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Abstract

A new procedure of cyclic reduction is proposed, whereby instead of
performing a step of elimination on the original cartesian mesh using a
two-color ordering and a standard 5-point or 7-point operator, we perform
the decoupling step on the reduced mesh associated with one color, us-
ing non-standard operators that are better aligned with that mesh. This
yields a cartesian mesh and box shaped 9-point (in 2D) or 27-point (in 3D)
operators that are easy to deal with. Convergence analysis for multi-line
and multi-plane orderings is carried out. Numerical experiments demon-
strate the merits of the approach taken.

1 Introduction

The technique of cyclic reduction has been studied and analyzed in several set-
tings in the last few decades. Early work demonstrates the merits of applying
this procedure to the discrete Poisson equation associated with standard finite
differences on a uniform mesh; see [4] for a review of history and applications,
and references therein. The nonzero pattern of the matrix in this case allows for
efficiently eliminating half of the unknowns, while preserving the block struc-
ture. The procedure can be applied repeatedly until a small system that can
be easily solved is obtained. Recovering the solution for the unknowns that
have been eliminated throughout the process is straightforward, and the overall
computational cost is attractively low.

In the nonsymmetric case, for example in the case of the discrete convection-
diffusion equation (on which we focus in this work), some of the attractive
features of the Laplacian are lost and a recursive cyclic reduction approach may
be numerically unstable. In the early 1990s Elman & Golub offered a thorough
analysis of the spectral properties and convergence behavior of linear systems
arising from a procedure of one step of cyclic reduction [1, 2, 3]. Using red-
black ordering and eliminating all the ones corresponding to one of the two
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colors, results in a linear system associated with a diamond shaped 9-point
computational molecule, in contrast to the original unreduced operator, which
has the well known plus shaped 5-point stencil.

The Schur complement (reduced) matrix obtained after the elimination is
only half the dimension of the original (unreduced) matrix. Thus, the cost of
performing matrix-vector products on the reduced system is similar to, or in
fact marginally lower than the cost of matrix-vector products on the unreduced
system. As a result, when comparing the iterative solution procedure for the
original system to that for the cyclically reduced system, the overall performance
of solvers depends almost exclusively on the spectral structure of the reduced
vs. the unreduced operators, and not on the cost of a single iteration. The
analysis and numerical experiments in [1, 2, 3] show that iterative solvers for
the reduced system converge faster, and hence it pays off to perform one step
of cyclic reduction in the 2D case.

In the late 1990s, Greif & Varah [7, 6, 8] showed that gains can be made for
the three-dimensional case as well. However, in 3D the original 7-point operator
is replaced by a 19-point one, applied to half of the unknowns, and hence matrix-
vector products for the reduced system are more expensive, in contrast to the 2D
case. Despite that, the improvement in the spectral structure and convergence
rates lead to the conclusion that in 3D it still pays off to perform a step of cyclic
reduction.

Despite their attractive numerical properties and the computational savings,
cyclically reduced operators of the form just described have not been widely
used. One possible reason for this is the nature of the computational molecule
and the mesh, which present a computational challenge, for example in handling
boundary conditions. Applying one step of cyclic reduction to a cartesian mesh,
using a standard 5-point operator (in 2D) or 7-point operator (in 3D), yields
a non-cartesian mesh with ‘holes’. The reduced stencil includes gridpoints not
immediately next to each other.

In this paper we propose to perform a step of decoupling on the reduced
mesh. We show that one step of cyclic reduction on a non-cartesian mesh can
be done by using a non-standard operator aligned with that mesh, and yields
a (further) reduced mesh that is cartesian again, associated with a standard
box shaped operator. It is this last observation which forms the basis for the
procedure we propose.

The basic idea is quite simple and amounts to adopting a bottom-top ap-
proach, in the sense that the reduced grid is handled before the unreduced grid
is taken care of. Instead of carrying out the step of cyclic reduction on the carte-
sian unreduced mesh with a standard operator, we first decouple the gridpoints
using two colors, but postpone any step of elimination for later. We define a
two-color ordering on the reduced grid, and deal with the gridpoints that belong
to one of the colors by using non-standard operators that are naturally aligned
with the grid. In 3D this is more complicated and involves a second decoupling
step, but the idea is similar. The result is a grid that now contains only 1/2d

of the original gridpoints (with d = 2, 3 being the dimension), but this grid
is again cartesian, as was the original grid, and the operator associated with
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it is box shaped: it looks like the standard 9-point operator in 2D, and the
standard 27-point operator in 3D. Boundary conditions can now be straightfor-
wardly handled. Implementation is therefore straightforward, and one benefit
from the fact that the mesh is 1/4 and and 1/8 of the original one, in 2D and
3D respectively, is that matrix-vector products are cheaper.

We use a block ordering strategy that exploits the structure of the stencil.
Specifically, we consider k-line and k-plane orderings in 2D and 3D respectively,
where k is a small integer: 2 or 3. We derive exact analytic expressions for the
spectral radius of the block Jacobi iteration matrix with lexicographic ordering
(which is equivalent to 1-line or 1-plane ordering), and tight bounds for a 2-line
(2-plane) ordering in 2D (3D). We show that the latter orderings are superior to
lexicographic ordering. Our experiments suggest that a 3-line ordering is even
more effective, although we are not able to obtain tight bounds in this case.
Since the matrices in question are consistently ordered with respect to the block
partitioning we consider, the analytic bounds carry over to block Gauss-Seidel
and block SOR. In our numerical results we also consider ILU preconditioned
GMRES iterations.

The remainder of this paper is organized as follows. In Section 2 we intro-
duce the model convection-diffusion problem and derive our new operator. In
Section 3 we discuss the notion of block grids. In Section 4 we apply multi-
line and multi-plane orderings for the 2D and 3D cases respectively, and offer a
convergence analysis for block Jacobi. In Section 5 we provide numerical com-
parisons between our operators, the “traditional” cyclically reduced operators,
and the standard unreduced 5-point and 7-point operators. Finally, in Section
6 we draw some conclusions.

