
Efficient Extraction of Ontologies from Domain Specific
Text Corpora

Tianyu Li
University of British Columbia

Vancouver, BC, Canada
lty419@cs.ubc.ca

Pirooz Chubak
University of British Columbia

Vancouver, BC, Canada
pchubak@cs.ubc.ca

Laks V.S. Lakshmanan
University of British Columbia

Vancouver, BC, Canada
laks@cs.ubc.ca

Rachel Pottinger
University of British Columbia

Vancouver, BC, Canada
rap@cs.ubc.ca

ABSTRACT
Extracting ontological relationships (e.g., isa and hasa) from
free-text repositories (e.g., engineering documents and in-
struction manuals) can improve users’ queries, as well as
benefit applications built for these domains.

Current methods to extract ontologies from text usually
miss many meaningful relationships because they either con-
centrate on single-word terms and short phrases or neglect
syntactic relationships between concepts in sentences.

We propose a novel pattern-based algorithm to find onto-
logical relationships between complex concepts by exploit-
ing parsing information to extract multi-word concepts and
nested concepts. Our procedure is iterative: we tailor the
constrained sequential pattern mining framework to discover
new patterns. Our experiments on three real data sets show
that our algorithm consistently and significantly outperforms
previous representative ontology extraction algorithms.

1. INTRODUCTION
An ontology is a specification of conceptualizations in

a specific domain [3]. An ontology typically includes, at
a minimum, concepts and hierarchical relationships among
them. The two fundamental hierarchical relationships are
isa, which asserts a class-subclass relationship or class-instance
relationship, which forms an ontology’s taxonomic backbone,
and hasa, which asserts a whole-part relationship.

Building an ontology from unstructured text on the web
can bridge the gap between human-readable data and machine-
readable knowledge in a specific area by improving naviga-
tion and information discovery. However, it is not enough
to simply reuse general-purpose ontologies (e.g., WordNet).
Such ontologies have limited coverage, particularly in spe-
cialized fields, where jargon and terminology can have very

different meanings from their senses in a more general do-
main. For example, “foreign materials” in Architecture usu-
ally refers to substances other than piping; this is quite
different from the meaning of foreign in “foreign nationals”
which may be found in a legal document; and “agent” means
different things in the medical and law domains.

Previous works on ontology discovery from unstructured
text either explore hierarchical relationships among concepts
from their distribution in a corpus [5, 27], or use lexico-
syntactic patterns [22] (e.g., Hearst patterns [14]). Both
approaches typically suffer from one of these drawbacks:
(1) they generally extract single-word terms or very short
phrases as concepts, or (2) they ignore the syntactic and
parsing information available over text. These become prob-
lems when dealing with sentences involving complex nested
noun phrases. Thus these previous approaches fail to cap-
ture many meaningful and complex concepts in a domain,
with the result that the discovered ontology is usually trivial
or redundant given a general thesaurus. Additionally, hi-
erarchical approachess [5, 27] usually perform badly in the
presence of sparse data, which is common in small corpuses.

We illustrate these ideas with an example drawn from
a real architecture web dataset, which is one of the web
datasets we use in our experiments: “avoid contact with
finishes which may radiate noise, such as the concrete struc-
ture, future framing and drywall.” In this fragment, “finishes
which may radiate noise” is a meaningful concept; intuitively
there is an isa relationship from each of “concrete struc-
ture”, “future framing” and “drywall” to the concept. How-
ever, both approaches above fail to capture this because:
(i) this phrase is not frequent enough to be considered a
concept by statistics-based algorithms; (ii) pattern-based al-
gorithms identify noun phrases by matching part-of-speech
(POS) tags applied by a tagger; hence a phrase with a clause
modifier cannot be extracted and identified as a concept; (iii)
“finishes which may radiate noise” is a nested noun phrase,
so a naive pattern-based algorithm only looking for patterns
like “such as” may end up retrieving “noise” as the parent
concept in this isa relationship, which is obviously wrong!

Extracting rich and complex concepts along with ontologi-
cal relationships among them as accurately as possible is the
main goal of this work. To this end, we developed an itera-
tive pattern-based algorithm called Laser (for LArge ScalE
Relation extraction system). The central paradigm used by

Laser is an iterative framework of starting with seed pat-
terns that signal an occurrence of (isa or hasa) relations,
which are used to extract instances of relations in the cor-
pus. They are in turn used to induce more patterns from the
corpus and so forth. At every stage, the extracted patterns
and instances are scored, reflecting their degree of reliability.
When the score of extracted patterns drops below a thresh-
old, the process terminates. This iterative framework was
first pioneered by Brin [4] for extracting general relations
from the web and was later adapted by researchers to various
other contexts. Indeed, the ESPRESSO algorithm proposed
in Pantel and Pennacchiotti [22] adapted this framework for
ontology extraction. While a more detailed comparison with
the ESPRESSO approach appears in Section 2, some funda-
mental differences between Laser and ESPRESSO include
the following. (1) ESPRESSO assumes a set of seed in-
stances for its iteration while Laser starts instead with a
set of seed patterns well known to be reliable in the ontology
extraction literature [14, 2, 12]. (2) We extract noun phrases
by an analysis of the parse tree as opposed to relying on POS
tag matching, a method most previous algorithms including
ESPRESSO rely on. (3) Nested noun phrases pose a seri-
ous challenge for the correct extraction of relations. Unlike
previous algorithms, we solve this problem effectively. (4)
We solve pattern discovery using a novel approach based on
constrained closed sequential pattern mining.

We make the following contributions:
• We extract the complex concepts having isa/hasa rela-

tionships from a constituent parse tree of the text and
effectively tackle the challenges involved in dealing with
parsing information. We also propose a novel algorithm
to resolve the challenge of determining the correct noun
phrases linked by these relations when nested noun phrases
are present. Compared to POS tag matching (used by
most previous approaches), an analysis of parse trees
more accurately identifies complex and nested phrases
and relationships among concepts (Section 4.1).
• We start with a list of seed patterns from the the on-

tology extraction literature [14, 2, 12] and find isa/hasa
relationships and new patterns that signal occurrences
of such relationships. Compared to seed instances used
by ESPRESSO [22], seed patterns are more reliable and
less variable across domains, while seed instances are of-
ten domain-specific, require validation, and can bias the
quality of extractions.
• We tailor a sequential pattern mining framework to find

frequent patterns that signal isa/hasa relationships, and
generalize the framework to allow the introduction of new
patterns.
• We carry out a detailed experimental comparison be-

tween Laser and major representative algorithms from
previous work on three real datasets. Our experiments
show that Laser has a significantly better recall than
previous algorithms while enjoying a comparable or bet-
ter precision. In particular, our Fβ-measure is signifi-
cantly better than previous algorithms, for β = 0.5, 1, 2,
demonstrating our approach’s superiority. We show that
Laser works very well and has stable performance on
both small and large corpuses. We also show that Laser
is much more scalable than previous approaches.

The rest of paper is structured as follows: Section 2 clas-
sifies and describes related work. Section 3 introduces our
system architecture and components in detail. We discuss

the Laser approach and the algorithms in Section 4 and
discuss our experiments and lessons learned in Section 5.
Finally, Section 6 concludes and discusses future work.

2. RELATED WORK
Ontologies fall into one of three types [3]: (i) a formal

ontology is a set of logical expressions relating concepts by
axioms and definitions; as such it can support inference and
computation; (ii) a prototype-based ontology typically lacks
labels for concepts, but relies on term clusters, which are re-
garded as prototypical instances of the underlying concept
or category; (iii) a terminological ontology describes con-
cepts by concept labels or synonyms, instead of using proto-
typical instances, and expresses hierarchical (e.g., subtype-
supertype and whole-part) relationships between concepts.

This paper focuses on automatically building terminologi-
cal ontologies from domain-specific text corpora. For exam-
ple, given a set of engineering documents containing “fur-
nace”, “air conditioning unit”, and “HVAC”, we would try to
find that the air conditioning unit isa HVAC and the furnace
isa HVAC. In contrast, a prototype-based ontology might
cluster “furnace” and “air conditioning unit” together, but
it would not say that either isa “HVAC”, and a formal on-
tology would include additional semantic relationships. We
survey previous related work below.

