
Degree-of-Knowledge: Investigating an Indicator for
Source Code Authority

Thomas Fritz, Jingwen Ou and Gail C. Murphy
Department of Computer Science

University of British Columbia
Vancouver, BC, Canada

{fritz,jingweno,murphy}@cs.ubc.ca

ABSTRACT
Working on the source code as part of a large team produc-
tively requires a delicate balance. Optimally, a developer
might like to thoroughly assess each change to the source
code entering their development environment lest the change
introduce a fault. In reality, a developer is faced with thou-
sands of changes to source code elements entering their en-
vironment each day, forcing the developer to make choices
about how often and to what depth to assess changes. In this
paper, we investigate an approach to help a developer make
these choices by providing an indicator of the authority with
which a change has been made. We refer to our indicator
of source code authority as a degree-of-knowledge (DOK),
a real value that can be computed automatically for each
source code element and each developer. The computation
of DOK is based on authorship data from the source revi-
sion history of the project and on interaction data collected
as a developer works. We present data collected from eight
professional software developers to demonstrate the rate of
information flow faced by developers. We also report on
two experiments we conducted involving nine professional
software developers to set the weightings of authorship and
interaction for the DOK computation. To show the potential
usefulness of the indicator, we report on three case studies.
These studies considered the use of the indicator to help find
experts, to help with onboarding and to help with assessing
information in changesets.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments

General Terms
Human Factors

Keywords
expertise, authorship, degree-of-interest, interaction, degree-
of-knowledge, onboarding

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE ’09 Amsterdam, The Netherlands
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

1. INTRODUCTION
A common experience in today’s information rich soci-

eties is the feeling of being deluged by information. For in-
stance, querying the web in your favourite search engine for
the keywords “software engineering research” returns tens of
millions of results; a Google web search on March 14, 2009
returned approximately 39,300,000 results. A human filter-
ing through these results considers implicit and explicit cues
about the authority and quality of the pages returned. For
authority, the human most often relies on the link structure
of the web [10], which corresponds to the rank of the page
returned. For quality, the human uses both explicit—a biog-
raphy of the page’s author—and implicit—the organization
and layout of the site containing the page—cues [1].

Software developers also face a deluge of information daily.
The integrated development environments developers use
provide fast access to the many (often millions of) lines of
code comprising the system on which they work. The in-
formation available through the development environment
is not static, but is constantly being changed by members of
the team. Similar to the web search case, a developer must
thus also constantly assess the authority and quality of in-
formation available within the environment. For instance,
when receiving a group of source revisions—a changeset—
from a team member that is intended to solve a bug or imple-
ment an enhancement, a developer must assess the impact
of the changeset: will the revisions integrate easily or will
they cause the system to break? In contrast to the web
search case in which there are a variety of cues available to
the human to differentiate the pages returned in the search,
a developer typically has only a few implicit cues. For in-
stance, a developer may use implicit knowledge about who
authored the changeset: revisions from a known long-time
team member with a track record for quality may be ac-
cepted without question whereas revisions from a new team
member may be examined more closely.

Throughout a day of programming, a developer is con-
stantly faced with such assessments. For one group of pro-
fessional developers we studied, each developer, on aver-
age, accepted changes to over one thousand source code
elements per day over a three month period (Section 4).
Correct assessments enable a productive workday. Incorrect
assessments result in misplaced or wasted effort, with con-
sequences such as the introduction of faults when reviews or
other crosschecks on the codebase were not performed.

We believe that providing explicit, reliable cues about the
authority and quality of information entering a developer’s
environment can enable developers to direct their available

effort towards the parts of the development more likely to
cause problems. In this paper, we investigate an explicit in-
dicator for source code authority. The idea is that if we
could transmit an indicator of authority with new infor-
mation, such as a changeset, entering a developer’s envi-
ronment, the receiving developer could make an assessment
about the quality of the information more accurately and
quickly.

As an indicator for authority about source code elements,
we introduce a degree-of-knowledge (DOK) value that can
be automatically computed from data gathered about and
during the development process (Section 3). A DOK value
for a source code element is a real value specific to a devel-
oper; different developers may have different DOK values for
the same source code elements. We compute the DOK val-
ues for a developer by combining authorship data from the
source revision system and interaction data from monitoring
the developer’s activity in the development environment.

To determine how authorship and interaction combine to
represent a developer’s knowledge of a source code element,
we conducted experiments with two groups of professional
developers (Section 5). We found that the factor with the
most effect on a source code element’s DOK value for a
developer was whether or not that developer was the first
author of the element. However, we also found that all as-
pects of authorship and interaction improve the quality of
the model and help to explain a developer’s knowledge of an
element.

We also report on three case studies we conducted about
the use of DOK values to indicate authority in source code
(Section 6). One case study uses DOK values to consider
which developers on a team are knowledgeable (have author-
ity) in different areas of the codebase. We found that our ap-
proach performed better than existing approaches based on
authorship alone. The second case study uses DOK values
to help with onboarding a new team member onto a devel-
opment project. From this study, we learned about kinds of
source code for which our current definition of DOK does not
adequately indicate authority. The last case study considers
the use of DOK values to help with changeset assessment.
Our approach produced promising results for identifying ele-
ments that would help with understanding, and presumably,
assessing elements when receiving a changeset.

This paper makes the following contributions:

• it introduces and empirically investigates an explicit
indicator for authority, a degree-of-knowledge (DOK)
value, that incorporates both a developer’s authorship
of code elements and a developer’s interaction with
code elements.

