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Abstract—Replacement policies for cache management have of finding good policies (for any dynamic caching system) can

been studied extensively. Most policies proposed in the ditature
tend to be ad hoc and typically exploit the retrieval cost or tency
of the objects, object sizes, popularity of requests and teporal
correlations between requests. A recent paper [1] studiedhe
caching problem and developed an optimal replacement polc
Cj under the independent reference model (IRM), assuming non-
uniform object retrieval costs. In this paper, we consider he more
general setting whereboth object sizes and their retrieval costs are
non-uniform. This setting arises in a number of applications such

as web caching and view management in databases and in data

warehouses.

We consider static selection as a benchmark when evaluating
the performance of replacement policies. Our first result is
negative: no dynamic policy can achieve a better performare
than the optimal static selection in terms of long run averag
metric. We also prove that a (dynamic) replacement policy g&hins
this optimum iff the stochastic chain induced by it is irreducible.
We show that previously studied optimal policies such asl, and
C{ are special cases of our optimal policy.

This motivates the study of static selection. For the genefa
case we are considering, static selection is NP-completeetL K’
denote the maximum cache capacity and le&k’ be the sum of
sizes of all objects minus the cache capacity<. We propose
a polynomial time algorithm that is both K-approximate w.r.t.
the fractional optimum solution and H g--approximate w.r.t. the
integral optimum solution, where Hy is the K’-th Harmonic
number. In addition, we develop aK-competitive dynamic policy
and show that K is the best possible approximation ratio for both
static algorithms and dynamic policies.

|I. INTRODUCTION

be described as below:

Given a setF' of N files f1, f2, ..., fn, Where each file

fi has the following specified values
— size|f;l;

retrieval cost from remote servey;

retrieval cost from the cache;

and a probability estimations;

Z?:l Bi=1)

and a sequence of file requests, maintain a cache with

capacity K so as to satisfy the requests while minimizing

the total (or average) retrieval cost.

Note that the probability estimation about requests isooyai
and applies when the so-called Independent Reference Model
[8] is assumed for object requests.

The problem definition can be easily adapted to allow other
performance metric. E.g., to use the hit rate metric, we just
need to set; asl andr; as0; to use the byte hit rate metric,
sete,; as the size|fi| and r; as 0. However in this paper
we mainly consider the user-perceived retrieval costilatg
criterion for the requests since it is a most commonly used
and generalized criterion.

Belady showed an optimal offline algorithiB, for the
paging problem in his seminal work [3], in which uniform
size and retrieval cost are assumed. The algorithm assinmmes t
future is known and evicts the page with the longest forward

( subject to

Choice of a proper replacement policy is key to the pedistance, i.e., will be accessed furthest into the futi#g.is
formance of any caching system, be it a regular pagimptimal for every request sequence. But to the best of our
system, file caching, or web caching, or the system managikmnpwledge, there is no simple algorithm known to be optimal
views in the cache of a data warehouse application. A statar the case where the objects can have arbitrary sizes and
version of the caching problem asks what is the best setabitrary costs.
objects to cache subject to a total cache capacity so thaffo study the performance of paging algorithms in terms
the expected retrieval cost over any sequence of requestexpected cost, Coffman and Denning introduced the In-

obeying a workload distribution is minimized. Clearly, img

dependent Reference Model (IRM) [8]. It was a simple

problem, termed as static selection, once an object is dachgrobability model under which optimal policies (in terms

it stays in the cache. The static selection is widely used

the view management problem in database community. @eguest sequencg gs- - s - - -

af expected cost) can be found. The model assumes the
is a sequence of independent

the other hand, dynamic caching policies, like a web proxsgndom variables with the common, stationary distribution

adjusts the cache content based on the information sucteasdty) = 1, 52, ..

objects’ sizes, their retrieval costs, popularity of refese, etc.
while serving the requests. Efficient caching policies Aay

., By such thatPl¢; = f;] = p; for all
t > 1. Though not a realistic representation of request patterns
it provides insights for analyzing algorithmic behaviordan

important role in achieving better performance. The pnabledesigning algorithms under non-stationary models.



For the uniform sizes and uniform costs case, Coffman and the fractional optimum solution and show thitis the

Denning presented a policy called, which is optimal in best approximation ratio for both any replacement poli-
terms of fault rate [8]. A prescribes: When the cache is full, cies and static selection algorithms. Hefteis the size
of the cache. The algorithm is ald@x--approximation
Evict f; if i = arg; min(B; : f; in cache to the integral optimum solution, whet’ is the total
size of all objects [y, - - -, fy) minusK andHg:- is the

Aq is optimal only for the paging problem, where the .
requested objects share the same size and retrieval cdst. Bu K'th harmonic number.
for general caching problem such as web caching, both thel he paper is organized as follows: In section I, we will dis-
object sizes and costs are not guaranteed to be equal andCi#s the static selection problem and the relation betwesh ¢
distinction directly affects the effectiveness of the pigls. and benefit. Then we will present an Markov Decision Process
In many cases, the retrieval costs from remote servers &MDP) framework for the caching problem and discuss the
neither uniform nor proportional to the size due to factdte | relationships between the two problems. Then we present
the network traffic, computational ability of the remotevger ©OPtimal policies for thearbitrary sizes, arbitrary costs case in
etc. Bahat and Makowski [1] fully recognized the distinatio Section Il and show that policyl, and C'5 are special cases
caused by arbitrary retrieval costs and showed a paligy of it. In the next section, we will present our approximation

that can minimize the expected cost when the objects ha¥/gorithms for static selection and for replacement pefici
uniform sizes and arbitrary costs: with an optimal approximation ratid{ with regard to the

fractional optimal value andi - with regard to the integral
Evict f; if i = argmin(f;¢; : f; in cache or request¢d  optimal value whereK’ is vazl |fil — K. In section 1V,

like the algorith din hi hical q we empirically evaluate the performance of the algorithms
Unlike the algorithms used in hierarchical paged memoLy, replacement policies proposed here and compare them
systems(; assumes optional admission, which is well suit