2 The Proposed Procedure of Cyclic Reduction

Consider the two- or three-dimensional convection-diffusion model problem with
constant coefficients:

−∆u + ~w · ∇u = f. (1)

The domain Ω = (0, 1)d is the unit square (d = 2) or unit cube (d = 3), subject
to Dirichlet type boundary conditions. When the row vector ~w is constant, we
denote its components by (σ, τ) for 2D and (σ, τ, µ) for 3D.

We discretize the problem using a uniform rectangular grid G in Ω. Our
method requires the number of grid points to be odd; we thus set G = {h, 2h, ..., (2n+
1)h}d where h = 1

2n+2 . The mesh Reynolds numbers are defined as

γ =
σh

2
, δ =

τh

2
, η =

µh

2
.

2.1 The Reduction Step in 2D

We will be using a combination of two different discrete operators, as follows.
Denote the standard plus shaped second order 5-point discretization of (1) in
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2D, after scaling by h2, by

F+ui,j = 4ui,j +(−1−δ)ui,j−1+(−1−γ)ui−1,j +(−1+γ)ui+1,j +(−1+δ)ui,j+1.

Denote by F× an × shaped second order 5-point discretization of (1):

F×ui,j = aui,j + bui+1,j+1 + cui−1,j+1 + dui−1,j−1 + eui+1,j−1,

after scaling by 2h2. We have in this case

a = 4, b = −1 + γ + δ, c = −1− γ + δ, d = −1− γ − δ, e = −1 + γ − δ. (2)

Figure 1: (a) Four color ordering applied to a 7×7 grid. (b) Eight color ordering
applied to a 3× 3× 3 grid.

Suppose we apply a four-color ordering to the grid G, as in Figure 2.1(a).
Red points (i, j) have both i and j odd; green is for i, j even; blue is for i odd
and j even; and yellow signifies i even and j odd.

We then discretize (1) by applying F+ at the yellow and blue points, and
F× at the red and green points.

The resulting (2n + 1)2 × (2n + 1)2 linear system can be written in block
form as 

D1 B1 0 0
B2 D2 0 0
B3 B4 D3 0
B5 B6 0 D4




ured

ugreen

ublue

uyellow

 =


2h2fred

2h2fgreen

h2f blue

h2fyellow

 ,

where the matrices D1, D2, D3, and D4 are diagonal. We apply a block elimina-
tion procedure to obtain a reduced (Schur complement) system of size n2 × n2,
involving only the green points:

(D2 −B2D
−1
1 B1)ugreen = 2h2(fgreen −B2D

−1
1 fred). (3)

The remaining three quarters of the unknowns can be recovered by computing
the following three equations, where the inversions are trivial because Di, i =
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1, 3, 4, are diagonal:

ured = D−1
1 (2h2fred −B1u

green),
ublue = D−1

3 (h2f blue −B3u
red −B4u

green),
uyellow = D−1

4 (h2fyellow −B5u
red −B6u

green).

The n2 × n2 reduced matrix in (3) is block tridiagonal with tridiagonal blocks:

D2 −B2D
−1
1 B1 = trin×n [trin×n[−d2,−2de,−e2],

trin×n[−2cd, a2 − 2bd− 2ce,−2be],
trin×n[−c2,−2bc,−b2]].

(4)

Notice that the 4×4 block system that we started with was reducible. Indeed,
the use of four colors above has been done mainly for the purpose of illustration.
In practice, it is sufficient to think of the blue and yellow points as points of one
color (black, if traditional red-black ordering is considered): dealing with them
is postponed for later, and we start off with the red and green points. In terms
of traditional two-color orderings, these latter points were originally all red,
but we have re-colored them, defining the green color and then eliminating the
remaining red points. The operator for the green points looks like a standard
9-point operator, as opposed to the diamond shaped 9-point typically cyclically
reduced operator. We observe one of its properties as a discrete differential
operator, as follows.

Proposition 1 The difference equation for the operator for the green points is
equivalent to standard finite difference discretization of the differential equation

−
[(

1 +
σ2h2

4

)
uxx +

(
1 +

τ2h2

4

)
uyy

]
+ σux + τuy = f + O(h2).

Proof. After expanding each ui+∆i,j+∆j term using a Taylor series about
ui,j , the left hand side of (3) reduces, after dividing by 16h2, to

σux + τuy − (1 +
σ2h2

4
)uxx − (1 +

τ2h2

4
)uyy −

στh2

2
uxy

+
2σh2

3
uxxx +

2τh2

3
uyyy + τh2uxxy + σh2uxyy

−h2

3
uxxxx −

h2

3
uyyyy − h2uxxyy + o(h2).

Similarly, the right hand side reduces to

f − σh2

4
fx −

τh2

4
fy +

h2

4
∆f + o(h2).

This computation was done using Matlab’s symbolic toolbox.
Proposition 1 shows that the new cyclically reduced operator is in fact a

second order operator for the 2D convection-diffusion equation. The additional
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Figure 2: The standard 2D cyclically reduced operator defined on a mesh with
spacing

√
2h becomes a compact rectangular operator when viewed on a grid

rotated 45 degrees with mesh spacing h.

O(h2) terms on the left hand side represent the introduction of artificial dis-
sipation, and this suggests the operator may be better behaved for high mesh
Reynolds numbers, compared to the original operator. In this regard, this op-
erator satisfies properties similar to the ones for the “traditional” cyclically
reduced operators.

We now make the point that in fact the new operator is nothing but a ‘tilted’
version of the typical cyclically reduced operator for a related equation; we note
that this is not the case for 3D.

Proposition 2 Suppose the new cyclic reduction process is applied to the 2D
convection-diffusion problem, yielding a box shaped 9 point operator. Then the
operator is identical to the standard cyclically reduced operator applied to a grid
rotated 45 degrees clockwise with mesh spacing

√
2h.

The proof follows from transforming to the rotated grid, where the convection-
diffusion equation becomes

−∆u +
1√
2
(σ − τ, σ + τ) · ∇u = f,

and discretizing with mesh spacing
√

2h using the standard 5-point operator;
see Figure 2 for an illustration, where the original and transformed coordinates
are denoted, respectively, by (x, y) and (x′, y′).

