
Efficient Snap Rounding in Square and

Hexagonal Grids using Integer Arithmetic

Boaz Ben-Moshe∗ Binay K. Bhattacharya† Jeff Sember‡

February 12, 2009

Abstract

In this paper we present two efficient algorithms for snap rounding a
set of segments to both square and hexagonal grids. The first algorithm
takes n line segments as input and generates the set of snapped segments
in O

`
(n+k) log n+|I|+|I∗m|

´
time, where k is never more than the number

of hot pixels (and may be substantially less), |I| is the complexity of the
unrounded arrangement I, and I∗m is the multiset of snapped segment
fragments. The second algorithm generates the rounded arrangement of
segments in O(|I|+(|I∗|+Σc is(c)) log n) time, where |I∗| is the complexity
of the rounded arrangement I∗ and is(c) is the number of segments that
have an intersection or endpoint in pixel row or column c. Both use simple
integer arithmetic to compute the rounded arrangement by sweeping a
strip of unit width through the arrangement, are robust, and are practical
to implement. They improve upon existing algorithms, since existing
running times either include an |I| log n term, or depend upon the number
of segments interacting within a particular hot pixel h (is(h) and ed(h) [9],
or |h| [4]), whereas ours depend on |I| without the log n factor and are
either independent of the number of segments interacting within a hot
pixel (algorithm 1) or depend upon the number of segments interacting
in an entire hot row or column (is(c)), which is a much coarser partition
of the plane (algorithm 2).

1 Introduction

Many geometric algorithms are difficult to implement in practice due to robust-
ness and precision problems. This is because the algorithms often assume the
availability of an infinite-precision real arithmetic machine (or RAM [14]). One
approach that has been taken to address this problem is the development of

∗Dept. of Computer Science, Ariel University Center, Ariel, 40700, Israel,
benmo@ariel.ac.il

†School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada, V5A 1S6,
binay@cs.sfu.ca; research is partially supported by NSERC, MITACS, and Safe Software

‡UBC Computer Science, Vancouver, B.C., Canada, V6T 1Z4, jpsember@cs.ubc.ca; re-
search is supported by NSERC

1

algorithms that are practical and provide useful results despite using limited
precision arithmetic [12, 15, 16]. The snap rounding algorithms presented here
fall into this category.

Snap rounding is a method for transforming an arbitrary-precision arrange-
ment of segments to a fixed-precision representation, while attempting to re-
tain certain features of its geometry and topology. We are given a set S =
{s1, . . . , sn} of line segments in the plane. We wish to round the arrangement
I of S to a grid of pixels. In this note, we assume that segment endpoints are
integers, and each pixel is centered at a point with integer coordinates. In snap
rounding, each pixel containing a vertex in I is ‘hot’, and segments intersect-
ing any hot pixel are rerouted to pass through the pixel’s center (a process we
call snapping the segment to a pixel); see figure 1. Following Guibas and Mari-
mont [7], we refer to each original (unrounded) line segment as an ursegment,
and the polygonal line resulting from its being snap rounded a polysegment.
Each polysegment is comprised of fragments.

We define the fundamental property of a snap rounded arrangement as this:
fragments that are not identical will intersect only at a common endpoint.

Figure 1: Snap rounding, square and hexagonal grids.

Snap rounding was introduced independently by Greene [5] and Hobby [10].
An algorithm with running time O(n log n + Σh∈H |h| log n) was given in [4],
along with a randomized algorithm with the same expected running time (H is
the set of hot pixels, and |h| is the number of segments intersecting pixel h).
An O((n + |I|) log n) algorithm was presented in [3]. Algorithms with running
times of O(Σh∈His(h) log n) and O(Σh∈Hed(h) log n) were given in [9], where

2

is(h) is the number of segments with an intersection or endpoint in pixel h,
and ed(h) is the description complexity of the crossing pattern within h, which
never exceeds is(h). We here note that all of these algorithms require floating
point computation to order some intersection events within a pixel.

A dynamic algorithm for snap rounding based on vertical cell decompositions
was presented in [7]. A variant of the problem, iterated snap rounding, was
investigated in [8, 13].

In the next section, we describe how snap rounding can be applied to different
grid types, and provide a slightly modified definition of snap rounding that
improves the efficiency of our algorithms. We present our first algorithm in
section 3, and analyze its efficiency in section 4. We present our second algorithm
in section 5. We then conclude with some remarks and areas of future research.

2 Preliminaries

In this section, we describe the grid types our algorithm can work with, and
introduce a slight modification to the snap rounding procedure that improves
the algorithm’s efficiency while maintaining the fundamental property of snap
rounding.

There are three possible regular tilings of the plane: square, hexagonal, or
triangular [6]. We examine each of these possibilities in turn.

We define a center pixel to be one whose coordinates are mapped to the
point in the pixel’s center, and a corner pixel to be one whose coordinates are
mapped to a vertex on the pixel’s boundary.

It will simplify our algorithm if pixel centers and vertices have integer co-
ordinates. To achieve this, we transform each ursegment from its original grid
space of center pixels to strip space, a partition of the plane into corner pixels.
From this point on, pixel refers to a grid space pixel, while spixel refers to a
strip space pixel. Each spixel is square, and is a corner pixel with its coordinates
mapped to its bottom left vertex. Thus a point (a, b) ∈ R2 lies within the spixel
with coordinates (bac, bbc). Observe that each spixel is closed at its left and
bottom edges, and at its bottom left vertex. A column of spixels forms a strip.
As we shall see, more than one strip may intersect a particular column of pixels,
and (in the case of hexagonal grids) a particular strip can intersect more than
one column of pixels.

