustrated in Edelsbrunner’s work
[Edelsbrunner and Mücke 1994]. A value that is too small may
fail connecting relevant geometry parts, a value that is too big may
wrongly inflate concave surface areas. Here it also influences the
alpha graph and beta mesh derived from the alpha mesh, see the fol-
lowing Section 3.3 and Section 3.4. In our experiments we used
r = 1.5dx where dx is the typical particle spacing, however more
tests are required to reach best utilization of our mesh construction.

The local nature of our algorithm however causes sensitivity to
rounding errors that may result in an invalid mesh, which is elimi-
nated in the original Delaunay-driven alpha mesh construction. An
illustrating example is 4 particles that form a square of dx edge
length. All or none of the triangles may be added to the alpha mesh,
instead of adding precisely two triangles that share a diagonal. An-
other example is a very dense cluster of particles: our construction
may miss a dense triplet triangulation, causing an opening in the
cluster’s outer surface. To avoid such problems we validate the al-
pha mesh using a simple edge count test: every oriented edge in the
mesh must have a pair edge in an opposite direction. If the check
fails we perturb the particle positions by a small tolerance and re-
run the alpha mesh construction. On the vast majority of the frames
that we processed a single alpha mesh pass was used, and only a
few required re-running the algorithm once more.

We call attention to several special cases in the alpha mesh struc-
ture. A thin layer of fluid that forms a fairly flat sheet of particles,
namely a thin sheet, is a common scenario that causes degener-
acy in the mesh. The alpha mesh representation of a thin sheet in
3D is a double-sided sheet of triangles, clamping the fluid parti-
cles on both sides. Each oriented triangle in the thin sheet has an
associated triangle with the opposite orientation: this pair forms a
double-sided triangle. We highlight that the alpha mesh represen-
tation of thin sheets is unique, due to the thin and fairly flat surface
that is formed. In contrast the union of balls technique produces a
bumpy surface in this case. Double-sided triangles may be present
in other scenarios as well, such as when shared between two tangent
fluid bubbles. The 3D degenerate simplices that are not included in
the alpha mesh are isolated particles and isolated edges; currently
we collect those particles into a set of external particles and render
them as spheres.

3.3 Alpha Graph

3.3.1 Alpha Graph - Overview and Definitions

We can impose a manifold-like adjacency structure on the d-
simplex faces of the alpha mesh. Consider two faces with d − 1
alpha vertices in common, and look at all faces incident on that
d − 1 simplex: they may be sorted radially by angle around the
common d − 1 simplex. The two faces are adjacent if no other
of the co-incident faces appears radially between them, where be-
tween is defined as the outward radial section or between where
their normals point.



Figure 2: Triangles Order in Alpha Face Construction. The order
between triangles that share an edge is determined by the signed
volume of the tetrahedra, or equivalently by the dihedral angle be-
tween two triangles. This sorting guarantees that faces do not in-
tersect.

Figure 3: Alpha Graph Example. An illustration of the alpha
graph of a thin sheet. Alpha mesh is presented in gray trian-
gles/dots, triangle orientation is highlighted in white. v1 partic-
ipates in two faces: the front face and the back face, both con-
sist of six triangles. The front face around v1 is the order set
{t1, t2, t3, t4, t5, t6}; it is a closed face. The faces around vertices
v2-v7 are open faces. v2 for example participates in two faces: one
on each side, each consists of two triangles, the front face is the
ordered set {t1, t6}.

We structure the alpha graph information in graph faces, each com-
posed of an alpha vertex and an ordered set of d-simplices. The
graph faces do not intersect each other by the construction de-
scribed above, other than when two simplex boundaries overlap.
An alpha vertex can impose more than one graph face.

While the non-degenerate parts of the alpha mesh (the d-simplex
faces) form a closed and oriented sub-mesh, it might well not be
manifold. More than two faces may be incident on a common d−1
simplex.

Note that although the above definitions may stand for d > 3, han-
dling the graph connectivity in high dimensions is quite compli-
cated; we focus here on our primary interest where 2 ≤ d ≤ 3 and
neglect higher dimensions.