2.2 The Reduction Step in 3D

In three dimensions, our elimination procedure requires the use of the standard
second order 7-point operator F̂ , as well as three nonstandard second order
operators F̃ , F̀ , and F . After scaling by h2, 2h2, 2h2 and 4h2 respectively,
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these operators are

F̂ ui,j,k = 6ui,j,k + (−1 + γ)ui+1,j,k + (−1− γ)ui−1,j,k + (−1 + δ)ui,j+1,k

+(−1− δ)ui,j−1,k + (−1 + η)ui,j,k+1 + (−1− η)ui,j,k−1 ,

F̃ ui,j,k = 8ui,j,k + (−1 + γ + δ)ui+1,j+1,k + (−1− γ + δ)ui−1,j+1,k

+(−1− γ − δ)ui−1,j−1,k + (−1 + γ − δ)ui+1,j−1,k

+2(−1 + η)ui,j,k+1 + 2(−1− η)ui,j,k−1 ,

F̀ ui,j,k = 8ui,j,k + (−1− γ + η)ui−1,j,k+1 + (−1 + γ + η)ui+1,j,k+1

+(−1− γ − η)ui−1,j,k−1 + (−1 + γ − η)ui+1,j,k−1

+2(−1 + δ)ui,j+1,k + 2(−1− δ)ui,j−1,k ,

and

Fui,j,k = aui,j,k + bui+1,j+1,k+1 + cui−1,j+1,k+1 + dui−1,j−1,k+1 + eui+1,j−1,k+1

+pui+1,j+1,k−1 + qui−1,j+1,k−1 + rui−1,j−1,k−1 + sui+1,j−1,k−1 .

Here a = 8, b = −1+γ+δ+η, c = −1−γ+δ+η, d = −1−γ−δ+η, e = −1+γ−
δ+η, p = −1+γ+δ−η, q = −1−γ+δ−η, r = −1−γ−δ−η, s = −1+γ−δ−η.
See Table 1 for a classification of grid point colors in terms of i, j, and k.

We order the mesh G with an eight-color ordering as in figure 2.1(b). Equa-
tion (1) is then discretized by applying F to red and brown points, F̂ to cyan
and yellow points, F̀ to orange and blue points, and F̃ to green and purple
points.

For each color c ∈ C ≡ {red, brown, orange, blue, purple, green, cyan,
yellow}, we obtain a system

Dcu
c +

∑
x∈C,x6=c

Bc,xux = αh2fc,

where the matrix Dc is diagonal and α = 1, 2, or 4, depending on which operator
was applied to gridpoints of color c. As can be seen in Table 1, unknowns of
a given color only depend on unknowns of a few other colors, so most of the
Bc,x’s are zero.

In fact, as soon as u is known for all the brown points it can be found for
every other color by inverting a diagonal matrix and performing a few matrix
vector products – simply apply

uc = D−1
c

αh2fc −
∑

x∈C,x 6=c

Bc,xux


to the red, green, purple, blue, orange, yellow, and cyan points in that order.

A block elimination procedure completely analogous to the 2D case gives
an n3 × n3 reduced system involving only the brown unknowns. The reduced
matrix

A = trin×n[A1, A2, A3] (5)
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Color i j k Depends On
red odd odd odd red, brown
brown even even even brown, red
green even even odd green, red, brown
purple odd odd even purple, red, brown
blue odd even odd blue, red, brown
orange even odd even orange, red, brown
yellow even odd odd yellow, red, green, orange
cyan odd even even cyan, blue, purple, brown

Table 1: Classification of grid colors in terms of i, j, and k. Dependence of grid
unknowns of a given color on grid unknowns of other colors, after discretizing
(1) as above.

is block triagonal, with each block itself block tridiagonal with tridiagonal
blocks. We have

A1 = trin×n [trin×n[−r2,−2rs,−s2],
trin×n[−2qr,−2(qs + pr),−2ps],
trin×n[−q2,−2qp,−p2]] ;

A2 = trin×n [trin×n[−2dr,−2(re + ds),−2es],
trin×n[−2(cr + qd), a2 − 2br − 2cs− 2dp− 2eq,−2(pe + bs)],
trin×n[−2cq,−2(cp + bq),−2bp]] ;

A3 = trin×n [trin×n[−d2,−2de,−e2],
trin×n[−2cd,−2(bd + ce),−2be],
trin×n[−c2,−2bc,−b2]] .

It is tedious but straightforward to show that as long as ‖h
2 ~w‖1 < 1, the

reduced matrices (4) and (5) are strictly diagonally dominant irreducible M -
matrices.

A Taylor expansion similar to the one in 2D shows that the 3D operator has
similar properties and can be interpreted as a discretization of the convection-
diffusion equation with some artificial viscosity. More precisely, the difference
equation for the reduced system for the brown points is equivalent to standard
finite difference discretization of the differential equation

−
[(

1 +
σ2h2

4

)
uxx +

(
1 +

τ2h2

4

)
uyy +

(
1 +

µ2h2

4

)
uzz

]
+ σux + τuy + µuz

= f + O(h2).

The proof is almost identical to the 2D case, Proposition 1, and is omitted.
On the other hand, it is not the case that there is a clear connection between

this 3D operator and the typical cyclically reduced 3D operator. In this regard
there is a fundamental difference between the 2D case and the 3D case.
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In Section 4 we will show that in the case that ~w is aligned with the x-axis,
both systems are symmetrizeable by a diagonal symmetrizer, and are positive
definite.

3 Block Grid Orderings

Figure 3: (a) 3-line ordering applied to a 9×9 grid. The grid blocks are separated
by lines. (b) The induced block structure of the 5-point operator matrix. (c)
The induced block structure of the 9-point operator matrix.

In some cases it may be beneficial to use grid orderings that generate dense
diagonal blocks; see, e.g. [9]. For this purpose, multi-line and multi-plane block
orderings have been developed. See [5] for an analysis of 2-line and 2-plane
orderings applied to the standard centered differences discretizations of (1).

We explore the effect of k-line and k-plane orderings on the convergence of
iterative solvers applied to 4 and 5. For convenience, let us define k-line and
k-plane orderings within the context of general block grid orderings.