There are three main approaches to learning ontologies
from unstructured text [3]: (i) Data mining: Clustering ap-
proaches cluster similar words based on the hypothesis that
similar words tend to occur together in similar context [13].
Some approaches assign labels to the clusters, treating the
labels as concepts and the terms in the cluster as its in-
stances. More recently, association rule mining has been
used for ontology learning; (ii) Lexico-syntactic patterns:
Lexico-syntactic patterns such as Hearst Patterns [14] are
used to extract relationships between terms. For example,
the pattern “X such as Y” frequently implies Y isa X; (iii)
Web as a data source: to overcome data sparsity, some al-
gorithms use the web as an additional data source, possibly
in conjunction with other data sources like WordNet1.

A large body of approaches build ontologies consisting of
single words [5, 23] or short common compounds [27, 6]. In-
deed, very few works allow for longer and complex terms
to be concepts, generally because they have a very low fre-
quency of occurrence compared to short ones. Drymonas
et al. [10] make an attempt in this direction and allow more
complicated noun phrases. They use a statistical measure to
select meaningful concepts and an agglomerative clustering
algorithm to build a prototype ontology. Recently, Nav-
igli and Velardi [20] proposed Word-Class Lattices (WCLs)
learned over a training set of definition sentences. These lat-
tices are used for matching definitions and hypernyms of a
given set of target terms and phrases. Using a terminology
extractor (TermExtractor), WCLs can be utilized to itera-
tively extract a set of class-subclass relationships, resulting
in a Hypernym Graph (WCL-HG). Pruning this hypernym
graph using graph-based algorithms, Navigli et al. induce
a domain taxonomy [21]. TermExtractor extracts long and
short phrases as seed concepts and uses WCLs to extract
complex hypernyms. One major drawbacks of WCLs is that
their construction requires manual tagging of definition sen-
tences by expert taggers. Moreover, they use POS tags and

1http://wordnet.princeton.edu/

therefore do not perform well on identifying boundaries of
complex and nested phrases. In contrast, Laser relies on
deep parsing information to get richer concepts that cannot
be identified by WCLs. A detail experimental comparison
of Laser with WCL-HG is presented in Section 5.

Data mining: Many clustering-based algorithms first
produce prototype-based ontologies (See Caraballo [5] for an
example). Others additionally assign labels to the clusters.
For leaf clusters, he assigns a label using syntactic patterns,
while for internal clusters he assigns the most dominant hy-
pernym of the largest number of the node’s descendants.
Pantel and Ravichandran [23] first cluster words from a text
corpus; each cluster forms a concept. They extract concept
names by searching for syntactic patterns such as “concept
apposition-of instance” and “concept such as instance”. The
word that co-occurs with the most dominant instances in
a cluster most frequently is picked as the concept name.
They create isa relationships between the concept and all
instances in the cluster. This helps with data sparsity since
not all instances need to co-occur with the concept name for
us to derive the isa relationship between them. However,
this kind of isa relationship is necessarily confined to one
level hierarchy, while our work produces a complex multi-
level concept hierarchy.

Sanderson and Croft [27] use association rules to find
isa relationships (called subsumption in the paper) between
terms. They use the intuition that for two terms, x and y,
x isa y holds if P (x|y) is sufficiently large and p(y|x) < 1,
where P (x|y) is the probability that a document contains x
given that it contains y. This approach is purely based on
a statistical heuristic, which cannot produce a high-quality
ontology alone. We use statistical heuristics as well as syn-
tactic and semantic (parsing) information.

Lexico-syntactic patterns: Pure pattern-based meth-
ods (e.g., Pantel and Pennacchiotti [22]) usually iteratively
interleave pattern discovery and instantiation until the re-
liability drops below a threshold. These methods tend to
suffer from low recall.

ESPRESSO [22] is a system that given a small set of seed
instances for a particular relation, learns lexical patterns,
applies them to extract new instances, and then uses the
web to filter and expand the instances. This procedure con-
tinues iteratively until it meets some stopping criteria such
as reliability dropping below a threshold. We adapt their
scoring mechanism in the iterative process, but instead of
starting with seed instances, we bootstrap from seed pat-
terns, which as discussed earlier are more reliable.

We extract instances from patterns substantially differ-
ently from ESPRESSO as well: we rely on deep parsing in-
formation to get richer concepts that cannot be identified by
regular expression matching over data obtained from shal-
low parsing. Our pattern finding is also generalized to be
less restrictive and more expressive than ESPRESSO. Addi-
tionally, we provide a novel formulation of pattern discovery
as a constrained sequential pattern mining problem.
Hybrid approaches: As the name suggests, these ap-

proaches borrow ideas from one or more of the previous ap-
proaches. Guided Hierarchical Clustering (GHC) [6] is a
representative algorithm in this class. It first calculates the
similarity between a set of given input terms based on syn-
tactic dependency features in the corpus including adjective
modifiers, prepositional phrase modifiers and noun phrases
in subject or object position. Then, using an agglomera-

tive clustering algorithm, it picks the most similar pair of
terms in the remaining list of pairs to be clustered, and uses
WordNet, Hearst patterns in the corpus, and the WWW to
position them in the growing ontology. If no relationship is
found, the pair is clustered. Finally, they make sure the re-
sulting ontology is a connected hierarchy. Unlike these, our
approach finds relationships before concepts. We start from
patterns that indicate relations, and then get concepts from
there, thus not requiring terms as input.

Zavitsanos et al. [33] use topic modeling to extract con-
cepts which are represented as distributions. TextToOnto [17]
and Text2Onto [7] focus on conceptual relationships rather
than hierarchical relationships. The concept hierarchy is
used as a knowledge base to find more complex relations.
For practical applications, algorithm that produce concrete
isa and hasa relations with labeled concepts are more use-
ful than ones that produce latent topics and word clusters
without labels.

Formal Ontologies: YAGO [29] automatically creates a
formal ontology by extending WordNet using Wikipedia’s
info boxes. More recently, SOFIE [30] extends YAGO by ex-
tracting relationships from free text. Thus, they can process
Wikipedia articles (not just info boxes) and indeed arbitrary
web pages. Kylin/KOG [31, 32], DBPedia [1], and DBLife
[9] are other examples of systems that have extracted very
large ontologies containing millions of entities and relations.

Poon and Domingos [25] induce and populate a probabilis-
tic ontology, using dependency-parsed text as input. The
output ontology of this system mainly consists of verb classes
in hierarchy with nouns as their argument class.

One of the distinguishing features of our work is that our
algorithm can produce high quality isa and hasa relations
from domain specific text corpora. Our experiments show
that our algorithm significantly outperforms previous ones
both in quality and in running time. Indeed, as mentioned
in [30], even for systems generating formal ontologies, algo-
rithms that produce hierarchical relations on a large scale
and with a high quality are essential in order to give the
resulting ontology a clean structure.

3. ARCHITECTURE AND BACKGROUND
This section outlines the architecture of our system and

develops the key notions and ideas used in our algorithms.

3.1 System Architecture
Laser (Figure 1) uses an iterative process. The dotted

circle in Figure 1 highlights the main components.
Laser takes as input the preprocessed corpus consisting

of a set of text documents, with each word tokenized. Addi-
tionally, it takes in a set of seed patterns, i.e., lexico-syntactic
templates such as Hearst patterns [14] that imply isa/hasa
relationships. We define a Subsumption Candidate Instance
Pair (SCIP), as a pair of noun phrases x, y such that they
are involved in a class-subclass or class-instance (isa) or a
whole-part (hasa) relationship, and denote it SCIP(x, y). It
states that either hasa(x, y) or isa(x, y) holds.

