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Abstract. We present a two-phase algorithm for solving large-scale quadratic programs (QPs).
In the first phase, gradient-projection iterations approximately minimize an augmented Lagrangian
function and provide an estimate of the optimal active set. In the second phase, an equality-
constrained QP defined by the current inactive variables is approximately minimized in order to
generate a second-order search direction. A filter determines the required accuracy of the subprob-
lem solutions and provides an acceptance criterion for the search directions. The resulting algorithm
is globally and finitely convergent. The algorithm is suitable for large-scale problems with many de-
grees of freedom, and provides an alternative to interior-point methods when iterative methods must
be used to solve the underlying linear systems. Numerical experiments on a subset of the CUTEr
QP test problems demonstrate the effectiveness of the approach.
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1. Introduction. Quadratic programs (QPs) play a fundamental role in opti-
mization. They are useful across a rich class of applications, such as the simulation
of rigid multibody dynamics [2, 49], optimal control [7, 32, 52], and financial-portfolio
optimization [15,53]. They also arise as a sequence of subproblems within algorithms
for solving more general nonlinear optimization problems. Of particular interest for
us are sequential quadratic programming (SQP) methods, which have proved to be a
reliable approach for general problems (for a recent survey, see Gould and Toint [46]).
Our purpose is to develop a QP algorithm that may be used effectively within an SQP
framework for solving large-scale nonlinear problems.

Compared to interior-point methods for QPs, active-set methods are especially
effective as subproblem solvers within the SQP framework because they can exploit
increasingly good starting points in order to reduce the number of iterations required
for convergence. Inertia-controlling active-set strategies (see, e.g., [33,42]) are robust
in practice, but their overall efficiency is limited by the number of active-set changes
that can be made at each iteration (typically, a single index changes at each iteration).
The combinatorial nature of such an approach severely limits its effectiveness on truly
large-scale, nonconvex problems that may have many degrees of freedom. However,
the robustness and warm-start capability of active-set approaches motivate us to
propose a method that is capable of extremely large changes to the active set at each
iteration and yet continues to be finitely convergent.

Interior-point methods are often preferred over active-set approaches because they
have proved effective for large problems and because they have strong theoretical con-
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vergence properties. For convex QPs, interior methods are convergent in polynomial
time [55]. However, the key subproblems within these methods lead to linear systems
(known as Karush-Kuhn-Tucker, or saddle-point, systems) that are inherently ill-
conditioned [38, Theorem 4.2]. Implementations based on iterative linear solvers need
to overcome this ill-conditioning by appealing to specialized preconditioners; this has
led to significant research efforts for developing effective preconditioners [10–12,16,40].

In contrast, the Karush-Kuhn-Tucker (KKT) systems that arise in active-set
methods do not suffer from the artificial ill-conditioning inherent in the barrier term
of interior methods. We recognize that preconditioning KKT systems is still an ac-
tive and open research area, but our expectation is that KKT systems arising in
active-set methods will more easily lend themselves to effective preconditioning than
those arising in interior-point methods. We are particularly interested in developing
methods that have a strong potential to be effective within a matrix-free context.
Such methods may have applicability, for example, to the large problems that arise
in PDE-constrained optimization with inequality constraints.

With this goal in mind, we propose a new algorithm for solving QPs that is
motivated by the computational effectiveness of gradient-projection methods (such as
those described by [13, Chapter 2] and [21]) for bound-constrained QPs. A simplistic
extension of gradient projection to general QPs would lead to a subproblem that is
almost as difficult to solve as the original QP: each projection of the objective gradient
onto the feasible set is itself a QP. Instead, we use the augmented Lagrangian function
to transform the QP into a bound-constrained problem on which we can perform
inexpensive gradient-projection iterations.

Each iteration of our algorithm has two main phases. The first phase applies inex-
pensive gradient-projection iterations in order to minimize the augmented Lagrangian
function subject to the original problem’s bound constraints. This phase encourages
rapid changes to the active set and provides an estimate of the optimal active set.
With that active-set estimate, the second phase then solves an equality-constrained
QP (it is this subproblem that gives rise to the KKT system). A filter method [36]
is used to dynamically control the accuracy of the bound-constrained solves, thereby
eliminating an arbitrary and sometimes troublesome sequence of parameters com-
monly used in augmented Lagrangian techniques.

We prove global and finite convergence of the algorithm and show that it identifies
the optimal active set in a finite number of iterations. Once this active set has been
identified, the algorithm may be interpreted as a Newton iteration on the active set.
We present preliminary numerical results that demonstrate the effectiveness of this
approach.

1.1. The quadratic program. We consider general QPs of the form

minimize
x∈Rn

cTx+ 1
2x

THx

subject to Ax = b, x ≥ 0,
(GQP)

where b and c are m- and n-vectors, H is an n×n symmetric (and possibly indefinite)
matrix, and A is an m× n matrix. Typically, n� m. QPs with more general upper
and lower bounds are easily accommodated by our method.

Notation. Unless otherwise indicated, the 2-norm of a vector v is denoted by ‖v‖.
Subscripts on vectors indicate components, so that vi is the ith component of v, and
if I is an index set, then vI is a subvector indexed by I. Unless indicated otherwise,
superscripts indicate iterates, so that vk is the kth iterate. With vector arguments,
the functions min{·, ·} and max{·, ·} are defined componentwise.
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We define the augmented Lagrangian corresponding to (GQP) as

Lρ(x, y) = cTx+ 1
2x

THx− yT(Ax− b) + 1
2ρ‖Ax− b‖

2,

where x and the m-vector y are independent variables and ρ > 0. The usual La-
grangian function is then L0(x, y). When yk and ρk are fixed, we often use the
shorthand notation Lk(x) := Lρk(x, yk). Define the first-order multiplier estimate by

ỹρ(x, y) = y − ρ(Ax− b). (1.1)

The derivatives of Lρ with respect to x may be written as follows:

∇xLρ(x, y) = c+Hx−ATỹρ(x, y), (1.2a)

∇2
xxLρ(x, y) = H + ρATA. (1.2b)

We assume that (GQP) is feasible and has at least one point (x∗, y∗) that satisfies
the first-order KKT conditions.