3.3.2 Alpha Graph - Algorithm Details

The algorithm starts by assigning for each alpha vertex vi its ad-
jacency set, i.e. the alpha triangles that it participates in. We then
divide those triangles into faces: disjoint groups of ordered trian-
gle. We define an order among the vertex triangles: tj follows ti
w.r.t. vi if they share an edge in opposite direction that includes vi.

Double-sided triangles make an exception: a triangle cannot follow
its other side pair triangle. This definition is sufficient to impose a
unique order when there is only one triangle that follows each tri-
angle in the adjacency set, however often this is not the case. When
two triangles tj and tk follow triangle ti, we want to connect them
by the dihedral angle they form with ti. We can avoid calculating
the dihedral angles and instead use a robust signed volume predi-
cate: if the signed volume of the tetrahedron (a),(b),(d),(e) in Figure
2 is positive it implies the dihedral angle to the triangle with (e) is
larger; if negative the dihedral angle to the triangle with (d) is larger.
This comparison operator is then all the sorting algorithm needs to
find the correct dihedral angle order. A closed face is when the first
triangle in the ordered set follows the last triangle. On the rim of
a thin sheet each boundary face forms an open face, i.e. the last
triangle in the ordered set does not have a next triangle. Note that
thin sheet boundary faces in 2D are processed seamlessly: the op-
posite side edge can be considered as a possible next edge, and if no
other edge takes precedence it means that the thin sheet boundary
has reached and traversal continues on the opposite side. In con-
trast, the 3D boundary faces on both sides are treated as open faces
and the graph construction algorithm identifies the start/end trian-
gles when processing the face. See Figure 3 for an illustration of
a thin sheet and its alpha faces. A pseudocode for the alpha graph
algorithm is provided in Algorithm 3.

Algorithm 3 Alpha graph

Input: alpha vertices P = {pi}, alpha triangles T = {ti}
Output: ∀p ∈ P , faces of p {fk

p }k
1: for all p ∈ P do
2: let Tp = {ti} be the set of triangles that include p
3: for all ti ∈ Tp do
4: if ti is processed continue
5: let T i

p ⊆ Tp be the set of triangles that follow ti
6: sort T i

p by signed volume w.r.t. ti
7: tcurr ← tj , tfirst ← tj
8: while true do
9: mark tcurr as processed

10: find the first available triangle tj ∈ T i
p

11: declare: tj follows tcurr
12: if tfirst follows tj then
13: declare: face f complete
14: break

15: tcurr ← tj
16: T i

p ← T i
p \ {tj}

An illustrative example for an alpha vertex that participates in more
than one face is when a fluid bubble is tangent to the fluid surface.
If the touching area between the bubble and the air surface include a
single vertex, every triangle in the vertex adjacency list has a single
triangle that follows it without requiring for dihedral angle sorting.
If the touching area is composed of more than one vertex, the dihe-
dral angle sorting determines how to arrange the triangles in faces.
In both cases every shared vertex has two faces, one for the air sur-
face and the other for the bubble surface.

3.4 Beta Mesh

3.4.1 Beta Mesh - Overview and Definitions

The beta mesh is loosely the dual of the alpha mesh of a set of
points.

A pure beta vertex can be defined in two equivalent ways. In d
dimensions, it is any intersection of the boundaries of d different
balls centered on the particles, which is not inside any open ball



centered on a particle — think of it as a point on the boundary of
the union-of-balls where d balls meet. Such a point is equivalently
the center of a ball whose boundary contains d particles and whose
interior is empty of particles. From this it is clear a beta vertex is
“dual” to a facet from the alpha mesh. We use the preface “pure”
for this type of vertices to distinguish it from other types of beta
vertices that will later be defined.

The pure beta mesh is an oriented mesh formed on the pure beta
vertices, with general faces corresponding to the connected ball-
shaped parts of the union-of-balls boundary. These faces may have
an arbitrary number of sides, and are often not planar — think of
them more as a topological construction rather than well-defined
geometry.

For each oriented d-simplex in the alpha mesh, a pure beta vertex
can be constructed as the center of the unique corresponding empty
ball. Each edge of the beta mesh corresponds precisely to a pair
of adjacent alpha mesh faces with no intervening alpha mesh faces
between them (going angularly around the common subsimplex).
Given the alpha graph structure described above, the beta mesh can
be built quite easily: there is a one-to-one correspondence between
graph faces and beta faces. Alpha vertices and beta faces are also
tightly coupled, yet it is not a one-to-one relationship. Multiple
beta faces can share the same alpha vertex – when the alpha vertex
has more than one graph face. In this case there is a one-to-many
correspondence between alpha vertices and beta faces. At the same
time, degenerate parts of the alpha mesh such as isolated particles
or degenerate edges have no associated beta vertices or faces.

