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Abstract—Airborne laser scanners (LiDAR) return point clouds of mil-
lions of points imaging large regions. It is very challenging to recover the
bare earth, i.e., the surface remaining after the buildings and vegetative
cover have been identified and removed; manual correction of the re-
covered surface is very costly. Our solution combines classification into
ground and non-ground with reconstruction of the continuous underlying
surface. We define a joint model on the class labels and estimated sur-
face, p(c, z|x), where ci ∈ {0, 1} is the label of point i (ground or non-
ground), zi is the estimated bare-earth surface at point i, and xi is the
observed height of point i. We learn the parameters of this CRF using
supervised learning. The graph structure is obtained by triangulating
the point clouds. Given the model, we compute a MAP estimate of the
surface, arg max p(z|x), using the EM algorithm, treating the labels c

as missing data. Extensive testing shows that the recovered surfaces
agree very well with those reconstructed from manually corrected data.
Moreover, the resulting classification of points is competitive with the
best in the literature.

1 INTRODUCTION

It is now possible to acquire large amounts of high
quality 3D range data, in the form of point clouds,
using a variety of devices, from laser range scanners to
LiDAR (Light Detection and Ranging). When applied to
outdoor scenes, the most widely studied problem is to to
classify the points into object classes, such as “ground”,
“building”, “tree” or “shrubbery” [1], or “surface”, “lin-
ear structure” or “porous” [2]; this is useful for mobile
robot navigation. We are interested in a slightly different
problem, namely estimating the underlying surface of
the earth from an airborne laser scanner. This involves
classifying points as ground or non-ground, and then
estimating the height of the surface underneath the non-
ground points. This is sometimes described as estimating
the “bare earth” surface [3]. See Figure 1 for an illustra-
tion.

There is considerable commercial interest in the bare
earth problem. However, it is quite challenging. As
illustrated in Figure 2, we cannot simply declare points
with high elevation to be non-ground, because of hills.
Similarly, we cannot simply declare points in flat regions
to be ground, because of roof-tops. A variety of heuristics
have therefore been developed to tackle the problem [3].

In this paper, we propose to use machine learning
methods to solve the problem. More precisely, we pro-
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Fig. 1. (a) The original 3D mesh, the Delaunay triangu-
lation of the original 3D point cloud. (b) The classification
of 3D points to ground/non-ground (red/green). (c) The
estimated bare-earth surface.
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Fig. 2. Illustration of the problem along a 1D slice from
our data, illustrating a building and some trees (note that
these semantic labels are not present in the data and are
not used by the model). Red is the true bare earth surface
which we wish to estimate, zi; green is the surface which
LiDAR samples, xi. (In places where zi = xi, we just
show a red dot.) Letters are the estimated states ci, either
ground or non-ground.

pose a joint probabilistic model for the labels cj and the
estimated underlying surface heights zj of each point
j, conditional on the observed data xj : i.e., we learn
a model of p(c, z|x) from labeled training data. We
model correlation between the neighboring points using
a random field. Since this is conditional on the observed
data (i.e., a discriminative model), it is often called a
conditional random field (CRF) [4], [5].

Most previous work on CRFs has focused on modeling
the correlation between discrete labels (i.e., the cj ’s). We
extend this by also modeling the correlation between
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Fig. 3. Sketch of CRF. (a) 1D version. Note that each ci can be estimated based on the xi’s in some region around i,
but we only show a direct connection from xi for simplicity. (b) 2D version. Green dots represent unknown zi or ci’s. Red
circles represent known xi’s. We connect each latent point to its nearest neighbors, using a Delaunay triangulation.

continuous heights (i.e., the zj ’s). In particular, we en-
force the underlying heights of neighboring non-ground
points to be similar (representing a smooth surface),
whereas points labeled as ground should be close to the
observed data. Since the z and c fields are coupled, we
perform MAP estimation using EM. In the E step, we
estimate the labels c, and in the M step, we estimate
the heights z. We demonstrate that this learning-based
approach outperforms the previous best systems (based
on manually tuned heuristics) at both the classification
problem, and at the surface estimation problem. Further-
more, our solution is fast, and easy to port to other data
sets.