Definition 1.1 (first-order KKT conditions). A pair (x∗, y∗) is a first-order
KKT point for (GQP) if

min{x∗,∇xL0(x∗, y∗)} = 0, (1.3a)
Ax∗ = b. (1.3b)

The vector of z∗ := ∇xL0(x∗, y∗) is the set of Lagrange multipliers that corre-
sponds to the bounds x ≥ 0. Our method remains feasible with respect to the simple
bounds, and we define the active and inactive bound constraints at x by the index
sets

A(x) = {j ∈ 1, . . . , n | xj = 0} and I(x) = {j ∈ 1, . . . , n | xj > 0}.

The symbol x∗ may denote a (primal) solution of (GQP) and may also be used to
denote a limit point of the sequence {xk}. Let A∗ := A(x∗) and I∗ := I(x∗). For
j ∈ Ik, letHk be the submatrix formed from the jth rows and columns ofH. Similarly,
let Ak and A∗ be the submatrices formed from the columns of A indexed by Ik and
I∗, respectively.

A vital component of our algorithm is the concept of a filter [36], which we use
to determine the required subproblem optimality and to test acceptance during the
linesearch procedure. The filter is defined by a collection of tuples together with a
rule that must be enforced among all entries maintained in the filter. We denote the
filter at the kth iteration by Fk; it is fully defined in section 2.1.

1.2. Related work. Our method is related to a number of nonlinear program-
ming approaches. The two-phase aspect of our method is reminiscent of sequential
linear-programming/equality-quadratic-programming methods, which have received
much attention recently. For examples of such approaches, see Fletcher and Sainz de
la Maza [35] and, more recently, Chin and Fletcher [19] and Byrd et al. [17]. A com-
mon approach of these methods is to solve a relatively inexpensive LP subproblem in
order to estimate the optimal active set, and then solve an equality-constrained QP
to obtain a search direction in a subspace. The idea of using gradient projection to
predict the optimal active set has been used in the context of bound-constrained QPs
(i.e., with no general linear constraints) by Moré and Toraldo [54] and by Friedlan-
der and Mart́ınez [39], among others. Bound-constrained QP solvers have also been
considered by [6, 20,25–27].
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Algorithm 1: Outline of QP Filter Method (QPFIL)
initialization: k ← 0, x0 given, initialize F0

while not optimal do

Approximately minimize Lk(x) to find an exk acceptable to Fk.1

Identify an active set Ak and update the penalty parameter ρk+1.2

Update the multiplier estimate: eyk ← yk − ρk(Aexk − b).3

Solve an equality-constrained QP for a second-order step (∆x,∆y).4

Linesearch: find α such that (exk + α∆x, eyk + α∆y) is acceptable to Fk.5

Update iterates: (xk+1, yk+1)← (exk + α∆x, eyk + α∆y).6

Update filter Fk+1.7

k ← k + 1.8

Our algorithm may be interpreted as a second-order version of the classical aug-
mented Lagrangian algorithm for nonlinear programming, as implemented in the soft-
ware package LANCELOT [22]. We use the term bound-constrained Lagrangian (BCL)
for these methods because they involve only bound constraints on each subproblem.
Typically the original bound constraints are repeated verbatim in each subproblem
and enforced at all iterations. See [13, Chapter 2] and [23] for an overview of BCL
methods. BCL methods for convex QPs with general constraints have been recently
considered by Dostál et al. [28–30] and by Delbos and Gilbert [24]. Active-set meth-
ods for solving large-scale nonconvex QPs include Galahad’s QPA [47], BQPD [34],
and SQOPT [41]; see Gould and Toint [48] for a recent survey.

2. Augmented Lagrangian filter algorithm for QPs. Our algorithm differs
from classical BCL method in three important ways: First, the main role of the
augmented Lagrangian minimization in this algorithm is to provide an estimate of
the optimal active set, which is used to define an equality-constrained QP that is
subsequently solved for a second-order step. The second-order step improves both the
reliability and the convergence rate of BCL methods. Second, we use a filter to control
various aspects of the algorithm related to global convergence. The filter allows us to
dispense with two forcing sequences commonly used in BCL methods (the subproblem
tolerance, and the accept/reject threshold for updating the Lagrange multipliers). It
also provides a non-monotone globalization strategy that is more likely to accept
steps computed by inexact solutions. Third, we exploit the special structure of the
QP problem to obtain estimates of the required penalty parameter. These estimates
are more adaptive than traditional penalty update schemes, which may overestimate
the penalty parameter. Algorithm 1 outlines the main steps of our approach, which
we call QPFIL.

At this point, the careful reader may ask why QPFIL uses both a filter and a
penalty function—after all, filter methods are meant to replace penalty functions
(such as the augmented Lagrangian). The reason is simple: We use the augmented
Lagrangian to transform the general QP into a bound-constrained QP so that we
can use efficient gradient-projection techniques to derive an active-set estimate. We
emphasize that global convergence is enforced by the filter and not through the aug-
mented Lagrangian.

A crucial feature of QPFIL is its suitability for high-performance computing.
The two computational kernels of the algorithm are the bound-constrained minimiza-
tion of the augmented Lagrangian function (step 1) and the solution of an equality-
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constrained QP (step 4). Scalable tools that perform well on high-performance ar-
chitectures exist for both steps. For example, TAO [9] and PETSc [3,4] are suitable,
respectively, for the bound-constrained subproblem and the equality-constrained QP.
In the remainder of this section we give details of each step of the QPFIL algorithm.