• it reports on data about professional developers’ au-
thorship and interaction with the code, providing em-
pirical evidence about the rate of information flowing
into a developer’s environment and the need to con-
sider both authorship and interaction to more accu-
rately reflect the code elements with which a developer
works.

• it reports on the use of DOK values in three differ-
ent scenarios in an industrial environment, reporting
on the benefits and limitations of our indicator and
demonstrating a measurable improvement for one sce-
nario, finding experts, compared to previous approaches.

2. RELATED WORK
Earlier work has considered how to determine which de-

velopers are experts in particular parts of a source codebase
(e.g., [13]). These papers use expertise in the sense of hav-
ing “the skill of an expert” [13]. In this paper, we have de-
liberately chosen to use the term authority because, rather
than trying to identify individuals with a certain skill level
in a part of the code base, we want to capture whether a
developer altering code is “an accepted source of expert in-
formation or advice”1 in the part of the codebase that is
changing.

Most previous automated approaches to determining soft-
ware development expertise rely on change information avail-
able from a project’s source repository. For instance, the Ex-
pertise Recommender [11] and Expertise Browser [13] each
use a form of the “Line 10 Rule”, which is a heuristic that
the person committing changes to a file2 has expertise in
that file. The Expertise Recommender uses this heuris-
tic to present the developer with the most recent exper-
tise for the source file; the Expertise Browser gathers and
ranks developers based on changes over time. The Emer-
gent Expertise Locator refines the approach of the Exper-
tise Browser by considering the relationship between files
that were changed together in quantifying experience, and
hence, expertise [12]. Girba and colleagues consider finer-
grained information, equating expertise with the number of
lines of code each developer changes [5]. None of these pre-
vious approaches consider the ebb and flow of a developer’s
expertise in a particular part of the system. The Exper-
tise Recommender considers expertise as a binary function,
only one developer at a time has expertise in a file depend-
ing on who last changed it. The Expertise Browser and
Emergent Expertise Locator represent expertise as a mono-
tonically increasing function; a developer who completely
replaces the implementation of an existing method has no
impact on the expertise of the developer who originally cre-
ated the method. Our approach models the ebb and flow
of multiple developers changing the same file; a developer’s
degree of knowledge in the file rises when the developer com-
mits changes to the source repository and diminishes when
other developers make changes.

The approach we consider in this paper also differs from
previous expertise identification approaches by considering
not just the code a developer authors and changes, but also
code that the developer consults during their work. Schuler
and Zimmermann also noted the need to move beyond au-
thorship for determining expertise, suggesting an approach
that analyzed the changed code for what code was called
(but not changed). In this way, they were able to create
expertise profiles that included data about what APIs a de-
veloper may be expert in through their use of those APIs.

In this paper, we go a step further, considering how a
developer interacts with the code in a development environ-
ment as they produce changes to the code. We build on ear-
lier work from our research group that introduced degree-of-
interest (DOI) values to represent which program elements a
developer has interacted with significantly [9]. The more fre-
quently and recently a developer has interacted with a par-

1www.thefreedictionary.com/authority
2Please note that we use the term file but many of these
techniques also apply at a finer-level of granularity, such as
methods or functions.

ticular program element, the higher the DOI value; as a de-
veloper moves to work on other program elements, the DOI
value of the initial element decays. Our initial applications
of this concept computed DOIs across all of a developer’s
workday [8] and filtered the views in the environment based
on DOI values. However, this approach did not sufficiently
scope the display of appropriate elements. Subsequent work
scopes the DOI computation per task [9]. In this paper, we
return to the computation of DOI across all of a developer’s
work to capture a developer’s authority in the source across
tasks.

Others have considered the use of interaction data for sug-
gesting where to navigate next in the code [3], for tracking
the influence of copied and pasted code [14] and for under-
standing the differences between novice and expert program-
mers [15]. None of these previous efforts have considered the
use of interaction data for determining expertise or authority
in source code.

In a previous study, we considered whether interaction
information alone could indicate for which code a devel-
oper had knowledge, or in the terms of this paper, author-
ity [4]. This study involved nineteen industrial Java pro-
grammers. Through this study, we found that DOI val-
ues computed from the interaction information can indicate
knowledge about a program’s source. This study also found
that other factors, such as authorship of code, should be used
to augment DOI when attempting to gauge a developer’s
knowledge of the code. This paper builds on this previous
work, investigating how a combination of interaction and
authorship information impacts a developer’s knowledge of
code.

3. AN INDICATOR FOR AUTHORITY
We refer to the indicator for source code authority that we

investigate in this paper as a degree-of-knowledge (DOK),
which is a real value, computed per developer and assigned
to a source code element. We use the term source code
element to refer to a class (type), method, or field in a source
codebase. Our definition of DOK includes one component
indicating a developer’s longer-term knowledge of a source
code element, represented by a degree-of-authorship value,
and a second component indicating a developer’s shorter-
term knowledge, represented by a degree-of-interest value.

3.1 Degree-of-Authorship
From our study of nineteen industrial developers [4], we

determined that the developer’s knowledge in a source code
element depends on whether the developer has authored and
contributed code to the element and how many changes not
authored by the developer have subsequently occurred. We
thus consider the degree-of-authorship (DOA) of a developer
D1 in an element to be determined by three factors:

• first authorship (FA), representing whether D1 cre-
ated the first version of the element,

• the number of deliveries (DL), representing subsequent
changes after first authorship made to the element by
D1,

• acceptances (AC), representing changes to the element
not completed by D1.

