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Abstract. We introduce and analyze a mixed finite element method for the numerical discretiza-
tion of a stationary incompressible magnetohydrodynamics problem, in two and three dimensions.
The velocity field is discretized using divergence-conforming Brezzi-Douglas-Marini (BDM) elements
and the magnetic field is approximated by curl-conforming Nédélec elements. The H1-continuity of
the velocity field is enforced by a DG approach. A central feature of the method is that it produces
exactly divergence-free velocity approximations, and captures the strongest magnetic singularities.
We prove that the energy norm error is convergent in the mesh size in general Lipschitz polyhedra
under minimal regularity assumptions, and derive nearly optimal a-priori error estimates for the two-
dimensional case. We present a comprehensive set of numerical experiments, which indicate optimal
convergence of the proposed method for two-dimensional as well as three-dimensional problems.
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1. Introduction. The field of magnetohydrodynamics (MHD) studies the be-
havior of electrically conducting fluids (such as liquid metals, plasmas, salt water,
etc.) in electromagnetic fields [19, 26, 41]. The equations of electromagnetics and
fluid dynamics are coupled through two fundamental effects: first, the motion of a
conducting material in the presence of a magnetic field induces an electric current that
modifies the existing electromagnetic field. Second, the current and the magnetic field
generate the Lorentz force, which accelerates the fluid particles in the direction normal
to both the magnetic field and the electric current. Our focus is on incompressible
viscous fluids whose electric resistivity is non-negligible. The corresponding incom-
pressible MHD model is a system of PDEs, where the Navier-Stokes equations are
coupled with the Maxwell equations. Incompressible MHD has a number of techno-
logical and industrial applications such as metallurgical engineering, electromagnetic
pumping, stirring of liquid metals, and measuring flow quantities based on induction;
cf. [17, 26].

We consider a standard form of the incompressible MHD equations as derived
in [2, Section 2]; see also [25, 26, 31]. That is, we neglect phenomena involving high
frequency as well as the convection current, and consider a non-polarizable, non-
magnetizable and homogeneous medium. In addition, to make the curl-curl operator
arising in the Maxwell equations amenable to discretization with Nédélec elements,
we use the mixed formulation proposed in [46]. The governing equations are then of
the form

−ν∆u + (u · ∇)u + ∇p− κ (∇× b) × b = f in Ω, (1.1a)

κνm ∇× (∇× b) + ∇r − κ∇× (u × b) = g in Ω, (1.1b)

∇ · u = 0 in Ω, (1.1c)

∇ · b = 0 in Ω. (1.1d)
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Here, u is the velocity, b the magnetic field, p the hydrodynamic pressure, and r is a
Lagrange multiplier associated with the divergence constraint on the magnetic field b.
The functions f and g represent external force terms.

The equations (1.1) are characterized by three dimensionless parameters: the hy-
drodynamic Reynolds number Re = ν−1, the magnetic Reynolds number Rm = ν−1

m ,
and the coupling number κ. For further discussion of these parameters and their typ-
ical values, we refer the reader to [2, 26, 45]. We assume Ω to be a bounded simply-
connected Lipschitz polytope in R

d (d = 2 or 3), with a connected boundary ∂Ω. In
the two-dimensional case, the curl operator ∇× applied to a vector b = (b1, b2) is
defined as ∇ × b = ∂b2

∂x − ∂b1
∂y , while the curl of a scalar function r is determined

by ∇ × r = ( ∂r
∂y ,−

∂r
∂x ). Similarly, the cross product of two vectors u = (u1, u2)

and b = (b1, b2) is given by u× b = u1b2 − u2b1.
We consider the following homogeneous Dirichlet boundary conditions:

u = 0 on ∂Ω, (1.2a)

n× b = 0 on ∂Ω, (1.2b)

r = 0 on ∂Ω, (1.2c)

with n being the unit outward normal on ∂Ω. By taking the divergence of the mag-
netostatic equation (1.1b), we obtain the Poisson problem

∆r = ∇ · g in Ω, r = 0 on ∂Ω. (1.3)

Since g is typically divergence-free in physical applications, the multiplier r is typically
zero and its primary purpose is to ensure stability; see also [21, Section 3].

Various finite element methods for discretizing linear and non-linear MHD systems
can be found in the literature. The magnetic field is often approximated by standard
nodal (i.e., H1-conforming) finite elements [2, 25, 29, 30, 31]. However, since the
strongest magnetic singularities have regularity below H1, straightforwardly applied
nodal elements may fail to resolve them in non-convex polyhedral domains; see [15]
and the references therein. A number of remedies have been proposed for the magnetic
subproblem, for example the weighted regularization approach in [16] or the approach
in [5], whereby the divergence of the electric field is stabilized in H−α with 1

2 < α < 1.
In [33], weighted regularization has been applied to a full incompressible MHD system.

In the mixed formulation of [46] the above mentioned difficulties associated with
nodal elements are seamlessly avoided without the need for stabilizing the divergence.
This approach amounts to introducing the Lagrange multiplier r, and yields the PDE
system (1.1). As a result, it is possible to use curl-conforming Nédélec elements for
approximating the magnetic field. For these elements, only tangential continuity is
enforced across inter-elemental faces. This makes this approach feasible in situations
of highly singular magnetic fields [34, 40, 42]. In the context of incompressible mag-
netohydrodynamics, a related mixed approach for the discretization of the magnetic
unknowns was presented in [22].

We are interested in discretizations for incompressible MHD problems that are
based on discontinuous Galerkin (DG) methods; see, e.g., the surveys [12, 13, 20]
and the references therein. In [29], an interior penalty technique is applied to enforce
continuity of the magnetic variable across domains with different electromagnetic
properties, while nodal elements are employed in the interior. A full DG method is
proposed in [36] for a linearized variant of the system (1.1), whereby all the variables
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are approximated in discontinuous finite element spaces, based on existing discretiza-
tions for the Oseen and Maxwell equations [9, 10, 35]. However, this approach requires
a large number of degrees of freedom. Furthermore, a straightforward extension to
the non-linear setting in a locally conservative fashion would require a post-processing
procedure for smoothing the DG velocity approximations throughout the non-linear
iteration [10].

In this paper we design a new finite element discretization, in an attempt to over-
come the above mentioned difficulties. Instead of discontinuous elements for all un-
knowns, we use divergence-conforming Brezzi-Douglas-Marini (BDM) elements [7, 11]
for the approximation of the velocity field, and curl-conforming Nédélec elements [42]
for the magnetic field, thereby substantially reducing the total number of the coupled
degrees of freedom. The H1-continuity of the velocity field is again enforced by a DG
technique. A central feature of this discretization is that it yields exactly divergence-
free velocity approximations, guaranteeing stability of the linearized system within
each Picard iteration, without any other modifications. We note that divergence-
conforming discretizations have been analyzed for the incompressible Navier-Stokes
equations in [11]. For the magnetic approximation we have a discrete version of the
desirable property (1.3), in contrast to the method presented in [36].

We prove well-posedness of our discretization, and show convergence under min-
imal regularity assumptions. Thus, our method captures the strongest magnetic sin-
gularities in non-convex polyhedra. Our numerical results clearly indicate optimal
convergence rates in two and three dimensions, but we manage to show (nearly) op-
timal estimates only for the two-dimensional case. Specific details on this are given
in Section 4 and are summarized in the conclusions in Section 6. We note that our
method converges optimally for the linearized version of (1.1), as follows from the
arguments in [36, Remark 3.3].

The rest of the paper is structured as follows. In Section 2 we state the well-
posedness of the variational formulation of (1.1). Section 3 is devoted to the finite
element discretization; the existence and uniqueness of approximate solutions are
proved. In Section 4 we present and prove the main results—convergence and a-priori
error estimates. In Section 5 we present a series of numerical experiments validating
the theoretical results. In Section 6 we end with some concluding remarks.

2. Variational formulation of an MHD problem. To write (1.1) in weak
form, we denote by (·, ·)Ω the inner product in L2(Ω) or L2(Ω)d. Upon setting

V = H1
0 (Ω)d = {u ∈ H1(Ω)d : u = 0 on ∂Ω },

C = H0(curl; Ω) =
{
b ∈ L2(Ω)d : ∇× b ∈ L2(Ω)d, n × b = 0 on ∂Ω

}
,

Q = L2
0(Ω) = { p ∈ L2(Ω) : (p , 1)Ω = 0 },

S = H1
0 (Ω) = { r ∈ H1(Ω) : r = 0 on ∂Ω },

the variational formulation of the incompressible MHD system (1.1)–(1.2) amounts
to finding (u,b, p, r) ∈ V × C×Q× S such that

A(u,v) +O(u,u,v) + C(b,v,b) +B(v, p) = (f ,v)Ω, (2.1a)

M(b, c) − C(b,u, c) +D(c, r) = (g, c)Ω, (2.1b)

B(u, q) = 0, (2.1c)

D(b, s) = 0, (2.1d)
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for all (v, c, q, s) ∈ V × C ×Q× S. The variational forms are given by

A(u,v) =

∫

Ω

ν∇u : ∇v dx, O(w,u,v) =

∫

Ω

(w · ∇)u · v dx,

M(b, c) =

∫

Ω

κνm(∇× b) · (∇× c) dx, C(d,v,b) =

∫

Ω

κ (v × d) · (∇× b) dx,

B(u, q) = −

∫

Ω

(∇ · u) q dx, D(b, s) =

∫

Ω

b · ∇s dx.

To discuss the well-posedness of the mixed formulation (2.1), we introduce the
product norms

‖(u,b)‖V ×C =
(
ν‖u‖2

H1(Ω) + κνm‖b‖2
H(curl;Ω)

) 1
2

, (u,b) ∈ V × C,

‖(p, r)‖Q×S =

(
1

ν
‖p‖2

L2(Ω) +
1

κνm
‖r‖2

H1(Ω)

) 1
2

, (p, r) ∈ Q× S.

Here, the curl-norm is defined by

‖b‖H(curl;Ω) =
(
‖b‖2

L2(Ω) + ‖∇× b‖2
L2(Ω)

) 1
2

.

