
Non-von Neumann-Morgenstern expected utility maximization

models of choice from behavioural game theory

James Wright
Department of Computer Science
University of British Columbia

Vancouver, B.C., Canada, V6T 1Z4
jrwright@cs.ubc.ca

September 23, 2008

Abstract

I survey a number of papers that describe models of
choice from behavioural game theory. These models
are alternatives to expected utility maximization, the
standard game-theoretic model of choice [Von Neu-
mann and Morgenstern, 1944].

1 Introduction

Behavioural game theory aims to determine and
model the ways in which people systematically de-
viate from the traditional game theoretic model in
which all agents are expected utility maximizers, and
have common knowledge of this fact. This survey
concentrates on models of decision that assume that
agents’ preferences over outcomes can be represented
as a utility function of some sort, albeit possibly one
whose domain is not total wealth (e.g. in prospect
theory and other models involving loss aversion [Kah-
neman and Tversky, 1979; Tversky and Kahneman,
1992; Shalev, 2000]).

The rest of the paper is divided into two main sec-
tions. In section 2, I describe models that explain de-
viations from the standard model by assuming that
agents maximize something other than expected util-
ity of final wealth. In section 3, I describe models that
explain deviations from the standard model by as-
suming that players do not necessarily ascribe full ra-

tionality to their opponents, although they may still
maximize their own utility subject to that belief.

2 Non-expected utility

Under standard decision theory, agents act so as to
maximize their expected utility [Von Neumann and
Morgenstern, 1944]. Empirically, however, people
are not expected-utility maximizers. Prospect the-
ory [Kahneman and Tversky, 1979] models two of the
major systematic deviations from EU maximization
that are consistently observed in people: loss aver-
sion (also known as reference-dependent valuations),
where losses relative to some reference point are over-
weighted compared to gains; and non-linear decision
weights, where prospects are not directly weighted
by their probability of occurring, but rather by some
non-linear decision weight instead.

Camerer [1998] surveys models of non-expected
utility that better describe human decision-making
than the standard model. In particular he claims
that prospect theory, non-additive probability, and
(quasi-)hyperbolic time discounting are better de-
scriptive models1 than expected-utility maximiza-
tion, probability, and exponential time discounting

1Note that each of these models is a generalization of the
corresponding standard version; e.g., quasi-hyperbolic time
discounting with β = 1 corresponds to exponential time dis-
counting.
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(although obviously the latter are better norma-
tively). Note that there is an apparent discrepancy
between studies that explain aggregate behaviour,
where non-linearity consistently appears, versus stud-
ies that fit individual behaviour [Hey and Orme,
1994], where sizable minorities of the subjects ap-
peared to be expected utility maximizers. This may
be either because the experiment did not include
enough low (below .10) probability events, or it may
be that large segments of the population are indeed
expected-utility maximizers; but a single “represen-
tative agent” for such populations will still exhibit
non-linearity.

2.1 Regret minimization

In his review of [Wald, 1950], Savage [1951] intro-
duced the minimax regret decision rule. The advan-
tage of minimax regret is that it is usable even by
agents who have no prior belief about the relative
likelihood of states of the world.

Hyafil and Boutilier [2004] propose the minimax
regret criterion for games of strictly incomplete in-
formation, where agents have a common prior over
which type profiles are possible, but their uncertainty
over those profiles is unquantified (i.e., they have no
probability distribution over the possible type pro-
files). Hyafil and Boutilier [2004] prove that every
finite game has a (possibly mixed) minimax-regret
equilibrium, where every agent is playing the max-
regret-minimizing strategy given the strategy profile
of the others. They also demonstrate how to perform
automated mechanism design in this setting, under
the assumption that the mechanism designer is also
a regret-minimizer. This paper is good example of
defining and exploring a non-expected utility deci-
sion criterion.

Hyafil and Boutilier [2006] present an algorithm
that uses a minimax-regret decision criterion in con-
junction with partial revelation auctions. The idea is
that full revelation may be too expensive (in terms of
computation and/or communication), so the auction-
eer instead queries the bidders to narrow the space
of possible type profiles, and then chooses the allo-
cation and payments to minimize efficiency and pay-
ment regret with respect to the possible types. This

allows a mechanism to guarantee that it will be δ-
efficient and ε-incentive-compatible, within arbitrary
bounds, usually with a vastly-reduced need to reduce
type uncertainty. In practice, if δ and ε are suffi-
ciently small, then δ-incentive-compatible is the same
as fully incentive-compatible.