An ordering on a grid G is a function iG : G → {1, 2, ..., |G|}. A block
ordering on a grid G is defined by a set of grid blocks {B} partitioning G, an
ordering of the grid blocks, and an ordering of the grid elements within each
block. The block ordering is given by

iG(p) = iBI
(p) +

I−1∑
j=1

|Bj |,

where BI is the grid block p belongs to, and iBI
(p) is the order of p with respect

to BI .
Unless stated otherwise, all block orderings considered in this paper will use

lexicographic ordering for both the grid blocks, and the elements within each
block. Note, however, that the resulting ordering is not lexicographic; see Fig. 3
and 4.

Suppose we work on an n×n grid G2D, with n an integer multiple of k. The
k-line ordering is defined by partitioning G2D into n

k vertical blocks containing
k lines of n grid points each, as in figure 3(a) for k = 3, n = 9.

9



Figure 4: (a) 3-plane ordering applied to a 6× 6× 6 grid. (b) The block matrix
A3L of the 5-point operator on a 9 × 9 × 9 grid. (c) The block matrix A3L of
the 9-point operator on a 9× 9× 9 grid.

10



Suppose now we work on an n × n × n grid G3D with n again an integer
multiple of k. The k-plane ordering is defined by partitioning G3D into n2

k2

blocks containing nk2 grid points each, as in figure 4(a) for k = 3, n = 6.
Let A denote the matrix obtained by discretizing (1) on a grid G with a

block ordering. A has a natural block structure that it inherits from the block
ordering of G. For each ordered pair of grid blocks (Bi, Bj), there is a matrix
block Aij containing all the dependencies of members of Bi on members of Bj .

We denote by AkL and AkP the matrices that correspond to k-line and k-
plane orderings. For k-line ordering, there are n

k grid blocks of nk grid points
each. AkL can therefore be referred to as a block matrix with n

k ×
n
k blocks, each

of size nk × nk. For the k-plane ordering, there are n2

k2 grid blocks containing
nk2 points each. Therefore AkP is a n2

k2 × n2

k2 block matrix with blocks of size
nk2 × nk2.

The sparsity pattern of the matrix depends, of course, also on the discretiza-
tion used. In Fig. 3(b) and 3(c) we show the matrices corresponding to 3-line
ordering, namely A3L, for 5-point and 9-point discretizations. In Fig. 4(b) and
4(c) we show the matrices for 3-plane ordering, A3P , using 7-point and 27-point
stencils respectively.

4 Ordering Strategies and Bounds on Conver-
gence Rates

Our analysis makes extensive use of Kronecker products and their properties,
and of known results of spectra of tridiagonal Toeplitz matrices. The following
two elementary results are used so often in our analysis that they are worth
stating explicitly.

Proposition 3 The eigenvalues of the tridiagonal matrix trin×n[a,b, c] are given
by

λi = b + 2
√

ac cos
(

iπ

n + 1

)
, i = 1, 2, ..., n.

Proposition 4 Suppose A and B are square matrices of sizes n × n and m ×
m respectively, with respective eigenpairs {λi, ~xi}, i = 1, 2, ..., n and {µj , ~yj},
j = 1, 2, ...m. Then A ⊗ B is nm × nm with eigenpairs {λiµj , ~x ⊗ ~y}, i =
1, 2, ..., n, j = 1, 2, ...,m.

We will also be using the following technique (used effectively for analysis of
the standard cyclically reduced operator). Let M and N be symmetric matrices,
with M positive definite. Then

ρ(M−1N) ≤ ‖M−1‖2‖N‖2 =
ρ(N)

λmin(M)
. (6)

The general case seems difficult to analyze; in our analysis we will consider the
simpler case where convection is aligned with the x-axis, namely τ = η = 0.
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4.1 2D Case: k-Line Ordering

Consider the block Jacobi splitting AkL = MkL −NkL, with MkL consisting of
all the blocks (AkL)ii discussed in section 3.

As will be evident from the analysis, it is useful to consider the general
setting of a uniform nx × ny grid, to establish the eigenvalues of AkL; we will
then resort back to nx = ny = n.

The matrix A1L is block tridiagonal and has dimensions nx×nx. Each block
is itself tridiagonal, with dimensions ny × ny. Since τ = 0, we have b = e and
c = d, and thus the matrix of (4) reduces to

A1L = trinx×nx
[triny×ny

[−c2,−2bc,−b2],
triny×ny

[−2c2, a2 − 4bc,−2b2],
triny×ny [−c2,−2bc,−b2]]

= a2Inxny +trinx×nx [1, 2, 1]⊗ triny×ny [−c2,−2bc,−b2].

Proposition 5 The eigenvalues of the matrix AkL are given by

λi,j(AkL) = a2 − 4bc

[
1 + cos

(
iπ

ny + 1

)] [
1 + cos

(
jπ

nx + 1

)]
,

i = 1, 2, ..., ny, j = 1, 2, ..., nx.

Proof. Using Propositions 3 and 4, the eigenvalues for A1L are easily calcu-
lated, and since all the AkL are permutations of each other, the result follows.

The eigenvalues of MkL can now be found as a simple corollary; we will set
nx = ny = n from this point on. Since the matrices MkL are not permutations
of each other, there is an explicit dependence on k.

Corollary 1 The eigenvalues of MkL are given by

λi,j(MkL) = a2 − 4bc

[
1 + cos

(
iπ

k + 1

)]
(1 + cos(2πjh)),

i = 1, 2, ..., k, j = 1, 2, ..., n,

each with multiplicity n
k . The minimal eigenvalue of MkL is given by

λmin(MkL) = a2 − 4bc

[
1 + cos

(
π

k + 1

)]
(1 + cos(2πh)).

Also, MkL is symmetrizable, and the symmetrized matrix is positive definite.

Proof. MkL is block diagonal with n
k identical blocks of size kn. The struc-

ture of each block (MkL)ii is that of the matrix A1L discretized on a k × n
grid.

Substituting m = k and h = 1
2n+2 into proposition 5, there are n

k blocks
and the minimal eigenvalue is attained when i = j = 1. From (2) it follows
that λmin is positive. Since MkL is a Kronecker product of tridiagonal Toeplitz
matrices, it is symmetrizable by a diagonal similarly transformation.