- X . : L ; ith well known replacement policies in the literature unde
for applications like web caching. Since policies with mand a variety of settings. Our findings corroborate our anadytic
tory admission are a special case of the policies with optionoq ,its. We conclude the paper in section V

admission, the latter must be no worse than the former. For lack of space, the proofs and some deductions of our

Bahat also discussed the problem of finding optimal policieg,a\vtical results in this paper have been omitted. They can
with multi-criteria aspects, for example, they studied pheb- be found in [17] or [18].

lem of minimizing an average cost under a single constraint
in terms of another long-run average metric such as the miss I[I. OPTIMAL ALGORITHMS UNDER IRM
rate. However, this extension cannot solve aheitrary zes,  The web proxy server services the requests of its clients
arpltrary costs case because _the total size of. the ch?s‘?ﬂ/ forwarding requests to remote servers and maintaining a
objects cannot exceed a certain bound at any time, whichgiggicated disk space which we call cache to replicate web
a stronger constraint than a single long run constraint. AspBjects. When a request arrives, the system would first check
matter of fact, the size factor is important to web cachingae cache. When a requested file is not cached, we must decide
Fiat and Rosen [9] showed that caching policies adapted frgfether this object is worth caching and whether some abject
memory management applications that don't take size infQ he cache need to be evicted, and if yes, which ones. This
consideration do not work well in practice. In this paper wgan pe seen as a sequential decision making process and hence
take the study of this problem one step further by considerigan pe precisely modeled by the MDP framework.
the case where both the sizes and costs are arbitrary. We mak@ote that above considerations apply just as well to a cache
the following contributions: management system in a data warehouse. The cache manager
1) We will show that for any replacement policy (randonhas to make a decision whether to admit (evict) a view into
or deterministic) under the independent reference modgftom) the cache in case of faults. We refer the reader to [13]
the optimal long-run average metric cannot be bettgr6][12], etc. for related work in the data warehousing esnt
than that of the static selection algorithm. In our discussions henceforth, we use the term object to refe
2) We then use the Markov Decision Process (MDP) framgy any object that may be cached, be it a view or a document,
work to represent the problem and present a branch @f a file.
history dependent replacement policy that is optimal in
terms of the long-run average metric for objects with- The MDP Framework
arbitrary sizes and costs, and show that policlgsand The MDP described in [1] assumed uniform sizes, so the
Cy are special cases of this policy. We also show thdecision at any time evicts at most one object. We use a
a policy is optimal if and only if the induced stochastislightly different MDP to incorporate the arbitrary sizes.
process chain is a unichain that converges to the resultl) Decision Epochs. Decision epochs are defined as the
of optimal static selection algorithm. instants when requests are posed. In our problem we assume
3) We study both the optimal structure and competitiviafinite requests, so the set of decision epdths {1,2,...}.
structure under the IRM. We develafg-approximate Elements ofT will be denoted byt and usually referred to as
static algorithms and replacement policies with regard ttime ¢”.



2) Sate Sets. We define the system stafig at timet to be If the requesty;, causes a hit, we say that the system earns a
a pair (S, ¢:) composed of the cache content informati§in reward amounting te; — r;, or 0 if it is a fault. Alternatively
and the request;. S; is a subset of" with the constraint that we could say that a hit causes the system a coahd a fault
its total size cannot exceel: Zfiest |fil < K. The state causes a cost;.
space © is defined ag(S x Q}, whereS is the space of all We can see that the transition probability, the reward and
cache contents satisfying the space constraint, @nid the the cost are only relevant to the states but not the action and
space of all requests, in our case equalFtoAssumingN the time, so we can write them a3(¢’ | 8), w™(9) andc™ (9).
Eggltz Sﬁ:i?: 2{;: l\n/Ian;k.)er of elements, meaning that OLg. The Objective Value of a Policy

The MDP framework we propose consists [8fV states, In classic file cache management, we are mostly interested
and these states are grouped iffip sets. We call such a setin the expected total cost or average cost for every state
a group defined as follows: However in our system the total cost is equalcto for all
Group:A group of states is a set of states sharing the sanp@licies, thus it cannot distinguish the policies. Therefoe
cache content. will mainly focus on minimizing the average cost:
Each group containd’ states corresponding to tté possi- 1
ble distinct requests. L&t denote the set of all statéswith ac™(9) = lim_ TEér{Z c(01)} ®)
cache content, Gs ={6:0= (S, f;),i=1,2,...,N}. t=1

3) Action Sets: By actions, we mean the steps taken wherr equivalently, maximizing the average reward:
a fault occurs and there is not enough space to admit the .
(rjeqL_lested obje_ct in the _cache. For s_uch a case, the system may aw™(0) = lim lEér{Zw(Ht)} (6)
ecide to admit and evict some objects. We denote the set of T—oo T' —
admitted objects at timeas X, and the set of evicted objects | der t librate th ¢ f th lici
asY;, and the actiomd; is composed ofX; andY;. Unlike n order 1o callbrate the performance of the policies, we
[1], both X, andY; in our system may contain multiple items,_conS|der the static selection as a benchmark. As introduced

meaning that it is allowed to admit or evict multiple objects't;] stecgpntl, :I;e St:t'c seletct|on p?Ob'em 'E. tot felect thﬁ
If at any timet, X, contains at most one objegt, the policy est objects (files, documents, or views) subject to a cache

is called ademand policy [8]. Given the stated, = (S, q:) capauty S;:Ch tha;t trge_expggtet_j C?me ?hnswermgtadret?uesftt
the resulting staté, ,, can be written as using cache contenft is minimized, or the expected benefi