Halpern and Pass [2008] propose the iterated re-
gret minimization criterion. Under the assumption
that agents minimize regret with respect to their be-
lief that other agents are also regret-minimizers, they
first remove all non-regret-minimizing strategies from
consideration for each agent; then, considering only
those strategies that have survived for each agent,
they perform another round; and so on until no fur-
ther strategies can be eliminated. On many games
(e.g. Traveller’s Dilemma) the iterated regret min-
imization solution gives results extremely close to
those of actual experiments. However, on others (e.g.,
the coordination-game example given in example 3.15
of the paper), the results are actually worse than
those of Nash equilibrium. This solution concept does
not seem entirely convincing to me, since the k-th it-
eration of deletion relies on a kth-level belief in the
other agents’ being a regret-minimizer.

Stoye [2007] provides axiomatizations of several
minimax regret decision criteria. He pays particular
attention to a rule that minimizes expected regret
over sets of prior beliefs (whether those beliefs are
behavioural, i.e. endogenous, or a feature of the en-
vironment, i.e. exogenous). This rule is very similar
to the maxmin rule of [Gilboa and Schmeidler, 1989],
and indeed several results are imported from [Gilboa
and Schmeidler, 1989]. A link is described between
a preference relation formulation of the decision rule
and a choice-correspondance formulation.

2.2 Loss aversion

Kahneman and Tversky [1979] model loss-aversion by
assuming that utilities are translated into reference-
dependent valuations. The loss aversion coefficient
represents how much more or less losses (i.e., utilities
below the reference point) are weighted compared to
gains (utilities above the reference point). Related
is the reflection effect, where people tend to be risk-
averse in gains and risk-seeking in losses. In other
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words, the value function is concave in gains and con-
vex in losses, giving it an S shape.

Tversky and Kahneman [1992] estimate the fol-
lowing functional form and parameters for monetary
prospects (when the reference point is 0):

v(x) =

{
xα for x ≥ 0
(−λ)(−x)α for x < 0

where
α = 0.88
λ = 2.25

Shalev [2000] introduces the concept of the loss
aversion equilibrium. This is an equilibrium where
each agent is assigned his own loss-aversion coef-
ficient. A myopic loss-aversion equilibrium is one
where each agent evaluates his utilities using his
starting or “root” reference point; a non-myopic loss-
aversion equilibrium is one where each utility is val-
ued relative to the new reference point at each in-
formation set. Shalev uses a linear loss-aversion val-
uation function, which makes it impossible to rep-
resent differing risk attitudes between losses and
gains. Shalev [2002] also investigates loss-aversion
in the context of bargaining, finding a unique “stable
and self-supporting” solution to bargaining problems
where either or both agents are loss-averse.

2.3 Non-linear decision weights

Kahneman and Tversky [1979] propose a model in
which each probability is converted to a decision
weight independently. Under this model, stochasti-
cally dominated alternatives may be preferred, which
does not match the experimental data; in the model
of Kahneman and Tversky [1979] this is worked
around through an initial “editing” phase, where
agents edit prospects into a more tractable form and
apply heuristics such as detection of dominated al-
ternatives.

Prospect-theoretic agents under-weight moderate-
or high-probability events that are not certain, and
over-weight extremely low-probability events.

Cumulative prospect theory [Tversky and Kahne-
man, 1992] solves this problem by applying a non-
linear transformation to the cumulative distribution

rather than to each probability directly. Under this
formulation, a stochastically-dominated option will
never be preferred. (On the other hand, this makes
it more difficult to account for the occasions when
stochastic dominance is violated).

The CPT decision weight function is piecewise
around the reference point. In other words, decision
weights over losses are calculated differently from de-
cision weights over gains.