2.1 Square grids

Our square grid partitions the plane into square center pixels. The strip trans-
formation for square pixels is

x′ = 2x

y′ = 2y .

In strip space, each square pixel appears as in figure 2. As with spixels, each
square pixel is closed at its bottom and left edges, and at its bottom left vertex.

3

Figure 2: Square pixel in strip space

2.2 Hexagonal grids

In recent years, hexagonal grids have received much attention from the computer
graphics and machine vision communities [11]. It is therefore useful to consider
if snap rounding can be applied to these grids.

Before discussing hexagonal grids in detail, we should first prove that snap
rounding is required on such grids, and that it is possible with such grids.
Simple examples showing that it is required for square grids are easy to find;
see, e.g., [10], figure 1. A similar example for hexagonal grids is shown in figure 3,
involving three ursegments. Observe that after snapping the intersection point
of two ursegments to its containing pixel’s center, a spurious intersection is
created between snapped fragments.

We now prove that snap rounding is possible with hexagonal grids.

Theorem 1 The fundamental property of snap rounding is preserved when snap
rounding is performed on a hexagonal grid.

Proof. Guibas and Marimont [7] presented a continuous deformation concept
to prove that the fundamental property holds for square grids. In their de-
formation, each ursegment is split into a number of subsegments by inserting
a breakpoint (a node) wherever the ursegment crosses a hot pixel boundary.
Each hot pixel is then linearly scaled down in the x-dimension, dragging any
intersecting nodes along, until it has become a hot ‘stick’. A similar scaling op-
eration is then performed in the y-dimension, reducing the hot stick to a single
point at the original pixel’s center. In order for the fundamental property to be
violated, at some point during the deformation two subsegments must intersect
(at a point that is not a common endpoint), which implies that a subsegment
that is external to the hot pixels must enter a deforming hot pixel. In order for
this to occur, it must overtake a vertex of the hot pixel. Note that as a sub-
segment (or pixel edge) is deformed during the x (resp., y) scaling operation,
each point on the subsegment follows a path that is parallel to the x (resp., y)
axis. Thus for a subsegment to overtake a pixel vertex v, some point p on the
subsegment must be moving in the same direction as, and faster than, v. But

4

Figure 3: Snap rounding is required on hexagonal grids

p’s velocity is a convex combination of the velocities of its endpoints, and every
vertex is moving at least as fast as any endpoint; hence p can never overtake v.

To prove that the fundamental property holds with hexagonal grids, we use
a similar deformation as follows. First, we scale the grid and ursegments in y
so the interior angles of the leftmost and rightmost vertices of the hexagonal
pixels are 90◦. Next, we move each point on a pixel boundary (including nodes)
at constant speed towards the vertical line through the center of each pixel,
stopping each point when it reaches this line. Observe that four of the six
hexagon vertices will reach this line simultaneously. When this occurs, we stop
the deformation. Note that during the deformation, every point on a subsegment
or pixel boundary will have moved on a path parallel to the x-axis. Thus the
previous argument can be applied to show that no subsegment can enter a hot
pixel during this first stage of the deformation.

When the first stage is complete, each hot pixel has contracted to a square
(rotated 45◦ from the axes). We move the axes so the pixels are axis aligned,
and apply the original two-step deformation of Guibas and Marimont to reduce
the hot pixel to the original hexagon’s center point. Their argument can be
directly applied to prove that no ursegment ever enters the hot pixel during
these final deformation steps. �

5

For our hexagonal grid1 (figure 4), we adopt a coordinate system that assigns
integer coordinates to each hexagon. In strip space, each hexagonal pixel

0,0

1,1

0,2 2,2

2,0

3,1

Figure 4: Hexagonal grid

appears as in figure 5. Note that each hexagon is closed at three edges and two
vertices. The strip transformation for these pixels is

Figure 5: Hexagonal pixel in strip space

x′ = 3x

y′ = y .

2.3 Triangular grids

Snap rounding is also required on triangular grids, as figure 6 shows. Unfortunately,
the fundamental property of snap rounding does not apply with these grids; see
figure 7. The hot pixels are highlighted. As ursegment a is snapped to become
polysegment a′, it is not snapped to hot pixel j, since a does not intersect j;
but after a is snapped to i, a′ passes below the center of j, causing a problem
intersection.

2.4 A modified definition of snap rounding

We now introduce a minor modification to the snap rounding procedure that
improves our algorithm’s efficiency while maintaining the fundamental property
of snap rounding. We begin with some terminology.

1If the desired hexagonal grid has pixels that are rotated 90 degrees to our grid, then
rotating the input ursegments and output fragments will allow our algorithm to use the grid
of figure 4.

6

Figure 6: Snap rounding is required on triangular grids

a

a′
j

i

Figure 7: Snap rounding fails with triangular grids

An ursegment s is hot in pixel h if h contains an endpoint of s or a proper
point of intersection between s and some other ursegment. An ursegment s is
warm in h if s intersects h, h is a hot pixel, yet s is not hot in h. An ursegment
s is heated in h if it is hot or warm in h. We can extend these definitions to
deal with columns of pixels: i.e., ursegment s is hot within column c.

Note that the hot pixels for an arrangement of ursegments are exactly those
pixels that some ursegment is hot within, and that ursegments that are hot or
warm within a pixel are snapped to that pixel.

Consider the column of ‘partial’ pixels that result from the intersection of a
pixel column c and a strip p. Let c′ be the subset of these partial pixels that
contain an endpoint of an ursegment s, or an intersection point between s and
another ursegment. The (full) pixels containing the uppermost and lowermost
partial pixels in c′ are extremal heat pixels of s with respect to c and p.

