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Abstract. We propose an empirical analysis approach for characterizing trade-
offs between different methods for comparing a set of competing algorithm de-
signs. Our approach can provide insight into performance variation both across
candidate algorithms and across instances. It can also identify the best tradeoff
between evaluating a larger number of candidate algorithm designs, performing
these evaluations on a larger number of problem instances, and allocating more
time to each algorithm run. We applied our approach to a study of the rich algo-
rithm design spaces offered by three highly-parameterized, state-of-the-art algo-
rithms for satisfiability and mixed integer programming, considering six different
distributions of problem instances. We demonstrate that the resulting algorithm
design scenarios differ in many ways, with important consequences for both au-
tomatic and manual algorithm design. We expect that both our methods and our
findings will lead to tangible improvements in algorithm design methods.

Keywords: Algorithm design · Empirical analysis · Algorithm configuration · Pa-
rameter optimization

1 Introduction

There are two main paradigms for the development of heuristic algorithms for solving
hard computational problems. The traditional approach is a manual process in which a
designer iteratively adds algorithm components or modifies existing mechanisms. More
recently, an increasing body of research has proposed the automation of all or part of this
process (see, e.g., Gratch and Dejong, 1992; Minton, 1996; Birattari et al., 2002; Birat-
tari, 2005; Adenso-Diaz and Laguna, 2006; Audet and Orban, 2006; Bartz-Beielstein,
2006; Hutter et al., 2007b; Balaprakash et al., 2007; Hoos, 2008; Hutter et al., 2009;
KhudaBukhsh et al., 2009, noting that algorithm configuration and parameter optimiza-
tion can be understood as specific instances of algorithm design). Regardless of whether
a manual, a semi-automatic, or an automatic design paradigm is adopted, the designer
faces a common problem: deciding how to compare different algorithm designs. In
many domains of interest, existing theoretical techniques are not powerful enough to



answer this question. Instead, this comparison is typically based on empirical observa-
tions of algorithm performance.

There is a straightforward method for empirically comparing algorithm designs:
evaluating each candidate design on every problem instance of interest. Unfortunately,
this conceptually simple solution is rarely practical, because the overall algorithm de-
velopment process is always at least somewhat time constrained. Therefore, it is typi-
cally impossible to consider every design from a large space of possible candidates, or
to evaluate those designs that are considered on every problem instance of interest. In-
stead, in cases where the evaluation of each candidate algorithm design requires many
computationally-expensive algorithm runs, the number of (design, instance) pairs that
can be tested is often severely limited. Thus, it is necessary to make careful choices
about (1) the number of candidate designs to consider and (2) the number of problem
instances to use in evaluating them. Furthermore, it is ideally desirable to avoid prema-
turely terminating, or “censoring”, any run. (This issue arises particularly in the context
of designing algorithms with the goal of minimizing the runtime required for solving
a given problem instance or reaching a certain solution quality.) Again, however, time
constraints can make this impractical, requiring us to choose (3) some captime at which
runs will be terminated whether or not they have completed. In this paper, we empiri-
cally study the tradeoff between these three choices.

Automated methods for performing parameter optimization and algorithm config-
uration can be understood as sophisticated heuristics for deciding which configura-
tions to consider and for choosing instances on which to evaluate them.1 Racing al-
gorithms (Maron and Moore, 1994; Birattari et al., 2002; Birattari, 2005; Balaprakash
et al., 2007) emphasize using as few problem instances as possible to reliably choose
among a fixed set of candidate algorithm designs. More specifically, they incremen-
tally expand the instance set (i.e., perform more runs for all designs) and at each step
eliminate designs that are statistically significantly worse than others in terms of ob-
served performance. In contrast, research on sequential search algorithms focusses on
the question of which algorithm designs to evaluate. Many such procedures, includ-
ing Multi-TAC (Minton, 1996), Calibra (Adenso-Diaz and Laguna, 2006), the mesh
adaptive direct search algorithm (Audet and Orban, 2006) and BasicILS (Hutter et al.,
2007b), use a fixed, user-defined instance set. Other search algorithms include mech-
anisms for adapting the set of instances used for evaluating algorithm designs; exam-
ples are Composer (Gratch and Dejong, 1992), SPO (Bartz-Beielstein, 2006) and Fo-
cusedILS (Hutter et al., 2007b).

The literature on automatic algorithm configuration places less emphasis on the
choice of captime. (The only exception of which we are aware is our own recent ex-
tension of the ParamILS framework (Hutter et al., 2009), which dynamically adapts
the per-run cutoff time.) However, the issue has been studied in the context of evaluat-
ing heuristic algorithms. Segre et al. (1991) demonstrated that small captimes can lead
to misleading conclusions when evaluating explanation-based learning algorithms. Et-
zioni and Etzioni (1994) extended statistical tests to deal with partially-censored runs
in an effort to limit the large impact of captimes observed by Segre et al. (1991). Simon

1 Of course, essentially the same point can be made about manual approaches, except that they
are typically less sophisticated and have been discussed less rigorously in the literature.



and Chatalic (2001) demonstrated the relative robustness of comparisons between SAT
solvers for three different captimes.

We focus on the algorithm design objective of minimizing runtime for solving a
given problem. This objective is important for solving a wide variety of computationally-
hard problems in operations research, constraint programming, and artificial intelli-
gence, where the runtime of poor and strong algorithms on the same problem instance
often differs by several orders of magnitude. Minimizing runtime is furthermore a very
interesting problem, because it implies a strong correlation between the quality of an
algorithm design and the amount of time required to evaluate its performance. This
property opens up the possibility of terminating many long runs after a comparably
small captime, while still obtaining full information on short runs. (Note that by defini-
tion, short runs occur more frequently when evaluating good algorithm designs.) Here,
we present the first detailed empirical study of the role of this captime in algorithm de-
sign. We show that the impact of captime is similar to that of the size of the instance set
based upon which design decisions are made. Large captimes lead to unreasonable time
requirements for evaluating single candidate algorithm designs (especially poor ones).
This typically limits the number of problem instances on which candidate designs are
evaluated, which in turn can lead to misleading performance results. On the other hand,
evaluations based on overly aggressive captimes favour algorithms with good initial
performance, and thus the algorithms chosen on the basis of these evaluations may not
perform competitively when allowed longer runs.