2.4 Ambiguity and non-additive prob-
abilities

A non-additive probability measure P (sometimes re-
ferred to as a capacity) exhibits uncertainty aversion
if it satisfies

P (A) + P (B) ≤ P (A ∪B) + P (A ∩B). (1)

In particular, P (A) + P (A) may be less than 1.
The core of a non-additive probability measure P

is the set of all additive probability measures π such
that π(A) ≥ P (A) for all events A. If P exhibits
uncertainty aversion, then the core is non-empty.

Dow and Werlang [1994] propose a solution concept
for 2-player strategic games that they call Nash equi-
librium under uncertainty, which is exactly analogous
to Nash equilibrium, except that the mixed strategies
may be represented by non-additive probability mea-
sures. They demonstrate that agents that maximize
expected utility relative to non-additive, uncertainty-
averse probability measures will choose the maxmin
choice even for very small levels of uncertainty aver-
sion. This is very similar to Kreps and Milgrom
[1982]’s δ-craziness model, where a small uncertainty
that the other agent might play tit-for-tat is enough
to produce cooperation in the finitely-repeated Pris-
oners’ Dilemma rather than the backward-induction
result. However, where δ-craziness requires that the
“crazy” strategy be exogenously specified, NEUU au-
tomatically chooses the strategy to be “afraid of”
based on what would be most harmful.

Eichberger and Kelsey [2000] extend this solution
to arbitrary n-player strategic games; they call this
new concept equilibrium under uncertainty. They de-
fine two parameters for a capacity ν: The degree of
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confidence γ(ν) and the degree of ambiguity λ(ν),
where

γ(ν) = max
A⊆S−i

ν(A) + ν(S−i\A)

λ(ν) = 1− min
A⊆S−i

ν(A) + ν(S−i\A).

Note that λ(ν) = 0 implies that ν is additive, but
γ(ν) = 1 does not.

A simple capacity is the “contraction” of an addi-
tive probability π, where

ν(E) = γ · π(E) ∀ events E.

Note that for a simple capacity, γ(ν) = 1 − λ(ν),
although this is not true of general capacities. Using
simple capacities as a tool, Eichberger and Kelsey
[2000] prove that an equilibrium under uncertainty
exists for all games and all profiles γ of confidence.

For all games, there is a value ε > 0 such that any
profile of confidence γ where γi ≤ ε ∀i ∈ N gives rise
to an equilibrium under uncertainty that coincides
with a profile of maxmin strategies. For all two-player
games, EUU coincides with NE as λi → 0∀i ∈ N ; this
is not true for general n-player games, although it is
true for n-players games where each player’s beliefs
are independent and consistent. In other words, when
players are confident in their beliefs, they will tend to
play NE strategies, whereas when players have highly
ambiguous beliefs, they will “play it safe” by play-
ing maxmin strategies. Gilboa and Schmeidler [1989]
give an axiomatic characterization of a maxmin ex-
pected utility decision rule for agents who have a con-
vex set of priors, rather than a single prior. Accord-
ing to [Dow and Werlang, 1994], in many (although
not all?) cases, applying this rule over the core C
of a non-additive uncertainty-averse probability P is
equivalent to directly maximizing the expected utility
with respect to P .

Lo [1999] presents a new solution concept for
extensive-form games in the presence of ambiguity
where agents’ beliefs are represented as sets of ad-
ditive probabilities. A straightforward extension of
Nash equilibrium is insufficient for this setting, be-
cause MEU preferences are not dynamically consis-
tent under either of the straightforward forms of be-

lief update.2 Lo’s model assumes that each proba-
bility in a given agent’s belief set has the same sup-
port. However, unlike standard Nash equilibrium,
two agents i and j are not required to have identical
beliefs about any third agent k.

Bewley [2002] sketches a decision theory that repre-
sents ambiguity (which he refers to as Knightian un-
certainty) through a compact set of probability mea-
sures ∆. His model includes a notion of the status
quo, and assumes that the decision maker will choose
an action only if it preferred to the status quo under
all the probability measures in ∆. This amounts to
violating the completeness axiom, since if two acts
are not strictly preferred to the status quo, they may
be incomparable.