In our new definition of snap rounding, a pixel is only hot if under the old
definition it is an extremal heat pixel of some ursegment.

Theorem 2 The fundamental property of snap rounding is preserved under the
new definition of snap rounding.

Proof. Assume by way of contradiction that with new snap rounding, some
pair of ursegments s1 and s2 yield nonidentical fragments that intersect at a
point that is not a common endpoint.

The continuous deformation of [7] can be used to show that if such an in-
tersection occurs, it can only occur within a pixel that was hot under the old
definition but not under the new one. Let h be such a pixel, and c (resp. p)

7

the pixel column (resp. strip) containing the problem intersection. Since h is
hot under old snap rounding, but not extremal for any ursegment, h∩ p cannot
contain any ursegment endpoints, and there must exist two or more ursegments
that have an intersection in h ∩ p; call this set Q.

Observe that for every ursegment q ∈ Q, there exist within c extremal heat
pixels h+ above h and h− below h. For any pair of ursegments q1 and q2 inter-
secting in h, both q1 and q2 will be snapped to the lower of (h+

1 , h+
2) (denoted

h+
12), the higher of (h−1 , h−2) (denoted h−12), and to any extremal heat pixels be-

tween these (which in the hexagonal case may include any extremal heat pixels
in an adjacent column intersecting p). This implies that the section of the pol-
ysegments for q1 and q2 between h+

12 and h−12 must be identical, which includes
the portions intersecting h ∩ p. Hence s1 and s2 cannot both belong to Q, so
s1 cannot intersect s2 prior to snapping. The continuous deformation can then
be used to show that the polysegments from s1 and s2 cannot intersect in h, a
contradicition. �

The value of theorem 2 lies in the fact that we can ignore the non-extremal
heat pixels for each ursegment within a particular pixel column / strip pair.

3 Algorithm One

We first present an algorithm that given a set of ursegments as input, generates
the polysegments of this set. It performs a single horizontal sweep of the plane
by a vertical sweep strip of unit width, which stops only at integer coordinates.
For the moment, we assume no ursegment is vertical or has length zero. We
will discuss how to include such ursegments later.

We will be interested in the sign of the slope of an ursegment. For ease of
exposition, we treat ursegments with zero slopes as if their slopes are positive.

One of the strengths of our algorithm is that we never need to clip an urseg-
ment to a pixel boundary, a procedure requiring floating point computations.
We also don’t need to calculate the exact intersection point of two ursegments,
only the pixel containing that point (which can be calculated and represented
using integers only). We will show that we can still detect and process every such
intersection point despite stopping the sweep strip only at integer coordinates.

Our algorithm performs a modified Bentley and Ottman [1] plane sweep with
a vertical strip, stopping at a strip boundary if an ursegment’s left endpoint lies
on the left boundary of the strip, if an ursegment’s right endpoint lies on the
right boundary of the strip, or if ursegments that are neighbors in the active
list intersect within the strip.

We must specify a total order relation to order the ursegments within the
active list. Let x be the position of the sweep strip. Observe that the ordering
of parallel ursegments does not depend upon x, and is thus trivial to calculate.
For other pairs of ursegments (s1, s2), we calculate h = (hx, hy), the spixel
containing the intersection point of their containing lines, and define the function
upper which returns the ursegment that contains the upper of the two portions

8

of the ursegments that lie to the left of the strip containing h. We then define the
ordering relation >x as follows (⊕ is exclusive or): s1 >x s2 ≡ (upper(s1, s2) =
s1)⊕ (hx < x).

3.1 Data structures

Our algorithm uses a tree to store both the active list of ursegments inter-
secting the sweep strip, and pending intersection events between neighboring
ursegments. The active list is sorted according to the total order relation de-
scribed previously. Intersection events are sorted lexicographically according to
the spixel containing the intersection.

We maintain two separate priority queues for the ursegments: one for start-
ing endpoints, and one for stopping endpoints. These queues sort the points
lexicographically in the same manner as the active list.

A HeatList is a linked list of ursegments that are heated within a particular
sweep strip (or, in some cases, that are immediate neighbors of such urseg-
ments). We maintain a HeatListQueue for a set of contiguous sweep strips,
where each element in the queue contains two HeatLists: one with the urseg-
ments ordered according to their position as they enter the strip, and the other
ordered according to their position as they leave the strip.

For each ursegment, we maintain a queue of SegHeatInfo records. These
records, which are associated with a particular strip, record the highest and
lowest known heat pixels for the ursegment within each pixel column intersecting
the strip. Each queue needs to contain only as many records as there are strips
intersecting a pixel column (2 for square grids, 4 for hexagonal grids), and since
at most two pixel columns can intersect any one strip (with hexagonal grids, for
instance), the maximum size of this queue is bounded by a small constant.

When we record a heat pixel within an ursegment’s SegHeatInfo queue, we
will say that we are registering the pixel with the ursegment.

There are three main processes that occur within the algorithm: the sweep
process, the hot pixel process, and the snap process.

3.2 The sweep process

For each sweep strip, a HeatList is constructed for the ursegments that are
beginning at the left edge of the strip, by popping ursegments from the (start-
ing) endpoint queue. Each such ursegment is added to both the tree and the
HeatList, and its starting endpoint is registered.

A similar procedure is performed for each ursegment that is stopping at the
right edge of the strip. A HeatList is constructed of these ursegments, and
each stopping endpoint is registered with its ursegment. This HeatList also
includes the immediate neighbors of a stopping ursegment, since by the time
this HeatList is examined, the ursegment will have been removed from the tree
and its original neighbors will not be known.

