
On Efficient Replacement Policies for Cache
Objects with Non-uniform Sizes and Costs

Ying Su
Computer Science

University of British Columbia
Email: suying00@gmail.com

Laks V.S. Lakshmanan
Computer Science

University of British Columbia
Email: laks@cs.ubc.ca

Abstract—Replacement policies for cache management have
been studied extensively. Most policies proposed in the literature
tend to be ad hoc and typically exploit the retrieval cost or latency
of the objects, object sizes, popularity of requests and temporal
correlations between requests. A recent paper [1] studied the
caching problem and developed an optimal replacement policy
C

∗

0 under the independent reference model (IRM), assuming non-
uniform object retrieval costs. In this paper, we consider the more
general setting whereboth object sizes and their retrieval costs are
non-uniform. This setting arises in a number of applications such
as web caching and view management in databases and in data
warehouses.

We consider static selection as a benchmark when evaluating
the performance of replacement policies. Our first result is
negative: no dynamic policy can achieve a better performance
than the optimal static selection in terms of long run average
metric. We also prove that a (dynamic) replacement policy attains
this optimum iff the stochastic chain induced by it is irreducible.
We show that previously studied optimal policies such asA0 and
C

∗

0 are special cases of our optimal policy.
This motivates the study of static selection. For the general

case we are considering, static selection is NP-complete. Let K

denote the maximum cache capacity and letK′ be the sum of
sizes of all objects minus the cache capacityK. We propose
a polynomial time algorithm that is both K-approximate w.r.t.
the fractional optimum solution and HK′ -approximate w.r.t. the
integral optimum solution, where HK′ is the K

′-th Harmonic
number. In addition, we develop aK-competitive dynamic policy
and show thatK is the best possible approximation ratio for both
static algorithms and dynamic policies.

I. I NTRODUCTION

Choice of a proper replacement policy is key to the per-
formance of any caching system, be it a regular paging
system, file caching, or web caching, or the system managing
views in the cache of a data warehouse application. A static
version of the caching problem asks what is the best set of
objects to cache subject to a total cache capacity so that
the expected retrieval cost over any sequence of requests
obeying a workload distribution is minimized. Clearly, in this
problem, termed as static selection, once an object is cached,
it stays in the cache. The static selection is widely used in
the view management problem in database community. On
the other hand, dynamic caching policies, like a web proxy,
adjusts the cache content based on the information such as the
objects’ sizes, their retrieval costs, popularity of reference, etc.
while serving the requests. Efficient caching policies playan
important role in achieving better performance. The problem

of finding good policies (for any dynamic caching system) can
be described as below:

Given a setF of N files f1, f2, . . . , fN , where each file
fi has the following specified values

– size |fi|;
– retrieval cost from remote serverei;
– retrieval cost from the cacheri;
– and a probability estimationβi (subject to

∑n
i=1 βi = 1)

and a sequence of file requests, maintain a cache with
capacity K so as to satisfy the requests while minimizing
the total (or average) retrieval cost.

Note that the probability estimation about requests is optional
and applies when the so-called Independent Reference Model
[8] is assumed for object requests.

The problem definition can be easily adapted to allow other
performance metric. E.g., to use the hit rate metric, we just
need to setei as1 andri as0; to use the byte hit rate metric,
set ei as the size|fi| and ri as 0. However in this paper
we mainly consider the user-perceived retrieval cost(latency)
criterion for the requests since it is a most commonly used
and generalized criterion.

Belady showed an optimal offline algorithmB0 for the
paging problem in his seminal work [3], in which uniform
size and retrieval cost are assumed. The algorithm assumes the
future is known and evicts the page with the longest forward
distance, i.e., will be accessed furthest into the future.B0 is
optimal for every request sequence. But to the best of our
knowledge, there is no simple algorithm known to be optimal
for the case where the objects can have arbitrary sizes and
arbitrary costs.

To study the performance of paging algorithms in terms
of expected cost, Coffman and Denning introduced the In-
dependent Reference Model (IRM) [8]. It was a simple
probability model under which optimal policies (in terms
of expected cost) can be found. The model assumes the
request sequenceq1q2· · ·qt · · · is a sequence of independent
random variables with the common, stationary distribution
φ(·) = β1, β2, . . ., βN such thatP [qt = fi] = βi for all
t ≥ 1. Though not a realistic representation of request patterns,
it provides insights for analyzing algorithmic behavior and
designing algorithms under non-stationary models.

2

For the uniform sizes and uniform costs case, Coffman and
Denning presented a policy calledA0 which is optimal in
terms of fault rate [8].A0 prescribes: When the cache is full,

Evict fi if i = argi min(βi : fi in cache)

A0 is optimal only for the paging problem, where the
requested objects share the same size and retrieval cost. But
for general caching problem such as web caching, both the
object sizes and costs are not guaranteed to be equal and the
distinction directly affects the effectiveness of the policies.
In many cases, the retrieval costs from remote servers are
neither uniform nor proportional to the size due to factors like
the network traffic, computational ability of the remote server,
etc. Bahat and Makowski [1] fully recognized the distinction
caused by arbitrary retrieval costs and showed a policyC∗

0

that can minimize the expected cost when the objects have
uniform sizes and arbitrary costs:

Evict fi if i = arg min(βici : fi in cache or requested)

Unlike the algorithms used in hierarchical paged memory
systems,C∗

0 assumes optional admission, which is well suited
for applications like web caching. Since policies with manda-
tory admission are a special case of the policies with optional
admission, the latter must be no worse than the former.

Bahat also discussed the problem of finding optimal policies
with multi-criteria aspects, for example, they studied theprob-
lem of minimizing an average cost under a single constraint
in terms of another long-run average metric such as the miss
rate. However, this extension cannot solve thearbitrary sizes,
arbitrary costs case because the total size of the chosen
objects cannot exceed a certain bound at any time, which is
a stronger constraint than a single long run constraint. As a
matter of fact, the size factor is important to web caching.
Fiat and Rosen [9] showed that caching policies adapted from
memory management applications that don’t take size into
consideration do not work well in practice. In this paper we
take the study of this problem one step further by considering
the case where both the sizes and costs are arbitrary. We make
the following contributions:

1) We will show that for any replacement policy (random
or deterministic) under the independent reference model,
the optimal long-run average metric cannot be better
than that of the static selection algorithm.