In 2D the pure beta mesh is a well defined mesh. However in 3D
it is not a feasible geometrical representation, and we aim turning
it into a triangular mesh, to easily visualize the surface as well as
apply advanced rendering tasks such as motion blur. To turn the
pure beta mesh into a triangular mesh, we define a new type of beta
vertex, the alphabeta vertex, each corresponds to a graph face in a
one-to-one relationship. We initially position the alphabeta vertices
at the projection of the alpha vertex to the approximated beta face
plane, and triangulate them with the pure beta vertices of the face.

The initial positions of beta vertices however does not yield the de-
sired smooth surface. Beta vertex positions are prone to particle
distribution fluctuations, reflected in slight alpha triangulation vari-
ation that get amplified when converted into beta positions. The
alphabeta vertices positioned on the faces planes do not respect the
curvature of curved surfaces. Aiming at a smooth surface we hence
run a smoothing step. First, we smooth each pure beta vertex by
computing a weighted average of all the pure beta vertices in adja-
cent faces: the center point of every face edge is weighted by the
edge length. After updating all the pure beta vertices, we similarly
reposition each alphabeta vertex using a weighted average of all
the smoothed pure beta vertices in its face. Note that boundary beta
vertices do not go through the smoothing procedure to prevent them
from getting pushed to the thin sheet interior.

The beta mesh may have degeneracies related to degeneracies in
the alpha mesh — or rather, missing features. An isolated vertex
in the alpha mesh corresponds to a ball in the union-of-balls which
doesn’t intersect any other ball, and thus has no associated beta
mesh vertices: it vanishes from the beta mesh. In general an isolated
d−1 or less simplex in the alpha mesh does not contain any proper
beta mesh vertices since they are formed from the intersection of
d balls, and thus these features are missing from the beta mesh.
In order to faithfully capture the motion of the liquid and present
splashes and drops that separate and merge into the fluid geometry,
we define a third type of beta vertex: the external beta vertex. These
vertices do not take part in the beta mesh, and instead are rendered
as spheres.

(a) (b)

Figure 5: Construction of Pure Beta Vertices. Pure beta vertices
can be computed equivalently from the alpha shape disk centers, or
from the union of balls intersections. Particles are shown in black.
(a) Circumscribing circles (blue) associated with the directed alpha
mesh edges (black) define the position of pure beta vertices (red) as
the circle center. (b) Union of balls (green) define the position of
pure beta vertices (red) as the intersection between two or more
circles.

3.4.2 Beta Mesh - Algorithm Details

This section describes the beta mesh construction process. Figure
4 provides a 3D visualization of the algorithm running on a sphere.
The algorithm proceeds in several steps, exemplified for 3D in Fig-
ure 4 and for 2D in Figure 8.

Step 1: beta vertices. Pure beta vertices are created: a single ver-
tex for each alpha triangle, initially located at the center of the alpha
circumscribing sphere. See Figure 5 for an illustration of the dual
meaning of pure beta vertices. Together with the alpha graph con-
nectivity the pure beta mesh is now defined, using pure beta ver-
tices and pure beta faces. To be able to triangulate the beta faces
late on, we create alphabeta vertices: a single vertex for each alpha
graph face, initially positioned on the approximated plane passing
through the face, projecting the alpha vertex to the plane. Comput-
ing the plane normal uses the weighted normals of adjacent alpha
face edges. Last, external beta vertices are created from isolated
alpha vertices and degenerated alpha mesh edges. They do not take
part in the beta mesh, and are saved for the frame visualization step.