2 RELATED WORK

[6] considered the problem of segmenting 3D point
clouds using a generative model, where each region
consists of a parametric model of the surface, such as
planes, cylinders, cones, etc. Although we use segmen-
tation (specifically, the method of [7]) in our approach
(in order to derive segment-based features), we are not
interested in segmentation per se.

The problem of classifying 3D point clouds was stud-
ied in [1] using a max-margin Markov network. This was
trained in a discriminative way to classify 3D points
into 4 classes: ground, trees, grass and building. The
features used are somewhat like SIFT, in that they consist
of histograms which count the number of points in
certain regions around the point of interest. The features
were combined with a quadratic kernel. The approach
of [2] was simpler, due to the need to satisfy real-time
constraints. They used a Gaussian mixture model to
classify points based on simple local statistics. However,
neither paper deals with the problem of estimating the
underlying surface (the bare earth problem).

Many heuristic approaches to the bare earth problem
are reviewed and compared in [3]. This paper evalu-
ated many methods (in terms of their ability to classify
ground vs non-ground) on a benchmark dataset, which
we will call the “Sithole data”. We will compare our

method to these in Section 5. We will also compare to
the more recent approach of [8]. This uses a CRF on
the discrete label field, but does not model correlations
amongst the heights. Also, it uses manually-tuned meth-
ods, rather than machine learning.

3 MODEL

3.1 Overview
Let ci ∈ {0, 1} represent the class label (ground and non-
ground) at location i, zi ∈ R+ represent the estimated
bare earth height, and xi ∈ R+ represent the observed
height. Our proposed model is illustrated in Figure 3.
This corresponds to the joint conditional density model:

p(z, c|x) ∝ exp(−J(z, c,x)) (1)

where J(z, c,x) is the “energy” or cost of configuration
z, c when the data is x. (We formulate the problem in
terms of energy rather than probability to avoid the need
to explicitly normalize the distribution.) We define the
energy as follows:

J(z, c,x) = Jz(z, c,x) + Jc(c,x) (2)

where Jz ∝ − log p(z|c,x) and Jc ∝ − log p(c|x). We
explain each of these terms below.

3.2 Height field
We define the energy on the estimated heights as follows:

Jz(z, c,x) =∑
i

λ1I(ci = 1)(zi−
1
|ni|

∑
j∈ni

zj)2 +λ0I(ci = 0)(zi−xi)2

(3)

where ni are the neighbors of node i in the graph con-
structed from the Delaunay triangulation of the points.
If point i is non-ground, the first term enforces that zi is
close to the average of its neighbors; if i is ground, the
second term enforces that zi is close to xi. The relative
strengths of these two terms are controlled by λ1 and λ0;
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(a) vertex-based (b) segment-based (c) disc-based

Fig. 4. Features with different neighborhood: (a) vertex-based features. (b) segment-based features. (c) disc-based
features. In all figures, the red point represents the current vertex vi and the blue points represent its supporting
neighborhood.

No. Type Description
1 Vertex average arc tangent to neighbors
2 Vertex minimum arc tangent to neighbors
3 Vertex maximum arc tangent to neighbors
4 Vertex z difference to global z mean
5 Vertex outlier confidence
6 Segment segment z variance
7 Segment segment relative height
8 Segment segment average z difference to higher region neighbors
9 Segment segment average z difference to lower region neighbors

10 Segment percentage of higher neighbors
11 Segment percentage of lower neighbors
12 Segment number of vertices
13 Disc z difference to lowest neighbors

TABLE 1

these correspond to the smoothness of the field and the
fidelity to the data, respectively, and are estimated using
cross validation.