2) We then use the Markov Decision Process (MDP) frame-
work to represent the problem and present a branch of
history dependent replacement policy that is optimal in
terms of the long-run average metric for objects with
arbitrary sizes and costs, and show that policiesA0 and
C0 are special cases of this policy. We also show that
a policy is optimal if and only if the induced stochastic
process chain is a unichain that converges to the result
of optimal static selection algorithm.

3) We study both the optimal structure and competitive
structure under the IRM. We developK-approximate
static algorithms and replacement policies with regard to

the fractional optimum solution and show thatK is the
best approximation ratio for both any replacement poli-
cies and static selection algorithms. HereK is the size
of the cache. The algorithm is alsoHK′-approximation
to the integral optimum solution, whereK ′ is the total
size of all objects (f1, · · · , fN) minusK andHK′ is the
K ′th harmonic number.

The paper is organized as follows: In section II, we will dis-
cuss the static selection problem and the relation between cost
and benefit. Then we will present an Markov Decision Process
(MDP) framework for the caching problem and discuss the
relationships between the two problems. Then we present
optimal policies for thearbitrary sizes, arbitrary costs case in
section II and show that policyA0 and C∗

0 are special cases
of it. In the next section, we will present our approximation
algorithms for static selection and for replacement policies
with an optimal approximation ratioK with regard to the
fractional optimal value andHK′ with regard to the integral
optimal value whereK ′ is

∑N
i=1 |fi| − K. In section IV,

we empirically evaluate the performance of the algorithms
and replacement policies proposed here and compare them
with well known replacement policies in the literature under
a variety of settings. Our findings corroborate our analytical
results. We conclude the paper in section V.

For lack of space, the proofs and some deductions of our
analytical results in this paper have been omitted. They can
be found in [17] or [18].

II. OPTIMAL ALGORITHMS UNDER IRM

The web proxy server services the requests of its clients
by forwarding requests to remote servers and maintaining a
dedicated disk space which we call cache to replicate web
objects. When a request arrives, the system would first check
the cache. When a requested file is not cached, we must decide
whether this object is worth caching and whether some objects
in the cache need to be evicted, and if yes, which ones. This
can be seen as a sequential decision making process and hence
can be precisely modeled by the MDP framework.

Note that above considerations apply just as well to a cache
management system in a data warehouse. The cache manager
has to make a decision whether to admit (evict) a view into
(from) the cache in case of faults. We refer the reader to [13]
[16] [12], etc. for related work in the data warehousing context.
In our discussions henceforth, we use the term object to refer
to any object that may be cached, be it a view or a document,
or a file.

A. The MDP Framework

The MDP described in [1] assumed uniform sizes, so the
decision at any time evicts at most one object. We use a
slightly different MDP to incorporate the arbitrary sizes.

1) Decision Epochs: Decision epochs are defined as the
instants when requests are posed. In our problem we assume
infinite requests, so the set of decision epochsT = {1, 2, . . .}.
Elements ofT will be denoted byt and usually referred to as
“time t”.

3

2) State Sets: We define the system stateθt at timet to be
a pair (St, qt) composed of the cache content informationSt

and the requestqt. St is a subset ofF with the constraint that
its total size cannot exceedK:

∑

fi∈St
|fi| ≤ K. The state

space Θ is defined as{S × Q}, whereS is the space of all
cache contents satisfying the space constraint, andQ is the
space of all requests, in our case equal toF . AssumingN
is finite, Θ has finite number of elements, meaning that our
MDP is a finite state MDP.

The MDP framework we propose consists of|S|N states,
and these states are grouped into|S| sets. We call such a set
a group defined as follows:

Group:A group of states is a set of states sharing the same
cache content.

Each group containsN states corresponding to theN possi-
ble distinct requests. LetGS denote the set of all statesθ with
cache contentS, GS = {θ : θ = (S, fi), i = 1, 2, . . . , N}.

3) Action Sets: By actions, we mean the steps taken when
a fault occurs and there is not enough space to admit the
requested object in the cache. For such a case, the system may
decide to admit and evict some objects. We denote the set of
admitted objects at timet asXt and the set of evicted objects
as Yt, and the actionAt is composed ofXt and Yt. Unlike
[1], bothXt andYt in our system may contain multiple items,
meaning that it is allowed to admit or evict multiple objects.
If at any timet, Xt contains at most one objectqt, the policy
is called ademand policy [8]. Given the stateθt = (St, qt)
the resulting stateθt+1 can be written as

θt+1 = (St+1, qt+1) (1)

=

(St, qt+1), qt ∈ St

(St + qt, qt+1), qt /∈ St, |qt| ≤ K − |St|
(St + Xt − Yt, qt+1), qt /∈ St, |qt| > K − |St|

Here, |St + Xt − Yt| ≤ K.
In our MDP system the space for eitherXt or Yt is a subset

of S and is finite, so the action space is also finite.
4) Rewards and Transition Probabilities: It is easily seen

that for any state, when an action is made, the system would
transfer to one of theN states in one (not necessarily a dif-
ferent one) group with the probabilityβ1, β2, . . ., βN defined
in the Independent Reference Model respectively. Suppose
at time t the system is in stateθ and actiona is taken,
θ = (St, qt), the transition probability from stateθ to state
θ′ for actiona of policy π is:

pπ
t (θ′ | θ, a) = βj (2)

where the stateθ′ = (St+1, fj) is composed of cache
contentSt+1 and requestfj .

Similarly, the one step rewardwπ
t (θ, a) and one step cost

cπ
t (θ, a) for policy π are defined as the following:

wπ
t (θ, a) =

{

ei − ri if qt ∈ St, qt = fi

0 if qt /∈ St
(3)

cπ
t (θ, a) =

{

ri if qt ∈ St, qt = fi

ei if qt /∈ St
(4)

If the requestqt causes a hit, we say that the system earns a
reward amounting toei − ri, or 0 if it is a fault. Alternatively
we could say that a hit causes the system a costri and a fault
causes a costei.

We can see that the transition probability, the reward and
the cost are only relevant to the states but not the action and
the time, so we can write them aspπ(θ′ | θ), wπ(θ) andcπ(θ).