Furthermore, we define the norm of the source terms by

|||(f ,g)||| =
(
‖f‖2

L2(Ω) + ‖g‖2
L2(Ω)

) 1
2

.

Finally, we introduce the parameters

ν̄ = min{ν, κνm},

κ̄ = max{1, κ}.

The following result can be found in [46, Corollary 2.18 and Remark 2.14].
Theorem 2.1. There is a constant c1 > 0 only depending on Ω such that for small

data with c1κ̄ν̄
−2|||(f ,g)||| < 1, the MHD problem (2.1) has a unique solution (u,b, p, r)

in V × C×Q× S. Moreover, we have the stability bound

‖(u,b)‖V ×C ≤ c2
|||(f ,g)|||

ν̄
1
2

,

for a constant c2 > 0 only depending on Ω.

3. Mixed finite element discretization. In this section, we introduce a mixed
finite element method that employs divergence-conforming elements for the approx-
imation of the velocity field and curl-conforming elements for the magnetic field.
The H1-continuity of the velocity is enforced by a DG technique.

3.1. Meshes and traces. We consider a family of regular and quasi-uniform
triangulations Th of mesh size h that partition the domain Ω into simplices {K} (i.e.,
triangles for d = 2 and tetrahedra for d = 3). We denote by Fh the set of all edges
(d = 2) or faces (d = 3) of Th. In the following, we generically refer to elements
in Fh as faces. As usual, hK denotes the diameter of the element K, and hF is the
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diameter of the face F . Finally, we write nK for the unit outward normal vector on
the boundary ∂K of K.

The average and jump operators are defined as follows. Let F = ∂K ∩ ∂K ′ be an
interior face shared by K and K ′, and let x ∈ F . Let φ be a generic piecewise smooth
function and denote by φ and φ′ the traces of φ on F taken from within the interior
of K and K ′, respectively. Then, we define the mean value {{·}} at x ∈ F as

{{φ}} =
1

2
(φ+ φ′).

Furthermore, for a piecewise smooth vector-valued function φ, we define the jump:

[[φ]] = φ ⊗ nK + φ′ ⊗ nK′ ,

where φ ⊗ n = (φinj)1≤i,j≤d. On a boundary face F = ∂K ∩ ∂Ω, we set accordingly

{{φ}} = φ, [[φ]] = φ ⊗ n.

3.2. Mixed discretization. For k ≥ 1, we wish to approximate the solution
of (1.1)–(1.2) by finite element functions (uh,bh, ph, rh) ∈ Vh ×Ch ×Qh ×Sh, where

Vh = {u ∈ H0(div; Ω) : u|K ∈ Pk(K)d, K ∈ Th },

Ch = {b ∈ H0(curl; Ω) : b|K ∈ Pk−1(K)d ⊕Rk(K), K ∈ Th },

Qh = { p ∈ L2
0(Ω) : p|K ∈ Pk−1(K), K ∈ Th },

Sh = { r ∈ H1
0 (Ω) : r|K ∈ Pk(K), K ∈ Th }.

(3.1)

Here, we denote by H0(div; Ω) the space

H0(div; Ω) =
{
u ∈ L2(Ω)d : ∇ · u ∈ L2(Ω), u · n = 0 on ∂Ω

}
,

by Pk(K) the space of polynomials of total degree at most k on element K, and
by Rk(K) the space of homogeneous vector polynomials of total degree k that are
orthogonal to x.

The space Vh is the divergence-conforming Brezzi-Douglas-Marini (BDM) space
(see [7, Section III.3] for details); it has degrees of freedom specified for the normal
components of functions along faces. The space Ch represents the first family of curl-
conforming Nédélec elements (cf. [42, Chapter 5]); its degrees of freedom are defined
for the tangential components of functions along faces. We notice that the finite
element spaces Ch, Qh and Sh are conforming in C, Q and S, respectively, while Vh

is non-conforming in V.
Now we consider the following finite element method: find (uh,bh, ph, rh) ∈ Vh×

Ch ×Qh × Sh such that

Ah(uh,v) +Oh(uh,uh,v) + C(bh,v,bh) +B(v, ph) = (f ,v)Ω, (3.2a)

M(bh, c) − C(bh,uh, c) +D(c, rh) = (g, c)Ω, (3.2b)

B(uh, q) = 0, (3.2c)

D(bh, s) = 0, (3.2d)

for all (v, c, q, s) ∈ Vh × Ch ×Qh × Sh.
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The form Ah associated with the Laplacian is chosen as the standard interior
penalty form [3, 4]:

Ah(u,v) =

∫

Ω

ν∇hu : ∇hv dx −
∑

F∈Fh

∫

F

{{ν∇hu}} : [[v]] ds

−
∑

F∈Fh

∫

F

{{ν∇hv}} : [[u]] ds+
∑

F∈Fh

a0ν

hF

∫

F

[[u]] : [[v]] ds.

Here, ∇h is the elementwise gradient operator, and a0 > 0 is the interior penalty
stabilization parameter; it has to be chosen larger than a threshold value which is
independent of h, ν, κ and νm. For the convection form, we take the standard upwind
form [39]:

Oh(w,u,v) =
∑

K∈Th

∫

K

(w · ∇)u · v dx

+
∑

K∈Th

∫

∂K\∂Ω

1

2
(w · nK − |w · nK |)(ue − u) · v ds

−

∫

∂Ω

1

2
(w · n− |w · n|)u · v ds.

(3.3)

Here, ue is the trace of u taken from the exterior of K. The remaining forms are the
same as in the continuous case. Notice that due to the presence of the upwind terms
the form Oh(w,u,v) is not linear in the first argument; see also Lemma 4.6 and (3.6).

By choosing the divergence-conforming BDM elements as the approximating space
for the velocity, the method gives exactly divergence-free velocity approximations;
cf. [11]. Moreover, the Lagrange multiplier rh vanishes identically for divergence-free
source terms, thereby mimicking the continuous property in (1.3).

Proposition 3.1. Let (uh, bh, ph, rh) solve (3.2). Then we have:

(i) ∇ · uh = 0 in Ω.
(ii) the Lagrange multiplier rh is the solution of

(∇rh,∇s)Ω = (g,∇s)Ω ∀ s ∈ Sh.

In particular, if g is solenoidal, then rh ≡ 0.

Proof. To prove item (i), we proceed as in [11]. We note that ∇·uh has vanishing
mean value on Ω, and is a discontinuous polynomial of degree k − 1. Thus, we
have ∇ · uh ∈ Qh. Equation (3.2c) then implies that ∇ · uh is orthogonal to all
functions q ∈ Qh. Therefore, it is equal to zero.

To prove item (ii), we take c = ∇s in equation (3.2b) (noting that ∇Sh ⊂ Ch)
and obtain

(g,∇s)Ω = M(bh,∇s) − C(bh,uh,∇s) +D(∇s, rh) = D(∇s, rh).

Here, we have used the fact that ∇×∇s = 0. Therefore, rh satisfies

(∇rh,∇s)Ω = (g,∇s)Ω ∀ s ∈ Sh.

Since (g,∇s)Ω = (∇ · g, s)Ω, we have rh ≡ 0 provided that ∇ · g = 0.
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For our analysis, it will be convenient to introduce the following product forms:

Ah(u,b;v, c) = Ah(u,v) +M(b, c),

Oh(w,d;u,b;v, c) = Oh(w,u,v) + C(d,v,b) − C(d,u, c),

B(u,b; q, s) = B(u, q) +D(b, s),

L(v, c) = (f ,v)Ω + (g, c)Ω.

Then, the mixed discretization (3.2) is equivalent to the following saddle-point system:
find (uh,bh, ph, rh) ∈ Vh × Ch ×Qh × Sh such that

Ah(u,b;v, c) + Oh(w,d;u,b;v, c) + B(v, c; p, r) = L(v, c),

B(u,b; q, s) = 0

for all (v, c, q, s) ∈ Vh × Ch ×Qh × Sh.

3.3. Stability properties. To discuss the stability properties of the finite el-
ement formulation (3.2), we introduce the discrete H1-norm for the hydrodynamic
velocity:

‖u‖1,h =

(
∑

K∈Th

‖∇u‖2
L2(K) +

∑

F∈Fh

h−1
F ‖[[u]]‖2

L2(F )

) 1
2

.

We further define

‖(u,b)‖Vh×Ch
=
(
ν‖u‖2

1,h + κνm‖b‖2
H(curl;Ω)

) 1
2

.

First, we note that the forms Ah and B are continuous over the finite element
spaces:

|Ah(u,b;v, c)| ≤ CA‖(u,b)‖Vh×Ch
‖(v, c)‖Vh×Ch

, (3.4)

|B(v, c; q, s)| ≤ CB‖(v, c)‖Vh×Ch
‖(q, s)‖Q×S , (3.5)

for all u,v ∈ Vh, b, c ∈ Ch, q ∈ Qh, s ∈ Sh, with constants CA, CB > 0 independent
of h, ν, κ and νm.

Next, we introduce the following spaces of (discretely) divergence-free functions:

Jh = {u ∈ Vh : B(u, q) = 0 ∀ q ∈ Qh },

Xh = {b ∈ Ch : D(b, s) = 0 ∀ s ∈ Sh }.