Step 2: tessellation. The tessellation process relies on the alpha
graph: each closed alpha face defined a closed beta face with the
same number of triangles. Each open alpha face with k triangles
defines an open beta face with k − 1 triangles. To close the rim of
thin sheets we define new triangles that do not correlate with alpha
mesh triangles. The tessellation process proceeds in several steps.
First we tessellate beta faces, starting with closed faces. Every al-
phabeta vertex connects with the pure beta vertices in its face, using
the orientation defined in the alpha graph. Similarity boundary face
triangulation is performed. All the triangles created so far are com-
posed of one alphabeta vertex and two pure beta vertices. Then we
complete the tessellation of the thin sheet rim. First we add a trian-
gle connecting the two alphabeta vertices with the pure beta vertex
on each side of the boundary edge. Finally we close the rim by tes-
sellating quads of alphabeta vertices at the boundary edge with two
triangles. Thin sheets in the alpha mesh result in flat sheets in the
beta mesh of 2r thickness. See Figure 6 for an illustration of a thin
sheet tessellation process.

Step 3: smoothing. The smoothing process repositions the beta
vertices but leaves the connectivity unchanged. First, the position
of every pure beta vertex is recomputed as a weighted average of
all the pure beta vertices in its faces. Then, the position of every
alphabeta vertex is recomputed as a weighted average of the pure
beta vertices in its face. A pseudocode is provided in Algorithm



(a) (b) (c) (d)

Figure 4: Beta Mesh Algorithm Visualization (3D). (a) Starting with the “union of balls” surface, initial pure beta vertices (white dots) are
positioned at the intersections of three or more balls. Pure beta faces, derived from the alpha graph, can be visualized as ball caps bounded
by arcs of ball intersections. (b) Arcs are replaced by edges; note that face vertices are typically not coplanar. (c) Alphabeta vertices (red
dots) initial position is set and face triangulation is performed. (d) The smoothing process repositions pure beta vertices at the weighted
sum of (initial) pure beta vertices of adjacent faces, and alphabeta vertices at the weighted sum of the face (new) pure beta vertices. The
smoothing result is presented, demonstrating improved mesh quality.

(a) (b)

(c) (d)

(e) (f)

Figure 6: Beta Tessellation of a Thin Sheet. Presentation of alpha
mesh/vertices (gray), beta mesh (red), pure beta vertices (red dots),
alphabeta vertices (blue dots); top view is used except for (f) with
side view. (a) Pure beta and alphabeta vertices. (b) Pure beta face
(without alphabeta vertices). (c) Tessellation of the center face.
(d) Tessellation of the boundary faces. (e) Complete the front/back
tessellation. (f) Close the rim (side view).

Algorithm 4 Beta smoothing

Input: beta vertices P = {pi}, beta triangles T = {ti}, beta faces
G = {fi}

Output: new beta positions P ′ = {p′
i}

1: for all p ∈ P pure beta vertex do
2: let Gp = {fj} be the set of faces of p
3: pnew ← 0, weight← 0
4: for all fj ∈ Gp do
5: for all < pa,pb >∈ fj pure beta edge do
6: w ← dist(pa,pb)

7: p′ ← pa+pb

2
8: weight← weight+ w
9: pnew ← pnew + wp′

10: pnew ←
pnew

weight

11: for all p ∈ P pure beta vertex do
12: p← pnew

13: for all q ∈ P alphabeta vertex do
14: let f be the beta face of q
15: qnew ← 0, weight← 0
16: for all < qa, qb >∈ f pure beta edge do
17: w ← dist(qa,qb)

18: q′ ← qa+qb

2
19: weight← weight+ w
20: qnew ← qnew + wq′

21: qnew ←
qnew

weight

22: q← qnew

4. Figure 7 demonstrates the improved mesh quality following the
smoothing process.

Step 4: Resolving Beta/Alpha Mesh Intersections (optional).
We propose detecting where the beta mesh intersects the alpha mesh
and preventing those intersections, otherwise a particle could lie
outside of the beta mesh. The algorithm goes through all the alpha
faces, and checks if there is a triangle that intersects a beta triangle
that belongs to the correlated beta face. If an intersection occurs it
pushes the alphabeta vertex to the alpha vertex position. By con-
struction a pure beta vertex cannot cause such intersections, hence
the alphabeta vertex position is the one that needs to be adjusted.



(a) (b)

(c) (d)

Figure 7: Beta Mesh Smoothing Step. Top: beta mesh when faces
are connected to a weighted centroid. Bottom: the result after the
smoothing step. Left: standard mesh representation. Right: front
mesh triangles drawn in wire mode.