B. The Objective Value of a Policy

In classic file cache management, we are mostly interested
in the expected total cost or average cost for every stateθ.
However in our system the total cost is equal to∞ for all
policies, thus it cannot distinguish the policies. Therefore we
will mainly focus on minimizing the average cost:

acπ(θ) = lim
T→∞

1

T
Eπ

θ {

T
∑

t=1

c(θt)} (5)

or equivalently, maximizing the average reward:

awπ(θ) = lim
T→∞

1

T
Eπ

θ {

T
∑

t=1

w(θt)} (6)

In order to calibrate the performance of the policies, we
consider the static selection as a benchmark. As introduced
in section I, the static selection problem is to select the
best objects (files, documents, or views) subject to a cache
capacity such that the expected costCS of answering a request
using cache contentS is minimized, or the expected benefit
BS is maximized. In such a setting,CS and BS can be
mathematically described as below:

CS =
∑

fi∈S

βiri +
∑

fi /∈S

βiei (7)

BS =
∑

fi∈S

βi(ei − ri) (8)

In the database community, [12] and many later papers [11]
[10] presented static algorithms that can achieve a competitive
ratio of the optimal benefit. In this paper, we would like to pin
down the relative performance of static selection and dynamic
replacement policies. Our first result is:

Theorem 1: awOPT (θ) ≤ Bmax, and acOPT (θ) ≤ Cmin

for any starting stateθ, whereawOPT (θ) andacOPT (θ) are
the average reward and cost of the optimal policy OPT,Bmax

is the maximum expected benefit, andCmin is the minimum
expected cost of the optimal static selection algorithm.

To prove the above theorem, we need to compute the
average reward or cost of the MDP policies. Since computing
the average reward is equivalent to computing the average
cost, we will only consider average reward henceforth in
this section. The limit in average reward might diverge in
some systems, but when the state space and action space
are finite or countable, which is exactly our case, the limit
always exists under some stationary randomized policyπ
[7] [15], and the average reward or cost can be calculated
[7] [2] [14] using the formulaawπ(θ) = P π

∗ wπ(θ), where

4

wπ(θ) is the one step reward for stateθ under the stationary
policy π, andP π

∗ is the Cesaro limit of the transition matrix:
P π
∗ = limM→∞

1
M

∑M−1
t=0 P π

(t), where P π
(t) is the t step

transition matrix.
Since the states in our MDP is finite,P π

∗ must exist and
be stochastic [14]. Aswπ(θ) is known according to the
definition in eq. (3), the only work left is to obtainP π

∗ . P π
∗

looks different when the induced chain has different structures,
namely, irreducible, multichain, and unichain [15] [2] [14] and
these three categories cover the whole chain space. Let us look
at them respectively:

1) Irreducible: Suppose a stationary policyπ induces an
irreducible Markov chain. Because the chain is just one
communicating class, the Cesero limit matrixP π

∗ for such a
chain is stochastic and its elementpπ

∗ (θ′|θ) which represents
the limit transition probability from stateθ to θ′ must be
strictly greater than0 [14].

The chain consists of|S| groups. Now order the states in
the transition matrix first by groups, then in each group by
the requests of the states in that group fromf1 to fN . For
each group, the limiting distribution for theN states in it for
any starting state must be linearly dependent with the vector
(β1, β2, . . . , βN). This is because no matter what decisions
are made at timet, the system would always transfer to some
group (not necessarily different from the current one) with
probability β1 to βN . So theith row of the limiting matrix
P π
∗ which represents the transition probability from stateθ to

all states is in the following form:

[(ai1β1, ai1β2, . . . , ai1βN ,), (ai2β1, ai2β2, . . . , ai2βN ,),

. . . , (ai|S|β1, ai|S|β2, . . . , ai|S|βN ,)]

subject to
∑|S|

k=1 aik = 1, aik > 0, whereaik is the coefficient
for row i and thekth group.

Order the statesθ ∈ Θ in the vectorwπ(θ) in the same
way so that the resulting vector is in the form:

[(wπ(θ11), wπ(θ21), .., wπ(θN1)), (wπ(θ12), wπ(θ22), ..,

wπ(θN2)), .., (wπ(θ1|S|), wπ(θ2|S|), .., wπ(θN |S|))] (9)

whereθjk means thejth state in thekth group. We will call
this form of the one step rewards vector thecanonical form
in the future. So the average reward for starting stateθ can be
calculated as

awπ(θ) = P π
∗ wπ(θ)

=

j=N,k=|S|
∑

j=1,k=1

aikβjw(θjk)

=

|S|
∑

k=1

(aik

N
∑

j=1

βjw(θjk))

=

|S|
∑

k=1

(aik

N
∑

j=1

βj(ej − rj))

=

|S|
∑

k=1

aikBSk

whereSk is the cache content of groupk. Becauseaik > 0
and there must be someSk such thatBSk

< Bmax, so
∑|S|

k=1 aikBSk
< Bmax, thus the policyπ inducing an irre-

ducible Markov chain must have an average reward strictly
smaller thanBmax.

2) Unichain: If a policy induces a unichainP π
∗ , i.e., the

induced chain must consist of one closed communicating class
D and a (possibly empty) set of transient statesT . Suppose
D containsb groups. Then any row inP π

∗ must be identical
and take the following form:

[(a1β1, a1β2, . . . , a1βN ,), (a2β1, a2β2, . . . , a2βN ,),

. . . , (abβ1, abβ2, . . . , abβN ,), 0, 0, . . . , 0]

subject to
∑b

k=1 ak = 1, ak > 0, whereak is the coefficient
for thekth group inD. This result is based on the Markovian
theory that the transition matrix for an induced unichainP π

∗

must satisfy the following properties [14] :

1) P π
∗ has equal rows;

2) Its element satisfies:

pπ
∗ (θ′|θ) =

{

v θ′ ∈ D
0 θ′ ∈ T

(10)

wherev is a non-zero value, and;
3) Suppose the row is denoted as a vectorV , then it must

satisfyV P π = P π, and
∑

v∈V v = 1.

The average reward for any starting stateθ can then be
calculated following the same rule as in section II-B1:

awπ(θ) = P π
∗ wπ(θ)

=

j=N,k=b
∑

j=1,k=1

aikβjw(θjk)

=

b
∑

k=1

(aik

N
∑

j=1

βjw(θjk))

=
b

∑

k=1

(aik

N
∑

j=1

βj(ej − rj))

=
b

∑

k=1

aikBSk

≤ Bmax

This shows that the resulting average reward is only rel-
evant to the groups in the closed communicating classD.
Specifically, if the groups contained inD all share the same
optimal cache contentSOPT (might be multiple) by the static
selection, then the average reward for every starting stateθ
can achieve optimumBmax.