2.1. An augmented Lagrangian filter. The iterations of a BCL method for
nonconvex optimization typically are controlled by two fundamental forcing sequences
that ensure convergence to a solution. A decreasing sequence, ωk → 0, determines
the required optimality of each subproblem solution and controls the convergence of
the dual infeasibility (see (1.3a)). The second decreasing sequence, ηk → 0, tracks
the primal infeasibility (see (1.3b)) and determines whether the penalty parameter ρk

should be increased or left unchanged.
In the definition of our filter we use quantities that are analogous to ωk and ηk:

ω(x, y) := ‖min{x,∇xL0(x, y)}‖,
η(x) := ‖Ax− b‖,

which are based on the optimality and feasibility of a current pair (x, y). As we prove
in section 3, such a choice allows us to dispense with the sequences normally found
in BCL methods and instead defines these sequences implicitly. We observe that the
filter will generally be less conservative than BCL methods in the acceptance of a
current subproblem solution or multiplier update.

Note that w(x, y) is based on the gradient of the Lagrangian function, not on the
augmented Lagrangian. Thus, our decision on when to exit the minimization of the
current subproblem is based on the optimality of the current subproblem iterate for the
original problem, rather than being based on the optimality of the current subproblem,
as is usually the case in BCL methods. This approach ensures that the subproblem
iterations (defined below) always generate solutions that are acceptable to the filter.
Another advantage of this definition is that the filter is, in effect, independent of the
penalty parameter ρk and hence does not need to be updated if ρk is increased.

In the remainder of the paper we use the abbreviations

ωk := ω(xk, yk) and ηk := η(xk).

Definition 2.1 (augmented Lagrangian filter). The following rules define an
augmented Lagrangian filter:

1. A pair (ω′, η′) dominates another pair (ω, η) if ω′ ≤ ω and η′ ≤ η, and at
least one inequality holds strictly.

2. A filter F is a list of pairs (ω, η) such that no pair dominates another.
3. A filter F contains an entry (called the upper bound)

(ω̄, η̄) = (U, 0), (2.1)

where U is a positive constant.
4. A pair (x′, y′) is acceptable to the filter F if and only if

ω′ ≤ βω` or η′ ≤ βη` − γω′, (2.2)

for each (ω`, η`) ∈ F , where β, γ ∈ (0, 1) are constants.
We use the shorthand notation ` ∈ F to imply that (ω`, η`) ∈ F .

A typical filter is illustrated in Figure 2.1. Typical values for the envelope con-
stants are β = 0.999, γ = 0.001. A suitable choice for the upper bound U in (2.1)
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U ω(x, y)

upper bound

η(x)

Fig. 2.1. A typical filter. All pairs (ω, η) that are below and to the left of the envelope (dashed
line) are acceptable to the filter (cf. (2.2)).

is U = δmax{1, ω0}, with δ = 1.25. Filter methods are typically insensitive to the
choice of these parameters, and most importantly, these parameters are not problem-
dependent, unlike penalty parameters which must be chosen with more care. We note
that (2.2) creates a sloping envelope around the filter. Together with (2.1), this implies
that a sequence {(ωk, ηk)} of pairs each acceptable to Fk must satisfy ωk → ω∗ = 0.
If the second condition in (2.2) were weakened to ηk+1 ≤ βη`, then the sequence of
pairs acceptable to Fk could accumulate to points where ηk → η∗ = 0, but which are
nonstationary because ωk → ω∗ > 0.

A consequence of η(x) ≥ 0 and the sloping envelope is that the upper bound
(U, 0) is theoretically unnecessary—the sloping envelope implies an upper bound U =
ηmin/γ, where ηmin is the least η` for all ` ∈ F . In practice, however, we impose the
upper bound U in order to avoid generating entries with excessively large values ωk.

We remark that the axes in the augmented Lagrangian filter appear to be the
reverse of the usual definition: feasibility is on the vertical axis instead of the hori-
zontal axis, as it typically appears in the literature. This reflects the dual view of the
augmented Lagrangian: it can be shown that Ax − b is a steepest descent direction
at x for the augmented Lagrangian [14, §2.2], and that ω(x, y) is the dual feasibility
error. This definition of the filter is similar to the one used in [44]. The gradient of
the Lagrangian has also been used in the filter by Ulbrich et al. [58], together with a
centrality measure, in the context of interior-point methods.

2.2. Active-set prediction and second-order steps. Let x̃k be an approxi-
mate minimizer of the augmented Lagrangian Lk at iteration k. We use this solution to
derive an active-set estimate Ak := A(x̃k), which in turn is used to define an equality-
constrained QP (EQP) in the free variables, which are indexed by Ik := I(x̃k). The
variables Ak are held fixed at the active bounds.

A second-order correction to x̃k in the space of free variables may be found by
solving the following EQP for ∆x = (∆xA, ∆xI):

minimize
∆x

cT(x̃k +∆x) + 1
2 (x̃k +∆x)TH(x̃k +∆x)

subject to A(x̃k +∆x) = b, ∆xAk = 0.
(EQPk)

Equivalently, a second-order search direction from the current point (x̃k, ỹk) is gener-
ated from the (first-order) optimality conditions of (EQPk):(

−Hk ATk
Ak

)(
∆xI
∆y

)
=
(

[c+Hx̃k]Ik −ATk ỹk
b−Ax̃k

)
. (2.3)

A projected search in the full space is then based on the vector (∆x,∆y).
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ρρmin

y∗

y

D

(a) Nonlinear constraints

ρρmin

y

D

(b) Linear constraints

Fig. 2.2. The sets D illustrate the required penalty parameter for the BCL method when the
constraints are either nonlinear or linear.