It will be helpful for later if we rewrite the above
equation in matrix-vector notation. Let L be the n × n
Laplacian matrix defined as

Li,j =


−1 if i = j
1
ni

if j ∈ Ni
0 otherwise

(4)

Let C = diag(c). Then the above cost function becomes

Jz(z, c,x) = λ1zT (LTCL)z+λ0(z−x)T (I−C)(z−x) (5)

This model is similar to a “switching Gaussian MRF”
model, since the edge potentials are turned “on” and
“off” based on the labels c.

3.3 Label field
We can model correlation between the labels using a
binary (two-state) CRF as follows:

Jc(c, z) =
∑
i

φi(ci,x) +
∑
j∈ni

φij(ci, cj ,x) (6)

where φi is the local evidence potential and φij is an edge
potential. By imposing appropriate constraints on the
edge potentials φij , we can ensure that we can compute
the exact MAP estimate arg max p(c|x) using graph cuts
[9]. This was the approach adopted in [1], [8]. How-
ever, we have found that we can achieve equally good

performance using just the local evidence terms, i.e.,
using an iid classifier, and ignoring the edge potentials.
This is probably because correlation amongst the ci’s is
indirectly modeled via correlation of the zi’s.

The local evidence term φi(ci|x) is just a binary classi-
fier. We learned this using standard supervised learning
techniques. In particular, we used the GentleBoost algo-
rithm [10] with decision trees as the weak classifiers. The
13 features are shown in Table 1. We use 30 decision
trees, and each tree can have up to 5 splits. (These
parameters were chosen by cross validation.) We convert
the output of the boosted classifier to a probability using
a logistic regression model, trained on validation data
[11]: p(ci = 1|x) = σ(aφi + b), where σ(u) = 1/(1 + e−u)
is the sigmoid function. This is helpful when we consider
EM (see Section 4).

The features we used can be classified into three
categories: vertex-based, segment-based, and disc-based
features. Vertex-based features are computed by using
the current vertex vi and its neighboring vertices vj
based on the Delaunay triangulation (Figure 4 (a)). These
features are used to capture local information around
a vertex. For example, the vertices of tree-tops usually
have larger average arc tangent to its neighbors than
vertices of ground points. Vertex-based features can ef-
fectively distinguish between tree and ground vertices,
but cannot distinguish between buildings and ground.

In order to capture information provided by a larger
context, we also use segment-based features. We use
the graph-based segmentation algorithm introduced by
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Fig. 5. Segmentation of point cloud. (a) complex buildings. (b) a large building. (c) buildings and a bridge. We can
observe that the segmentation algorithm works in most of the cases except that it partitions the ground and bridge
into the same group in (c).

Felzenszwalb and Huttenlocher [7]. The graph is con-
structed by Delaunay triangulation, and the edge weight
of two neighboring vertices is defined as the slope
between them. Figure 5 provides some examples of the
segmentation. We can see that this algorithm does a
good job at partitioning the point cloud into meaningful
groups. Furthemore, this algorithm is very fast. After
obtaining the segmentation, various features are com-
puted: see Figure 4 (b). For instance, the relative height
of a segment is the average elevation difference between
its boundary vertices to the lowest neighboring vertices
within a specified distance. Note that all vertices of the
same segment have the same segment-based features.

The segmentation algorithm sometimes does not parti-
tion different man-made structures into different groups.
For example, in Figure 5(c), the segmentation algorithm
mis-partitions the bridge and ground into the same
group. In order to tackle this problem, we introduce the
disc-based features. These are computed by using a disc-
shaped neighborhood with a specified radius (Figure
4 (c)). Currently, the only disc-based feature we use is
the elevation difference between the current vertex vi
and the lowest vertex within a range; this feature can
effectively distinguish between points on the ground and
on bridges.

4 INFERENCE

We now discuss how to compute a MAP estimate of
p(z|x) =

∑
c p(z, c|x). We use the EM algorithm for

this, treating the labels as missing data. We initialize by
running the classifier p(c|x).