Next, the tree is queried for all seed events: intersection events known to
occur within the current sweep strip. All seed events are between adjacent

9

ursegments. These events are pushed onto a stack, and a HeatList is constructed
of the ursegments involved.

There are now three HeatLists: starting ursegments, stopping ursegments,
and intersecting ursegments. These are merged into a single ‘left side’ HeatList,
which includes all ursegments known to be hot within the sweep strip. A ‘right
side’ HeatList is constructed, which is initially an exact copy of the left side
HeatList, but will be manipulated so the order of its ursegments corresponds to
how the ursegments leave the strip on the right side. The stack of seed events
generated earlier is now processed.

Each event is popped, and tested to see if it represents ursegments that are
still neighbors within the active list. If not, the event is ignored. Otherwise,
the pixel containing their intersection point is registered with both of the urseg-
ments, and their positions within the active list are exchanged. Their positions
within the right side HeatList are also exchanged, and new neighbors of these
ursegments are inserted into this HeatList as required (so that if they are in-
volved in intersections, they will also be present in the HeatList). Tests for
intersection events that will occur between the ursegments and their new neigh-
bors are performed, and if the intersection point will occur within the current
sweep strip, the event is added to the stack. If the stack is not yet empty, an-
other event is popped and processed. Once all stacked intersections have been
processed, the active list will be in the correct order for the right side of the
current sweep strip, as will the right side HeatList. The left side and right side
HeatLists are now added to the HeatListQueue.

The next position of the sweep strip is determined, as well as which pixel
columns intersect the current sweep strip but not the next one. For each of
these pixel columns, the hot pixel and snap processes (described in the following
sections) are performed.

The sweep strip is advanced by one, so the active list (which has been ma-
nipulating directly) now agrees with the rest of the tree. At this point an
iteration through the stopping ursegments HeatList is performed to remove any
ursegments that terminated in the previous sweep strip.

If necessary, the sweep strip is advanced and the sweep process is repeated.

3.3 The hot pixel process

This process constructs a set of the hot pixels within a particular pixel column,
sorted by y-coordinate.

Lemma 3 If S is a set of ursegments crossing a strip, each ursegment is asso-
ciated with the range of pixels that it is hot within, and S1 (resp. S2) are the
ursegments of S ordered by their intersection points with the left (resp. right)
boundary of the strip, then the ordered extremal heat pixels for S can be con-
structed in O(|S|) time.

Proof. For the moment, assume we are dealing with square grids. First, S1

and S2 are partitioned by the sign of each ursegment’s slope into ordered sets

10

S+
1 , S−

1 , S+
2 , and S−

2 . Let s↓ and s↑ represent the y-coordinates of the lower
and upper hot pixels associated with ursegment s. Observe that if sa ≺ sb

in S+
1 , then the lowest extremal heat pixel for sa cannot be higher than any

hot pixel intersected by sb. A backward iteration through S+
1 is performed,

examining each adjacent pair sa ≺ sb, replacing s↓a with min(s↓a, s↓b). This is
followed by a forward iteration through S−

1 , and for each adjacent pair sa ≺ sb,
s↑b is replaced with max(s↑a, s↑b). Similar backward (resp., forward) iterations
through S−

2 (resp., S+
2) are performed, to find the extremal heat pixels for the

negatively-sloped ursegments in S.
The lower extremal heat pixels of S+

1 and S−
2 are now in monotonically

increasing order, as are the upper extremal heat pixels for S−
1 and S+

2 (note
that since every ursegment s ∈ S crosses the strip, both its lower and upper
extremal heat pixels can be found in one of these four sequences). These four
sequences can be merged in linear time to yield the extremal heat pixels for the
ursegments of S.

One complication exists with hexagonal grids. Observe that the boundary of
a pixel column does not coincide with any sweep strip boundary, so the ordering
of the ursegments within S1 and S2 may not be the same as the desired order-
ing, which is by the ursegments’ intersections with the pixel column boundary.
In figure 8, ursegment a ≺ b with respect to the (left) boundary of the pixel
column, yet b ≺ a in S1. To handle this inconsistency, the ordering of the

a

b

Figure 8: Hexagonal pixel column and ursegment order

ursegments S1 (or, alternatively, S2) is corrected before applying the above pro-
cedure. The differences between the two orderings are localized to the interfaces
between adjacent pixels, so this correction can be performed in O(|S|) time. The
procedure is straightforward; we omit the details. �

To generate the sorted list of hot pixels for an entire pixel column, this
procedure is applied for each strip intersecting the pixel column. From the
HeatListQueue, the left and right side HeatLists are gathered for every strip
intersecting the pixel column. Lemma 3 can be applied to the HeatLists, since (i)
they contain ursegments ordered by their intersections with the strip boundaries,
and (ii) the sweep process will have registered every hot pixel with its associated
ursegment(s). This procedure is applied to the (heated) ursegments within these
HeatLists, and the resulting hot pixel lists for each strip are merged into a list
for the entire pixel column.

11

3.4 The snap process

The sorted set of hot pixels within a pixel column are now used to generate
fragments for any ursegments intersecting hot pixels within the column. From
the HeatListQueue, the left and right side HeatLists are gathered for every
strip intersecting the pixel column. For each HeatList, iterations through the
positively-sloped ursegments and the hot pixel list are performed, detecting
a hot pixel that intersects the ursegment. If one is found, the ursegment is
snapped to every hot pixel intersecting the ursegment, and the neighbors of the
ursegment and the hot pixel are processed recursively, to see if these ursegments
are warm within the hot pixel as well.