The Laser system has the following modules:
0. Corpus Text Parsing and Indexing: We generate
the parse tree of the corpus text with a parser such as the
Stanford Parser2, and build an inverted index on the corpus
text as well as on the parse tree for efficient lookup. This

2http://nlp.stanford.edu/software/lex-parser.shtml

Pre-

processed

Corpus Text

Seed Pattern

ISA/HASA

Pattern

Instantiation

(1)

Frequent

Pattern

Discovery

(3)

SCIP Extension

& SCIP Scoring

(2)

ISA/HASA

SCIPs

Seed SCIPs

Extracted

Ontology

Pattern

Scoring

(4)

Candidate

Patterns
Repository of

Parse Tree

Parsing and

Indexing

(0)

Figure 1: Ontology Extraction System Architecture

module is run once for a given corpus.
1. isa/hasa Pattern Instantiation: This module finds
the sentences containing seed pattern instances and extracts
noun phrases involved in the isa/hasa relationships.
2. SCIP Extension & SCIP Scoring: This module
extends and ranks the instance pairs so that the highest
ranking pairs are considered as seed instance pairs to aid
new pattern discovery.
3. Frequent Pattern Discovery: This module takes the
seed instance pairs from module 2 and uses them to find new
patterns that imply isa or hasa relationships.
4. Pattern Scoring: The candidate patterns from the
previous module are scored to select seed patterns for the
extraction of new instances in the next round.

This iterative process of finding instances and patterns
continues until Laser cannot find new instances or the new
patterns’ score discovered drops below a threshold, which is
tuned empirically. In our experiments we used the threshold
of having the average score of patterns discovered in the
current iteration being above 50% of the average score of
patterns found in the previous iteration.

3.2 Background
We make use of the following notions in the Laser system.

Definition 1. A head word is the word that determines
the syntactic type of the noun phrase of which it is a mem-
ber, while other words modify the head.3 2

Definition 2. A noun phrase is a syntactic unit of the
sentence where information about the embedded noun is
gathered [18]. Therefore the noun is the head word of the
noun phrase, the central constituent which determines the
syntactic characteristics of the phrase. A noun phrase usu-
ally consists of an optional determiner, zero or more adjec-
tive phrases, a noun head and other clause modifiers. 2

E.g., in the example in the introduction, “finishes which
may radiate noise” is a noun phrase with head word “fin-
ishes”. A noun phrase is clearly a concept in the corpus and
3http://en.wikipedia.org/wiki/Head linguistics

is a candidate concept in the domain-specific ontology that
we seek to build.

Definition 3. A pattern is a sentence fragment of the
form: NPList1 Connector NPList2 where each NPList i is
a list of one or more noun phrases and Connector is a se-
quence of words in a short phrase and/or the corresponding
POS tags, which signals a relationship between the concepts
represented by NPList1 and NPList2. 2

For isa and hasa relations, either NPList1 or NPList2
is the parent (i.e., the more general concept in an isa re-
lationship and the “whole” concept in a hasa relationship)
while the other NPList is a child or a list of children (the
more specific concept in an isa relationship and the “part”
concept in a hasa relationship), as determined by the spe-
cific connector. After identifying NPList1 and NPList2 of
a pattern in the text corpus, we generate candidate instance
pairs for this pattern consisting of one noun phrase from
NPList1 and another from NPList2.

As an example, in the clause “plumbing equipment such
as steel storage tanks, pressure reducing stations and ductile
iron pipe”, the string “such as” acts as a connector; “plumb-
ing equipment”,“steel storage tanks”,“pressure reducing sta-
tions” and “ductile iron pipe” are noun phrases. In this ex-
ample, NPList1 is a single noun phrase and NPList2 is a
list of noun phrases. The connector “such as” indicates each
noun phrase in NPList2 is an instance or subclass of the
noun phrase NPList1, that is, one can infer the relations
isa(plumbing equipment, steel storage tanks), isa(plumbing
equipment, pressure reducing stations) and isa(plumbing
equipment, ductile iron pipe).4 Recall, as defined in Sec-
tion 3.1, we use the term SCIP pair, denoted SCIPs(x, y),
to indicate a pair of noun phrases x, y that are related by
an isa or a hasa relationship.

This kind of pattern was first proposed by Hearst [14] and
extended by many subsequent papers.

We use the seven patterns below, called seed patterns, as
the initial isa patterns in the first round of our iterative
taxonomic relation extraction procedure:

1. NP0 such as NP1, NP2, ..., NPn−1 (and|or) NPn
2. such NP0 as NP1, NP2, ..., NPN (and|or) NPn
3. NP1, NP2, ..., NPn (and|or) other NP0

4. NP0, (including|especially)NP1, NP2, ..., NPn−1 (and|or)
NPn

The above four are from Hearst [14] while the following
three are from Cimiano and Staab [6], which extends [14]:

5. NP1 is NP0

6. NP1, another NP0

7. NP0 like NP1

As a follow up to Hearst’s work [14], [2, 12] proposed sim-
ilar lexico-syntactic patterns implying part-whole relation-
ships (i.e., hasa relationships). We used five patterns from
their work as our initial list of hasa patterns:

1. NP0 (consists|consist|made) of NP1

2. NP1 (members|a member|a part) of NP0

3. NP0 have|has NP1

4. NP1 inside NP0

5. parts of NP0 include NP1

4isa(x, y) indicates y is an instance (or subclass of) x.

4. ONTOLOGY EXTRACTION
In this section, we provide a detailed description of mod-

ules 1–4 in the architecture schematic (Figure 1) and provide
the key algorithms used in our Laser system. Specifically,
we describe the algorithms for correct handling of nested
noun phrases and for pattern discovery using constrained
sequential item-set mining.

4.1 ISA/HASA Pattern Instantiation
This module takes a list of known patterns suggesting isa

or hasa relationships and applies the patterns to the input
corpus to find sentences matching the patterns.

4.1.1 Extracting Noun Phrases
Previous works [6, 22] usually find pattern instances by

matching each POS tagged sentence with regular expres-
sions. For example, the regular expression (DT\t(\w+))?(JJ\
t(\w+))?((NN(S?) \ t([a − z]+) \ s?)+) determines a non-
recursive noun phrase, in which zero or one determiners
(DT) followed by zero or one adjectives (JJ) plus one or
more singular or plural nouns (NN(S?)) is a noun phrase.
Thus, “a stringent requirement”, which is tagged as “NN a
JJ stringent NN requirement”, can be recognized as a noun
phrase because it matches the regular expression. Such a
strategy has the following limitations:

1. The simple POS tag rules may identify the wrong noun
phrase because the context is not considered. For ex-
ample, in the sentence “Adding flooring finishes such as
carpet can significantly change the Apparent-IIC”, “floor-
ing finishes” is the correct parent noun phrase of “carpet”.
However, according to the POS tags “Adding/VBG floor-
ing/NN finishes/NNS” and the POS based rules, “adding
flooring finishes” (a verb phrase) is incorrectly identi-
fied as a noun phrase, leading to the incorrect inference
isa(carpet, adding flooring finishes). The inaccuracy of
POS tagging will lead to incorrect identification of noun
phrases, which causes false positive and false negative
pattern instances.

2. Strict application of pattern matching may fail to cap-
ture some patterns that contain the proposed patterns.
For example, suppose we try to extract SCIPs with the
seed pattern“... including ...”. Then even though the con-
nector “... including but not limited to ...” contains the
seed pattern and is meaningful, we cannot extract SCIPs
from it because the pattern matching requires that a noun
phrase immediately follow the connector “including”.

3. Simple POS tag rules cannot identify some noun phrases
that have complex structures using modifiers. For exam-
ple, “coatings that may be detrimental” is a noun phrase
occurring in one of our real data sets. It has an attributive
clause as a modifier, which cannot be correctly identified
by simple regular expression rules.

To overcome these limitations, we perform pattern match-
ing by first matching sentences containing lexical connectors,
and then extracting the corresponding noun phrases from
the text segments either surrounding those connectors or in
between them, by analyzing the constituent parse tree struc-
ture for the sentences. The idea is that a well-trained parser
like the Stanford Parser can be more effective at determin-
ing noun phrases than simply matching regular expressions
over POS tags. For example, for the pattern NPList1 such
as NPList2, we extract noun phrases from the left of and

the right of “such as” respectively. We achieve this by iden-
tifying appropriate noun phrases in the parse tree of the
matched sentence, knowing the position of the connectors
in that tree. This novel approach is in contrast to previous
approaches which use hand-crafted rules to match a whole
sentence.