We note that it is not our main goal in this work to propose yet another method for
making choices about which algorithm designs to explore, which benchmark set to use,
or how much time to allocate to each algorithm run. Rather, we propose an empirical
analysis approach for investigating the tradeoffs between these choices that must be
addressed by any (manual or automated) approach to algorithm design. More specifi-
cally, we study the rich algorithm design spaces offered by three highly-parameterized,
state-of-the-art algorithm frameworks: a tree search and a local search framework for
solving propositional satisfiability (SAT) problems, and the commercial solver CPLEX
for mixed integer programming (MIP) problems. We study industrial SAT instances
from software verification (Babić and Hu, 2007) and bounded model checking (Zarpas,
2005), as well as structured SAT instances from quasi-group completion (Gomes and
Selman, 1997) and graph colouring (Gent et al., 1999). Our MIP instances were drawn
from winner determination in combinatorial auctions (Leyton-Brown et al., 2000) and
a range of real-world problems including capacitated warehouse location and airplane
landing scheduling (Beasley, 1990).

Based on the data that we analyze in this paper, we can answer a number of ques-
tions about a given design scenario that are important for both manual and automated
algorithm design.2 Here, we focus on the following eight questions:

1. How much does performance vary across candidate algorithm designs?
2. How large is the variability in hardness across benchmark instances?

2 We note that in most of this work, we do not answer these questions inexpensively; our meth-
ods are applied only post hoc, not online. However, in Section 6, we describe an approach for
performing a computationally-cheap, approximate analysis online.



3. Which benchmark instances are useful for discriminating between candidate de-
signs?

4. Are the same instances “easy” and “hard” for all candidate designs?
5. Given a fixed computational budget and a fixed captime, how should we trade off

the number of designs evaluated vs the number of instances used in these evalua-
tions?

6. Given a fixed computational budget and a fixed number of instances, how should we
trade off the number of designs evaluated vs the captime used for each evaluation?

7. Given a budget for identifying the best of a fixed set of candidate designs, how many
instances, N , and which captime, κ, should be used for evaluating each algorithm
design?

8. Likewise, how should we trade off N and κ if the goal is to rank a fixed set of
algorithm designs?

Our experimental analysis approach allows us to answer each of these questions for
each of our algorithm design scenarios. Throughout, we discuss these answers in de-
tail for two rather different scenarios, summarizing our findings for the others. Overall,
our experimental analysis yields the broad conclusion that the algorithm design sce-
narios we studied are extremely heterogeneous. Specifically, the answers to each of
our questions above differ widely across scenarios, suggesting that no single choice of
number of designs, number of instances, and set of captimes is likely to yield good per-
formance across the board. Instead, we suggest that current state-of-the-art algorithm
design methods may be substantially improved by adapting to the design scenario at
hand, driven by observed data.

The remainder of this paper is structured as follows. We start in Section 2 by cover-
ing experimental preliminaries and describing in detail the algorithm design scenarios
we use throughout. Next, in Section 3, we investigate distributions of instance hardness,
quality of candidate algorithms and the interaction between the two, thereby addressing
Questions 1–4 above. In Section 4 we consider Questions 5–7, presenting an empirical
study of the tradeoffs between instance set size, N , and captime, κ, for the problem
of identifying the best of several candidate algorithms. In Section 5, we investigate the
same tradeoffs in the context of the problem of ranking several candidate algorithms
in order to answer Question 8. In Section 6, we study computationally-cheap, approxi-
mate answers to Questions 1–8. These are obtained online, based on a predictive model
of runtime. Finally, in Section 7, we discuss the high-level implications of our findings
and identify some promising avenues for future work.

2 Experimental Preliminaries

In this paper, we study the SATENSTEIN, SPEAR and CPLEX solver frameworks, de-
scribed in detail in Table 1. SATENSTEIN is a very recent, highly parameterized frame-
work for SAT solvers based on stochastic local search (SLS) (KhudaBukhsh et al.,
2009). It is able to instantiate nearly all state-of-the-art SLS solvers for SAT. SATEN-
STEIN is designed to be used in conjunction with a configuration procedure to automat-
ically construct new SLS solvers for problem domains of interest. It has 41 parameters



Algorithm Parameter type # params of type # values considered Total # configs, |Θ|
Categorical 50 2–7

CPLEX Integer 8 5–7 1.38 · 1037

Continuous 5 3–5
Categorical 10 2–20

SPEAR Integer 4 5–8 8.34 · 1017

Continuous 12 3–6
Categorical 16 2–13

SATENSTEIN Integer 5 4–9 4.82 · 1012

Continuous 20 3–10
Table 1. Parameter overview for the algorithms we consider. High-level information on the al-
gorithms’ parameters is given in the text; a detailed list of all parameters and the values we
considered can be found in an online appendix at http://www.cs.ubc.ca/labs/beta/
Projects/AlgoDesign.

and includes components and mechanisms from algorithms based on WalkSAT, dy-
namic local search and G2WSAT variants (see KhudaBukhsh et al., 2009, for further
references). In total, this gives rise to 4.82× 1012 different possible algorithm designs.

SPEAR is a recent state-of-the-art tree search SAT solver targeting industrial in-
stances (Hutter et al., 2007a). Many of its categorical parameters control heuristics for
variable and value selection, clause sorting and resolution ordering, while others enable
or disable optimizations. The continuous and integer parameters mainly deal with ac-
tivity, decay and elimination of variables and clauses, as well as randomized restarts.
In total, there are 26 parameters, giving rise to 8.34 × 1017 possible algorithm designs
with widely varying characteristics.

Finally, CPLEX (version 10.1.1) is a commercial optimization tool for solving mixed
integer programming (MIP) problems (ILOG Inc., 2008). It is a massively-parameterized
branch-and-cut algorithm, with categorical parameters governing variable and branch-
ing heuristics, types of cuts to be used, probing, dive type and subalgorithms, as well
as amount and type of preprocessing to be performed. Out of 159 user-definable pa-
rameters, we identified 63 that affect the search trajectory. We were careful to exclude
all parameters that change the problem formulation (e.g., by specifying the numeri-
cal accuracy required of a solution). The total number of possible algorithm designs is
1.38× 1038.