3.2 Degree-of-Interest
The degree-of-interest (DOI) represents the amount of

interaction—selections and edits—a developer has had with

Figure 1: Timeline.

a source code element [9]. The DOI of an element rises
with each interaction the developer has with the element
and decays as the programmer interacts with other elements.
Different kinds of interactions contribute differently to the
DOI of an element; for instance, selections of an element con-
tribute less to DOI than edits of an element. We use the DOI
as defined in the Eclipse Mylyn project, which is successfully
supporting hundreds of thousands of Java programmers in
their daily work. Details on the DOI computation can be
found elsewhere [9, 7].

3.3 Degree-of-Knowledge
We combine the DOA and DOI of a source code element

for a developer to provide an indicator of the developer’s
authority in that element. The degree of knowledge we com-
pute linearly combines the factors contributing to DOA and
the DOI:

DOK = α1 ∗ FA + α2 ∗DL + α3 ∗AC + β ∗DOI

To determine appropriate weightings (α1, α2, α3, β), we
conducted an experiment with professional Java developers;
this experiment is described later in the paper (Section 5).

4. DATA OVERVIEW
For the experiments and studies we report on in this pa-

per, we collected data from two sites (Site1 and Site2). Fig-
ure 1 provides an overview of the data collection. Author-
ship information for the developers involved in the study at
each site was gathered for the entire time period (T1 through
T4), resulting in almost three and a half months of author-
ship data. We gathered a total of twelve days of interaction
information (T2 to T4).

Site1 involved seven professional developers building a
Java client/server system. The professional experience of
these developers ranged from one to twenty-two years, with
an average experience of 11.6 years (± 5.9 years). These de-
velopers each worked on multiple streams (branches) of the
code. Most developers focused their work on one stream,
even though they were working on several streams; we chose
to focus our data collection on a developer’s major stream.
One developer (D5) could not identify a major stream, but
worked more equally on more than four streams; this work
pattern makes authorship difficult to determine and we ex-
clude his data from the presentation given in this section.3

Table 1 summarizes the time periods over which data was
collected for this site.

3The data from developer D5 was included in the experiment
(Section 5) and case studies (Section 6).

T1 T2 T3 T4

Site4 3/11/2008 22/01/2009 2/02/2009 7/02/2009

Site2 24/11/2008 12/02/2009 23/02/2009 28/02/2009

Table 1: Data Collection Periods for each Site.

Site2 involved two professional developers, who in part
of their time, build open source frameworks and tools for
Eclipse. We analyzed data only for the open source portion
of their work. These developers had an average of four years
of professional experience. Table 1 summarizes the time
periods over which data was collected for this site.

To provide an overview of the data we use in this paper,
we use various statistics to characterize both the authorship
and interaction data. For space reasons, we report in detail
only on data from Site1. A summary of the data for Site2

is provided at the end of this section.

4.1 Authorship Data
At Site1, on average, a first authorship, delivery or accept

event on an element occurred every 54 seconds. The develop-
ers first authored 819 (±576) elements, produced 962 (±755)
delivery events and accepted 153,240 (±46, 572) changes to
an element over three months. The standard deviations for
all of these values are high, which is not surprising given the
different roles of team members (see Section 7). These aggre-
gate statistics count multiple events happening to the same
elements. Considering unique elements, on average, the de-
velopers authored 660 elements, delivered to 606 unique el-
ements and accepted changes on 67,437 unique elements.
Over the period T1 to T3, a developer thus, on average, au-
thored ten new elements, delivered changes to nine elements
and accepted changes to 1068 elements, each day.

To provide more insight into this data, we picked a random
developer and ten random source code elements that had at
least two authorship related events. To give a sense of the
ebb and flow of the authorship, we assigned a first authorship
event a value of one, a delivery event a value of 0.5 (since
a delivery likely changes just part of the element) and an
accept event a negative value of 0.1 (since an accept event
corresponds to someone else changing the element). Figure 2
plots the resultant values for each of the ten source code
elements over time. Only a few of the elements in the plot
are the target of several events over the three months of data
we collected. All elements except one have an accept event
after a first authorship or delivery, meaning that someone
else on the team has delivered a change to the same element;
the lines representing these elements have a declining slope.
Over the three months and the six developers, there is a ratio
of 86 to 1 for accept events versus all first authorship and
delivery events. This large ratio is indicative of the problem
of overwhelming change we described in the introduction.

4.2 Interaction Data
The developers had an average of 7861 (±3982) interac-

tions over the seven working days from T2 to T3, interacting
with 923 (±518) distinct elements. As with the authorship
information, the difference between individuals is quite sub-
stantial as it depends on the individual’s role on the team
and their individual work patterns. Analyzing the data for
the developers separately over the five day period from T3

to T4, the number of elements each interacted with over the
prior seven days of interaction is relatively stable at 7500

Figure 2: Authorship Events for Ten Elements.