12



Figure 5: When unknowns are reordered as in (a), the matrix NkL (b) takes on
block diagonal form (c).

Proposition 6 The eigenvalues of NkL are as follows. When k = 1,

λi,j(N1L) = 4bc(1 + cos(2πih)) cos(2πjh), i, j = 1, 2, ..., n.

When 1 < k ≤ n, NkL has 2n(n
k − 1) eigenvalues of the form

λi(NkL) = ±2bc(1 + cos(2πih)), i = 1, 2, ..., n,

each of multiplicity n
k − 1. The remaining n2 − 2n(n

k − 1) eigenvalues are zero.

Proof. For k = 1 we have

N1L = trin×n[1, 0, 1]⊗ trin×n[c2, 2bc, b2], (7)

and the eigenvalues follow from Propositions 3 and 4.
Let ∂RBi and ∂LBi denote the boundary of Bi on the right and left respec-

tively. We partition G2D into n
k new grid blocks B̃i defined by

B̃i = ∂RBi

⋃
∂LBi+1, i = 1, 2, ...,

n

k
− 1,

with B̃n
k

= G2D −
⋃n

k−1
i=1 B̃i. The result is shown in figure 5, on a 9 × 9 grid

which originally had 3-line ordering.
The matrix ÑkL has n

k − 1 diagonal blocks, tri2×2[c2, 0, b2] ⊗ trin×n[1, 2, 1].
The expression for the nonzero eigenvalues follows from Propositions 3 and
4. The final diagonal block of ÑkL consists entirely of zeros and is of size
n2 − 2n(n

k − 1), showing the existence and multiplicity of zero eigenvalues, as
claimed.

Corollary 2 The spectral radii of NkL are given by

ρ(N1L) = 4bc(1+cos(2πh)) cos(2πh) ; ρ(NkL) = 2bc(1+cos(2πh)), 1 < k < n.

13



We note that the case k = n is a triviality, since NnL = 0. We are now in a
position to make a statement regarding the convergence of block Jacobi.

Theorem 1 The spectral radius of the block Jacobi iteration matrix obeys the
bound

ρkL ≤ ρ̃kL =
2bc(1 + cos(2πh))

a2 − 4bc(1 + cos
(

π
k+1

)
)(1 + cos(2πh))

[1 + δ1k(2 cos(2πh)− 1)].

In the case k = 1, the bound is attained, that is ρ1L = ρ̃1L.

Proof. By Corollary 1, MkL can be symmetrized, and its symmetrized ver-
sion is also positive definite. It is easy to show that NkL can also be symmetrized,
and hence (6) can be used. Thus, by Corollaries 1, 2 and Eq. (6), the stated
bound holds.

For k = 1 we can obtain an exact expression, as follows. We have M1L =
a2In2−2In⊗trin×n[c2, 2bc, b2] and N1L given in Kronecker product form by (7).
If ~x and ~y are the dominant eigenvectors of trin×n[1, 0, 1] and trin×n[c2, 2bc, b2],
by Proposition 4, ~x⊗ ~y is both the dominant eigenvector of N1L and the eigen-
vector corresponding to the minimal eigenvalue of M1L. Therefore the bound
is attained.

Table 2 shows experimentally the tightness of our bound. In the case k = 2
the bound becomes arbitrarily tight as h → 0. For k > 2, however, the bound
is not tight.

n ρ2L ρ̃2L ρ3L ρ̃3L

6 0.339 0.383 0.302 0.455
12 0.400 0.415 0.345 0.501
18 0.415 0.422 0.356 0.511
24 0.421 0.425 0.360 0.515
30 0.423 0.426 0.362 0.517

Table 2: Spectral radii ρ2L and ρ3L of the 2-line and 3-line iteration matrices,
as well as the bounds ρ̃2L and ρ̃3L. For the 2-line ordering the bound grows
tight for large n, but not for the 3-line ordering. γ = 0.5 and δ = 0.

We expect the convergence of block Jacobi to improve as k gets larger, since
a greater proportion of the matrix AkL ends up in MkL. Since our bound ˜ρkL

is not tight for k > 2, we cannot predict analytically how big the improvement
is. We have nevertheless observed this experimentally.

The following proposition shows that doubling k always improves the con-
vergence of block Jacobi.

Proposition 7 For any given k ≥ 1, ρ2kL < ρkL.

Proof. It is straightforward to show that NkL ≥ N2kL ≥ 0, when NkL

and N2kL are permuted by reordering grid unknowns lexicographically. Since

14



the matrix AkL is an irreducibly diagonally dominant M -matrix, A−1
kL > 0 [10,

pg 91]. The claimed result follows from [10, pg 97, Theorem 3.32].
We can use the results of Theorem 1 to determine exactly (approximately)

the optimal parameter for block SOR with the 1-line (2-line) ordering. Since
AkL is block tridiagonal, it has block property A, and hence the analysis of
Young [11, Chap. 14, Sections 5.2 and 14.3] applies.

Comparison of Convergence Rates (2D)

Let us compare the convergence of block Jacobi applied to our reduced system,
the traditional reduced system, and the unreduced system. When referring to
quantities of interest we use the superscripts 2, 3, and + respectively, motivated
by the shapes of the corresponding computational molecules.

A bound on the spectral radius of the standard 2D cyclically reduced system
with a diagonal ordering strategy is given by [1]

ρ3
1L ≤ ρ̃3

1L =
(
√

1− γ2 +
√

1− δ2)2

8− (
√

1− γ2 +
√

1− δ2)2 + 2
√

(1− γ2)(1− δ2)(1− cos(πh))
,

(8)
valid for |γ|, |δ| < 1. The diagonal ordering is equivalent to a 1-line ordering
if the grid is viewed at a 45 degree angle. It was observed experimentally that
ρ̃3
1L → ρ3

1L as h → 0 with (γ, δ) fixed.
Setting δ = 0, we expand (8) as well as the results of Theorem 1 in a Taylor

series centered at h = 0.