Ghirardato et al. [2004] provides a formal descrip-
tion of representing ambiguous preferences under
a general set of axioms that characterize Maxmin
Expected Utility [Gilboa and Schmeidler, 1989],
Choquet Expected Utility3 [Schmeidler, 1989], and
Subjective Expected Utility maxmimization [Savage,
1972]. The axioms are essentially those of [Gilboa
and Schmeidler, 1989], except without the Uncer-
tainty Aversion axiom. This paper is very concerned
with distinguishing between a decision maker’s per-
ception of ambiguity (which can be measured by the
size of her set of “possible” probability measures)
and her reaction to ambiguity (i.e., is she ambigu-
ity averse or ambiguity seeking?)

3 Opponent modelling

McKelvey and Palfrey [1992] explains discrepancies
between actual results and those predicted by BI
in experiments on the centipede game by suggesting
that some percentage of the population are actually
altruists whose utility comes from the total amount
of money awarded rather than just their own share.
If it is common knowledge that some agents are al-

2Sets of probabilities can be updated either by performing
Bayesian updating on each measure in the set, or by removing
every measure that did not give the event being conditioned
on maximal probability.

3Only some CEU models are consistent with the axioms of
[Gilboa and Schmeidler, 1989], whereas all CEU models are
consistent with those of [Ghirardato et al., 2004].
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truists, then immediately playing Take is no longer
a dominant strategy for “selfish” non-altruists.

Essential elements of their model included: error in
actions (i.e., with ε probability the agents will make
a random move); learning rate (i.e., errors in actions
decreases over time); and errors in beliefs (i.e., het-
erogeneous beliefs about the distribution of altruists).

Stahl and Wilson [1995] propose and experimen-
tally test a richer model with 5 boundedly-rational
“archtypical” agents plus a “rational expectations”
archetype. Each agent archetype has a probability of
making an “action error” (where they act randomly
instead of in the way that they “intended” to), plus
several other paramters describing their (possibly-
incorrect) beliefs about the proportion of each of the
other archetypes in the population. The experimen-
tal evidence rejects the hypothesis that the rational
expectations archetype is present, but is consistent
with the boundedly rational types. Costa-Gomes
et al. [2001] perform an extremely similar study on 9
archetypes (4 non-strategic and 5 strategic), with a
stronger focus on information search behaviours.

A simpler, single-parameter Cognitive Hierarchy
model is experimentally investigated by Camerer
et al. [2004]. “Level 0” agents choose their actions
randomly; “Level 1” agents best-respond against
Level-0 agents; and Level-k agents best-respond
against a population of agents of level < k. The
model assumes that agents are aware of the correct
ratios between agents of lower level, but assume that
no other agent reasons at level k or higher. They fit
their data on p-beauty contests and similar games us-
ing a Poisson distribution. They find that τ is almost
always between 1 and 2, and suggest 1.5 is a good
place to start for predictions. This single-parameter
Poisson model fits the data very nearly as well as a
much more complicated 7-parameter model.

3.1 Finite state automata

Freund et al. [1995] discusses algorithms for playing
against a specific model of boundedly rational agents
represented by boolean formulas, under the specific
assumption that no action is irrevocable. Gilboa
and Samet [1989] shows that an unboundedly ratio-
nal agent always has a dominant strategy against a

boundedly rational automaton; these strategies often
favour the bounded agent. But knowledge of (i.e.,
not just belief in) the bounded agent’s boundedness
is crucial; it’s not good enough for one agent to fake
it.

3.2 Heuristics

[Gigerenzer et al., 1999] is a collection of papers on
“fast and frugal” heuristics. These heuristics (in-
cluding single-reason decision making, the recogni-
tion heuristic, and others) are argued to be ecolog-
ically rational in that they provide a good tradeoff
between deliberation cost and effectiveness.

References

Bewley, T. (2002). Knightian decision theory. Part
I. Decisions in Economics and Finance, 25(2):79–
110.

Camerer, C. (1998). Bounded Rationality in Indi-
vidual Decision Making. Experimental Economics,
1(2):163–183.

Camerer, C., Ho, T., and Chong, J. (2004). A Cogni-
tive Hierarchy Model of Games. Quarterly Journal
of Economics, 119(3):861–898.