This procedure is repeated with negatively-sloped ursegments. The direction
of iteration through the ursegment and hot pixel sets depends upon which side
of the strip the HeatList is associated with and the slopes of the ursegments, in
a manner similar to that of the procedure from the proof of Lemma 3. Once an
ursegment is snapped to a pixel within the column, it is ignored it if it appears
again (in a HeatList, or as a neighbor to an ursegment within the recursion).

The snap points must be generated in the correct order for an ursegment.
For square grids, this is simply a matter of iterating through the hot pixel list
in the correct direction. For hexagonal grids, the procedure is slightly more
complicated, as several hot pixels from consecutive pixel columns might be in-
terleaved within a correct snap order. Observe that this interleaving is localized
to at most two adjacent pixel columns, so a postprocessing step can fix the snap
ordering for an ursegment in time linear in its number of snap points.

The discrepancy between the order of ursegments in HeatLists and their
order of intersection with a hexagonal pixel columns (described in section 3.3)
introduces another complication here. Since the discrepancy is localized to the
interface of two adjacent pixels, this is easily dealt with by using a window of
size two when iterating through the hot pixel list during the snap process; we
omit the details.

3.5 Vertical ursegments

Vertical ursegments (and zero length segments, which can be treated as vertical
ursegments) present a complication for our algorithm, since they are difficult
to incorporate into the total order relation described earlier, and they do not
span the width of a sweep strip. We now describe how they can be treated as a
special case.

We avoid problems with sorting the vertical ursegments by constructing
bracket ursegments for each vertical ursegment’s endpoints. Each is a horizontal
ursegment extending to the right from the endpoint, and pose no difficulties for
sorting purposes.

Only the start endpoints for vertical ursegments are added to the endpoint
queue. In the sweep process, any vertical ursegment start endpoints that are
popped from the queue are used to construct a vertical ursegment HeatList,
which consists of any ursegments within the active list that are intersected by

12

the vertical ursegment, or that would be immediate neighbors of its associated
bracket ursegments (each bracket can be inserted into the tree temporarily to
determine these neighbors).

The hot pixels for intersections between vertical and active ursegments are
explicitly generated. Any such pixel is registered with the appropriate active
ursegment, and the vertical ursegment endpoints are registered with both the
vertical ursegments and their bracket counterparts. Since the active list is al-
ready sorted, by presorting the vertical ursegment endpoints, this procedure
can be done in time linear in the number of fragments generated, so it does not
affect the running time of the algorithm.

The vertical ursegment HeatList is merged together with the starting urseg-
ment, stopping ursegment, and intersecting ursegment HeatLists, as described
in section 3.2.

After the intersection events have been processed to generate the right side
HeatList, the bracket ursegments for the vertical ursegments are merged into
the left HeatList. (There is no point in doing this before the right HeatList is
constructed, as the vertical ursegments do not extend to the right side of the
strip.)

In the snap process, when a bracket ursegment is encountered, its associated
vertical ursegment is processed instead.

Using the above steps, vertical (and zero length) ursegments can be included
in our algorithm’s input, without affecting its asymptotic running time.

4 Performance

Processing a starting and stopping endpoint for an ursegment requires O(log n)
time. The total time spent processing ursegment endpoints is thus O(n log n).

Our algorithm uses a B+ tree [2] to store the active list of ursegments, and
supports O(log n) insertion, deletion, and search operations. The tree consists
of internal and leaf nodes, and each ursegment in the tree maintains a pointer
to its location within a leaf node. Leaf nodes are joined in a doubly-linked list,
so traversal from an ursegment to its neighbor in the tree can be performed in
O(1) time.

We augment the B+ tree to allow it to report seed events, and to allow us to
efficiently process these and other intersection events during the sweep process.
Each tree node contains these additional fields:

• firstIsectEvt, the first intersection event to occur between adjacent urseg-
ments within this node’s subtree

• firstSeg, the first ursegment in the node’s subtree

• valid, true iff firstIsectEvt and firstSeg have been calculated for this node

• invalidated, true if this node has been marked as invalid

13

• invalidatedAt, the sweep strip position when the node was last marked as
invalid

During the sweep process, the tree reports the seed events occurring within
the current sweep strip. If a node’s firstIsectEvt is null, or occurs in a strip
to the right of the current strip, then the subtree at that node can be ignored.
Otherwise, the subtree must be searched for seed events. Seed events between
ursegments are generated within a child node (by processing the child nodes
recursively) and between the last ursegment in one child subtree and the first
ursegment in the next (the firstSeg field can be used to determine these urseg-
ments efficiently), taking care to generate these events in the order correspond-
ing to the ursegment’s order within the active list.

While reporting a seed event may require as much as O(log n) time, it hap-
pens that all seed events that occur within a particular hot pixel h can be re-
ported in O(log n) time plus an additional cost that can be charged to the snap
process. Consider the lowest and highest ursegments involved in seed events
within h. Between these ursegments within the active list lie q ursegments, each
of which must intersect h. It can be shown that the cost of reporting all seed
events for h is O(2 · log n + 2q) = O(log n) + O(q), and since each of the q
ursegments will need to be snapped to h, the O(q) term can be charged to the
snap process.