5

3) Multichain: Suppose policyπ partitions the induced
chain into disjoint closed communicating classesDl, l =
1, 2, . . . , L, L ≤ |Θ|, and possibly a set of transient states
T . We can express any transition matrixP of such kind into
its canonical form as below:

P π =

P1 0 0 · · 0
0 P2 0 · · 0
· ·
· ·
0 PL 0
q1 q2 · · qL qL+1

(11)

wherePl corresponds to transitions between states inDl under
policy π, ql corresponds to transitions from states inT to Dl,
andqL+1 to transitions between states withinT . We call this
form thecanonical form of the transition matrix. The limiting
matrix was proved to be in the following form [14]:

P π
∗ =

P ∗
1 0 0 · · 0
0 P ∗

2 0 · · 0
· ·
· ·
0 P ∗

L 0
q∗1 q∗2 · · q∗L q∗L+1

(12)

where P ∗
i and q∗j are the limiting matrix forPi and qj

respectively, and the rows in each of them have similar
structure as described in the Irreducible case.

Write one step reward vector in its canonical form as in
eq. (9), then the average rewards for the starting stateθi in
Dl, l ∈ [1, L] must be

∑

GSk
∈Dl

aikBSk
≤ Bmax

as we have discussed in the Irreducible case. Only when a
closed communicating class is composed of states with cache
contentSOPT , can the average reward beBmax. We don’t
even need to look at the limiting distribution for the transient
states before concluding that a multichain cannot guarantee
that every starting state obtains the optimal average reward
Bmax.

So far we have discussed all three kinds of chains induced
by a stationary policyπ. Regardless of the kind of chain
induced by a policy, the average reward is no greater than
Bmax, which proves theorem 1. Furthermore, the proof lead
to the following theorem:

Theorem 2: The optimal average rewardawOPT (θ) a sta-
tionary policy can achieve isBmax for any starting stateθ, and
it is obtained only by a policy inducing a unichain whose only
closed communicating class is made of the optimal groups. A
group is optimal if itsN states share the cache contentSOPT .

The proof follows naturally from the discussion in proving
theorem 1.

The theorem also holds for the case where dependence
relationship exists among the objects, such as the case in
the data cube in OLAP. Our result is in contrast with the

result in Dynamat [13] in which the authors argued that the
dynamic view management system using Smallest Penalty
First (SPF) policy is better than the static selection even when
the queries form a uniform distribution. It’s worth asking
why their experiment results do not agree with our theoretical
results. Some reasons might include:

1) Though they also tested the uniform distribution, they
omitted the first10% of queries.

2) They used the DCSR per view metric which is good for
any dynamic algorithm but bad for the static algorithm
and it doesn’t guarantee the overall query answering
cost.

C. A branch of Optimal Policies

The stationary optimal policy can be found using the
standard value iteration algorithm [4]. However, the value
iteration algorithm requires the information about all states
before it can answer the request query sequence. This is
in contrast to policyA0, B0 and C∗

0 in which the optimal
decisions can be made solely on the information of the
current cache content and the request. This is becauseA0,
B0 and C∗

0 are stack algorithms [8] and can progressively
converge to the optimum cache content by evicting the object
with smallestβi(ei − ri)/|fi| when |fi| is uniform. These
kinds of algorithms share the inclusion property that for any
query sequence̟ = {q1, q2, . . .} and any cache capacity
k: St(k, ̟) ⊆ St(k + 1, ̟), where St(k, ̟) is the cache
content for a cache with capacityk and query sequence̟ at
time t. However when the sizes|fi| are arbitrary, the optimal
algorithms for this case do not have the inclusion property.
Nevertheless we can manage to remember the seen objects so
far and make the cache content converge to the most optimal
states for the time being. Such an algorithm calledD0 is shown
in fig. 1, in whichci representsβi(ei − ri) for each object in
fig. 1.

1. SetB(0)(j) = 0 for everyj ∈ [1, K]
2. If a new objectfi is requested, setn = n + 1,

update for eachj
B(n)(j) = B(n−1)(j) if |fi| > j
B(n)(j) = max{B(n−1)(j), ci + B(n−1)(j − |fi|)}
if |fi| ≤ j

3. If B(n)(K) 6= B(n−1)(K)
Update the cache content to beB(n)(K)

4. Loop back to step 2 when seeing the next request.

Fig. 1. TheD0 Algorithm

D0 reaches the optimal cache content when all theN
objects are met, and from that point on the system remains
with the optimal static cache content. The time taken to reach
that point is

∑N
i=1 1/βi and is finite, and the average reward

of policy D0 is alsoBmax.
Though this policy needs to remember the objects seen in

the past and hence is a history dependent policy, it has a

6

smaller time complexity than the value iteration algorithm[4].
The space consumption isO(K). Each time a new object is
seen, the algorithm incurs a cost ofO(K),so the total time
complexity incurred by the cache content update isO(NK).

This policy, however, has a drawback that it is not a demand
policy and may load objects which would be evicted without
being referenced at all. Its demand version, which we call
D∗

0 , remembers the state ofD0 but defers the admissions and
evictions of objects until they are requested. As proved in [8],
the demand version of a policy is no worse than itself under
the total reward criteria.

As a summary of the above analysis, we can see that all
optimal policies under IRM would progress to the optimal
cache content over time, regardless whether the sizes and
retrieval costs are arbitrary. The difference is, when the sizes
are uniform, such convergence only needs to examine the
current cache content and current request because of the
inclusion property. We call this branch of optimal policiesthe
convergence policy, andC∗

0 and A∗
0 are simple special cases

of it.

III. A PPROXIMATION ALGORITHMS

In general, static selection is NP-hard. It was shown in
[12] for the case of choosing the best views to materialize
in a data warehouse subject to a total storage capacity. This
result extends to a general setting of static selection where
the sizes and costs of objects are arbitrary. This hardness
result motivates approximation algorithms for static selection.
And given our result that dynamic replacement policies cannot
exceed the performance of static selection (Theorem 1), the
hardness result essentially issues a call for approximation
algorithms for replacement policies as well.

Using the same set of notations, the static selection problem
can be interpreted as an integer programming problem as
follows:

Minimize C :

N
∑

i=1

(βieixi + βiri(1 − xi))

Subject to
N

∑

i=1

|fi|xi ≥ K ′,

xi = 0, 1

where C is the expected cost to answer a request,K ′ =
∑N

i=1 |fi| −K andK is the cache capacity.xi = 0 meansfi

is cached,xi = 1 meansfi is evicted.
If we use ci to representβi(ei − ri) for each object, the

objective value in the above formulation can be simplified as:

N
∑

i=1

βieixi+βiri(1−xi)) =

N
∑

i=1

cixi+

N
∑

i=1

βiri =

N
∑

i=1

cixi+δ

(13)
whereδ =

∑N
i=1 βiri is a constant. So the objective value we

want to minimize is just
∑N

i=1 cixi. If we find a solution with
approximation ratiok for it, then the Static Selection problem
will also obtain a solution with approximation ratiok.