ρ̃3
1L = 1−

(
−π2

4
+

σ2

4

)
h2 + o(h2);

ρ2
1L = 1−

(
4π2 +

σ2

2

)
h2 + o(h2);

ρ2
2L ≤ ρ̃2

2L = 1− (4π2 + σ2)h2 + o(h2).

As observed in Table 2, ρ̃2
2L → ρ2

2L as h → 0 with γ fixed.
For block Jacobi applied to the standard 5-point centered differences oper-

ator, we have

ρ+
1L = 1−

(
π2 +

σ2

8

)
h2 + o(h2)

and

ρ+
2L ≤ ρ̃+

2L = 1−
(

π2 +
σ2

4

)
h2 + o(h2),

with the latter bound observed experimentally to grow arbitrarily tight as h → 0
with γ fixed [5].

The asymptotic convergence rate is R∞ = − log(ρ). Noting that log(1 +
ch2) = ch2 + o(h2), we have for σ2 � π2 and h � 1 the following hierarchy of
relative asymptotic convergence rates:

(R∞)2
2L ≈ 2(R∞)2

1L ≈ 4(R∞)3
1L ≈ 4(R∞)+2L ≈ 8(R∞)+1L.
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4.2 3D Case: k-Plane Ordering

Consider the block Jacobi splitting AkP = MkP −NkP with MkP consisting of
the blocks (AkP )ii of the k-plane matrix discussed in section 3. As previously
stated, we assume that ~w is aligned with the x-axis. Thus, we have δ = η = 0,
which means b = e = p = s and c = d = q = r. As we did for the 2D case, it is
useful to consider the general setting of a uniform nx×ny×nz grid to establish
the eigenvalues of AkP ; we will then resort back to nx = ny = nz.

A1P is a block tridiagonal matrix of size ny×ny. Each block is itself a block
tridiagonal matrix of size nx × nx with respect to nz × nz tridiagonal blocks.

Assuming that the ordering the gridpoints goes in a z-x-y fashion without
loss of generality, we have

A1P = triny×ny
[B,C,B],

where

B = trinx×nx
[trinz×nz

[−c2,−2c2,−c2],
trinz×nz

[−2bc,−4bc,−2bc],
trinz×nz [−b2,−2b2,−b2]] ;

C = trinx×nx
[trinz×nz

[−2c2,−4c2,−2c2],
trinz×nz

[−4bc, a2 − 8bc,−4bc],
trinz×nz

[−2b2,−4b2,−2b2]] .

Using Kronecker products, we have

A1P = a2Inxnynz
− triny×ny

[1, 2, 1]⊗ trinx×nx
[c2, 2bc, b2]⊗ trinz×nz

[1, 2, 1]. (9)

Proposition 8 The eigenvalues of the matrix AkP are

λi,j,k = a2 − 8bc

[
1 + cos

(
iπ

nx + 1

)] [
1 + cos

(
jπ

ny + 1

)][
1 + cos

(
`π

nz + 1

)]
,

i = 1, 2, ..., nx, j = 1, 2, ..., ny, ` = 1, 2, ..., nz.

Proof. This follows from (9) and Propositions 3 and 4.
Once again, the eigenvalues of MkP follow as a simple corollary. From this

point on we assume nx = ny = nz = n.

Corollary 3 The eigenvalues of the matrix MkP are given by

λi,j,k(MkP ) = a2 − 8bc

[
1 + cos

(
iπ

k + 1

)] [
1 + cos

(
jπ

k + 1

)]
(1 + cos(2π`h)),

i = 1, 2, ..., k, j = 1, 2, ..., k, ` = 1, 2, ..., n,

each with multiplicity n2

k2 .
The minimal eigenvalue of MkP is

λmin(MkP ) = a2 − 8bc

[
1 + cos

(
π

k + 1

)]2

(1 + cos(2πh)).

Finally, MkP is symmetrizable, and the symmetrized matrix is positive definite.
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Proof. MkP is block diagonal, with each block equal to the matrix AkP

discretized on a k × k × n grid. The result follows from applying Proposition
8 to a k × k × n subgrid. Since MkP is a Kronecker product of tridiagonal
Toeplitz matrices, it is symmetrizable by a diagonal similarly transformation.
By inspecting the values of a, b and c, it readily follows that λmin is positive.

Lemma 1 The eigenvalues of N1P are given by

λij`(N1P ) = 8bc [(1 + cos(2πih)) (1 + cos(2πjh))− 1] [1 + cos(2π`h)]
i, j, ` = 1, 2, ..., n.

The spectral radius of N1P is thus given by

ρ(N1P ) = 8bc cos(2πh) [1 + cos(2πh)] [2 + cos(2πh)] .

When k > 1, a bound on ρ(NkP ) is given by

ρ(NkP ) ≤ 2bc

[
1 + 4

(
1 + cos

(
π

k + 1

))]
[1 + cos(2πh)] .

Proof. We have

N1P = (trin×n[1, 2, 1]⊗ trin×n[c2, 2bc, b2]− 4bcIn2)⊗ trin×n[1, 2, 1].

The claim on its eigenvalues now follows from Propositions 3 and 4. The spectral
radius is attained at i = j = ` = 1.

When k > 1 we use the following splitting:

NkP = (NkP )1 + (NkP )2 + (NkP )3,

where the eigenvalues of the three matrices on the right can be computed exactly.
The sparsity patterns of these matrices are depicted in Figure 4.2.

It is useful to introduce some notation regarding the faces and edges of each
grid block Bi. We denote by ∂x+Bi and ∂x−Bi the faces on the positive x and
negative x sides of Bi. The faces in the y direction are denoted in the same
fashion. The edge where the positive x and y faces meet is denoted by ∂x+y+Bi,
with obvious modifications for the other edges.

There exist three reorderings of G3D, each bringing one of the pieces of NkP

to block diagonal form.
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Figure 6: Partition of NkP into (a) (NkP )1, (b) (NkP )2, and (c) (NkP )3. The
grid is 9× 9× 9 with k = 3.

Figure 7: (a) Nonzero blocks of permuted (NkP )1 and (NkP )2. (b) Nonzero
blocks of permuted (NkP )3. Grid is 9× 9× 9, k = 3.