For the form Oh, we then have the following continuity result: there exists a con-
stant CO > 0 independent of h, ν, κ and νm such that, for any w1,w2 ∈ Vh,
u,v ∈ Vh, d1,d2 ∈ Xh, and b, c ∈ Ch, we have

|Oh(w1,d1;u,b;v, c) −Oh(w2,d2;u,b;v, c)|

≤
CO κ̄

ν̄
3
2

‖(w1 − w2,d1 − d2)‖Vh×Ch
‖(u,b)‖Vh×Ch

‖(v, c)‖Vh×Ch
;

(3.6)

see also Proposition 4.8 for a more detailed discussion.
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Furthermore, the following stability properties of Ah and Oh hold; cf. [4, 9, 34,
Theorem 4.7] and the references therein:

Ah(u,b;u,b) ≥ CC ‖(u,b)‖2
Vh×Ch

∀ (u,b) ∈ Vh × Xh, (3.7)

Oh(w,d;u,b;u,b) = Oh(w,u,u) ≥ 0 ∀w ∈ Jh, u ∈ Vh, b,d ∈ Ch, (3.8)

with a constant CC > 0 independent of h, ν, κ and νm.
Finally, let us address the inf-sup stability of the forms B and D. For the form B

we have the following result [32, Proposition 10]:

inf
q∈Qh

sup
v∈Vh

B(v, q)

‖v‖1,h‖q‖L2(Ω)
= λh ≥ C > 0, (3.9)

where C is independent of h, ν, κ and νm. Moreover, since ∇Sh ⊂ Ch, there holds [35,
Lemma 5.3]:

inf
s∈Sh

sup
c∈Ch

D(c, s)

‖c‖H(curl;Ω)‖s‖H1(Ω)
= µh ≥ C > 0, (3.10)

for a constant C independent of h, ν, κ and νm.
An immediate consequence of (3.9) and (3.10) is the following inf-sup condition

for the product form B:

inf
(q,s)∈Qh×Sh

sup
(v,c)∈Vh×Ch

B(v, c; q, s)

‖(v, c)‖Vh×Ch
‖(q, s)‖Q×S

≥ CS > 0, (3.11)

where the stability constant CS is independent of h, ν, κ and νm.
In Table 3.1, we show the discrete inf-sup constants λh in (3.9) for the velocity-

pressure pair Vh × Qh defined in (3.1). We use the lowest order BDM elements
on Ω = (−1, 1)2 and compute the discrete inf-sup constants λh for a sequence of
successively refined uniform triangular meshes. The inf-sup constants are obtained
by solving a generalized eigenvalue problem related to the matrix representation of
the bilinear form B and the norms in (3.9); cf. [7, page 75]. Table 3.1 illustrates that
the discrete inf-sup constants are approaching a positive lower bound as the mesh is
refined.

Dofs in uh/ph 112/32 416/128 1,600/512 6,272/2,048 24,832/8,192
λh 1.273e-1 1.251e-1 1.241e-1 1.236e-1 1.233e-1

Table 3.1

Discrete inf-sup constants for Vh × Qh.

3.4. Existence and uniqueness of discrete solutions. In the following the-
orem, we state the unique solvability of the method (3.2) under a discrete version of
the smallness assumption in Theorem 2.1. The proof of this result follows along the
same lines as [46, Theorem 2.12], using the stability properties outlined in Section 3.3.

Theorem 3.2. There is a constant C1 > 0 independent of h, ν, κ and νm such
that for small data with C1κ̄ν̄

−2|||(f ,g)||| < 1, the mixed finite element discretiza-
tion (3.2) has a unique solution (uh,bh,ph, rh) ∈ Vh × Ch × Qh × Sh. Moreover,
there is a constant C2 > 0 independent of h, ν, κ and νm such that

‖(uh,bh)‖Vh×Ch
≤ C2

|||(f ,g)|||

ν̄
1
2

.
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The solution of (3.2) can be found by employing the following Picard-type iter-
ation: given (un−1

h ,bn−1
h ) ∈ Vh × Ch, let (un

h ,b
n
h, p

n
h, r

n
h) in Vh × Ch ×Qh × Sh be

the solution of the linearized Oseen-type problem

Ah(un
h ,v) +Oh(un−1

h ,un
h,v) + C(bn−1

h ,v,bn
h) +B(v, pn

h) = (f ,v)Ω,

M(bn, c) − C(bn−1
h ,un

h, c) +D(c, rn
h ) = (g, c)Ω,

B(un
h , q) = 0,

D(bn
h , s) = 0,

for all (v, c, q, s) ∈ Vh × Ch ×Qh × Sh.
Theorem 3.2 guarantees the convergence of the iterates {(un

h,b
n
h, p

n
h, r

n
h)}n≥0 to

the solution (uh,bh, ph, rh) of (3.2) for any initial guess (u0
h,b

0
h) ∈ Vh × Ch with

exactly divergence-free u0
h, provided that the small data assumption in Theorem 3.2 is

satisfied. However, the scheme is only linearly convergent, as we illustrate in Section 5.
Remark 3.3. A more efficient non-linear solver such as Newton’s method can

also be used for solving (3.2); see, e.g., [24, 26, 31]. When upwinding is not incor-
porated, Newton’s method can be straightforwardly applied. However, when upwind
terms are included, adapting the non-linear iteration to our discretization is more
delicate, since it requires additional linearization of the convection form Oh(w,u,v)
in the first argument. This remains an item for future investigation.

4. Error analysis. In this section, we present the main results of this paper,
namely the convergence of finite element approximations and a-priori error estimates
for the two-dimensional version of our MHD problem. We provide detailed proofs in
Sections 4.2 through 4.5.

4.1. Main results. Our first result is a convergence result. To state it, we
suppose the solution (u,b, p, r) of (1.1)–(1.2) possesses the smoothness

(u, p) ∈ Hσ+1(Ω)d ×Hσ(Ω), (4.1a)

(b,∇× b, r) ∈ Hτ (Ω)d ×Hτ (Ω)d ×Hτ+1(Ω), (4.1b)

for σ, τ > 1
2 .

Remark 4.1. The regularity assumption (4.1b) is minimal in the sense that it is
satisfied by the strongest singularities of the Maxwell operator in polyhedral domains;
cf. [15, 16]. Similarly, the regularity (4.1a) holds true for the strongest singularities
of the Stokes operator in polyhedral domains; see [1, 18]. In view of these results,
we expect (4.1) to be the minimal smoothness of solutions to the MHD system (1.1)-
(1.2) in general Lipschitz polyhedra. However, we do not have a full proof of this
conjecture.

Theorem 4.2. Let (u,b, p, r) and (uh,bh, ph, rh) be the solutions of (1.1)–(1.2)
and (3.2), respectively, obtained on a sequence of quasi-uniform meshes {Th}h>0 of
mesh size h. Assume (4.1) and that κ̄ν̄−2|||(f ,g)||| is sufficiently small. Then we have

lim
h→0

‖(u − uh,b− bh)‖Vh×Ch
= 0, lim

h→0
‖(p− ph, r − rh)‖Q×S = 0.

Theorem 4.2 guarantees that the method (3.2) gives correct solutions provided
that the (minimal) smoothness assumption (4.1) is satisfied and the data is sufficiently
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small. In particular, it ensures convergence in situations where straightforwardly ap-
plied nodal elements for the approximation of b are not capable of correctly capturing
the singular solution components.

Next, we present a-priori error estimates for the two-dimensional version of the
MHD problem (3.2).

Theorem 4.3. Let Ω ⊂ R
2 be a simply-connected Lipschitz polygon with a con-

nected boundary ∂Ω. Under the same assumption as in Theorem 4.2, we have the
following error estimates for any ε > 0:

‖(u − uh,b− bh)‖Vh×Ch

≤ Cεh
min{σ,τ,k}−ε

(
ν

1
2 ‖u‖Hσ+1(Ω) + (κνm)

1
2 ‖b‖Hτ (Ω) + (κνm)

1
2 ‖∇× b‖Hτ (Ω)

)

+ Chmin{σ,τ,k}
(
ν−

1
2 ‖p‖Hσ(Ω) + (κνm)−

1
2 ‖r‖Hτ+1(Ω)

)
,

and

‖(p− ph, r − rh)‖Q×S

≤ Cεh
min{σ,τ,k}−2ε

(
ν

1
2 ‖u‖Hσ+1(Ω) + (κνm)

1
2 ‖b‖Hτ (Ω) + (κνm)

1
2 ‖∇× b‖Hτ (Ω)

)

+ Cεh
min{σ,τ,k}−ε

(
ν−

1
2 ‖p‖Hσ(Ω) + (κνm)−

1
2 ‖r‖Hτ+1(Ω)

)
.

Here, the constant Cε > 0 is independent of h, ν, κ and νm, but dependent on ε.
The convergence rates in Theorem 4.3 are optimal in the mesh size, up to a loss

of O(hε) for ε arbitrarily small. This loss stems from the use of the Sobolev embedding
of H1(Ω) into Lp(Ω), for all p ≥ 1, but not into L∞(Ω); cf. [27]. To bridge this gap,
we use inverse estimates to establish the continuity of the non-linear coupling form;
see the proof of Lemma 4.7. In addition, the constant Cε might become unbounded
as ε tends to zero. However, in our numerical experiments this constant is observed
to stay bounded. In fact, we observe optimal rates of convergence in all our tests, for
both smooth and non-smooth solutions. Full details are given in Section 5.

Remark 4.4. Our technique of proof is applicable to three-dimensional problems.
However, since in three dimensions the Sobolev embeddings are more restrictive, the
use of the inverse estimates leads to convergence rates that fall short half a power
of h for the error in u and b, and a full power of h for the error in p and r (i.e.,
Theorem 4.3 holds with ε = 1

2). To see this, we carry out the proof of Theorem 4.3
simultaneously for d = 2 and d = 3. We emphasize, however, that in our numeri-
cal tests, optimal convergence rates are observed for three-dimensional problems with
smooth solutions.

Remark 4.5. For the linearized variant of the MHD system (1.1), our method
converges optimally in the mesh size h, as follows from [36, Remark 3.3]. That is, the
estimates of Theorem 4.3 hold true without any loss, both in two and three dimensions.
However, there we make stronger smoothness assumptions on the linearized magnetic
field. Therefore, this optimality cannot be straightforwardly carried over to the non-
linear setting.

The proofs of Theorems 4.2 and 4.3 are presented in the next four subsections.

4.2. Continuity. We begin by revisiting the continuity properties of the forms
in a more general setting. To that end, we introduce the space

V(h) = V + Vh,

10



and endow it with the norm ‖ · ‖1,h. We then make use of an auxiliary form Ãh(u,v)
constructed as in [10, 47] via the use of suitable lifting operators. It is defined as

Ãh(u,v) =

∫

Ω

ν
(
∇hu : ∇hv − L(v) : ∇hu− L(u) : ∇hv

)
dx

+
∑

F∈Fh

a0ν

hF

∫

F

[[u]] : [[v]] ds.

where L : V(h) → Σh = { σ ∈ L2(Ω)d×d : σ|K ∈ Pd×d
k (K), K ∈ Th } is the lifting

operator given by

∫

Ω

L(u) : σ dx =
∑

F∈Fh

∫

F

σ : [[u]] ds ∀σ ∈ Σh.