However, Laser adopts a slightly different strategy for
the first iteration of pattern instantiation and the later it-
erations: it extracts noun phrases with the matched words
in the pattern as clear boundary in first run but allows a
sliding window around the words for patterns in later run.
For example, this pattern
“NP0 such as NP1, NP2, ..., NPn−1 (and|or) NPn”
is used in the first iteration. Laser will look for the noun
phrase exactly preceding “such as” in the parse tree as the
parent noun phrase. Similarly, the child noun phrases are ex-
tracted with the matched position of “such as” and “and|or”
as clear boundaries.

On the other hand,“, /, including/V BG”is a pattern Laser
found in later iterations, so Laser uses a sliding window of
word size w that its left end starts with “, /,” and moves
towards left (one word at a time), until the right end of
the window reaches “including/V BG”. in this way we try
to find a noun phrase with the last word that is on the
left of the pattern and resides in the window. Similarly we
moves the window towards right until the left end of the
window reaches “, /,”, starting with the right end of the win-
dow placed at “including/V BG”, and finds the correspond-
ing child noun phrases. Simply saying, we allow the noun
phrases to occur around the pattern with a small gap, which
is w − wordsizeofpattern. The sliding window just simu-
lates the procedure we try to match from close to further.

The reason we adopt different strategy here is: the seed
patterns used in first iteration are defined by linguistic ex-
perts, that the words in a pattern are meaningful, so that
we use exact match to get more accurate result. However
the generic patterns in later iterations are found by frequent
substrings, which can be a part of a meaning connector that
is not frequent enough. Take the example of “, including”
and “, including but not limited to”, the relaxed match gives
some longer patterns a second chance.

4.1.2 Nested Noun Phrase Challenge
One challenge in ontology extraction is that noun phrases

may be nested in another noun phrase. In this case it is
difficult to identify the appropriate noun phrases in the ex-
tracted relationship. Below, we give two examples that illus-
trate this challenge: in Example 1 the shorter, nested noun
phrase is the correct one. In Example 2, the longer, outer
noun phrase is the correct one. The examples are taken from
one of the real data sets described in Section 5.1.

Example 1. Consider the sentence “Provisions of shad-
ing devices, such as overhangs or vertical fins, to let in
quality natural light but exclude undesired direct sun light
should be considered .” Here, “Shading devices” inside “pro-
vision of shading devices” is a nested noun phrase.

“Shading devices” is the correct parent concept of the isa
relationship not “provision of shading devices.” That is, in
making inferences about isa relationship we should be using
“shading devices”, not “provision of shading devices.” 2

Example 2. In “The work shall be carried out in ac-
cordance with the authorities having jurisdiction, including

Ministry of Environment and the Workers Compensation
Board of British Columbia and by contractors experienced
in this specialty ,” the noun phrase “the authorities having
jurisdiction” contains the nested noun phrase ”jurisdiction”.

In this case the longer phrase is the right choice for use in
the relationship inference. Using more complex noun phrase
adds an extra dimension to the problem: not only do we aim
to avoid outright incorrect choices, but we strive to pick the
best among the correct ones. 2

These two examples are in sharp contrast and clearly il-
lustrate the challenge in determining the appropriate noun
phrase for relationship inference; it is not always better to
use the longer noun phrase nor always the shorter one. To
solve this challenge, we employ a linguistically based heuris-
tic approach that uses hints from an external source, e.g.,
a general thesaurus like WordNet. A useful cue about the
type of a noun phrase can be obtained from its head word.

For example, the head word for “shading devices” is “de-
vices” and “provision of shading devices” has the head word
“provision”. When the sentence contains an isa or hasa pat-
tern but the potential parent noun phrase is nested, such as
in Example 1 and in Example 2, we can identify the head
words of child noun phrases and the potential parent noun
phrases (generated by extracting all noun phrases from the
nested noun phrase recursively), and try to find relationships
among these head words in WordNet.

In order to measure the relatedness between words, we use
the semantic similarity defined in [24], which makes use of
corpus statistics and the hierarchical structure in WordNet.

The WordNet::Similarity module5 implements different vari-
ations of semantic similarity.

In our work, we use three of them and take the aver-
age:

• “Path” is the inverse of the shortest path length between
two concepts in WordNet.

• The other two measures are based on information con-
tent, a corpus-based measure in information theory that
is proposed by Resnik [26] to represent the specificity of a
concept (more specific the concept is, larger this value will
be). One way to estimate this value is by corpus statistics
and the WordNet::Similarity module has pre-computed it
for concepts in WordNet using standard corpus.

• The final measure is “JCN” is the semantic similarity de-
scribed by Jiang and Conrath [16], which subtracts the
information content of the LCA(Lowest Common Ances-
tor) of the two concepts, from the sum of the information
content of these two, then takes the inverse of the sub-
straction result (convert the distance to similarity).

Algorithm 1 extracts the best possible choice for a parent
concept given a nested noun phrase (for parent) and a list
of noun phrases (for child).

Lines 4 to 12 in Algorithm 1 calculate the sum of the sim-
ilarity between each candidate parent’s head word and head
words of all children. We remember the candidate parent
that has the maximum similarity sum, MaxSimSum.

For example, “Provisions of shading devices, such as over-
hangs or vertical fins”, has two candidate head words: “pro-
vision”and“devices” for the candidate parents (“provision of

5A module that implements a variety of semantic similarity
and relatedness measures based on information found in the
lexical database WordNet.

Algorithm 1 Parent NP Resolution in Nested NP

Input: A nested noun phrase (NestedNP) containing the po-
tential parent noun phrase; A set of child noun phrases
(ChildList).

Output: The appropriate parent noun phrase (ParentNP),
which is a hypernym of the noun phrases in ChildList.

1: ParentList← Recursively extract a list of noun phrases con-
taining the last word in NestedNP from the parse tree

2: MaxSimSum = −1
3: CurrentCandidate = null
4: for all Candidate ∈ ParentList do
5: SimSum =

∑
ChildNP∈ChildList

Similarity(headof(Candidate), headof(ChildNP))
6: if SimSum > MaxSimSum then
7: CurrentCandidate = Candidate
8: MaxSimSum = SimSum
9: else if SimSum == MaxSimSum and

length(Candidate) < length(CurrentCandidate) then
10: CurrentCandidate = Candidate
11: end if
12: end for
13: if MaxSimSum == 0 then
14: Return ParentNP ← shortest Candidate in ParentList,

breaking ties in favor of a candidate with a plural head
word if any, and then arbitrarily.

15: end if

16: Return ParentNP ← CurrentCandidate

shading devices”and“shading devices”, respectively). Hence,
we sum the semantic similarity between“provision”and“over-
hangs” and between “provision” and“fins”. Similarly we sum
the semantic similarity between “devices” and “overhangs”,
“devices” and “fins”. In this case, the similarity sum is larger
for “devices” than for “provision”, which suggests that“shad-
ing devices” is a better choice of parent concept.

If two candidates have the same sum, we will choose the
shortest one (Line 9–11), because the head word of a parent
phrase tends to be closer to the child phrases that specify
this parent. When the maximum similarity sum is zero,
meaning head words are not found in WordNet (which is
possible when we are dealing with a domain-specific corpus),
we will try to find the shortest noun phrase, with head word
in plural form if it exists, as a default behavior (Line 13–15).

4.2 SCIP Extension
We can extend the set of SCIP pairs derived by generat-

ing several more SCIPs that exploit the inherent isa rela-
tionship between a complex phrase and its head word and
the transitivity of isa relationship. E.g., consider the SCIP
isa(plumbing equipment, ductile iron pipe). We can ex-
tend this by generating the SCIP isa(equipment, ductile iron
pipe). Many existing algorithms make the assumption, that
if isa(NP1, NP2), then necessarily isa(head(NP1), head(NP2)).
This is an assumption, not necessarily a valid inference. No-
tice that isa(head(N1), head(NP2)) does not follow from
transitivity. In the above example, it turns out isa(equipment,
pipe) happens to be valid.