We constructed six algorithm design scenarios by combining those three algorithms
with two benchmark distributions each. We selected these scenarios to span a wide
range of algorithms, problem classes and instance hardness. For the study of SATEN-
STEIN, we employed two sets of SAT-encoded “crafted” instances for which we be-
lieve it to be the best-performing algorithm (KhudaBukhsh et al., 2009): satisfiable
quasi-group completion problems (QCP (Gomes and Selman, 1997)) and satisfiable
graph colouring problems based on small world graphs (SWGCP (Gent et al., 1999)).
For the study of SPEAR, we employed two sets of SAT-encoded industrial verification
problem instances, for which it has been demonstrated to be the best available algo-
rithm (Hutter et al., 2007a): IBM bounded model checking instances (Zarpas, 2005)
and software verification instances generated by the CALYSTO static checker (Babić
and Hu, 2007). Finally, for the study of CPLEX, we employed two very different sets



of MIP-encoded problems, for both of which, to our best knowledge, CPLEX is the
best available algorithm: a homogeneous set of combinatorial winner determination
instances (Leyton-Brown et al., 2000), Regions100, and a very heterogenous mix
of 140 instances from ORLIB, including set covering and capacitated p-median prob-
lems, as well as problems from capacitated warehouse location and airplane land-
ing scheduling (see Beasley, 1990, noting that we obtained the instances from http:

//www.andrew.cmu.edu/user/anureets/mpsInstances.htm).
In order to complete the specification of these algorithm design scenarios, we need

to define an objective function to be optimized. In this paper, we use the objective
of minimizing the mean runtime across a set of instances. However, when runs are
prematurely terminated, we only know a lower bound on mean runtime. In order to
penalize timeouts, we define the penalized average runtime (PAR) of a set of runs with
cutoff time κ as the mean runtime over those runs, where unsuccessful runs are counted
as a ·κwith penalization constant a ≥ 1. There is clearly more than one way of sensibly
aggregating runtimes in the presence of capping. One reason we chose PAR is that it
generalizes two other natural schemes;

1. “lexicographic”: the number of instances solved, breaking ties by total runtime
(used in the 2009 SAT competition3); and

2. total (or average) runtime across instances, treating timeouts as completed runs.

Scheme 1 is PAR with a = ∞, while Scheme 2 is PAR with a = 1. Here, we use
a = 10 to emphasize the importance of timeouts more than in the second scheme, but
to yield a more robust measure than the first scheme. KhudaBukhsh et al. (2009) found
algorithm rankings to be robust with respect to different choices of a. Here, we also
experimented with a = 1 and a = 100 instead of a = 10, and obtained qualitatively
very similar results. All methods we study in this paper are well defined and meaningful
under other design objectives, such as median runtime and more complicated measures,
such as pre-2009 SAT competition scoring functions.

When estimating the performance of a candidate design based on N runs, we only
perform a single run for each of N problem instances. This is justified, because for the
minimization of mean runtime (and indeed other common optimization objectives), per-
forming a single run on each of N different instances yields an estimator with minimal
variance for a given sample size N (see, e.g., Birattari, 2005).

The empirical analysis approach that we propose in this paper takes as its input data
a M × P matrix describing the performance of M candidate algorithm designs on a
set of P problem instances. In order to analyze the enormous algorithm design spaces
of SATENSTEIN, SPEAR and CPLEX in an unbiased way, we obtained candidate al-
gorithm designs by sampling feasible parameter configurations uniformly at random.
Thus, in this paper we chose the rows of our matrix to be the algorithm default plus
M − 1 = 999 random designs. However, our methods are not limited to random de-
signs. Candidate designs may also be obtained from trajectories of automated algorithm
design approaches or manually; indeed, in Section 5 we use ten solvers from a recent
SAT competition as candidates.

3 http://www.satcompetition.org/2009/spec2009.html



Design Scenario Captime [s] Default Best known Best sampled
SATENSTEIN-SWGCP 5 21.02 0.035 (from KhudaBukhsh et al., 2009) 0.043
SATENSTEIN-QCP 5 10.19 0.17 (from KhudaBukhsh et al., 2009) 0.21

SPEAR-IBM 300 1393 795 (from Hutter et al., 2007a) 823
SPEAR-SWV 300 466 1.37 (from Hutter et al., 2007a) 1.90

CPLEX-REGIONS100 5 1.76 0.32 (from Hutter et al., 2009) 0.86
CPLEX-ORLIB 300 74.4 74.42 (CPLEX default) 54.1

Table 2. Comparison of penalized average runtime (PAR) for our algorithm design scenarios.
We show PAR of the default, of the best known domain-specific algorithm design (including its
source), and of the best of our 999 randomly-sampled algorithm designs.

One may wonder how well randomly-sampled designs can actually perform for
hard problems like those we study here. Indeed, in many other optimization problems,
sampling candidate solutions at random could yield very poor solutions. As it turns
out, this is not the case in the algorithm design scenarios we study. In Table 2, for
each scenario we compare the performance of the algorithm default, the best-known
candidate design for the scenario, and the best out of 999 randomly-sampled designs.
In all scenarios, the best randomly-sampled algorithm design performed better than
the default, typically by a substantial margin. For the SATENSTEIN and the SPEAR
scenarios, this performance was close to that of the best-known candidate design, while
for CPLEX-REGIONS100 the difference between the two was somewhat larger. (For
ORLIB, we are not aware of any published parameter setting of CPLEX and thus only
compare to the CPLEX default.)

We generated the data for these runtime matrices as follows. For each design sce-
nario, we ranM = 1000 designs on the available set of instances, with a captime κmax.
We chose κmax such that either the best design could easily solve all instances within
that time, or, for design scenarios with harder problem instances, at a maximum of 300
seconds per run. Specifically, for the comparably easy instances in design scenarios
SATENSTEIN-QCP,
SATENSTEIN-SWGCP and CPLEX-REGIONS100, we evaluated each candidate design
on P = 2000 instances, terminating unsuccessful runs after a captime of κmax = 5s.
Scenarios SPEAR-IBM, SPEAR-SWV and CPLEX-ORLIB contain much harder instances,
and we thus used a captime of κmax = 300s seconds; the benchmark instance sets con-
tained P = 140, 100, and 100 instances, respectively. We carried out all experiments
using a cluster of 55 dual 3.2GHz Intel Xeon CPUs.4
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(f) SPEAR-SWV

Fig. 1. Raw data: matrix of runtime of each of the M = 1000 sampled candidate algo-
rithm designs on each of the P instances. Each dot in the matrix represents the runtime
of a candidate design on a single instance. Darker dots represent shorter runtimes; the
grayscale is logarithmic with base 10. Designs are sorted by their PAR score across
all P instances. Instances are sorted by hardness (mean runtime of the M candidate
designs, analogous to PAR counting runs that timed out at captime κ as 10 · κ).

3 Analysis of Runtime Variability across Designs and Instances

In this section, we provide an overview of the interaction between our three choices:
which candidate algorithm designs are evaluated, which instances are used, and how
much time is allocated to each run.

Figures 1 and 2 together give an overall description of this space. In Figure 1, we
plot the raw data: the runtime for all combinations of instances and candidate algo-
rithm designs. In Figure 2, we give more detailed information about the precise runtime
values for six candidate designs (the default, the best, the worst, and three quantiles),
plotting a cumulative distribution of the percentage of benchmark instances solved by
θ as a function of time. Based on these plots, we can make four key observations about
our algorithm design scenarios, providing answers to Questions 1–4 posed in the intro-
duction.