By construction, the form Ãh(u,v) satisfies

Ãh(u,v) = A(u,v) ∀ u,v ∈ V,

Ãh(u,v) = Ah(u,v) ∀ u,v ∈ Vh.
(4.2)

Furthermore, using arguments similar to those in [10, 47], the form Ãh(u,v) can be
shown to be bounded on V(h) × V(h). Then, by setting

Ãh(u,b;v, c) = Ãh(u,v) +M(b, c),

we readily obtain

|Ãh(u,b;v, c)| ≤ C‖(u,b)‖Vh×Ch
‖(v, c)‖Vh×Ch

(4.3)

for u,v ∈ V(h) and b, c ∈ C. Moreover, we have

|B(v, c; q, s)| ≤ C‖(v, c)‖Vh×Ch
‖(q, s)‖Q×S (4.4)

for (v, c, q, s) ∈ V(h) × C ×Q× S.
In (4.3)–(4.4) and in the following, we denote by C a generic (positive) constant

that is independent of the mesh size h and the parameters ν, κ and νm.
Next, we state the continuity of the convection term. The proof of this result

follows similarly to the ones in [37, Proposition 4.15] and [10, Proposition 4.2].
Lemma 4.6. There holds:

|Oh(w1,u,v) −Oh(w2,u,v)| ≤ C‖w1 − w2‖1,h ‖u‖1,h ‖v‖1,h

for all w1,w2 ∈ V(h), and u,v ∈ V(h).
In the sequel, we shall analyze the two- and three-dimensional cases simultane-

ously (see also Remark 4.4). To do so, we introduce the function ℓ(d) given by

ℓ(d) =

{
h−ε, d = 2,

h−
1
2 , d = 3.

(4.5)

Here, ε > 0 is a fixed number. The function ℓ(d) will indicate the loss of con-
vergence rates for both the two-dimensional and three-dimensional cases. We also
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denote by Cd > 0 a generic constant independent of h, ν, κ and νm, but dependent
on the dimension d. In particular, for d = 2 it depends on ε and might be unbounded
as ε→ 0.

By introducing the kernel

X ={b ∈ C : D(b, s) = 0 ∀ s ∈ S } ,

we state and prove the continuity of the coupling form C(d,u, c) for several cases.
Lemma 4.7. There holds:
(i) for d ∈ X ∪ Xh,u ∈ Vh and c ∈ C:

|C(d,u, c)| ≤ Cκ ‖d‖H(curl;Ω) ‖u‖1,h ‖c‖H(curl;Ω).

(ii) for d ∈ X ∪ Xh,u ∈ V(h) and c ∈ Ch:

|C(d,u, c)| ≤ Cκ ‖d‖H(curl;Ω) ‖u‖1,h ‖c‖H(curl;Ω).

(iii) for d ∈ C,u ∈ V and c ∈ Ch:

|C(d,u, c)| ≤ Cd ℓ(d)κ ‖d‖L2(Ω) ‖u‖H1(Ω) ‖c‖H(curl;Ω).

(iv) for d ∈ C,u ∈ Vh and c ∈ C:

|C(d,u, c)| ≤ Cd ℓ(d)κ ‖d‖L2(Ω) ‖u‖1,h ‖c‖H(curl;Ω).

Proof. We proceed in several steps.
Step 1. We first discuss preliminary results that will be used in the proof. From

the Poincaré inequality in [34, Corollary 4.4], there holds

‖b‖L2(Ω) ≤ C‖∇× b‖L2(Ω) ∀ b ∈ X. (4.7)

Next, we recall the inverse inequality (cf. [6, Lemma 4.5.3]): for any u ∈ Pk(K),
there holds

‖u‖Ln1(K) ≤ Ch
d( 1

n1
− 1

n2
)

K ‖u‖Ln2(K) ∀ 1 ≤ n1, n2 ≤ ∞. (4.8)

Further, let H : Xh → X be the Hodge operator that maps discretely divergence-
free functions into exactly divergence-free functions in such a way that

∇× Hd = ∇× d. (4.9)

It satisfies the following approximation property (cf. [34, Lemma 4.5]): there exists
τ > 1

2 such that

‖d− Hd‖L2(Ω) ≤ Chτ‖∇× d‖L2(Ω) ∀ d ∈ Xh. (4.10)

Finally, we present the following Sobolev embeddings:

‖u‖Lm(d)(Ω) ≤ Cd ‖u‖H1(Ω) ∀ u ∈ H1(Ω)d, (4.11a)

‖u‖Lm(d)(Ω) ≤ Cd ‖u‖1,h ∀ u ∈ V(h), (4.11b)

‖d‖L3(Ω) ≤ C‖d‖H(curl;Ω) ∀ d ∈ X. (4.11c)
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Here, m(2) = 2/ε and m(3) = 6. The embedding (4.11a) is a standard result, while
the embedding (4.11b) follows similarly to [28, 38]. Inequality (4.11c) follows from [1,
Proposition 3.7].

Step 2. We are now ready to prove the bounds in the lemma. The proof of
inequality (i) can be found in [46, Proposition 3.2].

To establish the second inequality, we follow [46, Lemma 2.6] and first show it
for d ∈ X,u ∈ V(h) and c ∈ Ch. This is done by applying Hölder’s inequality and
the Sobolev embeddings (4.11b) and (4.11c). We obtain

|C(d,u, c)| ≤ κ‖d‖L3(Ω)‖u‖L6(Ω)‖∇× c‖L2(Ω)

≤ Cκ‖d‖H(curl;Ω)‖u‖1,h‖c‖H(curl;Ω).
(4.12)

Second, if d ∈ Xh, we decompose it into

d = (d − Hd) + Hd,

where H is the Hodge operator in (4.9). We then rewrite C(d,u, c) as

C(d,u, c) = C(d − Hd,u, c) + C(Hd,u, c). (4.13)

Because Hd ∈ X, we can apply the previous argument, (4.12), and bound the last
term of (4.13) by

|C(Hd,u, c)| ≤ Cκ‖Hd‖H(curl;Ω)‖u‖1,h‖c‖H(curl;Ω)

≤ Cκ‖d‖H(curl;Ω)‖u‖1,h‖c‖H(curl;Ω).
(4.14)

In the last step, we have used the Poincaré inequality (4.7) and property (4.9) of the
Hodge operator.

For the first term on the right-hand side of (4.13), we obtain from Hölder’s in-
equality, the Sobolev embedding (4.11b) and the approximation property (4.10) that

|C(d − Hd,u, c)| ≤ κ‖d− Hd‖L2(Ω)‖u‖L6(Ω)‖∇× c‖L3(Ω)

≤ Cκhτ‖∇ × d‖L2(Ω)‖u‖1,h‖∇ × c‖L3(Ω),

for τ > 1
2 . Finally, we apply the inverse estimate (4.8) to achieve

|C(d − Hd,u, c)| ≤ Cκ‖d‖H(curl;Ω)‖u‖1,h‖∇× c‖L2(Ω), (4.15)

for both d = 2 and d = 3. Referring to (4.13), (4.14) and (4.15) proves the assertion
of item (ii).

To verify item (iii), we define m∗(d) such that

1

m(d)
+

1

m∗(d)
=

1

2
.

Then we apply Hölder’s inequality, the Sobolev embedding (4.11a) and the inverse
estimate (4.8) to conclude that

|C(d,u, c)| ≤ κ‖d‖L2(Ω)‖u‖Lm(d)(Ω)‖∇× c‖Lm∗(d)(Ω)

≤ Cd κ‖d‖L2(Ω)‖u‖H1(Ω)ℓ(d)‖∇ × c‖L2(Ω).
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The proof of item (iv) is similar to that of item (iii):

|C(d,u, c)| ≤ κ‖d‖L2(Ω)‖u‖L∞(Ω)‖∇× c‖L2(Ω)

≤ Cd κ‖d‖L2(Ω)ℓ(d)‖u‖Lm(d)(Ω)‖c‖H(curl;Ω).

Applying (4.11b) finishes the proof.
As an immediate consequence of Lemmas 4.6 and 4.7, the form Oh satisfies the

following continuity properties.
Proposition 4.8. There is a constant CO > 0 independent of h, ν, κ and νm

such that there holds:
(i) for w1,w2 ∈ V(h), d1,d2 ∈ X∪Xh, (u,b) ∈ V(h)×C, and (v, c) ∈ Vh×Ch:

|Oh(w1,d1;u,b;v, c) −Oh(w2,d2;u,b;v, c)|

≤
CO κ̄

ν̄
3
2

‖(w1 − w2,d1 − d2)‖Vh×Ch
‖(u,b)‖Vh×Ch

‖(v, c)‖Vh×Ch
.

(ii) for w1,w2 ∈ V(h), d1,d2 ∈ C, (u,b) ∈ V × C, and (v, c) ∈ Vh × Ch:

|Oh(w1,d1;u,b;v, c) −Oh(w2,d2;u,b;v, c)|

≤ Cd ℓ(d)
CO κ̄

ν̄
3
2

‖(w1 − w2,d1 − d2)‖Vh×Ch
‖(u,b)‖V ×C ‖(v, c)‖Vh×Ch

.

4.3. Preliminary error estimates. In this subsection, we present two lemmas
for estimating the errors. Let (u,b, p, r) and (uh,bh, ph, rh) be the solutions of (1.1)–
(1.2) and (3.2), respectively.