3.5 Temporal Coherence

The primary goal of the beta mesh surfacing algorithm is to main-
tain temporal coherence and yet achieve all the other desirable ge-
ometrical properties. Its construction relies both on the union of
balls to benefit from its temporal coherence property, and on the
alpha mesh to benefit from its geometrical characteristics. In this
section we discuss the temporal coherence problems in the alpha
mesh, and explain how the beta mesh construction overcomes these
issues and maintains temporal coherence.

3.5.1 Alpha Mesh - Temporal Coherence

The union of balls is temporally coherent, and so is the alpha shape
being its dual [Edelsbrunner 1993]. However when alpha shape
arcs and sphere sub-sections are replaced with alpha mesh edges
and triangles, temporal coherence is lost. We identify three scenar-
ios of temporal coherence problems in the alpha mesh.

Edge flip. The same set of alpha vertices that exists in two consec-
utive frames may go through a topological change, reflected
in an unsmooth mesh change. Consider for example four al-
pha vertices that form two non-planar triangles that share an
edge. Particle movement on the next step can change the tri-
angulation of these vertices and two new non-planar triangles
are created on the opposite diagonal.

Vertex appearance/disappearance. Marginal particle movement
can cause a new alpha vertex to appear or an existing vertex
to disappear from the mesh, resulting in a major geometrical
change. E.g. an isolated particle that is just outside of the cir-
cumscribing sphere joins the alpha mesh on the next step, see
illustration in Figure 9 (a) (b). Despite the very small change
in the particle position, a major geometric change of magni-
tude r in the worse case takes place in the alpha mesh.

(a) (b)

(c) (d)

Figure 8: Beta Mesh Algorithm Illustration (2D). Alpha mesh is
presented in black, beta mesh is presented in red. (a) Beta mesh
with initial vertex positions, showing pure beta vertices (hollow red
dots), alphabeta vertices (hollow blue dots), and beta mesh edges
(dotted red lines). (b) Beta mesh smoothing first step: reposition
pure beta vertices. Initial mesh is presented in hollow red dots and
dotted red lines, alphabeta vertices are not presented. Face cen-
troids (hollow gray dots) are used to compute the new pure beta
vertices (solid red dots). Note: the smoothing process fixes short
edges, see the initial edge < pi, pj > highlighted in blue vs. the
distance between the final pi, pj vertices highlighted in red circles.
(c) Beta mesh after smoothing, showing edges (red lines), pure beta
vertices (solid red dots), and alphabeta vertices (solid blue dots).
(d) Beta mesh after resolving alpha/beta mesh intersections. Al-
phabeta vertices that were repositioned are highlighted.

Thin features. Alpha mesh thin features may disconnect/connect
from one step to the next due to a marginal particle movement
that eliminates/adds a vertex triplet from the thin triangles list.
An opening in the thin sheet can then be formed in one step
and close again in the next step.

While the first two scenarios create true problems in a surfac-
ing technique, the third one potentially reflects an actual physical
change (fluid separating or merging). A thin fluid layer that flows
on a solid wall may open and close. A fluid drop can merge and
split from the fluid bulk, and nearly pushes/pops itself with very
fast surface-tension-mediated dynamics which could be acceptably
approximated with a temporal discontinuity. Our attention is there-
fore focused more on the first two scenarios, where temporal dis-
continuity is unacceptable.

3.5.2 Beta Mesh - Temporal Coherence

We examine next the beta mesh construction steps, and provide an
informal explanation for why temporal coherence is maintained.
Figure 10 demonstrates this discussion, and correlates to the num-
bered items below.

(a) The union of balls surface is temporally coherent.

(b) The intersections between three or more balls change smoothly
in time and hence the positions of pure beta vertices are tempo-
rally coherent.

(c) Every two intersecting spheres on union of balls surface form



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10: Temporal Coherence in the Beta Mesh Construction. Upper row: union of balls. Middle row: beta mesh before smoothing.
Lower row: beta mesh after smoothing. (a) Union of balls, four front balls are highlighted. (b) Pure beta vertices are created: a pure beta
vertex is an intersection of three or more balls. (c) A network of arcs is marked, each arc is an intersection of two balls. (d) Arcs convert to
edges, forming pure beta faces. (e) Alphabeta vertices are created on the face’s approximated plane. (f) Beta faces get tessellated. (g) Beta
faces after smoothing: vertices repositioned, connectivity is left unchanged. (h) Alphabeta vertices in the smoothed mesh. (i) The smoothing
process improves the mesh quality, notice the new triangulation of face-3 and face-4.