Costa-Gomes, M., Crawford, V., and Broseta, B.
(2001). Cognition and Behavior in Normal-Form
Games: An Experimental Study. Econometrica,
69(5):1193–1235.

Dow, J. and Werlang, S. (1994). Nash Equilibrium
under Knightian Uncertainty: Breaking Down
Backward Induction. Journal of Economic The-
ory, 64(2):305–324.

Eichberger, J. and Kelsey, D. (2000). Non-Additive
Beliefs and Strategic Equilibria. Games and Eco-
nomic Behavior, 30(2):183–215.

Freund, Y., Kearns, M., Mansour, Y., Ron, D., Ru-
binfeld, R., and Schapire, R. (1995). Efficient algo-
rithms for learning to play repeated games against
computationally bounded adversaries. Proceedings

5



of the Thirty Sixth Annual Symposium on Founda-
tions of Computer Science, pages 332–341.

Ghirardato, P., Maccheroni, F., and Marinacci, M.
(2004). Differentiating ambiguity and ambiguity
attitude. Journal of Economic Theory, 118(2):133–
173.

Gigerenzer, G., Todd, P., et al. (1999). Simple heuris-
tics that make us smart. Oxford University Press
New York.

Gilboa, I. and Samet, D. (1989). Bounded versus
unbounded rationality: The tyranny of the weak.
Games and Economic Behavior, 1(3):213–221.

Gilboa, I. and Schmeidler, D. (1989). Maxmin ex-
pected utility with non-unique prior. Journal of
Mathematical Economics, 18(2):141–153.

Halpern, J. and Pass, R. (2008). Iterated regret min-
imization: A more realistic solution concept. In
World Congress of Game Theory08.

Hey, J. and Orme, C. (1994). Investigating General-
izations of Expected Utility Theory Using Experi-
mental Data. Econometrica, 62(6):1291–1326.

Hyafil, N. and Boutilier, C. (2004). Regret minimiz-
ing equilibria and mechanisms for games with strict
type uncertainty. Proceedings of the 20th confer-
ence on Uncertainty in artificial intelligence, pages
268–277.

Hyafil, N. and Boutilier, C. (2006). Regret-
based Incremental Partial Revelation Mechanisms.
PROCEEDINGS OF THE NATIONAL CON-
FERENCE ON ARTIFICIAL INTELLIGENCE,
21(1):672.

Kahneman, D. and Tversky, A. (1979). Prospect the-
ory: An analysis of decision under risk. Economet-
rica, 47(2):263–291.

Kreps, D. and Milgrom, P. (1982). Rational cooper-
ation in the finitely repeated prisoners’ dilemma.
Journal of Economic Theory, 27:245–272.

Lo, K. (1999). Extensive Form Games with Uncer-
tainty Averse Players. Games and Economic Be-
havior, 28(2):256–270.

McKelvey, R. and Palfrey, T. (1992). An Experimen-
tal Study of the Centipede Game. Econometrica,
60(4):803–836.

Savage, L. (1951). The Theory of Statistical Deci-
sion. Journal of the American Statistical Associa-
tion, 46(253):55–67.

Savage, L. (1972). The Foundations of Statistics.
Dover Publications.

Schmeidler, D. (1989). Subjective probability and
expected utility without additivity. Econometrica,
57(3):571–587.

Shalev, J. (2000). Loss aversion equilibrium. Inter-
national Journal of Game Theory, 29(2):269–287.

Shalev, J. (2002). Loss Aversion and Bargaining.
Theory and Decision, 52(3):201–232.

Stahl, D. and Wilson, P. (1995). On Players’ Models
of Other Players: Theory and Experimental Evi-
dence. Games and Economic Behavior, 10(1):218–
254.

Stoye, J. (2007). Axioms for Minimax Regret Choice
Correspondences. Technical report, Northwestern
University.

Tversky, A. and Kahneman, D. (1992). Advances
in prospect theory: Cumulative representation of
uncertainty. Journal of Risk and Uncertainty,
5(4):297–323.

Von Neumann, J. and Morgenstern, O. (1944). The-
ory of Games and Economic Behavior. Wiley.

Wald, A. (1950). Statistical Decision Functions. New
York.

6