We redefine the grid blocks as

B̃i = ∂x+Bi

⋃
∂x−Bi+1 i = 1, 2, ...,

n

k

(n

k
− 1

)
and

B̃n
k ( n

k−1)+1 = G3D −
n
k ( n

k−1)⋃
i=1

B̃i.

The permuted matrix (ÑkP )1 is block diagonal with n
k (n

k − 1) blocks of size
2kn×2kn, and one block of zeroes of size (n3−2n2(n

k −1))× (n3−2n2(n
k −1)).

Each nonzero block is the matrix

trin×n[1, 2, 1]⊗ tri2×2[−c2, 0,−b2]⊗ trik×k[1, 2, 1],

whose sparcity pattern is shown in 7(a). By Propositions 3 and 4, the eigenvalues
of (NkP )1 are

±4bc

(
1 + cos

(
iπ

k + 1

))
(1 + cos(2πih)) , i = 1, 2, ..., k, j = 1, 2, ..., n,
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each of multiplicity n
k (n

k − 1) and 0 of multiplicity (n3 − 2n2(n
k − 1)). Clearly,

ρ((NkP )1) = 4bc

(
1 + cos

(
π

k + 1

))
(1 + cos(2πh)). (10)

By an almost identical process (using B̃i = ∂y+Bi

⋃
∂y−Bi+1), we have

ρ((NkP )2) = ρ((NkP )1). (11)

We now define grid blocks

B̀i = ∂x+y+Bi

⋃
∂x−y+Bi+1

⋃
∂x+y−Bi+ n

k

⋃
∂x−y−Bi+ n

k +1i = 1, 2, ...,
(n

k
− 1

)2

,

and

B̀(n
k−1)2

+1
= G3D −

(n
k−1)2⋃
i=1

B̀i.

The block diagonal matrix (ǸkP )3 has (n
k−1)2 diagonal blocks of size 4n×4n,

followed by a zero block of size (n3 − 4n(n
k − 1)2) × (n3 − 4n(n

k − 1)2). Each
nonzero block is the matrix

trin×n[1, 2, 1]⊗ tri2×2[1, 0, 1]⊗ tri2×2[−c2, 0,−b2],

whose sparcity pattern is shown in 7(b). By Propositions 3 and 4, the eigenval-
ues of (NkP )3 are

±2bc(1 + cos(2πih)), i = 1, 2, ..., n,

each of multiplicity (n
k − 1)2 and 0 of multiplicity n3 − 4n(n

k − 1)2). Clearly,

ρ((NkP )3) = 2bc(1 + cos(2πh)). (12)

The bound on ρ(NkP ) now follows from (10), (11), (12), and the observation
that ρ(NkP ) ≤ ρ((NkP )1) + ρ((NkP )2) + ρ((NkP )3).

Theorem 2 The spectral radius of the block Jacobi iteration matrix obeys the
bound

ρkP ≤ ρ̃kP =
2bc

[
1 + 4

(
1 + cos

(
π

k+1

))]
(1 + cos(2πh))

a2 − 8bc
[
1 + cos

(
π

k+1

)]2

(1 + cos(2πh))

·
[
1 + δ1k

(
4
5

cos(2πh)(2 + cos(2πh))− 1
)]

.

Furthermore, the bound is exact for k = 1, that is ρ̃1P = ρ1P .
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Proof. By Corollary 3, MkP is symmetrizeable and positive definite. It is
straightforward to show NkP is symmetrizeable too. Therefore (6) may be used,
and the bound follows from Lemma 1 and Corollary 3.

For k = 1 we have

M1P = a2In3 − 4bcIn2 ⊗ trin×n[1, 2, 1]

and

N1P = (trin×n[1, 2, 1]⊗ trin×n[c2, 2bc, b2]− 4bcIn2)⊗ trin×n[1, 2, 1].

If ~x and ~y denote the dominant eigenvectors of trin×n[1, 2, 1] and trin×n[b2, 2ab, a2],
then from Proposition 4 the vector ~x⊗ ~y ⊗ ~x is both the dominant eigenvector
of N1P and the eigenvector corresponding to the minimal eigenvalue of M1P .
The bound is therefore attained in this case.

Table 3 shows experimentally the tightness of our bound. In the case k = 2,
we see that the bound becomes arbitrarily tight as h → 0. For k = 3 (and in
fact for k > 2 in general) the bound is not tight, but note that the computed
spectral radius for k = 3 is smaller compared to the one for k = 2.

n ρ2P ρ̃2P ρ3P ρ̃3P

6 0.430 0.521 0.372 0.726
12 0.524 0.554 0.454 0.784
18 0.547 0.561 0.475 0.797
24 0.556 0.564 0.483 0.802
30 0.556 0.565 0.487 0.805
36 0.562 0.566 0.489 0.806
42 0.564 0.566 0.490 0.807

Table 3: Spectral radii ρ2P and ρ3P of the 2-plane and 3-plane iteration matrices,
as well as the bounds ρ̃2P and ρ̃3P . For the 2-plane ordering the bound grows
tight for large n, but not for the 3-line ordering. We have taken γ = 0.5 and
δ = 0 = η = 0.

Comparison of Convergence Rates (3D)

A bound on the spectral radius of the block Jacobi iteration matrix obtained
by applying a 2-plane ordering to the traditional 19-point 3D cyclically reduced
operator is given by [8]

ρ19pt
2P ≤ ρ̃19pt

2P = 1−
(

10
9

π2 +
1
6
µ2 +

1
6
τ2 +

1
6
σ2

)
h2 + o(h2).

Expanding the results of theorem 2 in a Taylor series gives

ρ27pt
1P = 1− (4π2 +

σ2

3
)h2 + o(h2)
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and
ρ27pt
2P ≤ ρ̃27pt

2P = 1− 4
7
(4π2 + σ2)h2 + o(h2).

For the standard 7-point centered differences operator, we have [5]

ρ7pt
1P = 1− (

3
4
π2 +

1
16

σ2 +
1
16

τ2 +
1
16

µ2)h2 + o(h2)

and
ρ7pt
2P ≤ ρ̃7pt

2P = 1− (
1
2
π2 +

1
8
σ2 +

7
64

τ2 +
7
64

µ2)h2 + o(h2).