Bgs is maximized. In such a setting,'s and Bs can be

Oir1 = (Sts1,Ges1) (1) mathematically described as below:
(St, qe+1), qt € S
= (St + e, qr41), qr & St lqi| < K —|S¢]
Cs = T3 + €4 7
(Se+ X = Yoas), a0 ¢ Silal > K~ |5 572 e ) e @
Here, |5 + X; — ¥i| < K. Bs = Z Bi(ei — 1) 8

In our MDP system the space for eith& or Y; is a subset
of S and is finite, so the action space is also finite.

4) Rewards and Transition Probabilities: It is easily seen  In the database community, [12] and many later papers [11]
that for any state, when an action is made, the system woll@] presented static algorithms that can achieve a cotneeti
transfer to one of theV states in one (not necessarily a diffatio of the optimal benefit. In this paper, we would like ta pi
ferent one) group with the probabilit§;, 3-, . .., By defined down the relative performance of static selection and dyaam
in the Independent Reference Model respectively. Suppdé®lacement policies. Our first result is:
at time ¢ the system is in staté and actiona is taken,  Theorem 1. aw""(0) < Byeq, andac®?"(0) < Cpin
6 = (S;,q), the transition probability from staté to state for any starting staté, whereaw®”” (¢) and ac?”” (9) are

fi€S

¢’ for actiona of policy = is: the average reward and cost of the optimal policy OB,
is the maximum expected benefit, a@4,;,, is the minimum
pr (0| 6,a) = B (2) expected cost of the optimal static selection algorithm.
) To prove the above theorem, we need to compute the
where the stat®)’ = (S:11,f;) is composed of cache yyerage reward or cost of the MDP policies. Since computing
contents;., and requesy;. the average reward is equivalent to computing the average

Similarly, the one step rewardf (0, a) and one step cost

- - - cost, we will only consider average reward henceforth in
c7 (0, a) for policy = are defined as the following:

this section. The limit in average reward might diverge in
ei—ri ifq€Shag=1f; some systems, but when the state space and action space
wi (0,a) = { 0 it g ¢ g (3) are finite or countable, which is exactly our case, the limit
' ' always exists under some stationary randomized poticy
- ri If ¢ € St,qe = fi [7] [15], and the average reward or cost can be calculated
ci (0,a) { e if g & S, ) [7] [2] [24] using the formulaaw™(6) = Prw™(6), where



w™(0) is the one step reward for stafeunder the stationary
policy 7, and P is the Cesaro limit of the transition matrix:
P oo 27 Sorrg ! Pfy), where Pf is the ¢ step
transition matrix.

Since the states in our MDP is finité)" must exist and
be stochastic [14]. Asw™(#) is known according to the
definition in eq. (3), the only work left is to obtaiR™. PT
looks different when the induced chain has different strres,
namely, irreducible, multichain, and unichain [15] [2] |&&hd
these three categories cover the whole chain space. Lebks |
at them respectively:

1) Irreducible: Suppose a stationary policy induces an
irreducible Markov chain. Because the chain is just o
communicating class, the Cesero limit mati¥ for such a
chain is stochastic and its elemeft(6’|9) which represents
the limit transition probability from stat® to ¢’ must be
strictly greater thard [14].

The chain consists ofS| groups. Now order the states in

the transition matrix first by groups, then in each group
the requests of the states in that group frgmto fn. For
each group, the limiting distribution for th% states in it for

n

S|

E airBg,
=1

where Sy, is the cache content of group Becausen;;, > 0

and there must be soms) such thatBs, < Bz, SO
Z‘kszl a;xBs, < Bmaz, thus the policyr inducing an irre-
ducible Markov chain must have an average reward strictly
smaller thanB,,,, .

o 2) Unichain: If a policy induces a unichaiP”, i.e., the
Induced chain must consist of one closed communicating clas
D and a (possibly empty) set of transient stafesSuppose

D containsb groups. Then any row itlPT must be identical

aend take the following form:

[(alﬂlaadﬁ% .. 'aalﬂNa )7 (a2ﬂlaa252a oo aGQBNa )7
'"a(abﬁhabﬁQw"7a/bﬁN7)aO7Oa"'aO]

bject tozzz1 ar = 1,ax > 0, whereay, is the coefficient
or the k" group inD. This result is based on the Markovian
theory that the transition matrix for an induced unich&p

any starting state must be linearly dependent with the vecfhust satisfy the following properties [14] :

(ﬁlaﬁQa' <.

are made at time, the system would always transfer to som

,Bn). This is because no matter what decisions 1) P~ has equal rows;

e 2) Its element satisfies:

group (not necessarily different from the current one) with

probability 3; to By. So thei’” row of the limiting matrix
Pr which represents the transition probability from stéte
all states is in the following form:

[(ai1B1, ain P, - -

L) aiQﬁNa );
a;|s|Bn, )]

., 10N, )a (%251, ai2f2, . .

) (ai|S|ﬂla ai|S|62a EEEE)
subject tozle1 a;x = 1,a;; > 0, wherea;; is the coefficient
for row i and thek!” group.