4.1 M step: estimating the surface

From Equation 5, the expected negative complete data
log likelihood is given by

− Ec log p(z, c|x) = EcJz(z, c, z)

= λ1zT (LTWL)z + λ0(z− x)T (I−W)(z− x) (7)

where W = E[C] = diag(p(c1 = 1), . . . , p(cn = 1)).
Maximizing this is a weighted least squares problem,
which can be efficiently solved using Laplacian mesh

smoothing [12]. Specifically, we just solve the following
system of linear equations:

wiλ1

zi − 1
ni

∑
j∈Ni

zj

 = 0 (8)

(1− wi)λ0(zi − xi) = 0 (9)

where wi = p(ci = 1|x) is the probability that vertex
i belongs to non-ground. In matrix-vector form this
becomes (

WL
I−W

)
z =

(
0

(I−W)x

)
(10)

4.2 E step: Re-classifying Vertices
We now discuss how to reestimate the labels c from
the heights z. The cost function factorizes into a sum
of terms, one per ci:

J(c) =
∑
i

ψi(ci) (11)

where

ψi =
(
λ1(zi − 1

|ni|
∑
j∈ni

zj)2 + φi(1)
λ0(zi − xi)2 + φi(0)

)
(12)

Hence p(c|x, z) =
∏
i p(ci|zi, xi) where

p(ci = 1|x, z) =
e−ψi(1)

e−ψi(1) + e−ψi(0)

=
1

1 + eψi(1)−ψi(0)

= σ(ψi(0)− ψi(1))

(13)

where σ(u) = 1/(1 + e−u) is the logistic function. Essen-
tially we are performing a soft classification of ci based
on whether zi is more similar to its neighbors, or to the
data, and also based on the local evidence φi. This is
similar to the ad hoc weighting scheme proposed by
Kraus and Pfeifer [13].

Although this reweighting scheme works quite well,
we got better performance by using a learning scheme
to model p(ci|zi, xi), rather than relying on exact infer-
ence in a possibly incorrect model. Specifically, we use
boosted decision trees to train a classifier to predict the
labels. (A similar approach was used in [14], which used
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(a) 1st iteration (b) 1st iteration (c) 2nd iteration (d) 2nd iteration

(e) 4th iteration (f) 4th iteration (g) 8th iteration (h) 8th iteration

Fig. 6. This figure illustrates the EM algorithm. (a) is the initial classification results obtained from p(c|x). Red dots
represent ground points and green dots represent non-ground points. We can observe that some points on the root-
top are mis-classified as ground points. (b) shows the estimated z after the first M-step. Since there are some mis-
classification on the roof-top, the estimated surface is not correct. (c) shows the results of p(c|x, z) of the first E-step.
Observe that some of the mis-classified points are re-classified as non-ground because they are not locally smooth.
(d) shows the second M-step. (e) shows the 4th E-step. (f) shows the 4th M-step. (g) shows the 8th E-step. (h) shows
the 8th M-step. We can see that after 8 iterations of EM, the mis-classification on the roof-top has been corrected.

boosting to do approximate inference in an intractable
CRF.) We trained this classifier to map the z estimated
at the first step of the EM algorithm to the correct labels
c. We use the same classifier at each subsequent iteration.
EM typically converges in 10-20 steps. See Figure 6 for
an illustration of the algorithm in action.

5 EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed
algorithm, we test our system on two datasets: the
Sithole et al. [3] dataset and the Terrapoint dataset [15].
We evaluate both the quantitative and qualitative per-
formance of the proposed algorithm.

We evaluate the quantitative performance of our sys-
tem by the classification errors and the distance between
the extracted and ground-truth bare-earth surface. To
measure the distance between the estimated and ground-
truth bare-earth surface, we define the distance dist(p, S)
between a point p and a surface S as:

dist(p, S) = min
p′∈S
‖p− p′‖ (14)

The average distance between surfaces S1 and S2 thus
can be defined as

distavg(S1, S2) =
1
|S1|

∫
p∈S1

dist(p, S2)dp (15)

where 1/|S1| is the area of S1. In particular, we use
a standard package named Metro [16] to compute the
average distance between two 3D meshes.