We begin by defining the residual

RA(v) = Ãh(u,v) +Oh(u,u,v) + C(b,v,b) +B(v, p) − (f ,v)Ω (4.16)

for any v ∈ Vh. It measures how well the exact solution satisfies the finite element
formulation expressed in terms of the auxiliary form Ãh in (4.2). We have the following
upper bound for the residual (cf. [47]):

RA(v) ≤ ν
1
2 ‖v‖1,hE(u) with E(u) ≤ Chmin{σ,k}ν

1
2 ‖u‖Hσ+1(Ω). (4.17)

In the following, we shall denote the errors by

eu = u− uh, eb = b− bh, ep = p− ph, er = r − rh.

We shall also decompose the errors into

eu = ηu + ξu = (u − v) + (v − uh),

eb = ηb + ξb = (b − c) + (c − bh),

ep = ηp + ξp = (p− q) + (q − ph),

er = ηr + ξr = (r − s) + (s− rh),

(4.18)

for a discrete function (v, c, q, s) ∈ Vh × Ch ×Qh × Sh to be specified later.
Lemma 4.9. Assume that

max{c2, C2}
CO

CC

κ̄|||(f ,g)|||

ν̄2
<

1

2
. (4.19)
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Then there holds

‖(u− uh,b− bh)‖Vh×Ch
≤Cd ℓ(d) inf

(v,c)∈Vh×Ch

‖(u− v,b− c)‖Vh×Ch

+ C
(
E(u) + inf

(q,s)∈Qh×Sh

‖(p− q, r − s)‖Q×S

)
.

Proof. We proceed in two steps.
Step 1. In the error decomposition (4.18), we first consider (v, c) ∈ Jh × Xh.

Clearly, we also have (ξu, ξb) ∈ Jh × Xh. In view of the residual equation (4.16), we
obtain

RA(ξu) =Ãh(eu, eb; ξu, ξb) + Oh(u,b;u,b; ξu, ξb)

−Oh(uh,bh;uh,bh; ξ
u
, ξ

b
) + B(ξ

u
, ξ

b
; ep, er)

=Ãh(eu, eb; ξu, ξb) + Oh(u,b;u,b; ξu, ξb) −Oh(uh,bh;u,b; ξu, ξb)

+ Oh(uh,bh; eu, eb; ξ
u
, ξ

b
) + B(ξ

u
, ξ

b
; ep, er).

Because uh ∈ Jh (see Proposition 3.1), the stability of Oh in (3.8) guarantees that

Oh(uh,bh; ξu, ξb; ξu, ξb) ≥ 0.

Therefore, we have

Ãh(ξu, ξb; ξu, ξb) + Oh(v, c;u,b; ξu, ξb) −Oh(uh,bh;u,b; ξu, ξb)

≤ RA(ξ
u
) − Ãh(η

u
,η

b
; ξ

u
, ξ

b
) − B(ξ

u
, ξ

b
; ep, er)

+ Oh(v, c;u,b; ξu, ξb) −Oh(u,b;u,b; ξu, ξb)

−Oh(uh,bh; ηu,ηb; ξu, ξb).

(4.20)

From the coercivity of Ah in (3.7) and the continuity of Oh in Proposition 4.8 (i), the
left-hand side of equation (4.20) can be bounded by

l.h.s. of (4.20) ≥ CC ‖(ξu, ξb)‖2
Vh×Ch

−
CO κ̄

ν̄
3
2

‖(u,b)‖Vh×Ch
‖(ξu, ξb)‖2

Vh×Ch
.

Next, we estimate ‖(u,b)‖Vh×Ch
using the stability bound in Theorem 2.1 (noting

that ‖(u,b)‖Vh×Ch
≤ ‖(u,b)‖V ×C). We obtain

l.h.s. of (4.20) ≥
(
CC −

c2CO κ̄|||(f ,g)|||

ν̄2

)
‖(ξu, ξb)‖2

Vh×Ch
.

In view of assumption (4.19), we then have

l.h.s. of (4.20) ≥
1

2
CC ‖(ξu, ξb)‖2

Vh×Ch
.

For the right-hand side of (4.20), we note that (since ξu and ξb are in the kernels Jh

and Xh, respectively)

B(ξu, ξb; ep, er) = B(ξu, ξb; ηp, ηr).
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Then, to bound the right-hand side of (4.20), we use the continuity properties of Ãh, B
and Oh in (4.3), (4.4) and Proposition 4.8, respectively, as well as the estimate
for RA(ξ

u
) in (4.17). We readily obtain

r.h.s. of (4.20) ≤‖(ξu, ξb)‖Vh×Ch

(
E(u) + C‖(ηu,ηb)‖Vh×Ch

+ ‖(ηp, ηr)‖Q×S

+ Cd ℓ(d)
CO κ̄

ν̄
3
2

‖(η
u
,η

b
)‖Vh×Ch

‖(u,b)‖V ×C

+
CO κ̄

ν̄
3
2

‖(uh,bh)‖Vh×Ch
‖(ηu,ηb)‖Vh×Ch

)
.

Next, we employ the stability bounds in Theorems 2.1 and 3.2 for ‖(u,b)‖V ×C

and ‖(uh,bh)‖Vh×Ch
, respectively, apply the small data assumption (4.19), and com-

bine the lower and upper bounds of (4.20) into the estimate

‖(ξ
u
, ξ

b
)‖Vh×Ch

≤ Cd ℓ(d)‖(ηu
,η

b
)‖Vh×Ch

+ C
(
E(u) + ‖(ηp, ηr)‖Q×S

)
.

From the triangle inequality, we thus obtain the error bound

‖(u− uh, b − bh)‖Vh×Ch

≤ Cd ℓ(d) ‖(u− v,b− c)‖Vh×Ch
+ C

(
E(u) + ‖(p− q, r − s)‖Q×S

)
,

(4.21)

for any (v, c) ∈ Jh × Xh, (q, s) ∈ Qh × Sh.
Step 2. Next, we replace (v, c) ∈ Jh ×Xh in (4.18) by (v, c) ∈ Vh ×Ch. To that

end, let (v, c) ∈ Vh × Ch, and we look for (w,d) ∈ Vh × Ch such that

B(w,d; q, s) = B(u− v,b − c; q, s) ∀ (q, s) ∈ Qh × Sh.

Since the right-hand side is a continuous functional on Qh×Sh, we conclude from the
inf-sup condition of B in (3.11) that there exists at least one non-trivial solution (w,d)
of this problem satisfying the bound

‖(w,d)‖Vh×Ch
≤ C‖(u− v,b − c)‖Vh×Ch

.

By construction, (w + v,d + c) ∈ Jh ×Xh. Therefore, it can be inserted into (4.21).
With the help of the triangle inequality, we readily see that

‖(u − uh,b− bh)‖Vh×Ch

≤ ‖(u− v,b− c)‖Vh×Ch
+ ‖(w + v − uh,d + c − bh)‖Vh×Ch

+ ‖(w,d)‖Vh×Ch

≤ Cd ℓ(d) ‖(u− v,b− c)‖Vh×Ch
+ C

(
E(u) + ‖(p− q, r − s)‖Q×S

)
.

This completes the proof.
Next, we present the following result for the multipliers.
Lemma 4.10. Assume (4.19). Then there holds

‖(p− ph, r − rh)‖Q×S ≤C
(
E(u) + inf

(q,s)∈Qh×Sh

‖(p− q, r − s)‖Q×S

+ ‖(u− uh,b − bh)‖Vh×Ch

+ sup
(v,c)∈Vh×Ch

|C(b − bh,v,b) − C(b − bh,u, c)|

‖(v, c)‖Vh×Ch

)
.
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Proof. For any (q, s) ∈ Qh × Sh, we recall from (4.18) that

ep = ξp + ηp, er = ξr + ηr.

The inf-sup condition for B in (3.11) and the triangle inequality guarantee that

‖(ξp, ξr)‖Q×S ≤ C sup
(v,c)∈Vh×Ch

B(v, c; ξp, ξr)

‖(v, c)‖Vh×Ch

≤ C(T1 + T2),

where

T1 = sup
(v,c)∈Vh×Ch

B(v, c; ηp, ηr)

‖(v, c)‖Vh×Ch

,

T2 = sup
(v,c)∈Vh×Ch

B(v, c; ep, er)

‖(v, c)‖Vh×Ch

.

Using the continuity of B in (4.4), T1 can be easily bounded by

T1 ≤ C‖(ηp, ηr)‖Q×S .

For T2, we make use of the weak formulation and the residual equation (4.16) and
write out the form Oh into its individual parts. We obtain

B(v, c; ep, er) = RA(v) − Ãh(eu, eb;v, c) −Oh(uh,bh; eu, eb;v, c)

−Oh(u,b;u,b;v, c) + Oh(uh,bh;u,b;v, c)

= RA(v) − Ãh(eu, eb;v, c) −Oh(uh,bh; eu, eb;v, c)

−Oh(u,u,v) + Oh(uh,u,v) − C(eb,v,b) + C(eb,u, c).

Applying the bound (4.17) and the continuity properties of Ãh, Oh and Oh in (4.3),
Proposition 4.8 (i) and Lemma 4.6, respectively, we conclude that

T2 ≤ E(u) + C‖(eu, eb)‖Vh×Ch
+
COκ̄

ν̄
3
2

‖(eu, eb)‖Vh×Ch
‖(uh,bh)‖Vh×Ch

+
COκ̄

ν̄
3
2

‖(eu,0)‖Vh×Ch
‖(u,0)‖Vh×Ch

+ sup
(v,c)∈Vh×Ch

|C(eb,v,b) − C(eb,u, c)|

‖(v, c)‖Vh×Ch

.

Using the small data assumption (4.19), the assertion follows.

4.4. Proof of Theorem 4.2. In this subsection, we prove the convergence result
in Theorem 4.2.

In view of Lemma 4.9, the convergence of uh and bh is obtained under the smooth-
ness assumption (4.1) by using the standard approximation properties of the finite
element spaces Vh, Ch, Qh and Sh, respectively. This proves the first statement of
Theorem 4.2.