Order the state¥ € © in the vectorw™ () in the same
way so that the resulting vector is in the form:

[(w™ (61), w™ (6°1), .., w™ (OV1)), (W (6"2), w™ (67), ..,

W™ (ON)), ., (w0181, w (0281), . wT (OVS1))](9)
where#’* means thej'" state in thek!” group. We will call
this form of the one step rewards vector ttenonical form

in the future. So the average reward for starting sfatan be
calculated as

aw™ (6) PIw™(9)

J=N.k=IS|

>

j=1,k=1

Is| N _
(aik Zﬁjw(ﬁjk))

aikﬁjw(ij)

D

k=1
S|

>

k=1

N
(aik Z Bilej —15))

v 0 eD

0 0eT (10)

y(016) = {

wherewv is a non-zero value, and;
3) Suppose the row is denoted as a vedtorthen it must
satisfy VP™ = P™, and)_ _, v =1.

The average reward for any starting stétecan then be
calculated following the same rule as in section 11-B1:

aw™ (0)

> anBuw(e’)

j=1,k=1

b N )
(e Y Byu(®")

k=1

S|

bl
<l

1

N
(aik Z Bilej —15))

aikBs,

E
—

<

s/

max

This shows that the resulting average reward is only rel-
evant to the groups in the closed communicating class
Specifically, if the groups contained iR all share the same
optimal cache conter§®”” (might be multiple) by the static
selection, then the average reward for every starting state
can achieve optimuni3,,, ;.



3) Multichain: Suppose policyr partitions the induced result in Dynamat [13] in which the authors argued that the
chain into disjoint closed communicating classBs,! = dynamic view management system using Smallest Penalty
1,2,...,L,L < |@®], and possibly a set of transient stateEirst (SPF) policy is better than the static selection evaemw
T. We can express any transition matéxof such kind into the queries form a uniform distribution. It's worth asking
its canonical form as below: why their experiment results do not agree with our theoaktic

results. Some reasons might include:
P00 - - 0 1) Though they also tested the uniform distribution, they
0 B 0 - - 0 omitted the firstt0% of queries.
P — ’ ’ (11) 2) They used the DCSR per view metric which is good for
‘ ‘ any dynamic algorithm but bad for the static algorithm
0 Pr 0 and it doesn’t guarantee the overall query answering
q1 q2 : . qrL qdr+1 cost.
whereP; corresponds to transitions between stateSjmnder ¢ A pranch of Optimal Policies
policy 7, g; corresponds to transitions from states/ino Dy,
and ¢+ to transitions between states withih We call this
form the canonical form of the transition matrix. The limiting
matrix was proved to be in the following form [14]:

The stationary optimal policy can be found using the
standard value iteration algorithm [4]. However, the value
iteration algorithm requires the information about alltsta
before it can answer the request query sequence. This is

Py 0 0 - - 0 in contrast to policydy, By and Cj; in which the optimal

0o Py 0 - - 0 decisions can be made solely on the information of the

. . current cache content and the request. This is becalgse
Pl = . . (12) B, and C; are stack algorithms [8] and can progressively

0 P; 0 converge to the optimum cache content by evicting the object

with smallests;(e; — r;)/|fi| when |f;| is uniform. These
kinds of algorithms share the inclusion property that foy an
where Pz* and q; are the limiting matrix forP; and 4i query sequences = {qth,_._} and any cache Capacity
respectively, and the rows in each of them have similar g, (k @) C S,(k + 1,w), where S,(k,w) is the cache
structure as described in the Irreducible case. content for a cache with Capacikyand guery sequence at
Write one step reward vector in its canonical form as ifime ¢. However when the sizdg;| are arbitrary, the optimal
ed. (9), then the average rewards for the starting staie algorithms for this case do not have the inclusion property.

7 S

Dy, 1 € [1, L] must be Nevertheless we can manage to remember the seen objects so
Be <B far and make the cache content converge to the most optimal
o Z Qik DSk = Dmaz states for the time being. Such an algorithm callgds shown
s, €D

in fig. 1, in whichc; represents;(e; — r;) for each object in
as we have discussed in the Irreducible case. Only wheriig 1.
closed communicating class is composed of states with cache
contentSOFT | can the average reward W8,,,.. We don'’t
even need to look at the limiting distribution for the tramgi | 1. SetB)(j) = 0 for every; € [1, K]
states before concluding that a multichain cannot guagante?- If @ new objectf; is requested, set = n + 1,
that every starting state obtains the optimal average cewar Update for each
Binas. BM(j) = B () if |fi| > j
So far we have discussed all three kinds of chains induded B™ (j) = maz{B"1(j),c; + B"Y(j — | fil)}
by a stationary policyr. Regardless of the kind of chain|  if |fil <Jj
induced by a policy, the average reward is no greater thad. If B™ (K) # B"~V(K)
Binas, Which proves theorem 1. Furthermore, the proof lead Update the cache content to ™ (K)

to the following theorem: 4. Loop back to step 2 when seeing the next request.
Theorem 2: The optimal average rewardwv®"7? () a sta-
tionary policy can achieve iB,,,, for any starting staté, and Fig. 1. TheDo Algorithm

it is obtained only by a policy inducing a unichain whose only

closed communicating class is made of the optimal groups. AD, reaches the optimal cache content when all flie

group is optimal if itsN' states share the cache cont8ft"”.  objects are met, and from that point on the system remains
The proof follows naturally from the discussion in provingvith the optimal static cache content. The time taken tolreac

theorem 1. that point is>"," , 1/4; and is finite, and the average reward
The theorem also holds for the case where dependeméeolicy Dy is also By,qz-

relationship exists among the objects, such as the case iThough this policy needs to remember the objects seen in

the data cube in OLAP. Our result is in contrast with ththe past and hence is a history dependent policy, it has a



smaller time complexity than the value iteration algoritth A. A Smple Greedy Algorithm