Note that step 1 of Algorithm 1 requires that the approximate augmented La-
grangian minimizer x̃k be acceptable to the filter. Moreover, as we demonstrate in
section 3.2, the first-order multiplier estimate ỹk must also be acceptable to the filter.
These two properties ensure that even if a linesearch along (∆x,∆y) fails to obtain a
positive steplength α such that (x̃k + α∆x, ỹk + α∆y) is acceptable to the filter, the
algorithm can still make progress with the first-order step alone. In this case, α = 0,
and the algorithm relies on the progress of the standard BCL iterations.

2.3. Estimating the penalty parameter. It is well known that BCL meth-
ods, under standard assumptions, converge for all large-enough values of the penalty
parameter ρk. The threshold value ρmin is never computed explicitly; instead, BCL
methods attempt to discover the threshold value by increasing ρk in stages. Typically
the norm of the constraint violation is used to guide the decisions regarding when to
increase the penalty parameter: a linear decrease (as anticipated by the BCL local
convergence theory) signals that the penalty parameter may be held constant; less
than linear convergence—or a large increase in constraint violations—indicates that
a larger ρk is needed.

When the constraints are nonlinear, the penalty-parameter threshold and the
initial Lagrange multiplier estimates are closely coupled. Poor estimates yk of y∗

imply that a larger ρk is needed to induce convergence. This coupling is fully de-
scribed by Bertsekas [13, Proposition 2.4]. When the constraints are linear, however,
the Lagrange multipliers do not appear in (1.2b), and we see that yk and ρk are
essentially decoupled—the curvature of Lk can be influenced by changing ρk alone.
This observation is illustrated in Figure 2.2, in which the left figure corresponds to
nonlinear constraints and the right figure to linear constraints. The regions in the
penalty/multiplier plane for which BCL methods converge are indicated by the shaded
regions D. The result below provides an explicit threshold value ρmin needed to ensure
that the Hessian of the augmented Lagrangian is positive definite (a positive multiple
of ρmin is enough to induce convergence). Let λmin(·) and σmin(·), respectively, denote
the leftmost eigenvalue, and the smallest singular value, of a matrix.

Lemma 2.2. Suppose that pTHp > 0 for all nonzero p such that Ap = 0 and A
has full row rank. Then H + ρATA is positive definite if and only if

ρ > ρmin := λmin

(
A
(
H + γATA)−1AT

)−1 − γI, (2.4)

for any γ ≥ 0 such that H + γATA is nonsingular.
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Proof. The required result follows from Bertsekas [13, Proposition 2.5], where the
Jacobian and Hessian are taken as constant.

The bound provided by Lemma 2.2 is sharp: it is both necessary and sufficient.
However, the formula on the right-hand side of (2.4) is unsuitable for large-scale
computation. The following lemma develops a lower bound for the required ρ that is
more easily computed.

Lemma 2.3. Under the conditions of Lemma 2.2,

ρmin <
max{0,−λmin(H)}

σmin(A)2
. (2.5)

Proof. Consider unit-norm vectors p such that Ap 6= 0. Otherwise, pT(H +
ρATA)p = pTHp > 0 for all p such that Ap = 0. Let U = [u1 · · ·um] be the orthogonal
left-singular vectors of A, and let Σ = diag(σi) be the singular values, with σ1 ≥
σ2 ≥ · · · ≥ σm ≡ σmin > 0 (we assume that A has full rank). Then p can be
expressed as p =

∑m
i=1 αiui with

∑m
i=1 α

2
i = 1, for some scalars αi not all zero. Thus

ATA = UΣTΣUT, and

pTATAp =

(
m∑
i=1

αiu
T
i

)
(UΣTΣUT )

(
m∑
i=1

αiui

)
=

m∑
i=1

α2
iσ

2
i . (2.6)

Similarly, let Q = [q1 · · · qn] be the orthogonal eigenvectors of H, and let Λ = diag(λi)
be the eigenvalues, with λ1 ≥ λ2 ≥ · · · ≥ λn ≡ λmin. Then there exist scalars βi not
all zero such that p =

∑n
i=1 βiqi with

∑n
i=1 β

2
i = 1, and

pTHp =

(
n∑
i=1

βiq
T
i

)
H

(
n∑
i=1

βiqi

)
=

n∑
i=1

β2
i λi. (2.7)

Therefore, (2.6) and (2.7) imply that

pT(H + ρATA)p =
n∑
i=1

β2
i λi + ρ

m∑
i=1

α2
iσ

2
i

> min(0, λmin)
n∑
i=1

β2
i + ρσ2

min

m∑
i=1

α2
i

= min(0, λmin) + ρσ2
min,

and so H + ρATA is positive definite if min(0, λmin) + ρσ2
min > 0 or, equivalently, if

ρ >
max(0,−λmin)

σ2
min

. (2.8)

Because the bound ρmin in Lemma 2.2 is sharp, (2.8) implies that (2.5) holds.
For a given active set Ak, Lemma 2.3 implies that ρk larger than

ρmin(Ak) :=
max{0,−λmin(Hk)}

σmin(Ak)2
(2.9)

is sufficient at iteration k to ensure that Lk is convex in that subspace. Note that this
lower bound tends to infinity as the smallest singular value of Ak tends to zero. This
property is consistent with (2.4), where we see that if Ak is rank deficient, then the
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required bound in Lemma 2.2 does not exist. In section 3 we show that for a given
optimal active set, a multiple of this bound is required to induce convergence to an
optimal solution in our method.

We are not entirely satisfied with (2.9) because it requires an estimate (or at least
a lower bound) of the smallest singular value of the current Ak which can be relatively
expensive to compute. One possibility for estimating this value is to use a Lanczos
bidiagonalization procedure, as implemented in PROPACK [50].