A. A Simple Greedy Algorithm

A standard approach for any integer program is to relax the
integrality constraint to a linear one. In the linear relaxation of
the problem, the requirement onxi is relaxed to0 ≤ xi ≤ 1.
The solution of the LP problem can be computed in a very
simple way: Sort the objects in terms ofci

|fi|
in non-decreasing

order. Without loss of generality, assume

c1

|f1|
≤

c2

|f2|
≤ . . .

cN

|fN |

An optimal solution is a vectorxLP = (xLP
1 , xLP

2 , . . . , xLP
N)

is defined as:

xLP
j = 1, j = 1, . . . , ς − 1

xLP
ς =

K ′ −
∑ς−1

j=1 |fj |

|fς |

xLP
j = 0, j = ς + 1, . . . , N

In other words, the solution evicts the whole objects from
x1 to xς−1 and partial ofxς while cache the remaining parts.
Here we callfς as thesplit object. The corresponding solution
value is then

C =
ς−1
∑

i=1

ci +
(K ′ −

∑ς−1
j=1 |fj |)

|fς |
cς

Inspired by the optimal solution for the LP relaxation of
the object selection/eviction problem, we now present an
algorithm for the IP version of the problem in fig. 2.

1. Sort objects in non-decreasing order ofci

|fi|
.

Assume the resulting order isj, j = 1, 2, . . . , N
2. First assume all objects are cached, then evict the

objects ranked from1 to ς, wherefς is the split object.

Fig. 2. The Simple Greedy Algorithm

Theorem 3: The greedy algorithm in fig. 2, denoted as
G, is K-approximate, i.e.,CG ≤ KC∗

LP , whereCG is the
expected cost to answer a query by algorithm G andC∗

LP is
the fractional optimal expected cost.

Proof: Denote the first part of eq. (13) asΓ[C], i.e.

Γ[C] =

N
∑

i=1

cixi

, its corresponding result by algorithmG as ΓG[C], and the

7

optimal LP resultΓ∗
LP [C]:

ΓG[C] =

ς−1
∑

i=1

ci + cς

≤

ς−1
∑

i=1

ci + K
(K ′ −

∑ς−1
j=1 |fj |)

|fς |
cς

≤ K · (

ς−1
∑

i=1

ci +
(K ′ −

∑ς−1
j=1 |fj|)

|fς |
cς)

≤ K · Γ∗
LP [C]

Thus

CG = δ + ΓG[C] (14)

≤ δ + K · Γ∗
LP [C]

≤ K · (δ + Γ∗
LP [C])

≤ K · C∗
LP

Since proving the actual costC is k approximate is equal
to provingΓ[C] is k approximate, we will only care for the
Γ[C] part while ignoring the constantδ in the future.

B. The Lower Bound of The Approximation Ratios

Given a LP relaxation of any minimization problem, let
χ∗

LP (I) be the objective function value of an optimal solution
to the LP-relaxation, and letχ∗(I) be the objective function
value of an optimal solution to the original IP problem, the
integrality gap of the relaxation is defined as

sup
I

χ∗(I)

χ∗
LP (I)

If the objective function value of the solution found by
the algorithm is compared directly with that of an optimal
fractional solution, the best approximation factor we can hope
to prove is the integrality gap of the relaxation [19]. In our
case the task is to examine the integrality gap on the expected
cost to see if it is smaller thanK. The result is given in the
following theorem:

Theorem 4: The integrality gap on the expected cost for the
object selection/eviction problem, defined assupI

C∗(I)
C∗

LP
(I) , is

at leastK, whereI refers to an instance,C∗(I) refers to the
integral optimal cost onI, andC∗

LP (I) means the fractional
optimal cost onI.

Proof: Consider the following instance in table I:

object size |fi| costci ci/|fi|
f1 K K 1

f2 1 K + 1 K + 1

TABLE I
AN INSTANCE WHERE THE INTEGRALITY GAP ISK

In this instance,C∗(I) = K while C∗
LP (I) = 1, so the

integrality gap (of all instances) is at leastK.

This shows that the best approximation ratio for the object
selection/eviction problem isK, meaning no polynomial al-
gorithm can achieve a better ratio. The direct consequence of
this theorem is the following corollary.

Corollary 1: The Greedy algorithm in fig. 2 can achieve
the best approximation ratio for the object selection/eviction
problem.

C. The KnapSack Revisited

Now let’s revisit the well known 2-approximation KnapSack
solution. It also sorts the objects in terms ofci/|fi|, but unlike
the Greedy Algorithm in fig. 2, it solves the problem by
selecting the objects to cache, not to evict. Recall, we use
ci to denoteβi(ei − ri).

Like Greedy, KnapSack’s 2-approximation algorithm does
not cache any of the objects in{f1, f2, ..., fς−1}. Instead, it
picks the better of{fς+1, fς+2, ..., fN} and {fς} to cache.
Since we know the Greedy algorithm always evicts all the
objects in {f1, f2, ..., fς}, KnapSack’s 2-approximation al-
gorithm must be better than the Greedy. This means that
KnapSack’s 2-approximation algorithm not only has the best
approximation ratioK on expected costs, but also achieves
at least half of the optimal benefit and must outperform
Greedy. Note that in general an algorithm that achieves an
approximation ratio on the expected benefit does not guarantee
any approximation ratio on the expected cost. For example, in
the data cube case [12], where the views are correlated to
each other, there is no polynomial algorithm that can achieve
an approximation ratio on the expected cost, but there exists
such algorithms that can achieve an approximation ratio on
the expected benefit. The distinction is caused by the extra
hardness introduced by the relationships among the views.

D. An Extended Greedy Algorithm

In section III-B we have shown that the Simple Greedy
algorithm in fig. 2 achieves the best approximation ratioK.
But that doesn’t mean it performs well under all circumstances.
In this section we present another approximation algorithm,
called Extended Greedy, that might outperform the Simple
Greedy algorithm in some cases.