The space consumption @(K). Each time a new object is

seen, the algorithm incurs a cost 6fK),so the total time A standard approach for any integer program is to relax the

complexity incurred by the cache content updat@{gvK). integrality constraint to a linear one. In the linear rekio of
This policy, however, has a drawback that it is not a dematfde problem, the requirement an is relaxed to0 < z; < 1.

policy and may load objects which would be evicted withouthe solution of the LP problem can be computed in a very

being referenced at all. Its demand version, which we c&imple way: Sort the objects in terms g#; in non-decreasing

D;;, remembers the state @, but defers the admissions andPrder. Without loss of generality, assume

evictions of objects until they are requested. As provedin [

the demand version of a policy is no worse than itself under “a 2 o oN
the total reward criteria. Ll = 1ol = 1wl
As a summary of the above analysis, we can see that all
optimal policies under IRM would progress to the optimafn optimal solution is a vector’? = (zFP 2LP ... 2kF)

cache content over time, regardless whether the sizes #hdefined as:
retrieval costs are arbitrary. The difference is, when ikess

are uniform, such convergence only needs to examine the xJLP = 1,j=1,...,¢—1
current cache content and current request because of the , 1
inclusion property. We call this branch of optimal policibe LP K2 |51
convergence policy, and C§ and Aj are simple special cases * | fs]

of it. 2P = 0,j=¢+1,...,N

I11. APPROXIMATION ALGORITHMS

In general, static selection is NP-hard. It was shown in In other words, the solution evicts the whole objects from
[12] for the case of choosing the best views to materialize ' )

in a data warehouse subject to a total storage capacity. Tﬁ}g:g \f\;é;&d ;Satrrt:al ?:f;t\;vg,:e_ﬁ?g;irtrgz rg%?:}”'l%ﬁigi'
result extends to a general setting of static selection &vher ¢ & ject. P 9

the sizes and costs of objects are arbitrary. This hardné’géue is then

result motivates approximation algorithms for static stden. B -

. . .. s—1 (K/_Z< 1|f|)
And given our result that dynamic replacement policies cann C = Z i + g=t ViV
exceed the performance of static selection (Theorem 1), the = | fs] *
hardness result essentially issues a call for approximatio

algorithms for replacement policies as well. Inspired by the optimal solution for the LP relaxation of

Using the same set of notations, the static selection pmoblg, o gpiect selection/eviction problem, we now present an
can be interpreted as an integer programming problem 48 ihm for the IP version of the problem in fig. 2.
follows:

N
Minimize C': E(ﬂiem + Birs(1 = 21) 1. Sort objects in non-decreasing order $f.
N Assume the resulting order j5j = 1,2,...,N
Subject toz | filzs > K, 2. First assume all objects are cached, then evict the
P objects ranked from to ¢, where f. is the split object.
xTr; = 0, 1

where C is the expected cost to answer a requdst, = Fig. 2. The Simple Greedy Algorithm

Zfil |fi| — K and K is the cache capacity.;; = 0 meansf;
is cachedy; = 1 meansf; is evicted. Theorem 3: The greedy algorithm in fig. 2, denoted as
If we usec; to represent3;(e; — ;) for each object, the G, is K-approximate, i.e.Cc < KCjp, whereCq is the
objective value in the above formulation can be simplified agxpected cost to answer a query by algorithm G affg, is
the fractional optimal expected cost.

N N N N
ZﬂieifciJrﬁiri(l*xi)) — Z CixiJrZ Bir; = Z i+ Proof: Denote the first part of eq. (13) &3C], i.e.
i=1 i=1 i=1 i=1
(13) N
wheres = SN | g, is a constant. So the objective value we r[C] = Z it
want to minimize is jusgﬁil c;z;. If we find a solution with i=1

approximation ratick for it, then the Static Selection problem
will also obtain a solution with approximation ratio , its corresponding result by algorithtd asT'¢[C], and the



optimal LP resulT} ,[C]: This shows that the best approximation ratio for the object
selection/eviction problem i€/, meaning no polynomial al-
s—1 . . . .
relc] = Z it e gorithm can achieve a better ratio. The direct consequehce o
¢ — L this theorem is the following corollary.
= Corollary 1: The Greedy algorithm in fig. 2 can achieve

-1 / ¢—1
< gz:c. + K(K _ Zj:l |fj|)c the best approximation ratio for the object selectionfewic
- = | fs] ) problem.
P (ic_ N (K'=>52) |fj|)C ) C. The KnapSack Revisited
B =1 ' | fs] ) Now let’s revisit the well known 2-approximation KnapSack
< K-T3%p[C] solution. It also sorts the objects in termsf| f;|, but unlike
the Greedy Algorithm in fig. 2, it solves the problem by
Thus selecting the objects to cache, not to evict. Recall, we use
¢; to denotes;(e; — r;).
Cc = 0+TLc[C] (14) Like Greedy, KnapSack’s 2-approximation algorithm does
< 0+ K-Tpp[C] not cache any of the objects i1, fo, ..., fc_1}. Instead, it
< K-(6+4T%5[C) picks the better of{ fc1, feyo, ..., fn} and {f.} to cache.
< K-Cip Since we know the Greedy algorithm always evicts all the

objects in{f1, fo,..., fc}, KnapSack’s 2-approximation al-
m gorithm must be better than the Greedy. This means that
Since proving the actual co€t is k approximate is equal KnapSack’s 2-approximation algorithm not only has the best
to proving'[C] is k approximate, we will only care for the approximation ratioK on expected costs, but also achieves

I'[C] part while ignoring the constantin the future. at least half of the optimal benefit and must outperform
Greedy. Note that in general an algorithm that achieves an
B. The Lower Bound of The Approximation Ratios approximation ratio on the expected benefit does not guagant

lefnY approximation ratio on the expected cost. For example, i
r'ihe data cube case [12], where the views are correlated to
each other, there is no polynomial algorithm that can aehiev
an approximation ratio on the expected cost, but there ®xist
such algorithms that can achieve an approximation ratio on
the expected benefit. The distinction is caused by the extra
x*(I) hardness introduced by the relationships among the views.