Ideally, we would compute the penalty value according to (2.4) or (2.5). However,
for the size of problems of interest, this approach would be prohibitive in terms of
computational effort. In our numerical experiments we have instead used the quantity

ρmin(Ak) = max

1,
‖Hk‖1

max
{

1√
|Ik|
‖Ak‖∞ , 1√

m
‖Ak‖1

}
 ,

where |Ik| is the number of free variables and m is the number of general equality
constraints, as a simple approximation to (2.9). We note that the penalty parameter
only appears within the subproblem minimization (step 1 of Algorithm 1), and not in
the definition of the filter. If only a rough approximation to (2.9) is available, then
a multiple of the approximation might be used so as to increase the likelihood that
a large-enough quantity is obtained. In the remainder of the paper, we assume that
ρmin(Ak) is given by (2.9).

2.4. Minimizing the augmented Lagrangian subproblem. Like classical
BCL methods, our method generates a sequence of approximate minimizers of the
bound-constrained subproblem

minimize
x

Lk(x) subject to x ≥ 0. (2.10)

Instead of optimizing the subproblem to a prescribed tolerance, however, each itera-
tion of the inner algorithm approximately optimizes it in stages (i.e., a few iterations
of some minimization procedure are applied), so that at each iteration j of the inner
algorithm, the current iterate xj satisfies the approximate optimality conditions

‖min{x,∇xLρj (x, ȳ)}‖∞ ≤ εj , (2.11)

where ȳ is the latest multiplier estimate yk. The only requirement for the sequence of
approximate minimizations is that they eventually solve the subproblem in the limit,
and thus that εj → 0. The iterate xj and the implied first-order multiplier (1.1) are
tested for acceptability against the current filter. The inner-minimization algorithm
is described in Algorithm 2.

The penalty parameter ρj is checked at each inner iteration to ensure that it
satisfies the bound implied by Lemma 2.2 (see steps 5 and 7). If the current submatrix
Aj is rank deficient (i.e., σmin(Aj) = 0), then there does not exist a finite ρ that makes
the reduced Hessian positive definite. In that case, we are not assured that reducing
the augmented Lagrangian brings the next iterate any closer to optimality of the
original subproblem. Instead, we make progress towards feasibility of the iterates by
approximately solving the minimum infeasibility problem

minimize
x

1
2‖Ax− b‖

2 subject to x ≥ 0, (2.12)
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Algorithm 2: Bound-Constrained Lagrangian Filter (BCLFIL)
Inputs: x0, ȳ, ρ1, F Outputs: ex, ey, eρ
Set α ∈ [0, 1), j ← 0
repeat

j ← j + 11

Choose εj > 0 such that limj→∞ ε
j = 02

Find a point xj that satisfies (2.11) [approximately solve (2.10)]3

Aj ← A(xj) [update active set]4

if σmin(Aj) = 0 then5

Find a point xj that satisfies (2.13) [feasibility restoration]6

else if ρj < 2ρmin(Aj) then7

ρj+1 ← 2ρmin(Aj) [increase penalty parameter]8

else9

yj ← ȳ − ρj(Axj − b) [provisional multiplier update]10

(ωj , ηj)←
`
ω(xj , yj), η(xj)

´
[update primal-dual infeasibility]11

if (ωj , ηj) is acceptable to F then12

return ex← xj , ey ← yj , eρ← ρj

ρj+1 ← ρj [keep penalty parameter]13

until converged

and we thus require that xj satisfy the approximate necessary and sufficient condition

‖min{x,AT(Ax− b)}‖∞ ≤ εj . (2.13)

The point xj ≥ 0 solves the minimum infeasibility problem if ATj (Ajx
j
Ij − b) = 0,

which can be satisfied at infeasible points if Aj is rank deficient.
An alternative to step 6 of Algorithm 2 is to increase ρj by a fixed multiple. A

similar strategy is used in the method suggested in [30], where ρj is increased if the
current iterate is not “extended regular.” With this update, it can be shown that if
ρj →∞, then every limit point x∗ of xj is either a KKT point of (GQP) or a solution
of (2.12) (see Theorem 7.1). The analysis given in [30] shows that x∗ continues to
be a solution of the original QP, but this conclusion depends crucially on the strict
convexity of (GQP)—an assumption that we do not make here.

In classical BCL methods, the gradient of the augmented Lagrangian at the latest
iterate xj and the latest multiplier estimate ȳ is used to test termination of the inner
iterations. The test in step 12 of Algorithm 2 is based on the norm of the (usual)
Lagrangian function at xj , but it differs from BCL in using the first-order multiplier
estimate yj = ȳ−ρj(Axj− b). We note that the identity ∇xLρj (xj , ȳ) = ∇xL0(xj , yj)
implies that the quantities used to test termination in Algorithm 2 and in classical
BCL methods are in fact identical. Algorithm 2 additionally uses the current primal
infeasibility ηj as a criterion. The inner minimization terminates when the current
iterates are acceptable to the filter and the penalty parameter is large enough for the
current active set.

To establish that our algorithm finitely identifies the optimal active set (see sec-
tion 4), we assume that each approximate minimization reduces the objective by at
least as much as does a Cauchy point of a projected-gradient method (see, e.g., [56,
§16.6]). This is a mild assumption that is satisfied by most globally convergent bound-
constrained solvers. In practice, we perform one or two steps of a bound-constrained
optimization algorithm and then test the acceptability of (ωj , ηj) to the filter. This
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Algorithm 3: QP Filter Method (QPFIL)
Inputs: x0, y0 Outputs: x∗, y∗

Set penalty parameter ρ0 > 0 and positive filter envelope parameters β, γ < 1.
Set filter upper bound U ← γmax

˘
1, ‖Ax0 − b‖

¯
, and add (U, 0) to filter F0.