5.1 Sithole et al. Dataset
The Sithole et al. dataset [3] consists of 15 sites with
various terrain characteristics including buildings, steep
slopes, bridges, terrain discontinuities, ramps, vegetation
on slopes and many others . Sithole et al. manually classi-
fied each data point and thus the ground-truth labellings
are very accurate. The Sithole dataset consists of 384325
3D points.

In Figure 7 (a), we compare our classification accuracy
with the state-of-the-art filtering algorithms evaluated
by Sithole et al. [3]. Since we do not have another inde-
pendent training set, we run 10-fold cross-validation on
the Sithole dataset to produce the classification accuracy.
Our classification error percentage, 3.46%, is slightly
better than the state-of-the-art hand-tuned algorithms.

Figure 8 (a)-(c) shows the qualitative results of the Sit-
hole dataset. We can observe that the proposed algorithm
is robust under different kinds of terrains, including
(a) buildings on steep slope, (b) bridge, (c) building.
Due to the use of segment-based and radius-disc-based
features, the proposed algorithm can reliably dealing
with terrains with bridges and buildings on slope, which
ware notorious in the Sithole dataset [3].

5.2 Terrapoint Dataset
The Terrapoint data [15] consists of three huge sites with
3 millions of data points. The first and third sites contain
vegetation and roads, while the second site is composed
of forests, buildings, and cars. Unfortunately, Terrapoint
classifies dataset in a conservative way, i.e., they mark
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Fig. 7. (a) Errors in estimating labels c on the Sithole dataset, compared with other methods evaluated in [3]. (b)
Errors in estimating surface z on the Terrapoint dataset, compared with Lu et al. [8].

few points as ground in order to increase the quality of
the bare-earth extraction. As a result, the ground-truth
classification is not accurate because many ground points
are classified as non-ground.

We use the Terrapoint dataset as the independent test
case to evaluate the performance of our classifier trained
by using the Sithole et al. dataset. We partition the
Terrapoint dataset into patches of 50000 points and run
our algorithm on each of them. Figure 7 (b) shows the
quantitative performance of our algorithm compared to
Lu et al. [8]. Our algorithm outperforms Lu et al. [8] in two
of the three dataset, and has very similar performance
in the other one.

Figure 8 (d) and (e) shows some qualitative results of
our algorithm on the Terrapoint dataset. We can observe
that our algorithm can reliable extract the bare-earth
surface in both urban and rural areas.

6 SUMMARY

We presented a coupled CRF method for recovering
bare earth models from airborne LiDAR data. One CRF
models the discrete labels of ground and non-ground,
while the other models the smooth underlying contin-
uous height field. Using EM, we recover the bare earth
surface while re-classifying the points into ground and
non-ground using a model that compares our initial
estimate of z to the correct labels c. We initialize the EM
process with the output of a boosted classifier learned
from our labeled data.

Extensive testing against hand-classified data and
commercial data shows that our results improve upon
manually tuned classifiers and produce surfaces that
better the results of previous learning-based bare earth
systems. As yet, our system does not include models
of sensing errors due to scattering and multiple returns,
so the system could be improved by taking such errors
into account. Despite the fact that the method does

not use any knowledge about regularities of man-made
structures, it is effective at isolating them in our data.
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(a) vegetation and buildings on steep slope

(b) bridge and rural area

(c) buildings

(d) building and trees

(e) residential area

Fig. 8. Qualitative evaluation of the Sithole et al. dataset [3] and the Terrapoint dataset [15]. The first column is the
original point cloud after Delaunay triagulation. The second column is the classification results. The red points are
classified as ground while the green points are classified as non-ground. The third column is the estimated bare-earth
surface. (a)-(c) are results from the Sithole dataset, and (d)(e) are results from the Terrapoint dataset.