We have known that the problem can be seen as evicting
a subset of the objects inF . Let’s call this subsetS. The
Extended Greedy algorithm iteratively picks the least cost-
expensive object intoS until the size|S| is no less thanK ′,
whereK ′ =

∑

fi∈F |fi| − K. Suppose the object picked in
iterationj is denoted asfj and the set selected by the end of
iteration j is Sj , the cost-expensiveness for fj is defined as
follows:

(Cost-Expensiveness) The cost-expensiveness forfj in iter-
ation j is

ci

min{|fj|, K ′ − |Sj−1|}

, whereSj−1 is the current subset to evict when iterationj−1
ends.S0 = φ.

The Extended Greedy algorithm is defined formally in fig. 3.

8

1. j = 0; Sj = φ

2. While |Sj | ≤ K ′

j = j+1;
Find the objectfj with the smallest cost-expensiveness,
wherej is the index of current iteration.
(Break ties arbitrarily)
Sj = Sj−1 ∪ fj

3. Cache the objects inF − Sj .

Fig. 3. The Extended Greedy Algorithm

In any iterationj, the selected objectfj covers the space of
sizemin{|fj|, K

′ − |Sj−1|} with costcj , where|Sj−1| is the
total size of the objects inSj−1. Let the cost per unit space,
or cost density incurred by these objects be:ρ1, ρ2, . . . , ρK′

such thatC = ΣK′

j=1ρj . The following lemma holds:
Lemma 1:

ρj ≤
C∗

K ′ − j + 1
, j = 1, 2, . . . , K ′

whereC∗ is the integral optimal expected cost for the IP static
selection problem.

Proof: Suppose in iterationj, the selected objectfj

covers the space indexed from|Sj−1| + 1 to |Sj |, (|Sj | =
|Sj−1|+ |fj|). The cost densities incurred by it are denoted as
ρ|Sj−1|+1, ρ|Sj−1|+1, . . . , ρSj

. As they belong to one object,
these values are the identical. Without losing generality,sup-
pose the order in which the objects are chosen to evict is the
same as their original numbering, i.e., the first object chosen
is f1, the second chosen isf2, etc.

Let the subset to evict selected by the optimal IP solution be
S∗. In any iterationj when the Extended Greedy algorithm in
fig. 3 is picking a object to evict, there must be some objects
belonging toS∗ that have not been picked yet. Denote these
objects setOj , andOj = S∗−Sj−1. objects inOj can fill the
left uncovered space at a cost

∑

fi∈Oj
ci, which is no greater

than the optimum solution’s total costS∗.

ρ|Sj−1|+1 = ρ|Sj−1|+2 = . . . = ρSj

=
cj

min{|fj |, K ′ − |Sj−1|}

≤ any
ci

min{|fi|, K ′ − |Sj−1|}
, fi ∈ Oj

≤

∑

fi∈Oj
ci

∑

fi∈Oj
|fi|

≤
C∗

∑

fi∈Oj
|fi|

≤
C∗

K ′ − |Sj−1|

≤
C∗

K ′ − |Sj−1| − |fj| + 1

In a more straightforward way, we can write this result for
iterationj into:

ρ|Sj−1|+1 ≤
C∗

K ′ − |Sj−1|

ρ|Sj−1|+2 ≤
C∗

K ′ − |Sj−1| − 1
.

ρ|Sj−1|+|fj|
≤

C∗

K ′ − |Sj−1| − |fj | + 1

Now let’s start from the first view:

ρ1 ≤
C∗

K ′

ρ2 ≤
C∗

K ′ − 1
.

ρK′ ≤ C∗

The lemma is proved.

The lemma leads naturally to the following theorem:
Theorem 5: The Extended Greedy algorithm isHK′-

approximate with respect to the optimal IP solution, where
HK′ is theK ′th harmonic number.

Proof: Denote the first part of eq. (13) by the Extended
Greedy algorithm asCEG. Adding upρj from j = 1 to K ′,
we get the following:

CEG =
K′

∑

j=1

ρj

≤

K′

∑

j=1

C∗

K ′ − j + 1

≤ HK′C∗

Note that the approximation ratio of the Extended Greedy
HK′ is with respect to the solution of the IP problem. However
this doesn’t mean that Extended Greedy is worse than Greedy.
It can outperform both the Greedy and the Kanpsack’s2-
approximation algorithms in some cases. Here is an example
of such an instance:

In this example the system has four objects and their
features are shown in table II.

object costci size |fi| ci/|fi|
f1 20 40 0.5
f2 40 40 1

f3 20 10 2

f4 15 5 3

TABLE II
AN INSTANCE WHEREEXTENDED GREEDY IS THE BEST

9

Suppose the cache capacity is45, the execution of the three
algorithms are respectively shown in table III

Algorithm Evicted object Resulting Cost
KS 2-app f1, f3, f4 55

Greedy f1, f2 60

Extended Greedy f1, f3 40

TABLE III
THE RESULT OF THE THREE ALGORITHMS

E. A Mediated Greedy Algorithm

Just like what we did in the Greedy algorithm and the
2-approximation knapsack algorithm, let’s sort the objects
in terms of the cost densityci

|fi|
in non-increasing order.

Without losing generality, suppose the result objects’ indexes
are conforming to their original indexes, i.e.,

c1

|f1|
≤

c2

|f2|
≤ . . . ≤

cN

|fN |

The split object is denoted asfς . By analyzing the above three
algorithms, we found that they all must evict the firstς − 1
objects. The difference is how they deal with the objects from
fς to fN . Thus we can mediate the three algorithms so that
the new algorithm not only achieves the best approximation
ratio K on the expected cost and approximation ratio2 on the
benefit, but also performs no worse than the Extended Greedy.
We call the new algorithmMediated Greedy algorithm. Like in
other algorithms, the objects are first sorted byci/|fi| in non-
decreasing order. We demarcate the objects into three parts: 1)
objects below the split object, denoted asFlow ; 2) The split
object; 3) objects above the split object, denoted asFhigh. The
algorithm now calculates which objects need to be evicted in
addition to the firstς − 1 objects and we denote it asS. The
remaining part of the algorithm is shown in fig. 4, in which
we use notationC(S) to represent

∑

fi∈S ci.

1. GetC(Fhigh),
2. S = φ.
3. While (|S| ≤ K ′ − |Flow| and

C(S) < min{C(Fhigh), C({fς})})
In Fhigh ∪ {fς},find the objectfj with the smallest
cost-expensiveness. (Break ties arbitrarily)
S = S ∪ {fj}

4. If C(S) ≥ min{C(Fhigh), C({fς})}
Cache the better ofFhigh or fς , evict all others.

Else
Cache the objects inF − S - Flow, evict all others.