(±1135).
On average, each developer had 43 (±7) elements with

a positive DOI per day. We can see this relative stabil-
ity in graphs we produced for two developers. Figures 3(a)
and 3(b) show, for the period of five working days (T3 to
T4), elements with a positive DOI value on at least one of
the five days for each of two developers.4 These graphs show
the differences in work patterns across the elements for dif-
ferent developers. Some developers, such as D1 (Figure 3(a))
interact with a large group of elements. For other develop-
ers, their interaction varies a lot between the elements and
only smaller groups of elements have a similar interaction
pattern as can be seen for D3 (Figure 3(b)). Most of the six
developers also had at least one code element with which he
or she was interacting with a lot more than with the rest of
the code.

4.3 Authorship and Interaction
Our assumption is that a degree of knowledge indicator

should include components for authorship and for interac-
tion. To gain insight into whether both of these components
are important and cover different aspects of development,
we looked, for each of the five days between T3 and T4, at
the intersection of all elements that had a positive DOI with
all elements that had at least one first authorship or deliv-
ery event. On average, out of 43 elements with a positive
DOI, only 11 (26%) also had at least one first authorship or
delivery event over the last three months.

To give a sense of the stability in the authorship and inter-
action data, we plotted, for five consecutive days (T3 to T4),
the number of elements with at least one interaction event
during the last 7 working days and the number of elements
with a delivery or first authorship event over the last three
months. The values are relatively stable except for that the
number of elements developers interacted with decreases to-
wards Thursday (5/2/09), and the number of elements deliv-
ered to the stream increases prominently on Friday (6/2/09).
This data reflects that the developers were quite active on
Monday, created changes throughout the whole work week
but delivered most of them on Friday.

4.4 Site2 Data
On average, developers at Site2 had a first authorship,

delivery or accept event only every 700 seconds (compared
to 54 seconds at Site1). Considering unique elements and

4The DOI values shown in these graphs were based on the
prior seven days of interaction for each day indicated in the
graph.

(a) Developer 1 (b) Developer 3

Figure 3: Positive DOI Elements.

Figure 4: Overall Elements for DOA and DOI.

comparing to Site1, the developers authored, on average, 2.7
times as many elements (1762 ± 1835), delivered 2.8 times
as many elements (1697 ± 1835), and accepted changes to
only 1/11 as many elements (5977 ± 3454).

The developers at Site2 had an average of 6195 interac-
tions over the seven working days, interacting with 566 dis-
tinct elements and ending, on average, with 60 elements each
day with a positive DOI. These numbers are fairly similar to
Site1. However, the number of elements with a positive DOI
that also had at least one first authorship or delivery event
is only four which results in an overlap of 7% compared to
the 26% overlap at the first site.

There are several potential reasons for these differences.
First, whereas the source repository system in use at Site1

supported atomic changesets with explicit accept events oc-
curring in the development environment, at Site2, the source
revision system lacked both of these elements of support.
Instead, we inferred delivery events based on revision infor-
mation to source code elements; if a developer committed
several times as part of one logical change, we record this
as multiple delivery events. Second, the lack of an explicit
accept event that could be logged meant that we had to in-
fer at the end of each day that all outstanding changes were
accepted, potentially increasing the accept events. Finally,
the codebase at Site2 is smaller and is being worked on by
a smaller team, potentially causing a different event profile.

5. DETERMINING DOK WEIGHTINGS
Completing our definition of a degree of knowledge value

for a source code element requires determining appropriate

weightings for the factors contributing to the degree of au-
thorship and for the degree of interest. As there is no specific
theory on which we can choose the weightings, we conducted
an experiment to determine appropriate values empirically.
In essence, the experiment involves gathering data about au-
thorship from the revision history of a project, about interest
by monitoring developers’ interactions with the codebase as
they work on the project and about knowledge by asking de-
velopers to rate their level of knowledge in particular code
elements. Using the developer ratings, we then apply mul-
tiple linear regression to determine appropriate weightings
for the various factors.

We report in this section on an initial determination of
weighting values based on the data collected from Site1.
We then used these weightings to test their applicability at
Site2.

5.1 Method
At time T3 in Figure 1, we chose, for each developer, fourty

random code elements that the developer had either selected
or edited at least once in the last seven days, or which the
developer had authored or delivered in the last three months.
Each developer was then asked to assess how well he or she
knew each of those elements on a scale from one to five. To
help the developers with the rating scale, we explained that
a five meant the developer could reproduce the code without
looking at it, a three meant that the developer would need
to perform some investigations before reproducing the code,
and a one meant that the developer had no knowledge of the
code.

This process resulted in 246 ratings for all seven develop-
ers. This value is less than the 280 possible ratings because
some of the elements we randomly picked were not Java
elements and the developers stated that they would have
difficulty rating them; we therefore ignored these elements.

5.2 Results
For our first experimental setting, we applied multiple lin-

ear regression to the data collected from the source revision
logs and the logs collected as the developers worked. Multi-
ple linear regression analysis tries to find a linear equation
that best predicts the ratings provided by developers for
the code elements using the four independent variables: FA
(first authorships), DL (deliveries), AC (accepts) and DOI

(degree of interest). Multiple linear regression is suitable for
our data even though the user ratings are ordinal because
we are attempting to find an approximation, not a certain
class, for the user ratings.

The values of some of the variables, especially DOI and
AC can be substantially higher than the values of the other
variables. To account for these different scales that could
potentially make the weighting factors difficult to ascertain,
we applied the analysis both with and without taking the
natural logarithms of the values. With the developer rating
(on a scale of 1 to 5) as the dependent variable, the best
fit of the data was achieved with the values presented in
Table 2, when the natural logarithm of the AC and DOI
values was used. In this analysis, we also chose to consider
only positive values of the DOI variable. Negative values of
DOI indicate usage that is non-recent usage and we do not
want to penalize our indicator in reducing knowledge beyond
that of an element which has not had any interactions and
whose DOI value would be zero.