Set minimum steplength αmin > 0.
Compute infeasibilities ω0 ← ω(x0, y0) and η0 ← η(x0).
k ← 0
if ω0 > 0 and η0 > 0 then add (ω0, η0) to F0.1

while not optimal do
k ← k + 12

(exk, eyk, ρk)← BCLFIL(xk−1, yk−1, ρk−1,Fk−1)3

Ak ← A(exk)4

Find (∆xk,∆yk) that solves (2.3)5

Find αk ∈ [αmin, 1] such that (exk + α∆xk, eyk + α∆yk) is acceptable to Fk
6

if linesearch failed then7

(xk, yk)← (exk, eyk) [keep first-order iterates]8

else

(xk, yk)← (exk + αk∆xk, eyk + α∆yk) [second-order update]9

(ωk, ηk)←
`
ω(xk, yk), η(xk)

´
[compute infeasibilities]10

if ωk > 0 then11

Fk ← Fk−1 ∪ {(ωk, ηk)}12

Remove redundant entries from Fk
13

if ηk = 0 then update upper bound U14

return x∗ ← xk, y∗ ← yk

requirement is often weaker than traditional augmented Lagrangian methods, which
at each outer iteration must reduce the projected gradient beyond a specified toler-
ance that goes to zero; in contrast, here the inner-iteration tolerances are independent
across outer iterations.

2.5. Detailed algorithm statement. The proposed algorithm is structured
around outer and inner iterations. The outer iterations handle management of the
filter, the solution of (EQPk), and the subsequent linesearch. The inner iterations
minimize the augmented Lagrangian function, update the multipliers and the penalty
parameter, and identify a candidate set of active constraints used to define (EQPk)
for the outer iteration. Thus, each inner iteration performs steps 1–3 of Algorithm 1.

In step 6 of Algorithm 3 we perform a filter linesearch by trying a sequence of steps
α = γi, i = 0, 1, 2, . . ., for some constant γ ∈ (0, 1) until an acceptable point is found,
or until α < αmin, where αmin > 0 is a constant parameter. The parameter αmin is
needed because the first-order point (x̃k, ỹk) could lie in a corner of the filter with
the second-order step pointing into the filter. In that case there exists no α > 0 that
yields an acceptable step. Other ways of deciding when to terminate the linesearch
are possible, based, for example, on requiring that the new filter area induced by the
linesearch step be larger than the new filter area induced by the first-order step.

The filter update in step 12 of Algorithm 3 removes redundant entries that are
dominated by a new entry. The upper bound (U, 0) also allows us to manage the
number of filter entries that we wish to store. If this number is exceeded, then we
can reset the upper bound as U = max`{ω` | ω` ∈ Fk} and subsequently delete
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dominated entries from Fk, thus reducing the number of filter entries.

3. Global convergence. Global convergence of Algorithm 3 (QPFIL) is based
on progress made by the inner iterations of step 3. The second-order updates in
steps 5–9 serve only to accelerate convergence. Therefore, we can establish global
convergence of QPFIL by analyzing a first-order version of the algorithm that does not
use the second-order updates. The following assumption holds implicitly throughout.

Assumption 3.1. The sequences {xj} and {xk} generated by Algorithms 2 and 3
lie in a compact set. Hence, each sequence has at least one limit point.

3.1. Preliminaries. When A∗ has full rank, define the least-squares multiplier
estimate ŷ(x) as the unique solution of the least-squares problem

ŷ(x) := arg min
y

‖[c+Hx]I∗ −AT∗y‖. (3.1)

Because the least-squares multiplier estimate is unique, there exists a positive constant
α1 such that

‖ŷ(x)− ŷ(x∗)‖ ≤ α1‖x− x∗‖. (3.2)

Note that the definition of ŷ requires a priori knowledge of the bounds that are active
at the solution; however, ŷ is used only for analysis and is never computed.

Lemma 3.2. Suppose that A∗ has full rank and y is an approximate least-squares
solution of (3.1) for some x. Then there exists a positive constant α2 such that

‖ŷ(x)− y‖ ≤ α2‖[c+Hx]I∗ −AT∗y‖. (3.3)

Proof. Let r̂(x) and r be the least-squares residuals associated with ŷ(x) and y,
respectively, so that AT∗ŷ(x) + r̂(x) = [c+Hx]I∗ and AT∗y + r = [c+Hx]I∗ . Then

AT∗(ŷ(x)− y) + r̂(x)− r = 0,

and because A∗r̂(x) = 0, it follows that A∗A
T
∗(ŷ(x) − y) + A∗r = 0. Because A∗

has full rank, it is straightforward to show that there exists a positive constant α2

such that ‖ŷ(x) − y‖ ≤ α2‖r‖, and the required result follows immediately from the
definition of r.

The next result shows how a sequence of multiplier estimates is related to the
least-squares multiplier estimates.

Lemma 3.3. Let {ωk} and {ρk} be sequences of positive scalars where ωk → 0.
Let {xk} and {yk} be any sequences of n-vectors and m-vectors, respectively, that
together satisfy

‖min{xk,∇xL0(xk, yk)}‖∞ ≤ ωk. (3.4)

Let x∗ be any limit point of {xk} with an associated sequence of indices K. Suppose
that A∗ has full rank and let y∗ := ŷ(x∗). Then there are positive constants α1 and
α2 such that

‖yk − y∗‖ ≤ βk := α1‖xk − x∗‖+ α2ω
k, (3.5)

for all k ∈ K large enough.