The cost for reporting all seed events within a particular hot pixel (and sweep
strip) is therefore O(log n). Since a pixel intersects up to four strips, the cost for
reporting all seed events within a particular hot pixel is O(4 · log n) = O(log n).
Reporting all seed events is thus O(k log n), where k is never greater than the
number of hot pixels. We stress that this is a worst-case bound, and in many
situations k will be much less. For example, if many seed events occur within a
strip, but there are not many ursegments separating those involved in the seed
events, then the query time for each event will be much less than log n, resulting
in a lower effective value of k. We have found that k is typically between |H|/3
and |H|/2, where |H| is the number of hot pixels.

Constructing the HeatLists during the sweep process requires O(1) time for
each ursegment involved. A HeatList can contain ursegments involved in end-
point events or intersection events, or immediate neighbors of these ursegments.
Thus constructing the HeatLists can be charged to the endpoint event and in-
tersection event processing.

The number of intersections processed during all sweep processes is bounded
by |I|. Each intersection requires exchanging ursegments within the active list,
and within the right side HeatList. Ursegments can be exchanged within the
active list in O(1) time if each ursegment is associated with a pointer and the
ursegments are accessed via these pointers. Ursegments can similarly be ex-
changed within the HeatList in O(1) time by maintaining a pointer from an
ursegment to its location within the right side HeatList. The total time spent
processing these ursegment exchanges during all sweep processes is therefore
O(|I|).

Whenever a node within the tree is modified, i.e. during an ursegment inser-

14

tion or deletion operation, the node is marked as invalid, so the firstIsectEvent
and firstSeg fields are recalculated when they are next needed to find seed events.
When the positions of two ursegments within the tree are exchanged during the
sweep process, the appropriate nodes must be explicitly marked as invalid, since
the tree is not being used to perform this operation. For each of the two urseg-
ments, its path from leaf to root is marked as invalid. If, during this invalidation
operation, a node is encountered which has already been invalidated within the
current sweep strip (by checking the invalidated and invalidatedAt fields), the
traversal can stop, since the remaining path to the root has already been inval-
idated. The cost of invalidating these paths can therefore be absorbed by the
cost of processing seed events.

The total running time of all sweep processes is thus O((n + k) log n + |I|).
The hot pixel process generates a sorted list of hot pixels, but operates in

time linear in the size of the HeatLists. The cost of this process can therefore
be included in the cost of the sweep process.

The snap process spends O(1) time generating each polysegment fragment.
Since I∗m is the set of all such fragments, the running time of the complete
algorithm is O

(
(n + k) log n + |I|+ |I∗m|

)
.

5 Algorithm Two

As observed in [8], |I∗m| can be as much as Θ(n3). Our second algorithm uses a
similar approach to that of [3] to generate I∗, the rounded arrangement of the
ursegments instead of their individual polysegments.

As with the algorithm of [3], we organize ursegments into bundles, maximal
sets of ursegments that intersect the same source and destination hot pixels,
without intersecting any hot pixels in between. Observe that each bundle is
associated with a distinct edge of the rounded arrangement. Our bundles are
simpler than that of [3], since each bundle b contains only three items: the
source hot pixel b.source, and the boundary ursegments within the bundle,
b.lower and b.upper. Since no pair of ursegments within a bundle will intersect
in the space between the bundle’s source and destination pixels, b.lower and
b.upper are chosen to reflect the ursegment ordering within this space. We store
the bundles within a bundle tree (i.e., a red-black tree), sorted by position along
the sweep strip.

We use the same tree as in the first algorithm to store the active ursegments,
and the same priority queues for the ursegment start and endpoints.

We perform three plane sweeps. The first is a plane sweep to find the set
of hot pixels, and is simply the first algorithm with the snap process omitted.
These hot pixels form the vertices of the rounded arrangement. Point urseg-
ments are omitted from the subsequent sweeps, since they cannot further affect
the rounded arrangement once the hot pixels are known. From this point on,
then, we assume none of the ursegments are points.

The second and third sweeps generate the edges of the rounded arrangement.
We now investigate how this can be done efficiently. For the moment, assume

15

we are dealing with a square grid. Suppose that the slope m of ursegment s
satisfies 0 ≤ m ≤ 1,2 and that s intersects hot pixels hi and hj and no hot
pixels between these two, thus causing an edge to appear between hi and hj

in the rounded arrangement. Without loss of generality, there are two types of
edges between hi and hj to consider: (i) those where hi is in a pixel column to
the left of that of hj , or (ii) those where hi the lower neighbor of hj within the
same pixel column. As we shall see, the bundles that we will manipulate during
these sweeps can be used to generate edges of type (i). Type (ii) edges require
special treatment, and we will require the following lemma3.

Lemma 4 If an ursegment s with slope 0 ≤ m ≤ 1 intersects hot pixels hi and
hj (with hi below hj) within the same pixel column, then s belongs to some bun-
dle b whose destination hot pixel is hi, and either (i) s ∈ {b.lower, b.upper}, (ii)
either b.upper or b.lower intersects both hi and hj as well, or (iii) s intersects
either b.upper or b.lower within hi.

Proof. Let s be an ursegment with slope 0 ≤ m ≤ 1 that intersects hi and
hj within a pixel column, where hi is below hj . We first show that hi is the
destination for some bundle b containing s. Observe that since s intersects both
hi and hj , and m ≤ 1, s must intersect hi before any other hot pixels within the
column; and its starting endpoint cannot be in hi, or else it cannot intersect hj .
Thus s must belong to some bundle whose destination hot pixel is hi.