Our observations on real data sets indicate that this as-
sumption results in many erroneous relationships or trivial
relationships that can be found in a general ontology. This
is because in many cases, the sense of the head word can-
not be disambiguated without modifiers. According to our
preliminary results, 49% of head word pairs derived do not
form valid isa pairs. For example, following this assumption
on isa(points of penetration of the vapor barrier jacket, raw

edges) yields isa(points, edges), which is meaningless!
In summary, we extend every extracted pair isa(NP1,

NP2) from a SCIP by generating the additional pair isa(head
(NP1), NP2). Then we calculate reliability scores for all ex-
tracted and extended pairs based on the scoring mechanism
described in Section 4.4. Finally, we filter those pairs with
scores smaller than average and pick the top ones as seed
SCIPs for discovering new patterns in the next iteration.

4.3 Frequent Pattern Discovery
Using the seed SCIPs (isa/hasa relationships) produced

by module (2) from Figure 1, we want to find new patterns
that imply these relationships.

We adopt a Frequent-Substring-based Pattern Extraction
approach to achieve this new pattern discovery. The idea
is to find substrings that frequently occur in between the
parent concept and the child concept of a SCIP in the cor-
pus. Using seed instances in the form of SCIP(NP1, NP2)
as input, and we find co-occurrences of NP1 and NP2 in the
corpus where the text in between NP1 and NP2 is shorter
than a pre-defined limit. After collecting text sequences for
each SCIP, we find frequent substrings from them.

ESPRESSO [22] finds frequent substrings that contain
both concepts of a SCIP by building a suffix tree for all
tagged sentences containing both concepts of instances. This
suffix tree keeps a record of all substrings of these sen-
tences. The frequent substrings are considered to be can-
didates for new patterns. For example, given a tagged sen-
tence: “Sensory/JJ aspect/NN such/JJ as/IN air/NN qual-
ity/NN can/MD easily/RB be/VB compromised/VBN ./.”,
and it is given isa(sensory aspect, air quality). Espresso re-
places the actual parent and child concept by “X” and “Y”,
which gives the generalized tagged sentence : “X such/JJ
as/IN Y can/MD easily/RB be/VB compromised/VBN ./.”
A frequent substring of tagged sentences like above will look
like “X such/JJ as/IN Y”, in which isa(X, Y).

However, this kind of pattern is not general enough be-
cause ESPRESSO requires exact matches of both words
and the corresponding POS tags. Due to data sparsity,
a problem that is especially severe for a small-scale and
domain-specific corpus, frequent patterns are hard to find
and the resulting patterns will have limited power in pick-
ing out instances in later iterations of instance extraction.
ESPRESSO tries to generalize this kind of pattern by re-
placing terms (their counterpart of our “noun phrase”), that
are identified by regular expression matching over tagged
sentences, with a uniform symbol. As we show in Section 5,
this kind of pattern still suffers from low recall.

In contrast, instead of just finding frequent substrings in
all sentences (which can be really long) containing a SCIP,
we find frequent substrings from the text in between the
two concepts of a SCIP. Similarly, we do not require exact
matches of both words and their corresponding POS tags.

Consider the input candidate connector “and others;”“or
others” may also be a valid connector but does not occur
frequently enough. Instead, we may look for a pattern like
“* others”, where we require that both terms have the same
part of speech tags as the original pattern. Similarly, we
could also allow for generalizing patterns based on POS tags.

To solve the above problem, we tailor the Generalized Se-
quential Patterns (GSP) algorithm in [28]. In GSP, given
a database of lists (sequences) of transactions (item-sets)
ordered by transaction time, the problem is to determine fre-

quent sequential patterns that have a minimum user-specified
support, i.e., number of sequences containing the pattern.

In our setting, each word in the corpus corresponds to an
item-set consisting of two items — the word and the cor-
responding POS tag (e.g., flooring/NN). When looking for
frequent subsequences, we sometimes generalize a POS tag
(e.g., flooring/*) or the corresponding word (e.g., */NN) but
we always require the item-set to contain at least one item
(other than “*”). We say a subsequence of a sequence is con-
tinuous provided there are no gaps. E.g., in the candidate
connector “including/VBG but/CC not/RB limited/VBN
to/TO,”“including/VBG */CC”is a continuous subsequence,
but “including/VBG not/RB” is not. Thus, given a SCIP
pattern (NP1, NP2), we find all candidate connectors for
new patterns by finding all occurrences of NP1 〈candidate
connector〉 NP2 in the corpus where 〈candidate connector〉
may be different across occurrences. We then mine all fre-
quent subsequences from the set of 〈candidate connector〉’s
satisfying the constraints: (i) the mined subsequences must
be continuous and (ii) each item-set in it must contain at
least one item.

The frequent subsequences that are output are treated as
candidate lexico-syntactic patterns. We make use of a scor-
ing mechanism, described in the next subsection, for choos-
ing the top patterns as the seed patterns for the next itera-
tion of extraction of instance pairs. The algorithm outlined
above is given in Algorithm 2.

Algorithm 2 Frequent Pattern Discovery

Input: A set of instances (SeedInstances) of the form
(ParentNP,ChildNP) where isa or hasa relationship may
hold between ParentNP and ChildNP

Input: A limit (WindowSize) on the number of words in the
text window considered in each instance’s occurrence

Output: A set of generic patterns (CandidatePatterns).
1: Seqs = ∅
2: ReversedSeqs = ∅
3: for all instance ∈ SeedInstances do
4: if instance = (ParentNP,ChildNP) then
5: add to Seqs tagged substrings w/ length < WindowSize

that occur between ParentNP and ChildNP
6: end if
7: if instance = (ChildNP, ParentNP) then
8: add to ReversedSeqs tagged substrings with length

< WindowSize that occur between ChildNP and
ParentNP

9: end if
10: end for
11: Patterns = ∅
12: ReversedPatterns = ∅
13: Patterns← constrainedBIDEplus(Seqs)
14: ReversedPatterns← constrainedBIDEplus(ReversedSeqs)

15: CandidatePatterns← Patterns ∪ReversedPatterns

4.4 Scoring of Patterns and SCIPs
We need a scoring mechanism to select seed SCIPs and

seed patterns to identify new patterns and new concept pairs
respectively, and decide the stopping criteria for the itera-
tive process. It is prohibitively expensive to evaluate the
actual precision of patterns and SCIPs at run-time.In or-
der to estimate the confidence of a pattern or a SCIP, we
need to capture the association between a SCIP and any
pattern contributing to its extraction in the pattern instan-
tiation step. Similarly, we need to capture the association
between a pattern and any SCIP contributing to its dis-

covery in the frequent pattern discovery step. We follow
the Point-wise Mutual Information[8] (PMI) framework for
scoring patterns and instances. PMI measures the associa-
tion strength between two events x and y, and is defined as:

pmi(x, y) = log P (x,y)
P (x)P (y)

Using the PMI framework, we use the following formula-
tion:

pmi(i, p) = log

|NP1,p,NP2|∑
p̂∈P ′ ,̂i∈I′ |NP1

î
,p̂,NP2

î
|

|NP1,∗,NP2|∑
î∈I′ |NP1

î
,∗,NP2

î
|

|∗,p,∗|∑
p̂inP ′ |∗,p̂,∗|

(1)

in which P ′ is the set of patterns in the current iteration and
I ′ is the set of instances used to find new patterns. In the
above equation, we divide the frequency value in the numer-
ator and the denominator with corresponding sum values,
namely the sum of co-occurrence frequency for all pairs of
instance and pattern, the sum of frequencies of all instances,
and the sum of frequencies of all patterns, respectively. Here,
î ranges over instances, i.e., î = (NP1

î
, NP2

î
).

In the first iteration of pattern instantiation, we estimate
the precision of the initial set of pre-defined patterns by
manual validation on a sampled output, and use those es-
timates as initial scores. The algorithm runs until no more
new SCIPs can be found or the average score of patterns
produced in the current iteration is smaller than 50% of the
average score of patterns from the previous iteration.