Q1: How much does performance vary across candidate designs?
The variability of quality across candidate algorithm designs differed substantially be-
4 These cluster nodes had 2GB RAM each and 2MB cache per CPU, and ran OpenSuSE

Linux 10.1. We measured runtimes as CPU time on these reference machines. Gathering the
data for the input matrix took around 1.5 CPU months for each of the three scenarios with
κmax = 5s, 1 CPU month for SPEAR-SWV, and 2.5 CPU months for each of SPEAR-IBM
and CPLEX-ORLIB.
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Fig. 2. Hardness variation across all P instances in different algorithm design scenarios.
For each scenario, the plot shows the percentage of benchmark instances solved by a
number of candidate algorithm designs (default, best and worst sampled design, and
designs at the q0.25, q0.50, and q0.75 quantiles of quality across the sampled designs) as
a function of allowed time. In cases where a design did not solve any of the P instances,
we do not show it in the figure.

tween scenarios. For example, in CPLEX-REGIONS100, the worst candidate design did
not solve a single problem instance, while the best one solved all instances in less than
five seconds (see Figures 1(a) and 2(a)). In contrast, the difference between worst and
best candidate design was much smaller for scenario SPEAR-IBM (see Figures 1(c) and
2(c)). The SATENSTEIN scenarios showed even larger variation across candidate de-
signs than CPLEX-REGIONS100, whereas CPLEX-ORLIB and SPEAR-SWV showed less
variation (comparable to SPEAR-IBM). We expect scenarios with large performance
variation across candidate designs to require automated design procedures that empha-
size an effective search through the design space. In other scenarios, an effective mech-
anism for selecting the best number of instances and cutoff time to use can be more
important.

Q2: How large is the variability in hardness across benchmark instances?
The variability of hardness across benchmark instances also differed substantially. For

example, in scenario CPLEX-REGIONS100, there was “only” about an order of mag-
nitude difference between the runtime of a candidate algorithm on the easiest and the
hardest instances (see Figure 2(a)). In contrast, this difference was at least five orders of
magnitude for scenario SPEAR-IBM (see Figure 2(c)). Scenario SATENSTEIN-SWGCP

was similar to scenario CPLEX-REGIONS100 in having small variability of instance
hardness, while the other scenarios were more similar to scenario SPEAR-IBM in this
respect. In some scenarios (e.g., SATENSTEIN-SWGCP; see Figure 2(b)), the difference



in hardness between the easiest and the hardest instances depended on the candidate
design, with good algorithms showing more robust performance across all instances.
Variability in instance hardness can substantially affect the performance of algorithm
design procedures. When hardness varies substantially across instances, these observa-
tions support the strategy of performing many runs on easy instances and only using
harder ones sparingly in order to assess scaling behaviour. On the other hand, if the ob-
jective is, for example, the minimization of mean runtime across all instances in the set,
then special care needs to be taken to ensure good performance on the hardest instances,
which often dominate the mean.

Q3: Which benchmark instances are useful for discriminating between candidate de-
signs?

In some—but not all—scenarios only a subset of instances were useful for discrimi-
nating between the candidate designs. While essentially all instances were useful in this
sense for scenario CPLEX-REGIONS100, this was not true for scenario SPEAR-IBM. In
that scenario, within the cutoff time (κmax = 300s), over 35% of the instances were
infeasible for all considered candidate designs (see Figure 1(c)). Similarly, about 10%
of the instances in that scenario were trivially solvable for all candidate designs, re-
sulting in runtimes smaller than the resolution of the CPU timer. Next to SPEAR-IBM,
only SATENSTEIN-QCP and SPEAR-SWV had substantial percentages of such trivial in-
stances. While such uniformly easy instances do not pose a problem in principle (since
they can always be solved quickly) they can pose a problem for automated algorithm
configuration procedures that often evaluate candidate designs based on a few instances.
For example, the performance of SPO (Bartz-Beielstein, 2006) and FocusedILS (Hutter
et al., 2007b) could be expected to degrade if many trivial instances were added. On the
other hand, uniformly infeasible instances pose a serious problem, both for manual and
automated algorithm design. Every algorithm run on such an instance costs valuable
time without yielding any information.

Q4: Are the same instances “easy” and “hard” for all candidate designs?
In some scenarios, the per-design runtime rankings were fairly stable across candidate

designs. In other words, the runtime of a candidate design θ on an instance π could
be well-modeled as depending on the overall quality of θ (averaged across instances)
and the overall hardness of π (averaged across candidate algorithms). This was ap-
proximately the case for scenario CPLEX-REGIONS100 (see Figure 1(a)), where better-
performing candidate algorithms solved the same instances as weaker algorithms, plus
some additional ones. The ranking was also comparably stable in scenario SPEAR-IBM

and SATENSTEIN-QCP. In contrast, in some scenarios we observed instability in the
ranking of candidate designs from one instance to another: whether or not a design θ
performed better on an instance π than another design θ′ depended more strongly on
the instance π. One way this is evidenced in the matrix is as a “checkerboard pattern”;
see, e.g., rows 400–900 and the two instance sets in columns 76–83 and 84–87 in Fig-
ure 1(f). In these cases, designs that did well on the first set of instances tended to do
poorly on the second set and vice versa. Overall, the most pronounced examples of
this behaviour were observed in scenarios CPLEX-ORLIB and SPEAR-SWV (see Figures
1(d) and 1(f), and the crossings of cumulative distributions in Figures 2(d) and 2(f).)
Scenarios in which algorithm rankings are unstable across instances are problematic to



address with both manual and automated methods for offline, algorithm configuration
and parameter tuning, because different instances often require very different mecha-
nisms to be solved effectively. Approaches likely to hold promise in such cases are (1)
splitting such heterogeneous sets of instances into more homogeneous subsets, (2) ap-
plying portfolio-based techniques (Gomes and Selman, 2001; Horvitz et al., 2001; Xu
et al., 2008), or (3) applying per-instance algorithm configuration (Hutter et al., 2006).
However, note that in some cases (e.g., scenario SPEAR-SWV) the instability between
relative rankings is local to poor algorithm designs. In such cases it is possible to find
a single good candidate design that performs very well on all instances, limiting the
potential improvement by more complicated per-instance approaches.

4 Tradeoffs in Identifying the Best Candidate Algorithm

In this section, we consider the problem of identifying the best algorithm design—that
is, the design yielding the lowest penalized average runtime (PAR).