Given a LP relaxation of any minimization problem,
X7, p(I) be the objective function value of an optimal solutio
to the LP-relaxation, and let*(I) be the objective function
value of an optimal solution to the original IP problem, th
integrality gap of the relaxation is defined as

sup —
- xip() D. An Extended Greedy Algorithm
If the objective function value of the solution found by |n section IlI-B we have shown that the Simple Greedy
the algorithm is compared directly with that of an optimahigorithm in fig. 2 achieves the best approximation ratio
fractional solution, the best approximation factor we capé Byt that doesn’t mean it performs well under all circumsesc
to prove is the integrality gap of the relaxation [19]. In oufy this section we present another approximation algorithm
case the task is to examine the integrality gap on the exgect®ied Extended Greedy, that might outperform the Simple
cost to see if it is smaller thail. The result is given in the Greedy algorithm in some cases.
following theorem: We have known that the problem can be seen as evicting
Theorem 4: The integrality gap on the expected cost for thg subset of the objects iff. Let's call this subsefS. The
object selection/eviction problem, defined sas, CCLT(Q) is  Extended Greedy algorithm iteratively picks the least <ost
at leastK, where! refers to an instance;*(I) refers to the expensive object int& until the size|S| is no less thark”,
integral optimal cost o, andCj (1) means the fractional where K” = >° .. |f;| — K. Suppose the object picked in

optimal cost onl. iterationj is denoted ag; and the set selected by the end of
Proof: Consider the following instance in table I: iteration j is S; , the cost-expensiveness for f; is defined as
follows:
Ot}iect size[fi] | coste; | ci/lfil (Cost-Expensiveness) The cost-expensiveness ffy in iter-
1 K K 1 . ..
s : TR ation j is .
TABLE | min{|f;], K’ — [S;-1|}

AN INSTANCE WHERE THE INTEGRALITY GAP ISK
, whereS;_; is the current subset to evict when iteratjpn 1
ends.Sy = ¢.
In this instanceC*(I) = K while Cj,(I) = 1, so the  The Extended Greedy algorithm is defined formally in fig. 3.
integrality gap (of all instances) is at least [ ]



_ In a more straightforward way, we can write this result for

1j=0,5=¢ iteration j into:
2. While [S;| < K o

= j . T T

Find the objectf; with the smallest cost-expensiveness, ! K'—15;-4|

wherej is the index of current iteration. _ < cr

(Break ties arbitrarily) PlSjalte = orC S; 4] -1

S] — S]71 Ufj B o oo C*
3. Cache the objects if' — 5. P51 |41/, < —

’ ’ K =[S = fil +1

Fig. 3. The Extended Greedy Algorithm , . .
Now let’'s start from the first view:

C*
<
In any iterationj, the selected objegt; covers the space of =g
sizemin{|f;[, K’ — [S;_1[} with costc;, where[S;_,| is the by < cr
total size of the objects i¥;_;. Let the cost per unit space, - K -1
or cost density incurred by these objects peipo, ..., px:
such thatC' = $X, p;. The following lemma holds: prr < CF
Lemma 1:
< o i—1.92... . K’ The lemma is proved.
pJ_K’*jﬁ*l’] < ) p -
whereC* is the integral optimal expected cost for the IP static The lemma leads naturally to the following theorem:
selection problem. Theorem 5. The Extended Greedy algorithm iy -
Proof: Suppose in iterationj, the selected objec, approximate with respect to the optimal IP solution, where
covers the space indexed frofi, 1| + 1 to |S;|, (|9, = Hx- is the K’th harmonic number.

IS;_1]+1/;). The cost densities incurred by it are denoted as  Proof: Denote the first part of eq. (13) by the Extended
P(S, 11419 P[5, \|+1:- -+ P5,- As they belong to one object, Greedy algorithm ag’z¢. Adding upp; from j =1 to K7,
these values are the identical. Without losing generaditp- We get the following:
pose the order in which the objects are chosen to evict is the
same as their original numbering, i.e., the first object ehos K’
is f1, the second chosen &, etc. Crpe = ij

Let the subset to evict selected by the optimal IP solution be j=1

S.. In any iterationj when the Extended Greedy algorithm in K’ o
fig. 3 is picking a object to evict, there must be some objects < Z Y
belonging toS. that have not been picked yet. Denote these j=1 —Jt
objects se¥;, andO; = S, —S;_1. objects inO; can fill the < Hg/C*
left uncovered space at a cogfieoj ¢;, Which is no greater
than the optimum solution’s total cost,.
]
Note that the approximation ratio of the Extended Greedy
PiS, 41 = PS5, a4z = = P3, Hg: is with respect to the solution of the IP problem. However
- - J . .
B ¢ this doesn’t mean that Extended Greedy is worse than Greedy.
~ min{|f], K’ — [S;_1]} It can outperform both the Greedy and the Kanpsack's
i approximation algorithms in some cases. Here is an example
< an’min{|fi|,K’ _ |§_71|}’fi €0; of such an instance:
> o ! In this example the system has four objects and their
< =0 features are shown in table II.
Zfieoj |f¢|
O+ object | costc; | size|fi| | ci/|fil
< = f1 20 40 0.5
> f.c0, il F2 10 10 1
Cc* f3 20 10 2
< - f1 5 5 3
< T
K |SJ—1|* TABLE I
< C AN INSTANCE WHEREEXTENDED GREEDY IS THE BEST