5. EXPERIMENTS AND EVALUATION

5.1 Dataset Description and Preprocessing
We evaluated our results on the following three datasets:

AEC: The Architecture, Engineering, and Construction dataset
consists of the text data used by the construction firm
in the process of constructing the Centre for Interac-
tive Research on Sustainability (CIRS) building at the
University of British Columbia. It is a web archive
containing scheduling data, 3D design data, meeting
notes, and reports used in the construction of a medium-
sized building. We extracted the text and applied basic
cleaning. The resulting small corpus contains 18,805
sentences and 312,936 words. This fairly small dataset
shows challenges for ontology extraction when data is
sparse.

LP: LP6 consists of text from http://www.lonelyplanet.com.
This tourism-domain small-scale dataset has 18,950
sentences and 453,299 words; LP is also used by [6].

MED: OHSUMED (or“MED”for short) consists of 348,566
medical references from MEDLINE 7 [15]. We use a
large subset of this collection consisting of 1,221,462
sentences and 32,524,017 words. MED is a standard
corpus in information retrieval.

We did the following preprocessing steps on all datasets:

• We cleaned the data (e.g., we removed running footers).
• We broke the text into sentences with the LingPipe toolkit8.
• We used the Stanford NLP tools to tokenize, tag, and

parse the data.
• We built an inverted index with Lucene9.
6http://olc.ijs.si/lpReadme.html
7http://www.ncbi.nlm.nih.gov/pubmed/
8http://alias-i.com/lingpipe/
9http://lucene.apache.org/

5.2 Competing Algorithms and Parameters
We compare Laser with three other algorithms:

ESPRESSO: Espresso [22], discussed in detail throughout
the paper, is our closest competitor.

GHC: GHC [6] (Section 2) did not describe how to generate
the terms to build the taxonomy on. To overcome this,
we used the C/NC-value method [11] proposed by On-
toGain [10] to create multi-word candidate terms for
GHC. We slightly modified C/NC to produce single-
word terms in addition to multi-word terms since GHC
performs poorly when only multi-word terms are input.

WCL-HG: WCL-HG [21] (Section 2) uses Word class lat-
tices learned over the manually tagged Wikipedia sen-
tences [20]. We did not have access to the same or
a comparable term extractor as the one used in [21].
Thus, we used isa subclass terms and phrases extracted
by other three approaches as seeds to this algorithm.

Both Laser and ESPRESSO [22] are iterative. Laser
starts with the seed patterns in Section 3, and ESPRESSO
is given 50 seed SCIPs for AEC and LP and 100 seed SCIPs
for MED. Since there exist no validated SCIPs for both cor-
puses, we randomly selected a set of SCIPs that have been
labeled as valid when we evaluated the experiment result for
Laser.

During the isa/hasa Pattern Instantiation iteration, both
algorithms pick the top k extracted (extended) SCIPs as
seed SCIPs. For the small datasets like AEC and LP, we
use all extracted (extended) SCIPs as seed SCIPs ; and k is
set to 1500 on MED.

In the Frequent Pattern Discovery iteration, Laser chooses
the top m patterns. ESPRESSO produces the top m pat-
terns during the first run and generates patterns that in-
crease in size by one pattern per round, e.g., the second
round will find m + 1 patterns. Laser sets m to 10 when
finding isa relationships on AEC and 5 for all other cases,
and ESPRESSO has m = 5.

The only parameter for GHC is the number of input terms,
n. The n most important terms from corpus chosen by our
implementation of the C/NC-value method[11] are given as
input, and GHC tries to find isa relationships among them
and build a hierarchy. We set n = 1000 for AEC, n = 2000
for LP and n = 5000 for MED because we want to keep the
output size of different algorithms comparable.

WCL-HG iteratively finds a set of hypernyms for the set
of seed target concepts and replaces them with the newly
found hypernyms. We use K = 5 iterations in our experi-
ments. We use 0.38 as the threshold to filter sentences with
higher domain weights, where domain weight is a measure
indicating how much a sentence has in common with the
domain terms (extracted using a terminology extractor) —
this is the same threshold reported in [21]. The set of in-
put target values are 1102, 1343 and 2662 for LP, AEC and
MED, respectively.

GHC, ESPRESSO and WCL-HG originally used Google
as an external source of expanding isa/hasa relationships.
However, Google has recently restricted the use of its search
service API. Thus, we used online version of Merriam-Webster
dictionary10 for WCL-HG definition sentences and imple-
mented the web extension part in ESPRESSO with Mi-
crosoft Bing search API11. Since GHC reports that it’s chief

10http://www.merriam-webster.com/
11http://www.bing.com/toolbox/bingdeveloper/

improvement by using web expansion was a minor precision
improvement (2-3%), we did not implement its web expan-
sion with Bing.

We applied the four algorithms to the datasets in Sec-
tion 5.1. Laser and ESPRESSO find isa/hasa relation-
ships while GHC and WCL-HG are only able to produce
isa relationships.

In addition to measuring the algorithms’ precision (i.e.,
what fraction of the results that are returned are correct),
we would like to measure recall (i.e., what fraction of the
correct results are returned). However, given that it is in-
feasible to fully find all ontological relationships in a large
text repository, we measured relative recall — the number
of valid relationships found by the algorithm divided by
the total number of valid relationships found by all algo-
rithms [19]. This allows us to also define relative F-score
by replacing recall with relative recall. Thus relative F -
scoreβ = (1+β2)∗ precision∗relative recall

β2∗precision+relative recall , in which recall

is weighted β times as important as precision. Therefore, F1

weights precision and recall equally, F0.5 weights precision
as 2 times more important than recall, and F2 weights re-
call as 2 times more important. We use these F-scores here
because precision and recall may be weighted differently in
different applications.

5.3 Comparison of ISA Results
Using the stopping criteria in Section 4.4, Laser ran two

isa Pattern Instantiation iterations on all datasets. ESPRESSO
only ran one isa Pattern Instantiation iteration before it
reached its stopping criteria.

Table 1 shows the total number of all output isa relation-
ships for each algorithm and the corresponding precision.
We manually validated all relationships produced for AEC.
For the other two corpora, we validated random 100 results
if there were more than 1,000 relationships, otherwise did
complete validation. Laser1 and Laser2 represent the re-
lationships directly extracted from patterns during iteration
1 and 2; Laser is the total result from all iterations. HW
denotes the results containing extended relationships found
by the SCIP Extension step (Section 4.2). HW+W rep-
resents the result with both head word extension and web
extension. Finally, DEF indicates expanded results using
web definitions (Merriam-Webster dictionary in this case).
In this scenario, for every definition 〈DEF〉 found for the
input phrase 〈TARGET〉, we add the following to the set of
candidate sentences: “〈TARGET〉 is a 〈DEF〉”.

ESPRESSO achieves the best precision on the two smaller
datasets and Laser achieves the best precision on MED.
Head word extension increases the number of relationships
found by both Laser and ESPRESSO, with precision re-
maining about the same or decreasing a little bit because of
errors in finding head words. ESPRESSO’s web expansion
produces many additional relationships, but it markedly de-
grades precision.

There are two numbers in each precision column of ESPRESSO
HW+W and WCL-HG+DEF; the first measures precision
on relationships found in the domain. The second measures
precision if the relationship is valid in any domain. For ex-
ample, isa(accessories, necklace) is extracted by ESPRESSO
on the AEC dataset. This is not valid in the architecture
domain because necklace is not a concept in this domain —
in this domain, accessories stands for construction or me-
chanical equipment.

Figure 2: Precision Result for isa

Figure 3: Relative Recall Result for isa

GHC relies heavily on isa relationships between a term
and its head word, e.g., isa(system, heat recovery system),
which are fairly trivial. Neither Laser, nor ESPRESSO
output these relationships. The input terms extracted for
MED contain a higher percentage of multi-word terms (32%)
than those of AEC (23%), so GHC performs much better on
the MED corpus: more “trivial” relationships can be found.