Fig. 4. The Mediated Greedy Algorithm

The algorithm is based on the Extended Greedy but it first
identifies those objects that must be evicted (f1 to fς−1), then
it iteratively picks objects inFhigh ∪ fς to evict. It keeps a
bound ofmin{C(Fhigh), C({fς})} when choosing the objects

to evict, so that if the cost incurred by the chosen objects
exceeds the bound, it stops and choose the better ofFhigh or
fς to evict.

F. The K-Competitive Policy

Following previous sections, we introducecompetitive MDP
policies defined below:

In an MDP system with the objective value functionovπ(θ),
whereπ is a policy andθ is the starting state, ifovπ(θ) ≤
k · ovOPT (θ) + ξ holds for any starting states, whereξ is a
constant andovOPT (θ) is the optimal objective value, we say
policy π is k-competitive.

Suppose at timet, the system is in stateθt = (St−1, qt)
whereSt−1 is the cache content at the beginning of timet
andqt is the new request. Like in section II, we only consider
the situation of faults. The policy is given in fig. 5. Note that
the D1 policy uses non-mandatory replacement.

Whenever a fault occurs on requestqt at time t and
there’s not enough room forqt in the cache:

While the requestqt doesn’t fit into the cache,
Evict the object with the smallestci

|fo|
from St−1 ∪ {qt}

Fig. 5. TheD1 Policy

Theorem 6: The policy in fig. 5, denoted asD1 , is K-
competitive to the optimal fractional solution of the static
selection problem, i.e.,

acD1(θ) ≤ K · C∗
LP for all starting stateθ

whereK is the capacity of the cache, andC∗
LP is the expected

cost for the optimal fractional solution to the static object
selection problem.

Proof: Under policyD1, the states converge to the group
GS whose N states share the same cache contentS =
({fς+1, fς+2, . . . , fN} for any starting state within finite time.
So this policy is a stationary policy that induces a unichain
Markov chain, with the only one closed communicating class
being equal to groupGS . From the result in section II, we
know the average costacπ(θ) for policy π is P π

∗ cπ(θ) = BS .
SinceBS =

∑N
i=ς+1 βi(ei − ri) ≤ K · C∗

LP], the theorem is
proved.

Scheuermannet al. introduced a similar policy in [16], and
showed that the policy is nearly optimal when the number of
objects is very large. However it does not come with a more
strict theoretical analysis.

IV. EXPERIMENTS

The replacement policies we tested include: optimal dy-
namic policy D0, D∗

0 , the competitive dynamic policyD∗
1 ,

the classical Greedy-Duel Size algorithm [5] and its variant
Greedy-Duel Size Frequency algorithm [6]. We also imple-
mented the static algorithms integral OPT, denoted asS0,
the static fractional OPT, denoted asS∗

0 , Simple Greedy and
Mediated Greedy. The experiments were done under both the
IRM and real web trace.

10

A. The Independent Reference Model

To simulate the Independent Reference Model, we built a
random query generator which generates query sequences with
the Zipf distribution. The query sequence is made of sequential
requests to a set of simulated objects with their sizes uniformly
distributed in[1, 100]. The retrieval costs from remote server
are also uniformly distributed in [0,10], not related to thesizes.
The retrieval costs from cache are set to be a small fraction
of the retrieval costs from remote server plus some constant
term to account for the I/O cost. Various query sequences were
generated with different number of objects and query length.
The cache capacity were chosen from5% of total object sizes
to 50% of total object sizes. Under each setting the test was
repeated for 500 trials to get the expected query answering
costs.

Fig. 6 shows a typical result of expected query answering
costs (average cost) of different policies/algorithms. Inthis
particular test, the query sequence is composed of5000 queries
on 100 objects. The results under different settings show
similar patterns as described blow.

����������������������������
���	
����� ��� ���� �� �� ���������������� !"#������������$�� !"#��%& �����'()�'����'����'(*+,-./012

3456788 956:;6<7=>5

Fig. 6. The average cost to answer queries

Among the dynamic policies and static algorithms tested,
the static integral OPTS0 is basically the best except for the
static fractional OPTS∗

0 . The GDS policy performs poorly
under the IRM. Though its variant GDSF improves a lot, it is
still much worse compared to the other three dynamic policies
like D0, D

∗
0 and D1. D0, D

∗
0 and D1 are very close to each

other but they are all worse thanS0, which confirms theorem 1.
Meanwhile, as expected, the demand version of dynamic OPT
policy D∗

0 is always better thanD0. The competitive greedy
policy D1 is slightly worse thanD∗

0 in this case, but as cache
capacity and number of objects varies, it is very close toD∗

0 .
For the static algorithms, Simple Greedy and Mediated

Greedy are very close, with Mediated Greedy slightly better.
To study the dynamic policies’ behavior, we also recorded

their performance over time and compare it withS0. In fig. 7,
we use query sequences of length10000 and number of
objects1000, and show the expected costs to answer500 such
sequences when time proceeds. TheX coordinate, the time,

which is made of the10000 queries, is divided into100 slots.
The result shows that the query answering costs forS0 remains
steady, andD0 andD0∗ converge toS0 within 1500 queries.
In that period,D0 performs a little worse thanD0∗, because
it may switch in some objects that are not referenced later.D1

is almost as good asD0∗ in this example.?@ABCADEFG@ HI@A JKD@
LMMLNMOMMONMPMMPNM

Q N R QO QS LQ LN LR OO OS PQ PN PR NO NS TQ TN TR SO SS UQ UN UR RO RSVWXYZ[\]̂_̀ab\]c̀defag hMhMihQjhkjhklkM
Fig. 7. The average cost to answer queries

To compare the cache content of the dynamic policies
over time, we used thecorrelation factor defined as|Sπ

t ∩
SS0

|/|SS0
|, where Sπ

t is the cache content for policyπ at
time t, andSS0

is the cache content for algorithmS0. Fig. 8
shows the correlation between different policies:

Correlation

0

0.2

0.4

0.6

0.8

1

1.2

1 476 951 1426 1901 2376 2851 3326 3801 4276 4751

Time

C
o

rr
el

at
io

n D0
D0*
D1
GDS
GDSF

Fig. 8. The average cost to answer queries

D0 andD0∗ both converge to1, while D0 converges faster
thanD0∗. D1 reaches a correlation value very close to1 but
could never reach1 in this example. However when cache
capacity or number of objects increases,D1 could reach1 as
well. GDS and GDSF have a much lower correlation, showing
that their cache contents are quite different from that ofS0’s.