Next, we show the convergence of the multipliers in the energy norm ‖ · ‖Q×S .
From Lemmas 4.10 and 4.9, it only remains to show that

sup
(v,c)∈Vh×Ch

|C(b − bh,v,b) − C(b − bh,u, c)|

‖(v, c)‖Vh×Ch

→ 0 as h→ 0. (4.22)
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Recalling the Hodge operator H from (4.9), we write

C(b − bh,v,b) = C(b − Hbh,v,b) + C(Hbh − bh,v,b). (4.23)

The first term on the right-hand side of (4.23) tends to zero due to Lemma 4.7 (i)
and the fact that

‖b− Hbh‖H(curl;Ω) = ‖H(b− bh)‖H(curl;Ω) ≤ C‖∇ × H(b− bh)‖L2(Ω)

= C‖∇× (b − bh)‖L2(Ω) ≤ C‖b− bh‖H(curl;Ω) → 0,

as h → 0. Here, we have applied the Poincaré inequality (4.7) and property (4.9) of
the Hodge operator. For the last term of (4.23), we first utilize item (iv) of Lemma 4.7
and then the approximation result (4.10), to get

|C(Hbh − bh,v,b)| ≤ Ch−
1
2 κ‖Hbh − bh‖L2(Ω)‖v‖1,h‖b‖H(curl;Ω)

≤ Chτ− 1
2κ ‖∇× bh‖L2(Ω)‖v‖1,h‖b‖H(curl;Ω)

≤ Chτ− 1
2
κ

ν̄
3
2

‖(0,bh)‖Vh×Ch
‖(v,0)‖Vh×Ch

‖(0,b)‖V ×C

≤ Chτ− 1
2 ‖(v,0)‖Vh×Ch

|||(f ,g)|||

ν̄
1
2

.

In the last step, we have applied the stability bounds in Theorems 2.1 and 3.2, as well
as the small data assumption (4.19). Since ν̄−

1
2 |||(f ,g)||| ≤ κν̄−2|||(f ,g)||| and τ > 1

2 ,
we obtain

sup
(v,c)∈Vh×Ch

|C(b − bh,v,b)|

‖(v, c)‖Vh×Ch

→ 0 as h→ 0.

A similar argument shows that

sup
(v,c)∈Vh×Ch

|C(b − bh,u, c)|

‖(v, c)‖Vh×Ch

→ 0 as h→ 0.

Therefore (4.22) holds true, and the convergence of the multipliers is obtained.

4.5. Proof of Theorem 4.3. In this subsection we prove the a-priori error
estimates in Theorem 4.3. As before, we consider the cases d = 2 and d = 3 simulta-
neously.

Based on Lemma 4.9, we choose v as the BDM projection of u, c the Nédélec
projection of b, q and s the L2-projections of p and r, respectively. We then apply the
approximation properties of these projections in [7, Proposition III.3.6], [40, Theorem
5.41] and [8], and the estimates for the errors in the velocity and magnetic fields are
readily obtained.

To prove the error estimate for the multipliers, we first apply Proposition 4.8 (ii)
to bound the supremum in the estimate of Lemma 4.10:

sup
(v,c)∈Vh×Ch

|C(b − bh,v,b) − C(b − bh,u, c)|

‖(v, c)‖Vh×Ch

≤ Cd ℓ(d)
CO κ̄

ν̄
3
2

‖(0,b− bh)‖Vh×Ch
‖(u,b)‖V ×C .
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Utilizing the stability bound in Theorem 2.1, we obtain

‖(p− ph, r − rh)‖Q×S ≤C
(
E(u) + inf

(q,s)∈Qh×Sh

‖(p− q, r − s)‖Q×S

)

+ Cd ℓ(d) ‖(u − uh,b− bh)‖Vh×Ch

≤Cd ℓ(d)
2 inf

(v,c)∈Vh×Ch

‖(u− v,b− c)‖Vh×Ch

+ Cd ℓ(d)

(
E(u) + inf

(q,s)∈Qh×Sh

‖(p− q, r − s)‖Q×S

)
.

Again, we choose v as the BDM projection of u, c the Nédélec projection of b, q and s
the L2-projections of p and r, respectively. As before, the approximation properties
of these projections finish the proof.

5. Numerical results. In this section we present a series of numerical exper-
iments. Our computations have been carried out using Matlab, with direct linear
solvers. The primary purpose of our experiments is to confirm optimal convergence
rates of our method. We start by considering one problem with a smooth solution
and a second one with a singular solution. Then, we consider the numerical approxi-
mations of two- and three-dimensional Hartmann channel flow and driven cavity flow
problems. Finally, we present results for another benchmark problem: MHD flow over
a step in two dimensions.

Throughout this section, the lowest order BDM and Nédélec elements are em-
ployed and the interior penalty stabilization parameter is a0 = 10. The Picard it-
eration described in Section 4.5 is used to solve the non-linear systems. For all the
examples, we solve a Stokes problem and the Maxwell equations, decoupled, to obtain
an initial guess. The tolerance for the Picard iterations is chosen as 1e-5.

We test our method on problems with mixed Dirichlet and Neumann boundary
conditions in the hydrodynamic variables, even though the analysis has been carried
out solely for the Dirichlet case. Throughout this section, ΓN denotes the Neumann
boundary, and ΓD the Dirichlet boundary. On Neumann boundaries, we specify the
value of (pI − ν∇u)n, where I is the identity matrix.

5.1. Example 1: two-dimensional problem with a smooth solution.

First, we verify the theoretical results stated in Theorems 4.2 and 4.3 for a prob-
lem with a smooth analytical solution.

We consider the following two-dimensional problem. We set Ω = (−1, 1)2 with
ΓN = {(1, y) : y ∈ (−1, 1)}, ΓD = ∂Ω\ΓN , ν = κ = 1, νm = 1e4, and choose the
source terms f , g and the boundary conditions so that the analytical solution is of
the form

u(x, y) = (y2, x2), p(x, y) = x,

b(x, y) = (1 − y2, 1 − x2), r(x, y) = (1 − x2)(1 − y2).

We construct this example with r 6= 0 to show the convergence rate in rh; later
examples will feature a divergence-free g and a vanishing r; cf. Proposition 3.1.

In Tables 5.1–5.3, we investigate the asymptotic rates of convergence of the errors
in the approximations of the hydrodynamic and magnetic variables; here, l denotes
the experimental rate of convergence. We observe that ‖u − uh‖1,h, ‖p − ph‖L2(Ω),
‖b − bh‖H(curl;Ω) and ‖∇(r − rh)‖L2(Ω) converge to zero as the mesh is refined, in
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Dofs in uh/ph ‖u− uh‖L2(Ω) l ‖u− uh‖1,h l ‖p− ph‖L2(Ω) l
112/32 3.893e-2 – 8.297e-1 – 1.297 –
416/128 1.016e-2 1.94 4.105e-1 1.01 3.734e-1 1.78

1,600/512 2.707e-3 1.91 2.045e-1 1.01 1.293e-1 1.53
6,272/2,048 7.087e-4 1.93 1.021e-1 1.00 5.475e-2 1.24
24,832/8,192 1.813e-4 1.97 5.104e-2 1.00 2.597e-2 1.08
98,816/32,768 4.578e-5 1.99 2.552e-2 1.00 1.281e-2 1.02

Table 5.1

Example 1: Convergence of ‖u − uh‖L2(Ω), ‖u − uh‖1,h, and ‖p − ph‖L2(Ω).

Dofs in bh/rh ‖b− bh‖L2(Ω) l ‖b− bh‖H(curl;Ω) l
56/25 4.720e-1 – 9.431e-1 –
208/81 2.358e-1 1.00 4.714e-1 1.00
800/289 1.179e-1 1.00 2.357e-1 1.00

3,136/1,089 5.893e-2 1.00 1.179e-1 1.00
12,416/4,225 2.946e-2 1.00 5.893e-2 1.00
49,408/16,641 1.473e-2 1.00 2.946e-2 1.00

Table 5.2

Example 1. Convergence of ‖b − bh‖L2(Ω) and ‖b − bh‖H(curl;Ω).

Dofs in bh/rh ‖r − rh‖L2(Ω) l ‖∇(r − rh)‖L2(Ω) l
56/25 1.673e-1 – 9.391e-1 –
208/81 4.433e-2 1.92 4.824e-1 0.96
800/289 1.125e-2 1.98 2.429e-1 0.99

3,136/1,089 2.822e-3 1.99 1.216e-1 1.00
12,416/4,225 7.062e-4 2.00 6.085e-2 1.00
49,408/16,641 1.766e-4 2.00 3.043e-2 1.00

Table 5.3

Example 1. Convergence of ‖r − rh‖L2(Ω) and ‖∇(r − rh)‖L2(Ω).

accordance with Theorem 4.2. The rate of convergence is O(h). Notice that we obtain
the optimal rate in this numerical experiment, even though Theorem 4.3 predicts a
sub-optimal rate with a loss of O(hε). Additionally, ‖u−uh‖L2(Ω) and ‖r− rh‖L2(Ω)

converge at rate O(h2) as h tends to zero, which is also optimal.
In Figure 5.1 we show the convergence history of the Picard iterations for the grid

sequence considered in this example. The plot depicts the number of iterations against
the differences between consecutive iterates corresponding to the approximated vector
coefficients, measured in a normalized discrete 2-norm and labeled as ‘Tolerance’ in
the plot. As expected, convergence is linear and the iteration count is fairly insensitive
to the size of the grid. A very similar behavior has been observed in all of our other
experiments, in 2D as well as in 3D.

5.2. Example 2: two-dimensional problem with a singular solution. In
order to verify the capability of the proposed method to capture singularities in two di-
mensions, we consider a problem in the L-shaped domain Ω = (−1, 1)2\([0, 1)×(−1, 0])
with ΓN = {(1, y) : y ∈ (0, 1)}, ΓD = ∂Ω\ΓN , and set ν = κ = 1, νm = 1e4. We
choose the forcing terms and the boundary conditions such that the analytic solution
is given by the strongest corner singularities for the underlying elliptic operators. In
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Fig. 5.1. Example 1. Convergence history of the Picard iteration for the grid sequence defined
in Tables 5.1–5.3.

polar coordinates (ρ, φ), the hydrodynamic solution components u and p are then
given by

u(ρ, φ) =

[
ρλ((1 + λ) sin(φ)ψ(φ) + cos(φ)ψ′(φ))

ρλ(−(1 + λ) cos(φ)ψ(φ) + sin(φ)ψ′(φ))

]
,

p(ρ, φ) = −ρλ−1((1 + λ)2ψ′(φ) + ψ′′′(φ))/(1 − λ),

where

ψ(φ) = sin((1 + λ)φ) cos(λw)/(1 + λ) − cos((1 + λ)φ)

− sin((1 − λ)φ) cos(λw)/(1 − λ) + cos((1 − λ)φ),

ω = 3
2π and λ ≈ 0.54448373678246. The magnetic pair (b, r) is given by

b(ρ, φ) = ∇(ρ2/3 sin (2/3φ)), r(ρ, φ) ≡ 0.