The relatively poor performance of WCL-HG compared
to the results in the initial publications [20] may be due
to the following reasons. (1) Lacking access to a good set
of input domain terms, (2) Patterns learned by WCLs over
Wikipedia definition sentences are not effective over complex
and technical corpuses such as AEC. (3) As noted in [20],
in many cases WCLs are only able to match a substring
of the complete match phrase. E.g., over AEC, they return
isa(furring, application) as a match, which is too general and
is a substring of the correct match isa(furring, application
of thin wood).

Table 2 gives the relative recall and different F-scores for
algorithms on all corpuses. Testing the validity of all re-
lationships from the two larger datasets is impractical, so
for those, we estimate relative recall by: relative recall ≈

precision∗|SCIPs|∑
precisionx∗|SCIPs|x — the number of valid relationships

produced by an algorithm is estimated by the product of
sample precision and the number of all generated SCIPs.
Summing the estimated valid relationships for all compet-
ing algorithms, yields the number of all valid relationships
from all systems’ output, which is an overestimate of the real
value. Therefore, the estimated relative recall is an under
estimate but still reflects the difference between systems.

Laser HW outperforms the other two algorithms and

Table 1: Precision and Total Number of isa Results
System AEC Precision AEC Total LP Precision LP Total MED Precision MED Total
LASER1 0.593 617 0.63 2198 0.6 19338
LASER1 HW 0.564 1070 0.5 3995 0.61 34390
LASER2 0.453 64 0.644 104 0.37 5323
LASER2 HW 0.459 111 0.642 179 0.42 9674
LASER 0.58 681 0.61 2302 0.55 24661
LASER HW 0.555 1181 0.6 4174 0.56 44064
ESPRESSO 0.673 55 0.766 141 0.53 3472
ESPRESSO HW 0.674 95 0.755 229 0.59 5814
ESPRESSO HW+W 0.337/0.562 406 0.59/0.68 1396 0.43/0.5 14077
WCL-HG 0.189 53 0.3 77 0.37 6210
WCL-HG+DEF 0.139/0.39 2353 0.3/0.44 455 0.23/0.38 7584
GHC 0.337 734 0.51 1074 0.59 3557

Table 2: Relative Recall and F-score of isa
AEC LP MED

System RR F1 F0.5 F2 RR F1 F0.5 F2 RR F1 F0.5 F2

LASER 0.30 0.40 0.49 0.33 0.35 0.44 0.53 0.38 0.39 0.46 0.51 0.41
LASER HW 0.49 0.52 0.54 0.50 0.62 0.61 0.60 0.62 0.71 0.63 0.58 0.67
ESPRESSO 0.03 0.06 0.13 0.04 0.03 0.05 0.12 0.04 0.05 0.09 0.18 0.06
ESPRESSO HW 0.05 0.09 0.19 0.06 0.04 0.08 0.17 0.05 0.10 0.18 0.31 0.13
ESPRESSO HW+W 0.11 0.17 0.24 0.13 0.21 0.31 0.44 0.24 0.18 0.26 0.34 0.21
WCL-HG 0.01 0.02 0.04 0.01 0.01 0.02 0.04 0.01 0.10 0.16 0.24 0.12
WCL-HG+DEF 0.24 0.17 0.15 0.21 0.03 0.05 0.11 0.04 0.07 0.11 0.16 0.08
GHC 0.19 0.24 0.29 0.21 0.14 0.22 0.34 0.17 0.05 0.09 0.19 0.06

Figure 4: Relative F-score Result for isa

corresponding extensions in terms of relative recall and F-
scores, thanks to the large output and stable precision. In
contrast, ESPRESSO suffers from low relative recall. This
behavior is consistent on both small and large datasets,
which reflects a problem of starting an iterative algorithm
from seed SCIPs. Although Espresso’s set of SCIPs are
valid, the distribution of these seeds in the corpus is un-
known beforehand, leading to possibly re-discovering the
same pattern repeatedly and hence a consistently low recall.
GHC has better relative recall and F-score than ESPRESSO
on AEC even when its precision is low on AEC. On the large
corpus, GHC has worse relative recall mainly because the ag-
glomerative clustering algorithm does not scale well. As we
show later, even running GHC with 5000 terms took more
than two days. WCL-HG has its largest relative recall on
AEC dataset. The reason is that the algorithm is able to
find a large number of web definitions for the input seed tar-
get phrases. As a result, it finds almost all its matches from
web definitions. However, most of these matches are either
not complete or are not relevant in the given domain, which
results in a low precision.

Figure 3 shows the relative recall of isa relationships.
Since the variation in precision across different parts of the
algorithms (e.g., the difference between ESPRESSO and
ESPRESSO HW) is relatively low, the F-scores (Figure 4)
are very similar to the relative recall graph. We can con-
clude that Head Word Extension and Web Extension both
improve F-scores, and Laser HW dominates consistently.

In Figure 5 we plot precision, relative recall, relative F1-
Score as a function of X, in which top X% stands for the top
X% SCIPs having highest scores on AEC. Extractions are
not ranked for WCL-HG and GHC, therefore they do not
appear in this figure. The precision of Laser remains rela-
tively steady even when we dig to the bottom of the scores,
i.e., as X increases. Additionally, both Laser’s relative re-
call and F-score increase rapidly as X increases, showing
Laser’s dominance over the competition.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

10 20 30 40 50 60 70 80 90 100

V
ar

io
u

s
M

e
as

u
re

s

LASER precision

LASER relative
recall

LASER F-score

ESPRESSO precision

ESPRESSO relative
recall

ESPRESSO F-score

top X%

Figure 5: Comparing the Top X% isa SCIPs

Table 3: Precision and Total Number of hasa Results
System AEC Precision AEC Total LP Precision LP Total MED Precision MED Total
LASER1 0.415 82 0.626 673 0.42 4011
LASER2 0 0 0.429 7 0.25 417
LASER 0.415 82 0.624 680 0.39 4428
ESPRESSO 0.25 4 0.588 51 0.35 428
ESPRESSO HW 0.11 9 0.521 71 0.31 649
ESPRESSO HW+W 0.1 10 0.454/0.471 121 0.34/0.39 1072

Table 4: Relative Recall and F-score of hasa
AEC LP MED

System RR F1 F0.5 F2 RR F1 F0.5 F2 RR F1 F0.5 F2

LASER 0.971 0.581 0.469 0.766 0.885 0.732 0.663 0.817 0.826 0.530 0.436 0.675
ESPRESSO 0.029 0.052 0.099 0.035 0.063 0.114 0.221 0.077 0.072 0.119 0.197 0.085
ESPRESSO HW 0.029 0.046 0.071 0.034 0.077 0.134 0.242 0.093 0.096 0.147 0.215 0.112
ESPRESSO HW+W 0.029 0.045 0.067 0.034 0.115 0.184 0.286 0.135 0.174 0.230 0.286 0.193

5.4 Comparison of HASA Results
Laser ran one hasa Pattern Instantiation iteration on

AEC and two iterations on other two datasets. ESPRESSO
still ran only one hasa Pattern Instantiation iteration. Ta-
ble 3 shows that both the precision and number of hasa
relationships are worse than isa relationships for all algo-
rithms. This is because in a corpus, hasa relationships are
not as frequent as isa relationships.

Laser outperforms ESPRESSO in every case for all datasets.
One thing to note is that Laser only extends isa SCIPs
in the SCIP Extension step (Section 4.2), but ESPRESSO
extends both isa and hasa SCIPs. We made this choice
because hasa has different semantic meanings from isa and
contains many subtypes [12]. For example, hasa(treatment
of occlusive disease, endarterectomy) is a valid relationship
from MED, but its head word extension hasa(treatment,
endarterectomy) does not make sense because “treatment”
is too abstract that “endarterectomy” is not part of “treat-
ment” in the general sense. ESPRESSO’s drop in precision
when it applies hasa headword extension also reflects this.

We have also investigated that the precision, recall, and F-
score for hasa at various top-X percentages are very similar
to the case for isa (Figure 5). Laser’s precision is again
stable and overall, it outperforms ESPRESSO.