Coefficient Standard Error p-value

Intercept 3.293 0.133 2.32E-68

FA 1.098 0.179 3.16E-09

DL 0.164 0.053 0.002

ln(1 + AC) -0.321 0.105 0.002

ln(1 + DOI) 0.190 0.100 0.059

Table 2: Coefficients for Linear Regression.

The FA, DL and AC independent variables are signifi-
cant5 in this model and thus help to explain the user ratings.
The DOI variable is very close to being significant. We hy-
pothesize that this lack of significance is from the lack of
elements with a positive DOI in the set of randomly cho-
sen elements. Only 7% of all data points have a positive
DOI compared to 28%, 50% and 57% for FA, DL and AC
respectively.

The F-ratio, a test statistic used for determining the pre-
dictive capability of the model as a whole, is 19.6 (p = 5.59E-
14). This states that the model based on our four predictor
variables has a statistically significant ability to predict the
user rating. The overall model has an estimated “goodness
of fit”, R Square, of 0.25 (adjusted R Square is 0.23). R
Square represents the fraction of the variation in our user
rating that is accounted for by our independent variables.
The correlation coefficient R that represents a measure of
the overall fit between our predictor variables and the user
rating is 0.50. The standard error of the estimate is 1.17.
The 25% R Square value shows that our model does not
predict the user rating completely. However, the p-value
of the overall model as well as the p-values for the indepen-
dent variables indicate that there is a statistically significant
linear relationship between our model and the user ratings
and that each of our four variables contribute to the overall
explanation of the user rating.

5.3 Testing the Weightings
To determine if our weightings have any applicability in

a different environment, we conducted a similar experiment

5We consider results to be statistically significant with
p<0.05.

with the two professional Java developers at Site2. As we
did at Site1, we again chose fourty random code elements
for each developer with the same characteristics as at Site1

and we asked each developer to rank the presented elements
from one to five.

We then computed the DOK values for each of the ele-
ments using the weightings determined through the earlier
experiment with the developers at Site1. To see whether our
previously determined model can describe the relationship
between the four independent variables and the developer
ratings at Site2, we applied the Spearman rank correlation
coefficient statistic. The Spearman rank correlation is a non-
parametric rank statistic that is designed to handle ordinal
data and is robust to the distribution. For the 80 code ele-
ments we studied from the two developers there is a statis-
tically significant (p=0.0004) correlation with rs = 0.3847.
This result shows that our model can be applied in a differ-
ent environment as an indicator for source code authority,
even when the sources of the data have different profiles
(Section 4.4). We hypothesize that the correlation coeffi-
cient is not high because the individual differences in rating
elements do not randomize sufficiently with only two devel-
opers.

6. CASE STUDIES
To determine if degree-of-knowledge (DOK) values can

provide value to software developers, we performed three
case studies with the seven developers at Site1. These case
studies were conducted in the five working days after the
weighting experiment (T3 to T4 in Figure 1). The first case
study considers the problem of finding experts knowledge-
able about particular parts of the code. The second case
study considers a mentoring situation where an experienced
developer might use his DOK values to help a new team
member onboard into that part of the code base. The third
case study considers the changeset scenario we introduced
to motivate the paper.

6.1 Finding Experts
The problem of finding experts is to try to identify which

team member knows most about each part of the codebase.
By ranking the results of individual developer’s authority in
a codebase using DOK, we can apply our approach to this
problem.

Method.
We chose two projects6 with which most members of the

team had interacted. One project comprised 21 Java pack-
ages; the other one comprised 88 packages. For each class
in these packages, and for each of the seven developers par-
ticipating in our study, we calculated the DOK value for
each class-developer pair and then computed DOK values
for each package-developer pair by summing the developer’s
DOK values for each class in the package. We then produced
a diagram, which we call a knowledge map, that showed for
each package, the developer with the highest DOK for that
package. A part of the knowledge map for one project is
presented in Figure 5.7 For the first project, 17 of the 21
packages (80%) were labelled with a single developer. For
the second project, 61 out of 88 (69%) were labelled with a

6A project is a logical group of Java packages.
7Please note this figure is best viewed currently in colour.

single developer. Thus, 78 packages in total were labelled
with a single developer.

We then conducted individual sessions with each of the
seven team members. In each session, we first showed the
developer a list of the packages without any DOK values
indicated and asked the developer to write down the name
of the team member whom she thought knows the package
the best. When requested, we showed the developers a list
of the classes within a package. After gathering this data,
we showed the developer the knowledge map and asked if
the map reflected his view of which developer knows which
part of the code.

Results.
We gathered data from six developers; one developer (D7)

did not interact with any of the code in the two projects
and thus was not able to provide meaningful data. For the
78 of the 109 packages labelled with a single developer, we
gathered 468 (6 developers times 78 packages) assignments
from the developers participating in the study. In 301 of
these cases (64%), the developers in the study assigned one
developer as being the one that “knows the most” (D2, D5)
or “owns” (D1, D6) the package.8 In 166 of these 301 cases
(55%), the result we computed based on DOK values was
consistent with the assignments by the developers.