4.1 Overconfidence and Overtuning: Basics

One might imagine that without resource constraints but given a fixed set of instances
from some distribution of interest, it would be easy to identify the best candidate algo-
rithm. Specifically, we could just evaluate every algorithm design on every instance, and
then pick the best. This is indeed a good way of identifying the design with the best per-
formance on the exact instances used for evaluation. However, when the set of instances
is too small, the observed performance of the design selected may not be reflective of—
and, indeed, may be overly optimistic about—performance on other instances from the
same underlying distribution. We call this phenomenon overconfidence. This effect is
notorious in machine learning, where it is well known that models optimized to perform
well on small datasets often generalize poorly (Hastie et al., 2001). Furthermore, gen-
eralization performance can actually degrade when the number of algorithm designs
considered (in machine learning the hypothesis space) grows too large. This effect is
called overfitting in machine learning (Hastie et al., 2001) and overtuning in optimiza-
tion (Birattari et al., 2002; Birattari, 2005; Hutter et al., 2007b). In this section we will
examine the extent to which overconfidence and overtuning can arise in our scenarios.
Before doing so, we need to explain how we evaluate the generalization performance
of a candidate design.

Up to this point, we have based our analysis on the full input matrix; from now on,
we partition instances into a training set Π and a test set Π ′. The training set is used
for choosing the best candidate design θ̂, while the test set is used only for assessing
θ̂’s performance. A separate test set is required because the performance of θ̂ on Π is a
biased estimator of its performance on Π ′ (see, e.g., Birattari, 2005); indeed, this bias
increases as |Π| decreases. When algorithm designs are selected based on a relatively
small benchmark set, they can be adapted specifically to the instances in that set and
fail to achieve good performance on other instances.

We compute training and test performance for a given set of candidate designs Θ
based on training and test sets Π and Π ′ and captime κ as follows. Let Θinput denote
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Fig. 3. Overconfidence and overtuning for training sets of sizeN = 10. We plot training
and test performance (penalized average runtime, PAR, for N = 10 training instances
and P/2 test instances) of IS-Best(N = 10, κ, t), where κ is the “full” captime of
the design scenario (κ = 300s for CPLEX-ORLIB and SPEAR-SWV, and κ = 5s for
SATENSTEIN-SWGCP).

the set of M = 1000 candidate designs and let Πinput denote the set of P instances on
which the input matrix is based. We evaluate candidate designs θ ∈ Θinput on subsets
of instances Π ⊆ Πinput with captime κ by using their known runtimes from the input
matrix. We count runtimes ≥ κ as 10 · κ, according to the PAR criterion. Given a set
of candidate designs Θ ⊆ Θinput, an instance set Π ⊆ Πinput and a captime κ, the
training score is the PAR score of the θ̂ ∈ Θ with minimal PAR on Π using captime κ.
The test score is the PAR score of the same θ̂ on Π ′ based on the “full” captime, κmax,
used to construct the input matrix.

We use an iterative sampling approach to estimate the expected training and test
performance given a computational budget t, N training instances and captime κ. In
each iteration, we draw a training set ofN disjoint instancesΠ ⊆ Πinput and start with
an empty set of designs Θ. We then expand Θ by randomly adding elements of Θinput\
Θ, until either Θ = Θinput or the time for evaluating all θ ∈ Θ on all instances
π ∈ Π with captime κ exceeds t. Finally, we evaluate training and test performance of
Θ based on Π and κ. In what follows, we always work with expected training and test
performance, sometimes dropping the term “expected” for brevity. We calculate these
quantities based on K = 1000 iterations, each of them using independently-sampled,
disjoint training and test sets. We always use test sets of cardinality |Π ′| = P/2, but
vary the size of the training set Π from 1 to P/2. We refer to the resulting expected
performance using a training set of N instances, captime κ, and as many designs as can
be evaluated in time t as IS-Best(N,κ, t), short for IterativeSampling-Best.

Using this iterative sampling approach, we investigated the difference between train-
ing and test performance. Figure 3 shows the three that gave rise to the most pronounced
training/test performance gaps. Based on training sets of size N = 10, we saw clear ev-
idence for overconfidence (divergence between training and test performance) in all
three scenarios, and evidence for overtuning (test performance that degrades as we in-
crease the number of designs considered) for CPLEX-ORLIB and SATENSTEIN-SWGCP.
We believe that CPLEX-ORLIB, SATENSTEIN-SWGCP, and SPEAR-SWV exhibited the
most pronounced training/test performance gaps because of their likewise-unstable rel-
ative algorithm rankings across the respective instance sets (which we observed in Fig-
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Fig. 4. Test performance (PAR for P/2 test instances) of IS-Best(N,κ, t), where κ is
the “full” captime of the design scenario (κ = 300s for CPLEX-ORLIB and the SPEAR
scenarios, and κ = 5s for the rest). We plot graphs for N = 1, N = 10, and N =
min(100, P/2). For reference, we plot test performance of the default. The best N for
a given time budget x can be observed as the line with minimal PAR score at x.

ures 1(b), 1(d), and 1(f)). Intuitively, in such scenarios it is not surprising that the best
algorithm design for a small subset of instances can be very different from the best
design for a much larger set.

4.2 Trading off number of designs, number of instances, and captime

Now we address Questions 5–7 from the introduction, investigating tradeoffs between
the number of algorithm designs evaluated, the size of the benchmark set N , and the
captime κ, given a time budget.

Q5: Given a fixed computational budget and a fixed captime, how should we trade
off the number of designs evaluated vs the number of instances used in these evalu-
ations?

To answer this question, we studied how the performance of IS-Best(N,κ, t) pro-
gressed as we increased the time t for three different values of N and fixed κmax. In
Figure 4, for each total amount of CPU time t available for algorithm design, we plot
the performance that arose from using each of these three values of N .5 The optimal
number of training instances, N , clearly depended on the overall CPU time available,

5 The plots for N = 1 and N = 10 end at the point where all of the M given candidate
algorithms have been evaluated. It would be appealing to extend the curves corresponding to
lower values of N by considering more candidate designs Θadditional. Unfortunately, this is
impossible without filling in our whole input matrix for the new designs. This is because IS-



and the impact of using different values of N differed widely across the scenarios.
For scenario CPLEX-REGIONS100 (see Figure 4(a)), using a single training instance
(N = 1) yielded very poor performance throughout. For total time budgets t below
about 50 000 seconds, the best tradeoff was achieved using N = 10. After that time,
all M = 1 000 designs had been evaluated, but using N = 100 yielded better perfor-
mance. In contrast, for scenario SPEAR-IBM (see Figure 4(c)), using fewer instances led
to rather good performance. For total time budgets below 3 000 seconds, using a single
training instance (N = 1) actually performed best. For time budgets between 3 000
and about 70 000 seconds, N = 10 yielded the best performance, and only for larger
budgets did N = 100 yield better results. For brevity, we do not discuss the remaining
scenarios in depth, but rather summarize some highlights and general trends. Overall,
N = 1 typically led to poor test performance, particularly for scenario CPLEX-ORLIB,
which showed very pronounced overtuning.N = 10 yielded good performance for sce-
narios that showed quite stable relative rankings of algorithms across instances, such as
CPLEX-REGIONS100 and SATENSTEIN-QCP (see Figures 4(a) and 4(e)). In contrast,
for scenarios where the relative ranking of algorithms depended on the particular sub-
set of instances used, such as SATENSTEIN-SWGCP, CPLEX-ORLIB and SPEAR-SWV,
N = 10 led to overconfidence or even overtuning (see Figures 4(b), 4(d), and 4(f)). For
the very heterogeneous instance set in scenario CPLEX-ORLIB, even using P/2 = 70
instances led to slight overtuning, yielding a design worse than the default. This illus-
trates the interesting point that even though the best sampled candidate algorithm design
outperformed the CPLEX default for the full set (containing P instances, see Table 2),
it was not possible to identify this design based on a training set of only P/2 instances.