5.5 Comparison of Running Time
Table 5 shows the running times for extracting isa rela-

tionships. Laser and Laser HW have the same running
time because both versions of Laser require headword ex-
tension for seed generation; the only difference is whether we
count these extended relationships during evaluation. This
is also true for ESPRESSO and ESPRESSO HW.

Laser is the most efficient algorithm and is between 1.4
times and two orders of magnitude faster than other algo-
rithms. Indeed Laser’s constrained sequential pattern min-
ing approach to finding new patterns is much more efficient
than ESPRESSO’s frequent substring finding using a suffix
tree. ESPRESSO HW+W takes even longer because search
engines constrain the frequencies of queries. This can only
get worse as more search engines limit their access. The run-
ning time for GHC is quadratic in the number of input terms
because agglomerative clustering requires pairwise term sim-
ilarity. This becomes GHC’s bottleneck when the number
of input terms gets larger. Indeed, it takes GHC more than
two days to finish on an input of 5,000 terms! The bottle-
neck for WCL-HG is matching each input sentence against

all WCLs to find the potential matches. This can take up
to 2 days with web definition expansions over MED. The
running time for extracting hasa relationships is similar to
the isa case, and we omit the results for lack of space.

Table 5: isa extraction running time (in seconds)
System AEC LP MED
LASER 65 107 6,862
ESPRESSO 518 308 9,627
ESPRESSO HW+W 10,939 10,439 72,154
WCL-HG 894 224 41 hours
WCL-HG+DEF 2,710 1043 2 days
GHC 1,160 1,709 >2 days

In summary, Laser (equals or) outperforms the other al-
gorithms on precision, relative recall and F-score for both
isa and hasa relationships in most cases. While ESPRESSO
suffers from low recall and GHC finds too many “trivial” re-
lationships, Laser outputs a large number of relationships
on both small and large corpora, which shows the superior-
ity of using an iterative framework that starts from reliable
seed patterns. Using parse tree information and identifying
appropriate noun phrases from nested noun phrases, con-
tribute to the discovery of more complex and accurate re-
lationships. This parse-once-use-many-times strategy and
the adaptation of constrained frequent sequential pattern
mining make Laser very efficient, while the competing al-
gorithms have serious running time bottlenecks.

6. CONCLUSIONS AND FUTURE WORK
Many state-of-the-art algorithms for learning ontologies

from free text confine themselves to concepts represented as
single-word terms or common compounds. In contrast, we
find a richer ontology by covering multi-word terms. We
build on and extend previous pattern-based iterative frame-
works [14, 22], and make the following contributions: (1)
We identify concepts in isa/hasa relationships by analyz-
ing parse trees instead of simple POS tags, and use an effi-
cient parse-once-use-many-times strategy. (2) We develop a
novel algorithm to determine the appropriate noun phrases
from nested noun phrases present in the corpus. (3) We tai-
lor sequential pattern mining to find constrained frequent
patterns consisting of words, POS tags, and wildcards.

We empirically show on three real web datasets that Laser
stably extracts rich and complex concepts and isa/hasa re-
lationships between them, regardless of the size of corpus or
data sparsity. In terms of precision, it is comparable to or

better than the competitors while in terms of relative recall
and F-scores it significantly and consistently outperforms
them. Finally, we show that Laser has a significantly bet-
ter running time compared to the competing algorithms and
better scales.

An interesting future challenge is to post-process concepts
found by Laser with statistical methods to boost the pre-
cision even further while maintaining scalability.

7. REFERENCES
[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, and Z. Ives.

Dbpedia: A nucleus for a web of open data. In ICSW, 2007.
[2] M. Berland and E. Charniak. Finding parts in very large

corpora. In ACL, pages 57–64. ACL, 1999.
[3] C. Biemann. Ontology learning from text: A survey of

methods. LDV Forum, 20(2):75–93, 2005.
[4] S. Brin. Extracting patterns and relations from the world

wide web. In WebDB, 1999.
[5] S. Caraballo. Automatic construction of a

hypernym-labeled noun hierarchy from text. In ACL, 1999.
[6] P. Cimiano and S. Staab. Learning concept hierarchies from

text with a guided hierarchical clustering algorithm. In
ICML workshop on Learning and Extending Lexical
Ontologies with Machine Learning Methods, 2005.

[7] P. Cimiano and J. Völker. Text2onto. Natural Language
Processing and Information Systems, pages 227–238, 2005.

[8] T. Cover and J. Thomas. Elements of information theory,
volume 6. Wiley Online Library, 1991.

[9] P. Derose, W. Shen, F. Chen, A. Doan, and
R. Ramakrishnan. Building structured web community
portals: A top-down, compositional, and incremental
approach. In VLDB, 2007.

[10] E. Drymonas, K. Zervanou, and E. Petrakis. Unsupervised
ontology acquisition from plain texts: the OntoGain
system. Natural Language Processing and Information
Systems, pages 277–287, 2010.

[11] K. Frantzi, S. Ananiadou, and H. Mima. Automatic
recognition of multi-word terms:. the c-value/nc-value
method. International Journal on Digital Libraries,
3(2):115–130, 2000.

[12] R. Girju, A. Badulescu, and D. Moldovan. Automatic
discovery of part-whole relations. Computational
Linguistics, 32(1):83–135, 2006.

[13] Z. Harris. Distributional structure. Word, 1954.
[14] M. Hearst. Automatic acquisition of hyponyms from large

text corpora. In COLING. ACL, 1992.
[15] W. Hersh, C. Buckley, T. Leone, and D. Hickam. Ohsumed:

an interactive retrieval evaluation and new large test
collection for research. In SIGIR, 1994.

[16] J. Jiang and D. Conrath. Semantic similarity based on
corpus statistics and lexical taxonomy. Arxiv preprint
cmp-lg/9709008, 1997.

[17] A. Maedche and S. Staab. Semi-automatic engineering of
ontologies from text. In SEKE, pages 231–239, 2000.

[18] C. Manning and H. Schütze. Foundations of statistical
natural language processing, volume 59. MIT Press, 1999.

[19] A. Moosavi, T. Li, L. Lakshmanan, and R. Pottinger.
Ontectas: Bridging the gap between collaborative tagging
systems and structured data. In CAiSE, 2011.

[20] R. Navigli and P. Velardi. Learning word-class lattices for
definition and hypernym extraction. In ACL, pages
1318–1327, 2010.

[21] R. Navigli, P. Velardi, and S. Faralli. A graph-based
algorithm for inducing lexical taxonomies from scratch. In
IJCAI, 2011.

[22] P. Pantel and M. Pennacchiotti. Espresso: Leveraging
generic patterns for automatically harvesting semantic
relations. In COLING, pages 113–120. ACL, 2006.

[23] P. Pantel and D. Ravichandran. Automatically labeling
semantic classes. In HLT/NAACL, 2004.

[24] T. Pedersen, S. Patwardhan, and J. Michelizzi. WordNet::
Similarity: measuring the relatedness of concepts. In
HLT/NAACL, pages 38–41, 2004.

[25] H. Poon and P. Domingos. Unsupervised ontology
induction from text. In ACL, pages 296–305, 2010.

[26] P. Resnik. Semantic similarity in a taxonomy: An
information-based measure and its application to problems
of ambiguity in natural language. JAIR, 11:95–130, 1999.

[27] M. Sanderson and B. Croft. Deriving concept hierarchies
from text. In SIGIR, pages 206–213, 1999.

[28] Srikant and Agrawal. Mining sequential patterns:
Generalizations and performance improve. EDBT, 1996.

[29] F. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of
semantic knowledge. In WWW, pages 697–706, 2007.

[30] F. Suchanek, M. Sozio, and G. Weikum. SOFIE: A
self-organizing framework for information extraction. In
WWW, 2009.

[31] F. Wu and D. S. Weld. Autonomously semantifying
wikipedia. In CIKM, pages 41–50, 2007.

[32] F. Wu and D. S. Weld. Automatically refining the
wikipedia infobox ontology. In WWW, pages 635–644, 2008.

[33] E. Zavitsanos, G. Paliouras, G. Vouros, and S. Petridis.
Learning subsumption hierarchies of ontology concepts
from texts. WIAS, 8(1):37–51, 2010.