We have found experimentally that all the above bounds grow arbitrarily
tight as h → 0 with mesh Reynolds numbers held constant. Noting − log(1 +
ch2) = ch2 + o(h2), we construct Table 4 showing the expected relative asymp-
totic convergence rates, valid for h � 1 and σ2 � π2.

7-pt 1P 7-pt 2P 19-pt 2P 27-pt 1P 27-pt 2P

7-pt 1P 1
7-pt 2P 2 1
19-pt 2P 2.67 1.34 1
27-pt 1P 5.35 2.67 2 1
27-pt 2P 9.14 4.57 3.42 1.71 1

Table 4: Relative asymptotic convergence rates for different combinations of
discretization scheme and grid ordering. The number in row i and column j
is the ratio of the asymptotic convergence rate of method i to method j, using
Taylor expansions.

Computational Cost. For the operators we consider, it is straightforward to
estimate the computational cost per iteration. Due to the process of reduction,
our cyclically reduced operators entail a lower computational cost of a single
iteration, compared to the other operators. For example, in the 2D case the
new operator is 9-point, as is the traditional cyclically reduced operator, but we
work on a grid with only 1/4 of the unknowns rather than 1/2. In the 3D case
our operator is 27-point (as opposed to 19-point for the traditional cyclically
reduced operator) but we solve for only 1/8 of the unknowns rather than 1/2.
Solving for the unknowns that were eliminated in the process entails a negligible
cost, as it involves a very small number of diagonal system solves.

5 Numerical Experiments

In this section we present an experimental examination of our approach. We
show results for block Jacobi, for which we have carried out a detailed analysis,
and then briefly explore the performance of modern Krylov solvers. Specifically,
we apply GMRES, preconditioned with incomplete LU. All experiments were
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done using Matlab. In both 2D and 3D we have looked at three linear systems
arising from discretizing (1), corresponding to the standard second order cen-
tered difference discretization, the reduced system arising from standard cyclic
reduction, and the reduced system arising from our new approach.

5.1 Test Problem 1: Constant Coefficients

Table 5 shows the number of iterations required for the convergence of block
Jacobi. Then, we show the results of applying GMRES, preconditioned with
ILUTP to each system in turn. A variety of values of σ, τ and µ were tried, for
several different grid sizes. The results of a few of these experiments are shown
in Table 6.

In the tables we use +, 3 and 2 respectively to denote the 5-point operator,
standard cyclically reduced operator, and the new operator, as per the shapes
of the corresponding computational molecules.

n=128 n=256 n=512
+, 1L 877 3294 12254
+, 2L 443 1652 6131
3, 1L 450 1668 6187
3, 2L 230 839 3098
2, 1L 241 887 3301
2, 2L 125 449 1655

(a) 2D

n = 17 n = 33 n = 65
7-pt, 1P 75 287 1098
7-pt, 2P 42 148 554
19-pt, 1P 46 170 643
19-pt, 2P 33 112 416
27-pt, 1P 15 56 208
27-pt, 2P 11 35 125

(b) 3D

Table 5: Number of block Jacobi iterations it takes to reduce the 2-norm of the
relative residual by a factor of 10−4 for constant coefficients. The initial guess
is the zero vector. The right hand side was constructed so that the solution was
a vector of all 1s. Results are shown for σ = 60 in 2D and σ = 30 in 3D, and
τ = µ = 0.

The results validate our analysis. The reduced system is solved within ap-
proximately half the number of iterations of the standard cyclically reduced
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1-line n=129 n=257 n=513
+ 20 46 97
3 11 26 55
2 7 15 34
2-line n=129 n=257 n=513
+ 18 36 76
3 12 27 63
2 6 14 31

(a) 2D

1-plane n=17 n=33 n=65
7-point 5 9 21
19-point 4 8 16
27-point 2 4 8
2-plane n=17 n=33 n=65
7-point 5 10 21
19-point 4 7 15
27-point 2 4 8

(b) 3D

Table 6: Constant coefficient problem: number of iterations for GMRES pre-
conditioned with ILU(0.01) to bring the norm of the relative residual down to
10−4. σ = 60, τ = µ = 0, with h = 1

n+1 .

1-line n=129 n=257 n=513
+ 40 65 115
3 18 30 57
2 14 23 42
2-line n=129 n=257 n=513
+ 28 45 85
3 20 37 63
2 15 25 43

(a) 2D

1-plane n=17 n=33 n=65
7-point 7 12 23
19-point 5 9 14
27-point 3 6 11
2-plane n=17 n=33 n=65
7-point 7 13 24
19-point 5 8 14
27-point 3 6 11

(b) 3D

Table 7: Variable coefficient problem: number of iterations for GMRES precon-
ditioned with ILU(0.01) to bring the norm of the relative residual down by a
factor of 10−4.

system. For block stationary schemes, the 2-line/plane orderings are provably
superior in terms of speed of convergence, and this is manifested also in the
experiments. For GMRES the benefit of using these orderings in place of stan-
dard lexicographic ordering is much less obvious. The two cyclically reduced
operators typically perform similarly to lexicographic ordering, and in fact in
some cases require more iterations for convergence.

5.2 Test Problem 2: Variable Coefficients

We now modify problem (1) so that the vector ~w is a function of the spatial
coordinates. Table 7 shows the results for a 2D circular flow problem, ~w =
20

(
1
2 − y, 1

2 + x
)
, and for a 3D sink problem, ~w = 20

(
1
2 − x, 1

2 − y, 1
2 − z

)
.
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The results lead to very similar conclusions as the constant coefficient case.

6 Conclusions

We have presented a new cyclically reduced operator and have provided an
analysis of its spectral properties, for the discrete convection-diffusion equation.
The derivation has been motivated by the following key point: instead of using
a standard unreduced operator that leads to a non-standard cyclically reduced
operator, as has been previously done in the literature, we start off with a
non-standard operator, and after reduction the resulting operator has a simple
computational molecule. As such, it is much easier to implement, while it
maintains the same good spectral properties.
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