K' =[S = |f;| +1



Suppose the cache capacitylls the execution of the threeto evict, so that if the cost incurred by the chosen objects

algorithms are respectively shown in table IlI exceeds the bound, it stops and choose the bettéj,gf, or
f< to evict.
Algorithm Evicted object| Resulting Cost . .
KS 2-app T 3 J1 55 F. The K-Competitive Policy
Greedy Ju, f2 60 Following previous sections, we introducampetitive MDP
Extended Greedy| fi, f3 40

policies defined below:
e RESULT OFTﬁ}E'E-EJ';EE ALGORITHMS In an MDP system with the objective value functies’ (6),
wherer is a policy andd is the starting state, ibv™(0) <
k- ovOPT(9) + ¢ holds for any starting state, where¢ is a
constant andv®?7(9) is the optimal objective value, we say
E. A Mediated Greedy Algorithm policy 7 is k-competitive.

Just like what we did in the Greedy algorithm and the SUPPOse at time, the system is in staté;, = (S;-1,4:)
2-approximation knapsack algorithm, let's sort the object¥n€reSi—1 is the cache content at the beginning of time
in terms of the cost density: in non-increasing order. andgq, is the new request. Like in section II, we only consider

i‘se the result objectseires the situation of faults. The policy is given in fig. 5. Note tha

Without losing generality, suppo !
are conforming to their original indexes, i.e., the D1 policy uses non-mandatory replacement.

C1 Co CN
Lfil = 1fel =7 7 [ fwl Whenever a fault occurs on requestat time t and
The split object is denoted gs. By analyzing the above three| there’s not enough room fay, in the cache:
algorithms, we found that they all must evict the figst- 1 While the requesy; doesn't fit into the cache,
objects. The difference is how they deal with the objectsfro Evict the object with the smallests; from S; 1 U {q:}
fo to fy. Thus we can mediate the three algorithms so that
the new algorithm not only achieves the best approximation Fig. 5. TheD; Policy

ratio K on the expected cost and approximation ration the

benefit, but also performs no worse than the Extended Greedyrheorem 6: The policy in fig. 5, denoted a®; , is K-
We call the new algorithnviediated Greedy algorithm. Like in competitive to the optimal fractional solution of the stati
other algorithms, the objects are first sortedcby/ f;| in non- selection problem, i.e.,

decreasing order. We demarcate the objects into three parts D, " :

objects below the split object, denoted Bs,,; 2) The split ac™(6) < K- Cpp for all starting state
object; 3) objects above the split object, denotedag;,. The WhereK is the capacity of the cache, agy  is the expected
algorithm now calculates which objects need to be evicted g@st for the optimal fractional solution to the static oljec
addition to the firsk — 1 objects and we denote it & The Selection problem.

remaining part of the algorithm is shown in fig. 4, in which ~ Proof: Under policy Dy, the states converge to the group
we use notatiorC'(S) to represengf s Ci- Gs whose N states share the same cache cont€nt=

({fet1, fet2,- .., fn} for any starting state within finite time.
So this policy is a stationary policy that induces a unichain
F. Markov chain, with the only one closed communicating class
( hzgh)a . R A

being equal to groufzs. From the result in section I, we
While ([5| < K’ — | Fi,,| and know the average cost(9) for policy 7 is Prer(0) = Bs.
C(S) < min{C(Fhign), C{LP}) ince Bs = ;. ,, Bi(e; —ri) < K - C] p], the theorem is

proved. [ |

cost-expensiveness. (Break ties arbitrarily) Scheuermanset aI._lntr_oduced a sw_mlar policy in [16], and
5=SU{f;) showed that the policy is nearly optimal when the number of

4.1 C(3) > min{C(Fpign), CUL )} objects is very large. However it does not come with a more
. =z high)s S : : ;
Cache the better af},;4, Or fc, evict all others. strict theorefical analysis.

GetC
S=¢

1.
2.
3.

In Fiign U {f}.find the objectf; with the smallest

Else IV. EXPERIMENTS
Cache the objects it — S - Fj,.,, evict all others, The replacement policies we tested include: optimal dy-
namic policy Dy, Dg, the competitive dynamic policy);,
Fig. 4. The Mediated Greedy Algorithm the classical Greedy-Duel Size algorithm [5] and its vdrian

Greedy-Duel Size Frequency algorithm [6]. We also imple-
The algorithm is based on the Extended Greedy but it fistented the static algorithms integral OPT, denotedSas
identifies those objects that must be evict¢dtp f._1), then the static fractional OPT, denoted &%, Simple Greedy and
it iteratively picks objects inf,;,, U fc to evict. It keeps a Mediated Greedy. The experiments were done under both the
bound ofmin{C(Fri4n), C({f<})} when choosing the objectsIRM and real web trace.
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A. The Independent Reference Model which is made of tha 0000 queries, is divided intd 00 slots.
TJIe result shows that the query answering cost$faemains

ady, andD, and Dy« converge taS, within 1500 queries.
n that period,D, performs a little worse tha®y*, because
it may switch in some objects that are not referenced |&er.
'Ps almost as good aByx in this example.