Q6: Given a fixed computational budget and a fixed number of instances, how should
we trade off the number of designs evaluated vs the captime used for each evalua-
tion?

To answer this question, we studied how the performance of IS-Best(N,κ, t) pro-
gressed as we increased the time t for fixed N = 100 and three different values of κ
(each scenario’s “full” captime κmax, as well as κmax/10 and κmax/100). To our best
knowledge, this constitutes the first detailed empirical investigation of captime’s impact
on the outcome of empirical comparisons between algorithms. In Figure 5, for each to-
tal amount of CPU time t available for algorithm design, we plot the performance that
arose from using each of these three values of κ. We observe that captime’s impact de-
pended on the overall CPU time available for algorithm design, and that this impact dif-
fered widely across the different scenarios. Scenario CPLEX-REGIONS100 was the only
one for which low captimes led to very poor performance. In that scenario (see Figure
5(a)), captimes κmax/100 and κmax/10 led to overtuning and resulted in the selection
of algorithm designs worse than the default, leaving κmax as the preferred choice for
any available time budget. In contrast, most other scenarios favoured smaller captimes.
For example, in scenario SPEAR-IBM (see Figure 5(c)), the lowest captime, κmax/100,
led to extremely good performance and was the optimal choice for time budgets below
t = 10 000 seconds. For time budgets between 10 000 seconds and 800 000 seconds, the

Best(N,κ, t) averages across many different sets of N instances, and we would thus require
the results of Θadditional for all instances. Furthermore, all curves are based on the same
population of algorithm designs.
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Fig. 5. Test performance (PAR for P/2 test instances) of IS-Best(min(P/2, 100), κ, t)
for various values of κ. We plot graphs for each scenario’s “full” captime κmax, a tenth
of it, and a hundredth of it. For reference, we plot test performance of the algorithm
default.

optimal choice of captime was κmax/10. Above that, all M = 1 000 designs had been
evaluated, and using a larger captime of κmax yielded better performance. We summa-
rize highlights of the other scenarios. SATENSTEIN-QCP is an extreme case of good
performance with low captimes: using κmax/100 yielded results very similar to those
obtained with κmax, at one-hundredth of the time budget. We observed a similar effect
for SATENSTEIN-SWGCP for captime κmax/10. For scenario CPLEX-ORLIB, captime
κmax/100 actually seemed to result in better performance than larger captimes; we
believe that this was caused by a noise effect related to the small number of instances
and the instability in the relative rankings of the algorithms with respect to different in-
stances. It is remarkable that for the SPEAR-IBM scenario, which emphasizes very hard
instances (Zarpas, 2005), captimes as low as κmax/100 = 3s actually yielded good
results. We attribute this to the relative stability in the relative rankings of algorithms
across different instances in that scenario (see Figures 1(c) and 2(c)): candidate designs
that solved many instances quickly also tended to perform well when allowed longer
runtimes.

Q7: Given a budget t for identifying the best of a fixed set of candidate designs, how
many instances, N , and which captime, κ, should be used for evaluating each algo-
rithm design?

To answer this question, we studied the performance of IS-Best(N,κ,∞) for various
combinations ofN and κ. Figure 6 shows the test performance of these selected designs.
Unsurprisingly, given unlimited resources, the best results were achieved with the max-
imal number of training instances (N = P/2) and the maximal captime (κ = 5s),
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Fig. 6. Test performance (PAR for P/2 test instances) of IS-Best(N,κ,∞) as depending
on the number of training instances, N , and the captime, κ, used. Note that each com-
bination of N and κ was allowed to evaluate the same number of M = 1000 candidate
designs, and that the time required for each combination was thus roughly proportion-
ally to N · κ.

and performance degraded when either N or κ decreased. However, the extent to which
performance degraded with lower N and κ—and therefore the optimal tradeoff be-
tween them—differed widely across our design scenarios. For example, in scenario
CPLEX-REGIONS100, with a budget of 100 seconds for evaluating each candidate de-
sign, better performance could be achieved by using the full captime κmax = 5s and
only N = 20 instances than with other combinations, such as, for example, κ = 0.5s
and N = 200. (To see this, inspect the diagonal of Figure 6(a) where N · κ = 100s).
In contrast, in most other scenarios using sufficiently many instances was much more
important. For example, in scenario SPEAR-IBM, with a budget of 150 seconds for eval-
uating each candidate design, the best performance was achieved by using all N = 50
training instances and κ = 3s (inspect the diagonal of Figure 6(c) whereN ·κ = 150s).
This effect was even more pronounced for the two SATENSTEIN scenarios. There, re-
ductions of κ to a certain point seemed to have no negative effect on performance at
all. We note that it is quite standard in the literature for researchers to set captimes high
enough to ensure that they will rarely be reached, and to evaluate fewer instances as a
result. Our findings suggest that more reliable comparisons can often be achieved by
inverting this pattern, evaluating a larger set of instances with a more aggressive cutoff.
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Fig. 7. Reliability of comparisons between solvers for results from 2007 SAT competi-
tion (scoring metric: total runtime across instances). The set of 234 instances was split
equally and at random into training and test instances.

5 Tradeoffs in Ranking Candidate Algorithms

To answer Question 8 from the introduction, we now investigate the same tradeoff be-
tween number of training instances and captime studied in the previous section, but
with the new objective of ranking candidate algorithms rather than to simply choosing
one as the best. This problem arises in any comparative study of several algorithms in
which our interest is not restricted to the question of which algorithm performs best.

One prominent example of such a comparative study is the quasi-annual SAT com-
petition, one purpose of which is to compare new SAT solvers with state of-the-art
solvers.6 To demonstrate the versatility of our methods, we obtained the runtimes of
the ten finalists for the second phase of the 2007 SAT competition on the 234 indus-
trial instances from http://www.cril.univ-artois.fr/SAT07/. These runtimes
constitute a matrix just like the input matrices we have used for our algorithm design
scenarios throughout. Thus, we can employ our methods “out-of-the-box” to visualize
the data. For example, Figure 7(a) shows the raw data; we observe a strong checker-
board patterns indicating a lack of correlation between the solvers.