The 55% accuracy value is a lower bound of our approach’s
performance given that the developer assignments were not
always correct: the developers stated that they were some-
times guessing and that after seeing the knowledge map re-
alized their assignments were likely wrong. All six devel-
opers stated that the knowledge map was reasonable, using
phrases like it is “close” (D4) and it “reflects [reality] cor-
rectly” (D2).

For the 31 out of the 109 packages for which we did not
find anyone using the DOK values, the six developers as-
signed someone to a package in 104 cases. In 48 of these
cases (46%), the packages had not been touched for a num-
ber of months and were created six months ago. Given that
our DOK values were based on three months of data, we
were missing the initial authorship data. Developers stated
that in “blank cases” (D4) where our DOK did not deter-
mine anyone, we should adapt the DOK to go back further
in time.

Comparison to Expertise Recommenders.
For this task, it is possible to compare to other approaches,

since earlier work in expertise recommenders has considered
the problem of finding experts. As described earlier, these
approaches are based solely on authorship information. To
approximate the results of these earlier approaches, we com-
puted experts for each package by summing up all author-
ship and delivery events from the last three months for a
developer for each class in the package. The developer with
the most “experience atoms” [13]—the most events—for a
package is the expert. We applied this expertise approach
to the two projects. In 21 out of the total 109 packages,
the expertise approach labelled a package with a different
expert developer than our DOK-base approach. For these
21 packages, we had 69 assignments from the six developers.
In 34 of these 69 cases (49%), our DOK-based approach was
correct, whereas the expertise approach was correct in only

8Developers used these words interchangeably.

Figure 5: Part of a Knowledge Map

17 (24%) of these cases. Thus, the DOK approach improves
the results for the packages that were labelled differently by
the two approaches by more than 100% and the overall re-
sult by 11%. This comparison shows that DOK values can
improve on existing approaches to finding experts.

6.2 Onboarding
Becoming productive when joining a new development

project requires learning the basic structure of the code-
base. The process of becoming proficient with a codebase
is known as onboarding [2]. In this case study, we investi-
gated whether DOK values computed from developers with
experience in a part of a codebase could be used to indicate
which code elements a newcomer should focus on when try-
ing to learn the code base. For instance, DOK values might
be used to filter the display of code elements in a project
to focus on those with which the newcomer’s mentor has
familiarity.

Method.
For this study, we randomly chose three developers (D1,

D3, D5). We asked each developer to describe which code el-
ements from the areas in which he was working would likely
be the most useful for a newcomer trying to come up-to-
speed on the code. We then generated, for each developer,
the twenty elements with the highest DOK. We showed the
developer the top twenty elements according to the devel-
oper’s DOK values and asked her to comment on whether
these twenty elements were of use for a newcomer.

Results.
Only 2 of the 60 (3%) elements generated across all three

developers were labelled by the developers as likely useful
for someone new to the area of code. The other 58 (97%)

elements were described by the developers as not being es-
sential for understanding the code. The elements generated
using the DOK values were, “only implementations” (D1) or
“secondary consumers” (D3). The developers described that
a newcomer only needs to understand basic patterns (D1,
D5) and that while the elements generated using DOK could
serve as examples, for the interesting elements it is necessary
to traverse up the inheritance hierarchy (D1). The develop-
ers described that they often recommended elements that
were part of the API. The DOK values for the API elements
were either very low or zero as they were neither changed
nor were they referred to frequently by the developers who
authored them.

For onboarding, the direct DOK values are not helpful.
However, the developers comments suggest that the ele-
ments with high DOK might be used as a starting point
to find useful elements for onboarding by following call or
type hierarchies. We leave the investigation of this potential
use of DOK values to future research.

6.3 Changeset Assessment
As outlined in the introduction to this paper, a developer

who receives a changeset from another team member must
assess the changeset before accepting it into his development
environment. We wanted to determine if it is possible to
ship with a changeset, additional elements that represent
the developer’s authority in that change so that a receiving
developer could better assess the incoming change set.

Method.
Overall, our method for this case study involved taking

a changeset, selecting additional source code elements that
might provide authority for that changeset based on DOK
values from the developer creating the changeset, and ask-
ing the creating developer to rank which additional elements
are useful for understanding the changeset. We chose this
method because unless we are able to produce elements that
the creator thinks help understand the changeset, it is un-
likely that a receiving developer would view the additionally
provided elements with a changeset as adding authority for
the revisions.

The case study involved four developers (D1, D2, D3,
D6). For each of these developers, we randomly selected
one changeset that the developer had delivered within that
week. On average, the four changesets considered comprised
four classes, nine methods and 72.5 lines of code. To deter-
mine the additional elements, we computed the structural
context of the changeset, consisting of all methods and fields
referencing or referenced by a changed method and all direct
supertypes and subtypes for a changed type. We computed
DOK values for each element in the structural context and
selected as the additional elements the twenty elements with
the highest DOK values.

We then asked each developer to look at the changeset
they had created and describe which other elements in their
development environment are useful to understand the change-
set. Then, we presented the twenty elements with high DOK
values that we had selected and asked the developer to rate
their usefulness for understanding the changeset on a scale
from one (not useful) to five (very useful). We also asked
each developer to comment on the differences between the
elements they indicated as useful and the high DOK list for
their changeset.

Results.
Overall, the developers rated 33% of the additional el-

ements selected with a rating of four or five, stating that
these elements are useful and “essential” (D6) to understand
the changeset. Most elements that the developers suggested
as being useful and that were not yet covered by the high
DOK elements were API elements.