To simulate the Independent Reference Model, we built
random query generator which generates query sequendes
the Zipf distribution. The query sequence is made of sedgien
requests to a set of simulated objects with their sizes tmifo
distributed in[1,100]. The retrieval costs from remote serve
are also uniformly distributed in [0,10], not related to Hiees. Performance Over Time
The retrieval costs from cache are set to be a small fraction .,
of the retrieval costs from remote server plus some constant
term to account for the 1/O cost. Various query sequences wer ~_ **
generated with different number of objects and query length
The cache capacity were chosen fr6f of total object sizes
to 50% of total object sizes. Under each setting the test was
repeated for 500 trials to get the expected query answering
Ccosts.

Fig. 6 shows a typical result of expected qUEry anSWErNG  zu i i i i i s i
costs (average cost) of different policies/algorithms.this BTN AT L 0 ALAT ALY 6T G0 09 TR 66
particular test, the query sequence is composéd@d queries
on 100 objects. The results under different settings show Fig. 7. The average cost to answer queries
similar patterns as described blow.

——D0

—=—DO*
D1
GDS

—+—GDSF

——50

350

300 |

Query Answering Cost

250 F

To compare the cache content of the dynamic policies
Overall Perfornance over time, we used theorrelation factor defined agsS] N
9000, Ssol/|Ss,|, where ST is the cache content for policy at
time ¢, andSg, is the cache content for algorithsy. Fig. 8
shows the correlation between different policies:

8500

8000)
Correlation

7500

Average Cost

12

7000

NN N NN

6500 0.8 - —DO0
— DO*
—-—D1
—GDS

A A : —GDSF

6000

Correlation
o
(o))

(=)
S

2,
%,

o

N

0

Algorithm
1 476 951 1426 1901 2376 2851 3326 3801 4276 4751

Fig. 6. The average cost to answer queries Time

. .. . . Fig. 8. The average cost to answer queries
Among the dynamic policies and static algorithms tested,

the static integral OPBj is basically the best except for the Dy and Dy both converge td, while D, converges faster
static fractional OPTS;. The GDS policy performs poorly 1han py«. D, reaches a correlation value very closeltout
under the IRM. Though its variant GDSF improves a lot, it i85 1d never reach in this example. However when cache
still much worse compared to the other three dynamic p@“Ci%apacity or number of objects increasés, could reachl as
like Do, Dg and Dy. Do, Dy and D, are very close to eachye||. GDS and GDSF have a much lower correlation, showing
other but they are all worse thafy, which confirms theorem 1. {hat their cache contents are quite different from thass.
Meanwhile, as expected, the demand version of dynamic OPTj symmary, the experiment results for IRM basically sgitisf

policy g is always better thad)o. The competitive greedy oyr expectations, exemplifying the correctness of our theo
policy D; is slightly worse tharDj in this case, but as cache

capacity and number of objects varies, it is very closéfp B. Experiments on the weblogs

For the static algorithms, Simple Greedy and Mediated To test our policies under a real workload, we used our
Greedy are very close, with Mediated Greedy slightly bettedepartmental weblogs as the underlying data. We chose the

To study the dynamic policies’ behavior, we also recordegleb request logs on two random consecutive days, with the
their performance over time and compare it wi In fig. 7, query sequence on the first day as the probation period to
we use query sequences of length000 and number of gather the information required to run the algorithms, dred t
objects1000, and show the expected costs to ans@#y such query sequence on the next day as real workload. According
sequences when time proceeds. TXiecoordinate, the time, to our analysis, the queries distribution is highly skewEde



number of queries on the first day480480 and they are cast

11

V. CONCLUSIONS

on 66197 dist_inct web objects. Th_e _number of queries on the cache management is a critical component of several sys-
second day i$45659 on 112380 distinct web objects. There ;o mg including file managers, web proxies, and data ware-

are 46183 new distinct objects requested on the second day,ses 1o name a few. Static selection focuses on choosing

but most of them were referenced only once.

Overall Performance

17050000

17030000 ==

17010000 =

16990000 H

16970000 [ 7

16950000 B

Average Cost

16930000

16910000 H 1

16890000

16870000 =
21066

31600 42133 52666

Cache Size

63200 73733 84266

Fig. 9.

The overall performance is shown in fig.
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O GDSF

ob1

HDO

@ DO

WS

OS0x

ESimple Greedy
W Mediated Greedy

The average cost to answer queries

9'0 is still

the best possible objects to cache (subject to a constraint o
capacity) and leaving them in the cache forever. Dynamic
cache management relies on replacement policies which de-
cide whether, when, and which objects to admit to or evict
from the cache.

In this paper, we considered a general setting whereby ob-
jects requested can have arbitrary sizes and arbitrargvatr
(or evaluation) cost. Under the IRM, we showed the surpgisin
result that dynamic policies cannot exceed the performance
of static selection in terms of expected average reward over
any request sequence obeying the given probability distrib
tion over requests. Our result shows that a dynamic policy
approaches the performance of (optimal) static selecfiion i
the stochastic chain induced by it is irreducible. Givent tha
optimal static selection is NP-hard in general. we develop
polynomial time approximation algorithms for both static
selection and for dynamic replacement. The algorithms are
K-approximate w.r.t. the fractional optimum solution foatit

the best except forS; in most of the cases. GDS andselection andi; -approximate for w.r.t. the integral optimum
GDSF are still worse than other policies in this test, prdpabsolution for static selection. We also show that these tesul
because of the extremely skew distribution of the querig. Tare tight by showing thak is the best possible approximation
remaining three dynamic policies perform very closeSp
The static greedy algorithms show more variations in terfns binding optimum (static or dynamic) solutions without the
overall performance. Overall, these policies have verjlam IRM assumption is an open problem.

performance, but when talking about the algorithm running
times, the optimal static algorithm and policies are far too

ratio for both static selection and for dynamic replacement
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