(a) (b)

(c) (d)

Figure 9: Water Drop Merge: Alpha Mesh vs. Beta Mesh. Upper
row: Alpha mesh (black line). Lower row: Beta mesh (red line).
Left: Step n, isolated particle highlighted (orange). Right: Step
n+1, left particle becomes part of the mesh. (a) Isolated particle is
outside of the alpha circumscribing circle (green). (b) The particle
enters the alpha circumscribing circle (dotted green) and becomes
part of the alpha mesh, causing a sharp mesh pop. (c) Isolated
particle is outside of the beta mesh. (d) The particle becomes part
of the beta mesh, inducing a smoother change.

a circular arc, or a complete circle in some cases. This network
of arcs and circles changes smoothly in time.

(d) Beta faces can now be formed from a series of pure beta ver-
tices that surround a sphere and are connected with circular
arcs from the arcs network. The arcs geometry is temporally
coherent as well as the induced graph/face connectivity. We
can now replace the connectivity arcs between two pure beta
vertices with edges, this construction still maintains temporal
coherence.

(e) Alphabeta vertices are computed as a weighted sum of the face
pure beta vertices, hence preserve temporal coherence.

(f) Hence triangulation of alphabeta vertices with pure beta ver-
tices in its face also changes smoothly in time.

(g) The smoothing process recomputes pure beta vertex positions
as a weighted sum of pure beta vertices in adjacent faces. The
weighted sum is a temporally coherent mapping running on
temporally coherent positions, therefor does not violate tem-
poral coherence.

(h) Alphabeta vertices are recomputed as face centroids as
weighted sum of the new pure beta vertices in each face; these
are temporally coherent acts on temporally coherent positions,
hence preserve temporal coherence.

(i) Last, triangulation of alphabeta vertices with the face pure beta
vertices connects temporally coherent beta vertices and relies
on a temporally coherent connectivity, hence it also changes
smoothly in time.

To summarize, the beta mesh building blocks are temporally co-
herent, its vertices and the connectivity units are by construc-
tion temporally coherent, and therefore the resulting mesh changes
smoothly in time.

Note that the circles/arcs network described above represents ten-
dril features as a series of disconnected circles along the tendril.
These circles lack intersection points, hence they do not impose
pure beta vertices or beta faces. Consequently tendrils geometries
(and similarly other alpha mesh degenerate features) are left out-
side of the beta mesh geometry in favor of keeping our temporally
coherent construction rules.

Physical unsmooth changes in time are also reflected in the beta
mesh, e.g. on thin sheet boundaries, or in merge/split of fluid drops
or chunks. These changes however have better appearance in the
beta mesh compared to the alpha mesh. Figure 9 illustrates a water
drop merge, causing a sharp pop in the alpha mesh and a smoother
change in the beta mesh.

4 Results and Discussion

Results of a 2D SPH dam break are shown in Figure 11. In our 2D
implementation the graph analysis is consistent for simple volumet-
ric regions and more complex regions with double-sided edges and
thin features, and the stitching between different regions is done
seamlessly. Beta mesh and alpha mesh intersections are resolved.
The resulting beta mesh is smooth, and reflects alpha thin features.

Results of a 3D SPH dam break are presented in Figure 12. The top
row (a)-(c) uses the union of balls particle rendering and provides
the ground truth on how the surface should look like. The mid-
dle row (d)-(f) presents the alpha mesh surfacing, demonstrating an
excellent representation of thin sheet in (f). Some craters are seen
in the surface that may indicate high sensitivity to particle uneven
distribution, or to the alpha radius chosen (here r = 1.5dx). In the
lower row (g)-(i) the beta mesh surfacing is presented. The surfaces
are much smoother than the alpha mesh surfaces. Thin sheets are
mostly captured, though the boundaries implementation may not
yet be fully satisfying. The craters visible in (i) reflect our major
open problem, in the stitching of double-sided triangles to the fluid
volumetric surface. The desired temporal coherence is achieved,
demonstrated in the animations. The frame data consists of 110k
particles and the surfacing run time is 19 seconds per frame that is
mostly taken for the alpha mesh construction.