TWO-PHASE FILTER METHOD FOR GENERAL QUADRATIC PROGRAMS 13

Proof. Set zk := ∇xL0(xk, yk). For k ∈ K large enough, xk is sufficiently close to
x∗ that xki > 0 if x∗i > 0. Then for such k, (3.4) and ωk → 0 imply that min{xki , zki } =
z∗i , so that

‖zkI∗‖ ≤ ‖min{xk, zk}‖ ≤
√
n ωk. (3.6)

We now derive (3.5). From the triangle inequality,

‖yk − y∗‖ ≤ ‖ŷ(xk)− yk‖+ ‖ŷ(xk)− y∗‖. (3.7)

Also, (3.3) (with x = xk and y = yk) and (3.6) together imply that

‖ŷ(xk)− yk‖ ≤ α2ω
k.

Substituting this and (3.2) (with x = xk) into (3.7), we obtain (3.5).

3.2. Convergence of inner iterations. We expect that the usual behavior of
Algorithm 2 will be to terminate finitely. However, as the next theorem proves, if the
algorithm does not terminate, then the inner iterations converge to a KKT point of
(GQP), or they converge to a solution of the minimum infeasibility problem (2.12).
For this section only, let

yj := ȳ − ρj(Axj − b) and zj := ∇xL0(xj , yj).

Theorem 3.4 (convergence of inner iterations). Let {xj} and ρk be sequences
generated by Algorithm 2. Then the algorithm terminates finitely, or every limit point
x∗ of {xj} is a KKT point of (GQP), or solves (2.12).

Proof. We first consider the case where step 5 tests true finitely many times and
then treat separately the two other cases where step 5 tests true infinitely many times
(and hence ρj →∞) and A∗ is either full rank or not.

Case 1. (Step 5 test true finitely many times.) In this case, the alternative
steps 7 or 9 must evaluate true for all j large enough. But there are only finitely
many different active sets, and so step 5 can evaluate true only finitely many times.
Hence, {ρj} remains bounded and step 12 is tested for all j large enough. Consider
only such j. Because each xj satisfies (2.11), steps 10 and 11 ensure that ωj → 0.
Moreover, for every ` ∈ F , ω` > 0 (see steps 1 and 11 of Algorithm 3), and so
ωj must be acceptable to the filter (see (2.2)) after finitely many iterations. Hence,
Algorithm 2 exits finitely.

Case 2. (Step 5 test true infinitely many times.) In this case, each xj in some
sub-sequence J satisfies (2.13). Because εj → 0, the limit point x∗ associated with
the sequence J satisfies (2.13), and it must therefore be a solution of (2.12).

In Theorem 7.1 (see section 7) we give an analogous convergence proof for a
slightly modified version of Algorithm 2 that offers alternative to steps 5–6. See [1]
for a related convergence analysis that relies on a set of different assumptions.

The hypotheses of Theorem 3.4 can fail to hold if there are no convergent sub-
sequences (i.e., Assumption 3.1 fails to hold) or if Algorithm 2 breaks down because
no iterate xj can be found to satisfy the stopping condition (2.11). For example,
the subproblem is unbounded below, which can happen if there exists a nonzero and
nonnegative vector d such that dTHd < 0 and Ad = 0.
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3.3. Convergence of first-order algorithm. For this section only, we con-
sider a simplified algorithm that skips the second-order update (steps 5–10 of Algo-
rithm 3). In this case, (xk, yk) ≡ (x̃k, ỹk), and we refer to the sequence {(xk, yk)}
of augmented Lagrangian minimizers and multiplier estimates as Cauchy points; our
intent is to emphasize that these solutions can be interpreted as steepest-ascent steps
of the augmented Lagrangian function and thus can yield only linear convergence.

We prove that the first-order sequence {(xk, yk)} generated in step 3 converges to
a stationary point of (GQP). This result is of interest also within the context of more
established BCL methods because it illustrates how a filter can be used in place of
the two arbitrary forcing sequences (ωk and ηk) commonly associated with augmented
Lagrangian methods.

We show the sequence of penalty parameters ρk is bounded, and that every limit
point of the primal-dual pair (xk, yk) satisfies (1.3a) and is thus dual feasible.

Lemma 3.5. The penalty parameter is updated finitely often.
Proof. This follows from the fact that there exist only a finite number of different

active sets that could result in a penalty-parameter update.
Lemma 3.6. Any limit point (x∗, y∗) of {(xk, yk)} satisfies ωk ≡ ω(xk, yk)→ 0.
Proof. We consider two mutually exclusive cases, depending on whether a finite

or an infinite number of entries are added to the filter. If a finite number of entries
are added to the filter (i.e., if step 11 of Algorithm 3 tests true only finitely many
times), then it follows that ωk = 0 for all k sufficiently large. The required result then
follows immediately. If, on the other hand, an infinite number of entries (ωk, ηk) are
added to the filter, then the required result follows from [19, Lemma 1]—where we
take f(x) = η(x) and h(x) = ω(x, y)—because η(x) is trivially bounded below.

The following theorem is our main convergence result on the sequence of Cauchy
points.

Theorem 3.7 (global convergence with single limit point). Consider a version of
Algorithm 3 that skips steps 5–10. Assume that the algorithm generates a sequence of
Cauchy points {(xk, yk)}, and that x∗ is the single limit point of {xk}. Then yk → y∗,
where y∗ := ŷ(x∗), and (x∗, y∗) is a KKT point of (GQP).