As before, we split the instances into training and test instances, and used the test
instances solely to obtain an unbiased performance estimate. Beyond the characteristics
evaluated before, we computed the percentage of “wrong” pairwise comparisons, that
is, those with an outcome opposite than the one by a pairwise comparison based on the
test set and the “full” captime of κ = 5000s per run. Figure 7(b) gives this percentage
for various combinations of N and κ. We can see that large cutoff times were indeed
necessary in the SAT competition to provide an accurate ranking of solvers. However,
Figure 7(c) shows that much lower captimes would have been sufficient to identify a
single solver with very good performance. (In fact, in this case, the test performance
of algorithms selected based on captimes of around 300 seconds was better than that
based on the full captime of 5000 seconds. We hypothesize that this is due to the in-
stability in the relative rankings of algorithms with respect to different instances, and

6 www.satcompetition.org
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Fig. 8. Ratio of pairwise comparisons based on N training instances and captime κ
whose outcome is different than the outcome based on P/2 test instances and the “full”
captime of the design scenario (κ = 300s for CPLEX-ORLIB and the SPEAR scenarios,
and κ = 5s for the rest).

to the overall small number of instances. We also observed multiple crossings in the
cumulative distributions of the number of instances solved for the ten algorithms con-
sidered here.) This analysis demonstrates that if one wanted to run the SAT competition
within one-tenth of the CPU budget, it would be better to impose a tighter captime than
to drop instances.

Q8: Given a time budget, how should we trade off N and κ for ranking a fixed set of
algorithm designs?

We applied the same method to the six algorithm design scenarios studied throughout
this paper, leading to the percentages of wrong comparisons shown in Figure 8. For a
given domain and an overall time budget T , the optimal tradeoff between N and κ for
ranking a set of M algorithm designs can be found by inspecting the diagonal of the
corresponding figure characterized by N · κ = T/M . Comparing Figure 8 to Figure 6,
we see that in the context of ranking, performance tends to degrade more quickly for
lower captimes than when the objective is to only identify the best algorithm.

6 Empirical Analysis of a Predicted Matrix of Runtimes

So far, we have discussed the application of our empirical analysis approach to a ma-
trix of runtime data that is gathered offline, often at significant computational expense.
We now demonstrate that the same methods can fruitfully be applied to matrices of
predicted runtimes. In previous work we have shown how to construct predictive mod-
els that can yield surprisingly accurate predictions of runtime (Leyton-Brown et al.,



2002; Nudelman et al., 2004; Hutter et al., 2006; Xu et al., 2008; Leyton-Brown et al.,
2009; Hutter, 2009). Here we consider the application of our newest family of models
to the construction of a matrix of predicted runtimes, based on a much smaller training
set of runtime information. This can be understood as an approximate version of the
computationally-expensive offline analysis method we have discussed so far. Notably,
this approximate method can be used during the execution of an algorithm design pro-
cedure, without the need for any additional algorithm runs to fill in missing entries of the
runtime matrix. In this section we present a qualitative study of these approximations.
Specifically, we compare our diagnostic plots derived from the true runtime matrix with
ones derived from predicted runtime matrices. For brevity, we restrict our analysis to
the scenarios that we discussed in the greatest depth above, CPLEX-REGIONS100 and
SPEAR-IBM.

We begin by very briefly describing the prediction problem and the “random forest”
models we used. (For more technical details and a complete discussion, see Hutter,
2009). For each SAT and MIP problem instance π, we had available a set of features for
π (Leyton-Brown et al., 2002; Nudelman et al., 2004; Xu et al., 2008; Hutter, 2009).
We augmented these with features of the algorithm design, namely the values of the
(partially categorical) parameters in parameter vector θ. For each design scenario, we
selected 10 000 training data points (combinations of π, θ, and the according runtime
rπ,θ) uniformly at random from the N · P entries of the matrix and fitted a regression
model that, given as input a 〈π,θ〉 pair, approximates runtime rπ,θ. For this task, we
employed a random forest model with 10 regression trees. Each tree was built on a
so-called bootstrap sample, a set of 10 000 data points sampled uniformly at random
with repetitions from the original 10 000 training data points. For each split within each
regression tree, we allowed a randomly-chosen fraction of 5/6 of the input features
(instance features and algorithm parameters), and did not further split nodes containing
less than 10 data points. For each entry of the matrix, we used the mean prediction of
the 10 regression trees.

Gathering the data to train our random forest models was substantially cheaper than
gathering the data for the full matrix. In particular, for scenario SPEAR-IBM, the 10 000
data points amounted to 10% of the full matrix, and for CPLEX-REGIONS100 only to
0.5%. Note that our random forest models also work well when the instances are chosen
in a biased way, as for example by an automated configuration procedure (Hutter, 2009).
In design scenario CPLEX-REGIONS100, the construction of the random forest model
took 20.3 CPU seconds, and in scenario SPEAR-IBM it took 19.6 CPU seconds. In either
case, this is comparable to the time required for only a handful of algorithm runs.

In what follows we resist the temptation to quantitatively analyze the accuracy of
our predictive models. This topic is explored at length in our past work, but is beyond
the scope of the current paper. Our aim in the rest of this section is to show that our ex-
isting predictive runtime models can be combined with our empirical analysis methods,
dramatically reducing their computational cost without substantially degrading their
accuracy. Therefore, we restrict ourselves to qualitative analysis.

Overall, the plots based on the predictive matrix qualitatitvely resemble the ones
based on the true matrix. For scenario CPLEX-REGIONS100, Figure 9 shows the diag-
nostic plots based on the true and the predicted runtime matrix (for convenience, the
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Fig. 9. Empirical analysis for algorithm design scenario CPLEX-REGIONS100, based
on true and predicted matrices.

plots based on the true matrix are repeated from the various figures found elsewhere in
this paper). The predicted matrix in Figure 9(d) was only roughly similar to the true
runtime matrix in Figure 9(a); in particular, the prediction missed that even poor candi-
date designs solved some instances. Nevertheless, the remaining plots are qualitatively
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Fig. 10. Empirical analysis for algorithm design scenario SPEAR-IBM, based on true
and predicted matrices.

quite similar. For scenario SPEAR-IBM, Figure 10 shows the equivalent plots based on
the true and predicted matrix. The predicted matrix in Figure 10(d) closely resembles
the true matrix in Figure 10(a). Note, however, that the predictive model slightly under-
estimated the percentage of instances the best-performing algorithm design could solve



when given a sufficiently high captime. (Compare Figure 10(b), where the best design
solves around 73% of the instances with a captime of 300 seconds and Figure 10(e),
where that number is below 70%.) This led to the incorrect prediction that higher capti-
mes do not lead to the identification of better designs (compare Figure 10(k) to Figure
10(h)).