Now suppose s /∈ {b.lower, b.upper}, and neither b.upper nor b.lower inter-
sects both hi and hj . Now, b.upper either crosses hi from left to right without
intersecting hj , or b.upper has an endpoint at the center of hi. In the first case,
s must remain below b.upper within hi, so it cannot intersect hb, a contradic-
tion. In the second case, s cannot intersect hj without also intersecting b.upper
(since m ≤ 1), also a contradiction. �

Lemma 4 suggests an approach to generate edges of type (ii). We associate
each ursegment s with s.hotP ixel, a pointer to the destination hot pixel for the
most recent bundle known to contain s. We can set s.hotP ixel for the boundary
ursegments for each bundle, and propagate these pointers to other ursegments
within the bundle only when ursegment intersections are processed. Whenever
we set this pointer for an ursegment, we test whether an edge of type (ii) needs
to be generated. The details are explained in the following sections.

The second sweep is a horizontal sweep with a vertical strip, and consists
of three processes: the split process, the sweep process, and the create process,
described below. Prior to the sweep, we initialize the ursegment and bundle
trees, and populate the endpoint priority queues. For square grids, we include
only those ursegments with slopes m satisfying −1 ≤ m < 1; for hexagonal
grids, the slopes must satisfy − 1

2 ≤ m <
√

3
2 . The first sweep has generated the

hot pixels already sorted lexicographically by column then row, so no sorting of
the hot pixels is required.

2The following discussion can easily be modified if −1 ≤ m < 0.
3Lemma 4 can be easily adapted to hexagonal grids. The only difference is that we restrict

each ursegment’s slope to |m| ≤
√

3
2

.

16

With hexagonal grids, each sweep strip intersects only pixels from a single
column. This is in contrast to the sweep strips of the first pass, in which a single
strip could intersect two pixel columns. This means the left or right boundary of
the sweep strip may be articulated, to conform to the boundaries of the pixels.
Each pixel column is comprised of four strips: a strip of left-facing triangles,
two strips of square pixels, and a strip of right-facing triangles.

The third sweep is similar to the second. The sweep line is again parallel
to a column of pixels, after the axes have been rotated. For square grids, the
axes are rotated by an angle of π/4, so it is equivalent to a vertical sweep; the
pixel columns are actually pixel rows with respect to the original axes. This
sweep includes exactly those ursegments omitted from the previous sweep, i.e.,
those with slopes m < −1 or m ≥ 1. For hexagonal grids, the axes are rotated
by an angle of π/3, and the sweep includes ursegments with slopes m < − 1

2 or
m ≥

√
3

2 . Note that (i) every ursegment is included in exactly one of the second
or third sweeps, and (ii) an ursegment intersects a pixel column boundary in a
single point or line segment. This second property avoids any problems with
sweeping that might otherwise occur with hexagonal grids, whose pixel column
boundaries do not lie on a line.

The hot pixels must be sorted lexicographically by column and row (with
respect to the rotated axes) prior to this third sweep.

5.1 The split process

We start this process by reading the next column of hot pixels, and advancing
the sweep strip to the start of this pixel column.

We define the following ordering over the ursegments entering the left side of
a pixel column with respect to a hot pixel h within the column. If ursegment
s enters the pixel column at a pixel below h, and either does not intersect h or
first intersects some other hot pixel h− below h, then s ≺ h. If s enters the
column above h, and either does not intersect h or first intersects some other
hot pixel h+ above h, then s � h. Otherwise, we say that s ≈ h. This ordering
can be easily adapted for ursegments exiting the right side of a pixel column4.

We say that bundle b intersects h if b.lower ≈ h, b.upper ≈ h, or (b.lower ≺ h
and b.upper � h).

For each hot pixel h within the pixel column, we find any bundles that
intersect h. We remove each such bundle b found from the tree, and generate
three additional bundles: b−, consisting of those ursegments s within b where
s ≺ h; b′, consisting of those s where s ≈ h, and b+, consisting of those s where
s � h. We set b−.source, b′.source, and b+.source to b.source. If b− or b+ are
nonempty, we add them to the bundle tree.

If b′ is nonempty, we generate an edge between b′.source and h in the rounded
arrangement. To test for type (ii) edges, we ‘mark’ each boundary ursegment s
of b′ with hot pixel h, which involves the following steps. We set s.hotP ixel to

4i.e., by reflecting each ursegment and hot pixel involved through the y-axis

17

h, and test if s intersects hot pixels h− or h+ immediately above or below h. If
so, we generate the appropriate type (ii) edge.

Observe that when all hot pixels h have been processed, none of the urseg-
ments within the remaining bundles will intersect any of the hot pixels within
the column.

The final step in this process is to query the endpoint priority queue and
remove any ursegments that are stopping in the current pixel column.

5.2 The sweep process

The sweep process for this algorithm is a simplified version of that of the previous
algorithm (section 3.2). In particular, since we have already generated the hot
pixels, we do not manipulate any HeatLists, and instead just detect and process
ursegment intersections to update the order of the active list. We advance the
sweep strip when no intersections remain. We repeat the sweep process for each
strip within the current pixel column, to advance the sweep strip to the start of
the next pixel column.

To detect type (ii) edges, we take the following steps when an intersection
between ursegments si and sj is processed. Let hi = si.hotP ixel, and hj =
sj .hotP ixel. If hi is defined, and within the current pixel column, we mark sj

with hi, as described in the previous section. We repeat this procedure for si

and hj .

5.3 The create process

The first step in this process is to query the endpoint priority queue and add
any ursegments that started in the previous pixel column.

For each hot pixel h in the previous column, we generate a bundle b con-
taining those ursegments s such that s ≈ h (according to the ‘exit’ ordering of
Section 5.1). If b is nonempty, we set b.source to h, and add it to the bundle
tree.