Figure 13 shows the surfacing of a rotating cube FLIP simulation.
The frame data consists of 170k particles. Particles are unevenly
distributed, which is reflected in unsmooth surfaces and long run
times (up to 6 hours per frame), that again is mostly taken for al-
pha mesh processing. Near the surface, in this example, the average
number of particles per grid cell was much higher, leading to a sig-
nificantly higher constant in the O(n) run time. Figures (a), (d)
and (g) are most interesting for examination, demonstrating excep-
tionally good tendril features representation in the alpha mesh. The
beta mesh is currently not able to reproduce the desired tendril look
as is indicated in our open problems list. The particle inhomoge-
neous distribution is visible in (b), (e), (h), reflected in unsmooth
surfaces in all three representations, nevertheless the beta produces
much smoother surfaces compared to the alpha mesh.

4.1 Open Issues

The critical area to improve in our beta mesh construction is the
graph interpretation of complex geometrical scenarios in the alpha
mesh that may appear when double-sided alpha triangles connect to
the rest of the mesh. Examples are air bubbles trapped in the fluid



resulting in holes in the surface, stitching between thin sheets and
volumetric sections, or thin fluid features connecting to each other
in nontrivial ways.

Another aspect that we would like to further improve is thin sheet
boundary handling. Extending the surface beyond the boundary
sphere center could assist towards better temporal coherence there.

Fluid tendrils are reflected in the 3D alpha mesh as degenerate
edges, are presently not well captured in the beta mesh. Degener-
ate alpha features lend themselves to become external beta vertices,
and thread-like alpha geometry may shrink its volume in the beta
mesh. Better representation will increase the usability of the beta
mesh technique.

Our generic smoothing procedure shows excellent results, however
in some cases it may fail its designed task. A simple example is a
fluid tetrahedron that will shrink after smoothing into a point. Fur-
ther analysis may be required to cover such cases.

The alpha mesh procedure could also be improved. Currently our
sphere criterion uses power and square root computation, which are
sensitive to rounding issues. Alternative checks could be examined
to avoid this sensitivity and guarantee robustness.

5 Conclusions

In conclusion, two surfacing techniques are presented in this work:

The alpha mesh is a well known technique, which we first use and
analyze for animation purposes and provide an efficient new
algorithm to compute it.

The beta mesh is a novel surfacing construction that we introduce,
which blends ideas from the union of balls surfacing and the
alpha mesh construction.

The alpha mesh representation of thin sheets and the tendril features
are of significance for animation purposes, and no other surfacing
method known to us can similarly reproduce these features. The
temporal coherence issues of the alpha mesh are being considered
in this work. Bringing the alpha mesh to the animation regime,
and illustrating its pros and cons in this context, is of significant
relevance to the field.

The beta mesh addresses an important surfacing requirement – the
surface temporal coherence, which had little attention in related re-
search works. In addition to producing smooth transitions of the
surface in time, the method targets conforming to important geo-
metrical requirements such as reflecting flat surfaces in the same
algorithmic framework.

The beta mesh addresses its primary goal and its demonstrated ben-
efits look very promising. Temporal coherence is achieved, smooth
surfaces are well demonstrated, and fine features are preserved.
Nevertheless, further improvements should take place to make it
a useful and robust tool for animation purposes, especially on 3D
complex geometrical graph sections. Handling problems and fea-
tures outlined in the open issues section could make it usable for
handing a broad range of phenomena.

In summary, we believe that the ideas presented in this work could
serve as a basis for establishing useful particle skinning techniques
in the future, that could encompass the non-trivial combination of
the three desired surface requirements: temporal coherence, spatial
smoothness, and fine features.
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Figure 11: 2D Dam Break. Upper row (a)-(c): Alpha mesh. Lower row (d)-(f): Beta mesh. (equivalent frames are presented)
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Figure 12: 3D Dam Break. Upper row (a)-(c): Union of Balls. Middle row (d)-(f): Alpha mesh. Lower row (g)-(i): Beta mesh. (equivalent
frames are presented)



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 13: Rotating Cube. Upper row (a)-(c): Union of Balls. Middle row (d)-(f): Alpha mesh. Lower row (g)-(i): Beta mesh. (equivalent
frames are presented)
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