Results for the other CPLEX and SPEAR design scenarios were qualitatively simi-
lar; we omit the corresponding figures for brevity.7 The only qualitative difference we
observed is that for scenario CPLEX-ORLIB low captimes were predicted to perform
worse than they actually did; this is the reverse situation than in scenario SPEAR-IBM,
where large captimes were predicted to perform worse than they actually did.

To evaluate the effectiveness of our approximate empirical analysis, we summarize
the answers it would have given to our eight questions for scenarios CPLEX-REGIONS100
and SPEAR-IBM and assess each answer’s correctness.

1. How much does performance vary across candidate algorithm designs?
CPLEX-REGIONS100: performance varies strongly: the best design solves all in-
stances in 5 seconds, while the worst 60% do not solve any instance.
SPEAR-IBM: performance varies less: the best design solves about 65% of the in-
stances, whereas the worst design solves about 40%.
Correctness: CPLEX-REGIONS100: performance indeed varied strongly, and the
estimate for the best design is correct. Most designs, however, did solve some in-
stances; only the very worst did not solve any. SPEAR-IBM: correct.

2. How large is the variability in hardness across benchmark instances?
CPLEX-REGIONS100: for the best design, this variability is “only” about one order
of magnitude.
SPEAR-IBM: variability is much larger, above five orders of magnitude.
Correctness: both correct.

3. Which benchmark instances are useful for discriminating between candidate de-
signs?
CPLEX-REGIONS100: all instances are useful.
SPEAR-IBM: roughly 35% of the instances are infeasible for all candidate algorithm
designs. About 10% are trivially solved by all designs.
Correctness: both correct.

4. Are the same instances “easy” and “hard” for all candidate designs?
CPLEX-REGIONS100: yes.
SPEAR-IBM: largely, yes (some minor checkerboard patterns for poor designs).
Correctness: both correct.

5. Given a fixed computational budget and a fixed captime, how should we trade off the
number of designs evaluated vs the number of instances used in these evaluations?
CPLEX-REGIONS100:N = 1 always performs worst,N = 10 is the optimal choice
for the first 5 000 seconds, but for larger time budgetsN = 100 yields better results.
SPEAR-IBM: For total time budgets less than about 3 000s, N = 1 performs best,
for about 3 000s < t < 70 000s, N = 10 is best, above that N = 100 is best.
Correctness: both correct.

7 We have not yet constructed predictive models of algorithm runtime for SATENSTEIN since
its many conditional parameters complicate model construction (see Hutter et al., 2009).



6. Given a fixed computational budget, t, and a fixed number of instances, how should
we trade off the number of designs evaluated vs the captime used for each evalua-
tion?
CPLEX-REGIONS100: κmax always performs best, regardless of the time budget.
SPEAR-IBM: below about t = 10 000 seconds, κmax/100 performs best, for about
10 000s < t < 800 000 seconds, κmax/10 is best (for the last part basically the
same as κmax), above that κmax is best.
Correctness: both correct.

7. Given a budget for identifying the best of a fixed set of candidate designs, how many
instances, N , and which captime, κ, should be used for evaluating each algorithm
design?
CPLEX-REGIONS100: within the bounds studied here (N from 1 to 1 000 and κ
from 0.05s to 5s), for any time budget t above about 50 seconds per evaluation, it
is always preferable to use a captime as large as possible. For very low time bud-
gets, it is better to use captimes around κ = 1.25 seconds to enable the evaluation
on a larger number of instances.
SPEAR-IBM: within the bounds studied here (N from 1 to 50 and κ from 3s to
300s), it is almost always preferable to use an N as large as possible. The excep-
tion is a ridge around κ = 19s, which causes κ = 38s in combination with a halved
N to be preferred.
Correctness: CPLEX-REGIONS100: correct. SPEAR-IBM: largely correct; only the
predicted exception around κ = 19s is incorrect. We found it remarkable that these
predictions are as good as they are, given that the predicted plots look rather differ-
ent from the true plots.

8. Given a time budget, how should we trade off N and κ for ranking a fixed set of
algorithm designs?
CPLEX-REGIONS100: for the bounds studied here, it is always preferable to use a
larger κ and a correspondingly smaller N .
SPEAR-IBM: for the bounds studied here, it is always preferable to use a larger N
and a correspondingly smaller κ.
Correctness: both correct.

Overall, we note that the answers given by our approximate empirical analysis ap-
proach were surprisingly similar to those given by the computationally-expensive of-
fline approach. Thus, the techniques presented in this article can often be applied using
dramatically smaller amounts of computationally-expensive runtime data.

7 Conclusions and Future Work

We have proposed an empirical analysis approach for studying the tradeoffs faced in
evaluating the relative performance of a set of candidate algorithms. We applied this
approach to six rich algorithm design scenarios based on highly-parameterized, state-
of-the-art algorithms for satisfiability and mixed integer programming. Our analysis
answers a wide variety of questions pertaining to the performance variation across both
candidate algorithms and instances. For each design scenario, we showed how to best



trade off the number of designs considered, the number of instances used for the eval-
uation, and the computation time allowed for each run. We showed that the six design
scenarios we studied have very different characteristics, suggesting that different algo-
rithm design procedures would work well for them.

Our analytic tools can be used “out of the box” for new domains of interest; the
only input required is a simple matrix of runtimes for each combination of candi-
date algorithm and benchmark instance of interest. We provide source code at http:
//www.cs.ubc.ca/labs/beta/Projects/AlgoDesign/. While the gathering of
this runtime matrix is typically computationally expensive, we demonstrated that our
approach can also be applied to a matrix of predicted runtimes, which enables a com-
putationally much cheaper, approximate analysis.

We believe that the qualitative differences that we observed across the different
algorithm design scenarios considered here can be exploited by automated design pro-
cedures, and plan to investigate this in future work. We plan to use the analytic approach
introduced here to characterize the type of scenarios for which a given algorithm design
method works well. We expect that such a characterization would be useful for mak-
ing online decisions about which strategy to use in a given algorithm design scenario,
and whether instance-based algorithm selection techniques should be applied. Thus, we
hope to substantially improve current state-of-the-art algorithm design methods.
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Babić, D. and Hu, A. J. (2007). Structural Abstraction of Software Verification Condi-
tions. In W. Damm, H. H., editor, Computer Aided Verification: 19th International
Conference, CAV 2007, volume 4590 of LNCS, pages 366–378. Springer Verlag,
Berlin, Germany.
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