On the surface, a 33% accuracy rating suggests that DOK
is not applicable to this problem. However, given the coarse-
ness of the input data and the naive approach we took in
generating the elements, the result does hold some promise.
When we generated the structural context from which we se-
lected elements with high DOK, we based the generation of
the context on all statements in changed methods, and not
just the changed statements. As on average 61% of the state-
ments in the methods affected by the changeset remained
the same, the resultant structural context was not focused
on the change data and thus was very coarse when selecting
the high DOK values. Second, the changesets considered in
this study contained changes from more than one task, such
as refactorings and changes to method visibility, further pol-
luting the selection of authoritative elements. Finally, as we
noted in the onboarding section, it may be possible to in-
clude API elements by following links from elements with
high DOK; however, this might requires heuristics to iden-
tify API elements. In light of these issues, having 33% of
generated elements rated highly suggests the approach does
have promise if more care is taken in the element selection
process.

7. DISCUSSION
The degree-of-knowledge (DOK) indicator of source code

authority we study in this paper is influenced by both the
software development process and the software system be-
ing developed. We detail a number of the factors influencing
DOK and how they pose threats to the validity of the ex-
periments and studies we conducted.

7.1 Amount of Data
Our studies were based on three months of authorship

data and seven working days of interaction data. We chose
this duration for authorship data based on interviews in our
earlier study [4]. In these interviews, developers had sug-
gested three months as a lower bound for the period of time
in which one still has knowledge about code after authoring
it. Also based on our previous study [4], we chose seven
working days of interaction data. Seven working days was
the average number of working days that showed a signifi-
cant result for the correlation between a developer’s knowl-
edge and his interaction.

7.2 Multiple Stream Development
The seven developers we studied at the first site share

code in streams, which are similar to branches in a source
revision system. The developers deliver their changes to
one or more streams and accept changes from streams into
their workspace. Normally, the developers we studied work
only on a small number of streams. However, during our
data collection and study period, some of the developers
were working on many streams: “it’s not a normal situation,
right now [it is] very branched out, [and] I almost spend
more time merging than working on it” (D5). When streams
representing different versions of the same code are merged,

additional authorship events are recorded that could skew
the results of our experiment and studies. We tried to mini-
mize the influence of these extra events by focusing on only
one major stream for each developer.

7.3 Project Phase
Developers interact differently with a codebase depend-

ing on the phase of the project on which they are working.
In the week in which we collected interaction data at Site1

to determine the DOK weightings, the team was in a test-
ing phase for an upcoming milestone release. Some of the
developers reported that they were only performing minor
adjustments to the code but not really making any bigger
changes to ensure the code did not break. Some develop-
ers stated that a couple of months before they were working
on new features, during which a substantial amount of new
code was created and the focus of individual developers in a
part of the codebase was higher.

The number and size of changesets and the tasks of the de-
velopers (i.e., testing versus feature development) influences
the authorship and interaction data. By taking into account
three months of authorship data, seven days of interaction
data and also confirming the results of the DOK weighting
experiment at a second site, we have tried to minimize the
impact of project phases on our results. Further longitudi-
nal studies are needed to better understand the impact of
project phases on indicators such as DOK.

7.4 Individual Factors
The first team of seven developers we studied have a strong

model of code ownership, with code split amongst team
members and certain individuals responsible for certain pack-
ages. Other teams we have spoken with have a model of mu-
tual ownership with the team members often working on the
same code. The style of code ownership within a team in-
fluences the data input to determine DOK values. We have
tried to mitigate the risk of these different styles by consider-
ing whether the weightings determined for one team applied
to another team. However, study of more teams is needed
to determine how robust the DOK values are to team and
individual styles.

A developer’s activity also has an influence on the data.
For instance, one developer in our study was working on
more than four different streams and was expending effort
that week merging streams together. When we applied lin-
ear regression on the data points gained from only this de-
veloper, the result was not significant. For other developers,
the goodness of fit of the model is more than twice as good
as the goodness of fit for all developers. Thus, while individ-
ual factors, such as the team’s style of code ownership and
activities of individuals influence results, by having several
developers, each with a different activity, we have tried to
minimize the risk of individual biases.

7.5 API Elements
In both the onboarding and the changeset assessment case

studies, API elements affected the outcome: developers sug-
gested API elements as important that DOK values did not
capture. The root of the problem is that API elements, by
definition, do not change often. In the three month period
we considered for the authorship component of DOK, there
were not sufficient events on the API elements for their DOK
to rise based on authorship. Furthermore, as API elements

often become basic knowledge, developers do not need to in-
teract with them frequently so the interaction data also does
not cause their DOK values to rise. The developers who par-
ticipated in the case studies stated that the elements found
using the DOK are often secondary users that are one or
two layers below the API elements. A possible improvement
to the DOK could be to infer authority from subclasses up
to the API elements that are the supertypes as it is likely a
subclass user knows the API elements to some extent.

8. CONCLUSION
On average, six professional Java developers at a site we

studied, accepted changes to 1068 source code elements per
day and interacted with 923 distinct source code elements
over a seven day period. This data confirms what is ap-
parent when one watches a professional developer at work;
the amount of information that flows into and changes in a
developer’s development environment is substantial. With
changes to over one thousand source code elements per day,
a developer does not have time to fully assess all changes be-
fore accepting them into their environment. Indiscriminate
acceptances can cause faults in the code (breaks of builds)
that require the developer to expend time and effort to fix.