If more columns of hot pixels remain, the algorithm continues with the split
process.

5.4 Performance

Each edge within the rounded arrangement is generated as a type (i) or type
(ii) edge within either the second or third sweeps.

To process type (ii) edges efficiently, we store the hot pixels within a sorted,
linked list. The test for adjacent hot pixels above or below a hot pixel can then
be performed in constant time. For added efficiency, we maintain a flag with
each hot pixel to indicate whether a type (ii) edge to its adjacent hot pixel above
has already been generated.

During the sweep processes of the three sweeps, we cannot charge the seed
events to the snap process, since we are not snapping individual ursegments.
Note that an ursegment can occur in at most two seed events within a strip, so

18

the cost of extracting all such events for a pixel row or column c is O(is(c) log n),
where is(c) is the number of ursegments that are hot within c. Note also that
the O(log n) cost of processing each endpoint event can be included in these
terms. As with the first algorithm, once the seed events have been generated,
each ursegment intersection can be detected and processed in constant time, for
a total cost of O(|I|).

The fact that ursegments will only intersect within hot pixels ensures that
the ordering of Section 5.1 is monotonic with respect to a particular pixel h.
It follows that when hot pixels are processed during the split processes, each
bundle b intersecting a hot pixel can be found and split into b− and b+ in
O(log n) time. The time to remove b and insert b− and b+ into the bundle tree
can be included in this term. The time required to create new bundles during
the create processes is similarly O(log n) per bundle. Since bundles correspond
to edges in the rounded arrangement, the time spent in all split and create
processes is thus O(|I∗| log n).

Sorting the hot pixels H at the start of the third sweep requires O(|H| log n)
time. Clearly, |H| = O(|I∗|), so this cost can be charged to the split and create
processes.

The total running time of the second algorithm is thus O(|I| + (|I∗| +
Σc is(c)) log n).

6 Conclusion and future work

We have presented two algorithms to perform snap rounding. Both use simple
integer arithmetic, are robust, and are practical to implement. They improve
upon existing algorithms, since existing running times either include an |I| log n
term, or depend upon the number of segments interacting within a particular
hot pixel, whereas ours depend on |I| without the log n factor and are either
independent of the number of segments intersecting a hot pixel (algorithm 1)
or depend upon the number of segments interacting in an entire hot row or
column, a much coarser partition of the plane (algorithm 2). Ours are the first
algorithms to extend snap rounding to hexagonal grids. We have also shown
how standard snap rounding cannot be performed on triangular grids (finding
a variant of snap rounding that works with such grids is a possible avenue of
future research).

Each ursegment processed by our algorithms must have integral endpoint
coordinates, so that its endpoints will only occur on strip boundaries. Relax-
ing this restriction (e.g., by modifying the algorithm to accept endpoints with
rational coordinates) is a possible future enhancement.

An applet demonstrating both algorithms is available on the web.5

5http://www.cs.ubc.ca/~jpsember

19

7 Acknowledgement

We would like to thank William Evans for many helpful comments and sugges-
tions during the preparation of this paper.

References

[1] J. L. Bentley and T. Ottman. Algorithms for reporting and counting geometric
intersections. IEEE Trans. Comput., C-28:643–647, 1979.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 2nd edition, 2001.

[3] M. de Berg, D. Halperin, and M. Overmars. An intersection-sensitive algorithm
for snap rounding. Comp. Geom.: Theory and Appl., 36:159–165, 2007.

[4] M. T. Goodrich, L. J. Guibas, J. Hershberger, and P. J. Tanenbaum. Snap
rounding line segments efficiently in two and three dimensions. In Proc. 13th
Annu. ACM Sympos. Comput. Geom., pages 284–293, 1997.

[5] D. H. Greene and F. Yao. Finite-resolution computational geometry. In 27th
IEEE Symp. on Found. of Comput. Science, pages 143–152, 1986.

[6] B. Grünbaum and G. C. Shephard. Tilings and patterns. W. H. Freeman & Co.,
New York, NY, USA, 1986.

[7] L. J. Guibas and D. H. Marimont. Rounding arrangements dynamically. In
COMPGEOM: Annual ACM Symposium on Computational Geometry, 1995.

[8] D. Halperin and E. Packer. Iterated snap rounding. Computational Geometry
Theory and Applications, 23(2):209–225, 2002.

[9] J. Hershberger. Improved output-sensitive snap rounding. Discrete Comput.
Geom., 39(1):298–318, 2008.

[10] J. D. Hobby. Practical segment intersection with finite precision output. Comp.
Geom.: Theory and Appl., 13(4):199–214, Oct. 1999.

[11] L. Middleton and J. Sivaswamy. Hexagonal Image Processing : A Practical Ap-
proach. Advances in Pattern Recognition. Springer-Verlag UK, August 2005.

[12] V. Milenkovic. Double precision geometry: a general technique for calculating
line and segment intersections using rounded arithmetic. In In Proc. 30th Annu.
IEEE Sympos. Found. Comput. Sci, pages 500–505, 1989.

[13] E. Packer. Iterated snap rounding with bounded drift. In SCG ’06: Proc. 22nd
Annu. Sympos. Comp. Geom., pages 367–376, New York, NY, USA, 2006. ACM.

[14] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, New York, NY, USA, 1985.

[15] K. Sugihara. An intersection algorithm based on delaunay triangulation. IEEE
Comput. Graph. Appl., 12(2):59–67, 1992.

[16] K. Sugihara and M. Iri. Two design principles of geometric algorithms in finite
precision arithmetic. Applied Mathematical Letters, 2(2):203–206, 1989.

20