For this example, we have that (u, p) ∈ H1+λ(Ω)2 × Hλ(Ω) and b ∈ H2/3(Ω)2.
Note that straightforwardly applied nodal elements cannot correctly resolve the mag-
netic field. In Tables 5.4–5.5, we investigate the asymptotic rates of convergence of
the errors in the approximations of the hydrodynamic and magnetic variables. Again,
we observe that the discrete solution converges to the exact one as the mesh size h
approaches zero, in accordance with Theorem 4.2. The results show full agreement
with the optimal rates for ‖u − uh‖1,h and ‖b − bh‖H(curl;Ω). For the pressure, we
also see that the rate for ‖p− ph‖L2(Ω) is approaching the optimal rate, albeit more
slowly. Additionally, we observe the L2-norm of r is zero because g is divergence-free,
in accordance with Proposition 3.1.

In Figures 5.2–5.3, we show the solution computed on the finest mesh with 24,576
elements; the total number of degrees of freedom employed in the finite element space
Vh × Ch × Qh × Sh is 148,481. The results show that our solution captures the
strongest corner singularities and are comparable to the results in [36].
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Dofs in uh/ph ‖u− uh‖L2(Ω) l ‖u− uh‖1,h l ‖p− ph‖L2(Ω) l
88/24 2.159e-1 – 2.468 – 15.91 –
320/96 1.781e-1 0.28 1.880 0.39 9.328 0.77

1,216/384 1.204e-1 0.56 1.368 0.46 5.387 0.79
4,736/1,536 6.816e-1 0.82 0.9588 0.51 3.301 0.71
18,688/6,144 3.490e-2 0.97 0.6627 0.53 2.124 0.64
74,240/24,576 1.705e-2 1.03 0.4559 0.54 1.408 0.59

Table 5.4

Example 2. Convergence of ‖u − uh‖L2(Ω), ‖u − uh‖1,h, and ‖p − ph‖L2(Ω).

Dofs in bh/rh ‖b− bh‖L2(Ω) l ‖b− bh‖H(curl;Ω) l ‖rh‖L2(Ω)

44/21 2.796e-1 – 2.796 – 2.162e-12
160/65 1.814e-1 0.62 1.814e-1 0.62 6.188e-12
608/225 1.169e-1 0.63 1.169e-1 0.63 2.289e-11

2,368/833 7.473e-2 0.65 7.473e-2 0.65 4.260e-11
9,344/3,201 4.754e-2 0.65 4.754e-2 0.65 1.406e-10

37,120/12,545 3.013e-2 0.66 3.013e-2 0.66 3.018e-10
Table 5.5

Example 2. Convergence of ‖b − bh‖L2(Ω), ‖b − bh‖H(curl;Ω), and ‖rh‖L2(Ω).
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Fig. 5.2. Example 2. Numerical approximations of (a) velocity; (b) pressure contours.
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Fig. 5.3. Example 2. Numerical approximations of (a) magnetic field; (b) contours of the first
component of the magnetic field; (c) contours of the second component of the magnetic field.
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5.3. Hartmann channel flow. Next, we consider Hartmann channel flow prob-
lems in two and three dimensions; cf. [26]. In these examples, we denote by Ha the

Hartmann number, which is defined as Ha =
√

κ
ννm

.

5.3.1. Example 3: two-dimensional Hartmann flow. Consider the two-
dimensional Hartmann flow problem, which involves a steady unidirectional flow in the
channel Ω = (0, 10)× (−1, 1) under the influence of the constant transverse magnetic
field bD = (0, 1). The MHD solution then takes the form:

u(x, y) = (u(y), 0), p(x, y) = −Gx+ p0(y),

b(x, y) = (b(y), 1), r(x, y) ≡ 0.
(5.1)

We impose the following boundary conditions:

u = 0 on y = ±1,

(pI − ν∇u)n = pNn on x = 0 and x = 10,

n × b = n× bD on ∂Ω,

r = 0 on ∂Ω,

where

pN (x, y) = p(x, y)

= −Gx−
G2

2κ

(
sinh(yHa)

sinh(Ha)
− y

)2

.

The exact solution is given by (5.1) with

u(y) =
G

νHa tanh(Ha)

(
1 −

cosh(yHa)

cosh(Ha)

)
,

b(y) =
G

κ

(
sinh(yHa)

sinh(Ha)
− y

)
,

p0(y) = −
G2

2κ

(
sinh(yHa)

sinh(Ha)
− y

)2

.

We note that p0(y) and −κb(y)2

2 are the same up to an additive constant.

In Tables 5.6–5.7 and Figures 5.4–5.5, we set ν = κ = 1, νm = 1e4, and G = 10.
We observe that rh ≡ 0, as predicted in Proposition 3.1, and ‖u−uh‖1,h, ‖p−ph‖L2(Ω)

and ‖b−bh‖H(curl;Ω) converge to zero at the optimal rate O(h) as the mesh is refined.
Moreover, we note that the L2-norms of the errors in the approximations of u, b and p
tend to zero optimally as well.

In Figures 5.4–5.5 we show the solution computed on the mesh with 32,768 ele-
ments; the total number of degrees of freedom employed in the finite element space
Vh × Ch × Qh × Sh is 197,633. In order to show the directions of vectors, in Fig-
ure 5.5(b) and later figures, b is normalized such that the largest magnitude of each
component is 1 in the computational domain. The computed and analytical solutions
of the first components in the velocity and magnetic fields are virtually indistinguish-
able; see Figure 5.4.
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Dofs in uh/ph ‖u− uh‖L2(Ω) l ‖u− uh‖1,h l ‖p− ph‖L2(Ω) l
416/128 2.028e-1 – 3.215 – 13.97 –

1,600/512 5.169e-2 1.97 1.611 1.00 6.986 1.00
6,272/2,048 1.306e-2 1.99 0.8061 1.00 3.493 1.00
24,832/8,192 3.282e-3 1.99 0.4033 1.00 1.747 1.00
98,816/32,768 8.227e-4 2.00 0.2017 1.00 0.8734 1.00

Table 5.6

Example 3. Convergence of ‖u − uh‖L2(Ω), ‖u − uh‖1,h, and ‖p − ph‖L2(Ω).

Dofs in bh/rh ‖b− bh‖L2(Ω) l ‖b− bh‖H(curl;Ω) l ‖rh‖L2(Ω)

208/81 1.679e-4 – 2.259e-4 – 3.868e-12
800/289 8.605e-5 0.96 1.148e-4 0.98 1.746e-11

3,136/1,089 4.328e-5 0.99 5.761e-4 0.99 3.627e-11
12,416/4,225 2.167e-5 1.00 2.883e-5 1.00 9.424e-11
49,408/16,641 1.084e-5 1.00 1.442e-5 1.00 2.401e-10

Table 5.7

Example 3. Convergence of ‖b − bh‖L2(Ω), ‖b − bh‖H(curl;Ω), and ‖rh‖L2(Ω).
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Fig. 5.4. Example 3. Slices along x = 5, −1 ≤ y ≤ 1: (a) velocity component u(y); (b) magnetic
component b(y).
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Fig. 5.5. Example 3. Numerical approximations of (a) velocity; (b) normalized magnetic field.
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5.3.2. Example 4: three-dimensional Hartmann flow. In this example,
we consider the three-dimensional unidirectional flow in the rectangular duct given
by Ω = (0, L) × (−y0, y0) × (−z0, z0) with y0, z0 ≪ L under the influence of the
constant transverse magnetic field bD = (0, 1, 0). We take f = g = 0 and consider
solutions of the form

u(x, y, z) = (u(y, z), 0, 0), p(x, y, z) = −Gx+ p0(y, z),

b(x, y, z) = (b(y, z), 1, 0), r(x, y, z) ≡ 0.

We enforce the boundary conditions

u = 0 for y = ±y0 and z = ±z0,

(pI− ν∇u)n = pNn for x = 0 and x = L,

n× b = n× bD on ∂Ω,

r = 0 on ∂Ω,

with pN (x, y, z) = −Gx − κb(y,z)2

2 + 10. The function b(y, z) is given by the Fourier
series

b(y, z) =

∞∑

n=0

bn(y) cos(λnz),

where

λn =
(2n+ 1)π

2z0
,

bn(y) =
ν

κ

(
An

λ2
n − p2

1

p1
sinh(p1y) +Bn

λ2
n − p2

2

p2
sinh(p2y)

)
,

p2
1,2 = λ2

n + Ha2/2 ± Ha

√
λ2

n + Ha2/4,

An =
−p1(λ

2
n − p2

2)

∆n
un(y0) sinh(p2y0),

Bn =
p2(λ

2
n − p2

1)

∆n
un(y0) sinh(p1y0),

∆n = p2(λ
2
n − p2

1) sinh(p1y0) cosh(p2y0) − p1(λ
2
n − p2

2) sinh(p2y0) cosh(p1y0),

un(y0) =
−2G

νλ3
nz0

sin(λnz0).

The functions u(y, z) and p0(y, z) can be also expressed by Fourier series; for details,

see [24]. In fact, p0(y, z) and −κb(y,z)2

2 are identical up to an additive constant. Note
also that p(x, y, z) = pN(x, y, z).