In summary, the experiment results for IRM basically satisfy
our expectations, exemplifying the correctness of our theory.

B. Experiments on the weblogs

To test our policies under a real workload, we used our
departmental weblogs as the underlying data. We chose the
web request logs on two random consecutive days, with the
query sequence on the first day as the probation period to
gather the information required to run the algorithms, and the
query sequence on the next day as real workload. According
to our analysis, the queries distribution is highly skewed.The

11

number of queries on the first day is480480 and they are cast
on 66197 distinct web objects. The number of queries on the
second day is345659 on 112380 distinct web objects. There
are 46183 new distinct objects requested on the second day,
but most of them were referenced only once.mnopqrr soptupvqwxo

yz{|}}}}yz{~}}}}yz~y}}}}yz~�}}}}yz~�}}}}yz~|}}}}yz~~}}}}y|}y}}}}y|}�}}}}y|}�}}}}
�y}zz �yz}} ��y�� ��zzz z��}} |�|�� {��zz�qx�o ���o

����������� ��������y�}�}��}�}���v�ro �poo���o��q�o� �poo��
Fig. 9. The average cost to answer queries

The overall performance is shown in fig. 9.S0 is still
the best except forS∗

0 in most of the cases. GDS and
GDSF are still worse than other policies in this test, probably
because of the extremely skew distribution of the queries. The
remaining three dynamic policies perform very close toS0.
The static greedy algorithms show more variations in terms of
overall performance. Overall, these policies have very similar
performance, but when talking about the algorithm running
times, the optimal static algorithm and policies are far too
slower than the competitive ones. The stable performance of
D1 and its excellent running time suggests it to be a good
choice.

Unlike the IRM, the query answering cost pattern does not
follow a specific curve. The following figure showsS0’s query
answering cost over time, but all the other policies/algorithms
show the similar pattern.�� ��� ¡�¢£¤¥� ¡¦�� § ¢̈�

�©�����ª������ª©�����«������«©�����
ª «¬ © ®© ªª̄ ª°ª ª±¬ ª¬««© «©̄ «®ª �̄¬ ¯¯ ±̄© ¬̄¯ °«ª§ ¢̈�

²³́µ �¶·̧ ¹¶º»¹
Fig. 10. The average cost to answer queries

However, the cache content ofD0 andD∗
0 do converge to

that of S0, though it shows some jitter in the initial phase.

V. CONCLUSIONS

Cache management is a critical component of several sys-
tems including file managers, web proxies, and data ware-
houses to name a few. Static selection focuses on choosing
the best possible objects to cache (subject to a constraint on
capacity) and leaving them in the cache forever. Dynamic
cache management relies on replacement policies which de-
cide whether, when, and which objects to admit to or evict
from the cache.

In this paper, we considered a general setting whereby ob-
jects requested can have arbitrary sizes and arbitrary retrieval
(or evaluation) cost. Under the IRM, we showed the surprising
result that dynamic policies cannot exceed the performance
of static selection in terms of expected average reward over
any request sequence obeying the given probability distribu-
tion over requests. Our result shows that a dynamic policy
approaches the performance of (optimal) static selection iff
the stochastic chain induced by it is irreducible. Given that
optimal static selection is NP-hard in general. we develop
polynomial time approximation algorithms for both static
selection and for dynamic replacement. The algorithms are
K-approximate w.r.t. the fractional optimum solution for static
selection andH ′

K-approximate for w.r.t. the integral optimum
solution for static selection. We also show that these results
are tight by showing thatK is the best possible approximation
ratio for both static selection and for dynamic replacement.
Finding optimum (static or dynamic) solutions without the
IRM assumption is an open problem.

REFERENCES

[1] O. Bahat and M. Makowski. Optimal replacement policies for non-
uniform cache objects with optional eviction. InIEEE INFOCOM
Conference, volume 1, pages 427–437, 2003.

[2] J. Bather. Optimal decision procedures for finite markovchains.
Advances in Applied Probability, 5(2):328–339, 1973.

[3] L. Belady. A study of replacement algorithms for virtualstorage
computers.IBM Systems Journal, 5:78–101, 1966.

[4] R. Bellman. A markovian decision process. InJournal of Mathematics
and Mechanics, volume 6, 1957.

[5] P. Cao and S. Irani. Cost-aware WWW proxy caching algorithms. In
Proceedings of the 1997 Usenix Symposium on Internet Technologies
and Systems (USITS-97), Monterey, CA, 1997.

[6] L. Cherkasova. Improving www proxies performance with greedy-
dual-size-frequency caching policy. Technical Report HPL-98-69R, HP
Laboratories, 1998.

[7] K. L. Chung. Markov Chains with Stationary Transition Probabilities.
Springer, 1960.

[8] E. Coffman and P. Denning.Operating Systems Theory. Prentice Hall,
1973.

[9] A. Fiat and Z. Rosen. Experimental studies of access graph based
heuristics. In8th ACM-SIAM Symp. on Discrete Algorithms, 1997.

[10] H. Gupta. Selection of views to materialize in a data warehouse. In
IEEE Transactions on Knowledge and Data Engineering, volume 17,
pages 24–43, 2005.

[11] H. Gupta and D. Srivastava. The data warehouse of newsgroups. In
The 7th International Conference on Database Theory, pages 471–488,
1999.

[12] V. Harinarayan, A. Rajaraman, and D. Ullman. Implementing data cubes
efficiently. In ACM SIGMOD, volume 25, pages 205–216, 1996.

[13] Y. Kotidis and N. Roussopoulos. Dynamat: A dynamic viewmanage-
ment system for data warehouses. InIn Proc. of the ACM SIGMOD
Conference, pages 371–382, 1999.

[14] M. L. Puterman.Markov Decision Process: Discrete Stochastic Dynamic
Programming. John Wiley & SONs,INC, 1994.

12

[15] S. M. Ross.Introduction to Stochastic Dynamic Programming: Proba-
bility and Mathematical. Academic Press, Inc., 1983.

[16] P. Scheuermann, J. Shim, and V. Radek. Watchman: A data warehouse
intelligent cache manager. InProceedings of the 22nd VLDB Conference,
1996.

[17] Y. Su. On managing visibility of resources in social networking sites.
Master’s thesis, University of British Columbia, November2008.

[18] Y. Su and L. V. Lakshmanan. On efficient replacement
policies for cache objects with non-uniform sizes and costs
http://www.cs.ubc.ca/l̃aks/cache.pdf. Technical report, University of
British Columbia, July 2009.

[19] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