In other environments where humans must assess an over-
whelming amount of information, indicators of authority of
the information are used. For instance, the authority of a
book published on a subject by an expert may be considered
to be higher than a recently added wikipedia entry where the
authorship of the information is harder to trace. As another
example, humans have come to rely on the authority of web
pages as computed by graph-based link measures; pages with
higher ranks based on these measures often appear higher
in results produced by web search engines.

To help developers better assess information flowing into
their development environments, we have presented an indi-
cator for source code authority called a degree-of-knowledge
(DOK). By incorporating both authorship and interaction
information gathered for a developer, a DOK value for each
source code element and developer pair can be produced.
We have defined an equation to compute DOK values and
set the weightings for the authorship and interaction factors
through an experiment with seven professional Java software
developers. We confirmed these weightings through a sec-
ond experiment at a second site with two professional Java
developers.

We also reported on three case studies aimed at a pre-
liminary investigation of the use of DOK as an indicator
for authority. Through these case studies, we showed how
DOK values can improve upon existing approaches to com-
puting expertise that are based solely on authorship. We
also showed that there is promise for using DOK to help a
developer assess the authority of a set of revisions entering
their environment. Directions for future work in improving
DOK as an indicator for source code authority were also
determined through these studies, such as ways to better
capture authority in API elements.

Many efforts in software engineering research are aimed
at increasing the amount of information provided to soft-
ware developers. As just one example, awareness techniques
(e.g., [6]) are intended to provide developers pre-warnings of
potential conflicts with changes by providing some level of
additional information into the development environment.
In this paper, we have considered the other side of the coin:

how can a developer better cope with the overwhelming
amount of information already entering their environments?
Future study in this area should consider the combination
of source code analysis and DOK values to better represent
a developer’s authority in the code, indicators for authority
of other kinds of information, and studies to better under-
stand how authority might help a developer assess informa-
tion available to them.

9. ACKNOWLEDGMENTS
This work was supported by the IBM Ottawa Center for

Advanced Studies and NSERC. We thank all the developers
who participated in the experiments and case studies.

10. REFERENCES
[1] B. Amento, L. Terveen, and W. Hill. Does “authority”

mean quality? predicting expert quality ratings of web
documents. In Proc. of the 23rd Annual Int’l ACM
SIGIR Conf. on Research and Development in Info.
Retrieval, pages 296–303. ACM, 2000.

[2] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko.
Let’s go to the whiteboard: how and why software
developers use drawings. In Proc. of the SIGCHI
Conf. on Human Factors in Comp. Systems, pages
557–566. ACM, 2007.

[3] R. DeLine, A. Khella, M. Czerwinski, and
G. Robertson. Towards understanding programs
through wear-based filtering. In Proc. of the 2005
ACM Symp. on Soft. Vis., pages 183–192. ACM, 2005.

[4] T. Fritz, G. C. Murphy, and E. Hill. Does a
programmer’s activity indicate knowledge of code? In
Proc. of the the 6th Joint Meeting of the European
Soft. Eng. Conf. and the ACM SIGSOFT Symp. on
the Foundations of Soft. Eng., pages 341–350. ACM,
2007.

[5] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse.
How developers drive software evolution. In Proc. of
the Eighth Int’l Workshop on Principles of Soft. Evol.,
pages 113–122. IEEE Computer Society, 2005.

[6] S. Hupfer, L.-T. Cheng, S. Ross, and J. Patterson.
Introducing collaboration into an application
development environment. In Proc. of the 2004 ACM
Conf. on Computer Supported Cooperative wWrk,
pages 21–24. ACM, 2004.

[7] M. Kersten. Focusing knowledge work with task
context. PhD thesis, University of British Columbia,
2007.

[8] M. Kersten and G. C. Murphy. Mylar: a
degree-of-interest model for ides. In Proc. of the 4th
Int’l Conf. on Aspect-oriented Software Development,
pages 159–168. ACM, 2005.

[9] M. Kersten and G. C. Murphy. Using task context to
improve programmer productivity. In Proc. of the 14th
ACM SIGSOFT Int’l Symp. on Foundations of Soft.
Eng., pages 1–11. ACM, 2006.

[10] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. J. ACM, 46(5):604–632,
1999.

[11] D. W. McDonald and M. S. Ackerman. Expertise
recommender: a flexible recommendation system and
architecture. In Proc. of the 2000 ACM Conf. on

Computer Supported Cooperative Work, pages
231–240. ACM, 2000.

[12] S. Minto and G. C. Murphy. Recommending emergent
teams. In Proc. of the Fourth Int’l Workshop on
Mining Software Repositories, page 5. IEEE Computer
Society, 2007.

[13] A. Mockus and J. D. Herbsleb. Expertise browser: a
quantitative approach to identifying expertise. In
Proc. of the 24th Int’l Conf. on Soft. Eng., pages
503–512. ACM, 2002.

[14] C. Parnin, C. Görg, and S. Rugaber. Enriching
revision history with interactions. In Proc. of the 2006
Int’l Workshop on Mining Software Repositories,
pages 155–158. ACM, 2006.

[15] L. Zou and M. W. Godfrey. Understanding interaction
differences between newcomer and expert
programmers. In Proc. of the 2008 Int’l Workshop on
Recommendation Systems for Soft. Eng., pages 26–29.
ACM, 2008.