In our tests, we set L = 10, y0 = 2, z0 = 1, ν = κ = 1, νm = 1e4 and G = 0.5.
In Tables 5.8–5.9, we investigate the asymptotic rates of convergence of the errors in
the approximations of the hydrodynamic and magnetic variables. Again, we observe
that the finite element solution converges to the exact solution as the mesh size h
approaches zero, in accordance with Theorem 4.2. We observe the results show good
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Dofs in uh/ph ‖u− uh‖L2(Ω) l ‖u− uh‖1,h l ‖p− ph‖L2(Ω) l
360/48 3.959e-1 – 1.829 – 30.89 –

2,592/384 1.320e-1 1.58 0.9561 0.94 8.194 1.91
19,584/3,072 3.609e-2 1.87 0.4903 0.96 2.837 1.53

152,064/24,576 9.590e-3 1.91 0.2484 0.98 1.091 1.38
Table 5.8

Example 4: Convergence of ‖u − uh‖L2(Ω), ‖u − uh‖1,h, and ‖p − ph‖L2(Ω).

Dofs in bh/rh ‖b− bh‖L2(Ω) l ‖b− bh‖H(curl;Ω) l ‖rh‖L2(Ω)

98/27 1.850e-5 – 3.219e-5 – 9.855e-12
604/125 1.565e-5 0.24 2.579e-5 0.32 1.013e-10

4,184/729 8.592e-6 0.86 1.464e-5 0.82 4.098e-10
31,024/4,913 4.411e-6 0.96 7.543e-6 0.96 1.795e-9

Table 5.9

Example 4: Convergence of ‖b − bh‖L2(Ω), ‖b − bh‖H(curl;Ω), and ‖rh‖L2(Ω).

agreement with the optimal rates for ‖u − uh‖1,h and ‖b − bh‖H(curl;Ω). For the
pressure, we also see that the rate for ‖p− ph‖L2(Ω) is approaching the optimal rate,
although more slowly. Additionally, we observe the L2-norm of r is zero because g is
divergence-free, in accordance with Proposition 3.1.

In Figures 5.6–5.7 we show the solution computed on a uniform tetrahedral mesh
of 24,576 elements; this results in a total of 212,577 degrees of freedom in the finite
element space Vh × Ch × Qh × Sh. We observe that the computed and analytical
solutions are in good agreement on this relatively coarse mesh; see Figure 5.6.
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Fig. 5.6. Example 4. Slices along x = 5, −2 ≤ y ≤ 2, and z = 0: (a) velocity component
u(y, 0); (b) magnetic component b(y, 0).

5.4. Driven cavity flow. Let us consider a classic test problem used in fluid
dynamics, known as driven-cavity flow. It is a model of the flow in a cavity with the
lid moving in one direction; cf. [23, Chapter 5.1.3] and [43].

5.4.1. Example 5: two-dimensional driven cavity flow. In this example,
we consider the two-dimensional domain Ω = (−1, 1) × (−1, 1) with ΓD = ∂Ω, and
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(a)

(b)

Fig. 5.7. Example 4. Numerical approximations of (a) velocity; (b) normalized magnetic field.

set the source terms to be zero. The boundary conditions are prescribed as follows:

u = 0 on x = ±1 and y = −1,

u = (1, 0) on y = 1,

n × b = n× bD on ∂Ω,

r = 0 on ∂Ω,

where bD = (1, 0).
We set ν = 1e-2, νm = 1e5, κ = 1e5, which simulate liquid metal type flows.

Figures 5.8–5.9 show the solution computed on a mesh with 8,192 elements and 49,665
degrees of freedom. Figure 5.8(a) shows that the circulation created by the moving
lid; Figure 5.8(b) shows the magnetic field changes direction due to the coupling
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effect. Figure 5.9(a) demonstrates the boundary layer formation in terms of the
first component of the velocity. Streamlines for the velocity field are displayed in
Figure 5.9(b). The computed solution agrees with the solution in the literature [43].
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Fig. 5.8. Example 5. Numerical approximations of (a) velocity; (b) normalized magnetic field.
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Fig. 5.9. Example 5. Numerical approximations of (a) contours of first velocity components;
(b) streamlines of velocity.

5.4.2. Example 6: three-dimensional driven cavity flow. The problem we
consider is the three-dimensional driven cavity flow in the domain Ω = (−1, 1) ×
(−1, 1) × (−1, 1) with ΓD = ∂Ω. The source terms are set to be zero. The boundary
conditions are prescribed as follows:

u = 0 on x = ±1, y = ±1 and z = −1,

u = (1, 0, 0) on z = 1,

n × b = n× bD on ∂Ω,

r = 0 on ∂Ω,
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where bD = (1, 0, 0).
We set ν = 1e-2, νm = 1e5, κ = 1e5 and obtain Figure 5.10 on a uniform

tetrahedral mesh comprising 24,576 elements; this results in a total of 212,577 degrees
of freedom. The flow vectors on slices demonstrate a similar behavior to the two-
dimensional scenario in Section 5.4.1; see Figure 5.8.

(a) (b)

Fig. 5.10. Example 6. Numerical approximations of (a) velocity; (b) normalized magnetic field.

5.5. Example 7: two-dimensional MHD flow over a step. The example
we present here is another classical problem of a flow over a step under a transverse
magnetic field; cf. [25]. The magnetic field tends to damp the vortex of the fluid after
the step.

The domain is Ω = (−0.25, 0.75) × (−0.125, 0.125) \ (−0.25, 0] × (−0.125, 0],
with ΓN = {(0.75, y) : y ∈ (−0.125, 0.125)} and ΓD = ∂Ω \ ΓN . We set f = g = 0,
and choose ν = 1e-2, νm = 1e5, κ = 2.5e4. The boundary data are given by

u = 0 on y = 0.125, y = 0 and y = −0.125,

u = 0 on {(0, y): y ∈ (0, 0.125)},

u = (−25.6y(y− 0.125), 0) on x = −0, 25,

(pI− ν∇u)n = pNn on x = 0.75,

n× b = n× bD on ∂Ω,

r = 0 on ∂Ω,

where pN = 0 and bD = (0, 1).
Figures 5.11–5.12 show the solution computed on a mesh with 7,168 elements

and 43,649 degrees of freedom. It is evident from Figure 5.11 that the flow field is
correctly captured; the magnetic field changes directions due to the coupling effect;
the pressure drops behind the step. Figure 5.12 shows the velocity field in terms of
stream lines. The recirculation after the step decreases as the coupling coefficient κ
increases. We observe that our numerical method reproduces this damping effect
without any oscillation in the numerical solution. The computed solutions agree with
the solutions in the literature [14, 25].
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(c)

Fig. 5.11. Example 7. Numerical approximations of (a) velocity; (b) normalized magnetic field;
(c) pressure contours.
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Fig. 5.12. Example 7. Velocity flow vectors and streamlines zoomed in behind the step for
(a) κ=2.5e4; (b) κ=1e5.

6. Conclusions. We have introduced a new mixed finite element method for
the numerical discretization of a stationary incompressible magnetohydrodynamics
problem, with divergence-conforming BDM elements and curl-conforming Nédélec
elements for the velocity and magnetic fields, respectively. The approximation of the
velocity field is exactly mass conservative. We have shown the well-posedness of the
discrete formulation under a standard small data assumption, and convergence of the
approximations under minimal regularity assumptions.

We have proved that the energy norm error is convergent in the mesh size in
general Lipschitz polyhedra, and have derived a-priori error estimates. As shown
in detail in Section 4, in the two-dimensional case there is a loss of O(hε) in the
theoretical error estimates. In the three-dimensional case our error estimates end up
falling short by half a power of h for the errors in u and b, and by a full power in p
and r. Nevertheless, the numerical experiments of Section 5 show optimal convergence
in all cases. This probably indicates that the sub-optimality is a mere artifact of our
technique of proof, which relies on inverse estimates to establish the continuity of the
non-linear coupling form. Furthermore, the numerical experiments indicate that the
constant Cε in Theorem 4.3 stays bounded, even though this is not guaranteed by the
analysis. Altogether, the computed results are in excellent agreement with results in
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the literature, and the method correctly resolves the strongest magnetic singularities
in non-convex domains. But there is a need to further pursue the theoretical issue of
sub-optimal convergence rates.

Based on the theoretical results in [44], we expect the same good performance
of our discretization and solution techniques to carry over to the dynamic problem,
provided that the non-linear terms are treated (semi)implicitly. We also mention the
issue of higher order elements. Here, we do not expect any deviation from our current
computational results. In particular, we expect to see optimal convergence rates for
smooth solutions.

The scope of our work can be broadened in a number of additional directions. A
very important issue is the investigation of efficient solvers for large-scale problems.
In such settings iterative linear solvers are necessary, and this brings up the need
for deriving effective and scalable preconditioners. While there are efficient solution
techniques for the Navier-Stokes equations as well as for the curl-curl operator, the
primary challenge is how to deal with the coupling term, especially when coupling is
strong. Preliminary work on this is currently underway.

Another item for future work is the derivation of a non-linear solver that converges
more rapidly than the Picard iteration used in our experiments. As we have pointed
out in Remark 3.3, developing the Newton iteration for our discretization is somewhat
delicate and is subject of ongoing investigation.
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[29] J.-L. Guermond, R. Laguerre, J. Léorat, and C. Nore. Nonlinear magnetohydrodynamics in ax-
isymmetric heterogeneous domains using a Fourier/finite element technique and an interior
penalty method. J. Comput. Phys., 228:2739–2757, 2009.

[30] J.-L. Guermond and P. Minev. Mixed finite element approximation of an MHD problem in-
volving conducting and insulating regions: the 3D case. Num. Meth. Part. Diff. Eqs.,
19:709–731, 2003.

[31] M.D. Gunzburger, A.J. Meir, and J.S. Peterson. On the existence and uniqueness and finite
element approximation of solutions of the equations of stationary incompressible magne-
tohydrodynamics. Math. Comp., 56:523–563, 1991.

[32] P. Hansbo and M.G. Larson. Discontinuous Galerkin methods for incompressible and nearly
incompressible elasticity by Nitsche’s method. Comput. Methods Appl. Mech. Engrg.,
191:1895–1908, 2002.
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