Proof. Step 3 of Algorithm 3, together with Lemma 3.6, ensure that each xk, yk,
ρk, and ωk, for k ∈ K, satisfy the conditions of Lemma 3.3. Then (3.4)–(3.5) hold,
and yk → y∗, as required. Because ωk → 0, (3.4) implies that

0 ≤ lim
k→∞

‖min{xk,∇xL0(xk, yk)}‖∞ ≤ lim
k→∞

ωk = 0,

and so min{x∗,∇xL0(x∗, y∗)} = 0. Therefore, (x∗, y∗) satisfies (1.3a).
The “single limit point” assumption on xk and the definition of yk = yk−1 −

ρk(Axk− b) (see step 10 of Algorithm 2) imply that ‖yk−yk−1‖ → 0. By Lemma 3.5,
ρk is bounded for all k, so

‖yk − yk−1‖ = ρk‖Axk − b‖ → 0, (3.8)

and x∗ satisfies (1.3b). Hence, (x∗, y∗) is a KKT pair of (GQP).
Recall that (GQP) is nonconvex, and hence the subproblem may have many

stationary points. The single-limit-point assumption of Theorem 3.7 excludes the
situation in which consecutive minimizations of the augmented Lagrangian subprob-
lem converge to different stationary points. Otherwise, the corresponding Lagrange
multiplier updates would not have a limit point and (3.8) would not hold. We could
relax the single-limit-point assumption if we instead assume that the subproblem
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solver finds a stationary point closest in norm to xk. Such a requirement cannot be
verified in practice, but depending on the subproblem solver, it is, arguably, often sat-
isfied. A similar assumption is made implicitly in a classical proof of convergence of
the augmented Lagrangian method: Bertsekas [13, Proposition 2.4] assumes that all
minimizers of the augmented Lagrangian fall within a small neighborhood. The single-
limit-point assumption made in Theorem 3.7 considerably simplifies the analysis and
leads to similar conclusions. In the case where (GQP) is convex, every subproblem
has a unique minimizer and neither assumption is required.

If we instead assume that a second-order sufficiency condition exists at a limit
point x∗, we can drop the single-limit-point assumption. In effect, the following
theorem shows that second-order points are attractors, and the algorithm generates
increasingly better Lagrange-multiplier estimates.

Theorem 3.8 (global convergence with second-order sufficiency). Consider a
version of Algorithm 3 that skips steps 5–10. Assume that the algorithm generates a
sequence of Cauchy points {(xk, yk)}, and that a limit point x∗ satisfies the second-
order sufficiency condition

pTHp > 0 for all p 6= 0 satisfying Ap = 0 with pj = 0 for all j ∈ A∗. (3.9)

Then there exist positive constants δ1, δ2, δ3, and a positive constant γ < 1 such that

‖yk − y∗‖ ≤ δ1ωk + γ‖yk−1 − y∗‖, (3.10a)

‖xk − x∗‖ ≤ δ2ωk + δ3‖yk−1 − y∗‖, (3.10b)

ρk‖Axk − b‖ ≤ δ1ωk + (γ + 1)‖yk−1 − y∗‖, (3.10c)

where (x∗, y∗) is a KKT point of (GQP).
Proof. Step 3 of Algorithm 3 together with Lemma 3.6 ensure that each xk, yk,

ρk, and ωk, for k ∈ K, satisfy the conditions of Lemma 3.3. Therefore, (3.6) holds,
and by a symmetric argument, xkA∗ satisfies a similar inequality, and so

‖zkI∗‖ ≤
√
n ωk and ‖xkA∗‖ ≤

√
n ωk. (3.11)

Note that each xk, yk, and zk satisfies

c+Hxk −ATyk = zk and yk = yk−1 − ρk(Axk − b).

Rearranging terms, we have(
−Hk ATk
Ak

1
ρk I

)(
xkI∗
yk

)
=
(

[c− zk]I∗
1
ρk y

k−1 + b

)
. (3.12)

Now consider the equality QP (cf. (EQPk))

minimize
x

cTI∗x+ 1
2x

THkx subject to Akx = b,

which has optimality conditions(
−Hk ATk
Ak

)(
x∗I∗
y∗

)
=
(
cI∗

b

)
. (3.13)

Subtracting (3.12) from (3.13), we get(
−Hk ATk
Ak

1
ρk I

)(
[xk − x∗]I∗
yk − y∗

)
=
(

−zkI∗
1
ρk (yk−1 − y∗)

)
. (3.14)
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Note that this matrix is nonsingular if and only if Ĥk := H + ρkATkAk is nonsingular
[37, Proposition 2]. But Algorithm 2 exits only if ρk > 2ρmin(Ak), and by Lemma 2.3
and (3.9), Ĥk is in fact positive definite. Therefore, the solutions to (3.13) and (3.14)
are unique. Moreover, inverting (3.14), we arrive at(

[xk − x∗]I∗
yk − y∗

)
=

(
−Ĥ−1

k ρkĤ−1
k ATk

ρkAkĤ
−1
k ρkI − (ρk)2AkĤ

−1
k ATk

)(
−zkI∗

1
ρk (yk−1 − y∗)

)
. (3.15)

Apply the triangle inequality to the second equation to arrive at

‖yk − y∗‖ ≤ ρk‖AkĤ−1
k ‖︸ ︷︷ ︸

(a)

‖zkI∗‖+ ‖I − ρkAkĤ−1
k ATk ‖︸ ︷︷ ︸

(b)

‖yk−1 − y∗‖. (3.16)

Because ρk is bounded and Ĥk is positive definite, there exists a positive constant δ1
that bounds (a). Next, note that AkĤ

−1
k ATk = (A+T

k HkA
+
k + ρkI)−1. If λi are the

eigenvalues of A+T
k HkA

+
k , then

ρk > 2
max{0,−λmin(Hk)}

σmin(Ak)
> 2 min

i
λi.

Therefore,

‖I − ρkAkĤ−1
k ATk ‖ = max

i

(
1− ρk

λi + ρk

)
= max

i

(
λi

λi + ρk

)
< 1,

and so we have a bound on (b). Together with (3.11) and (3.16), this implies that
(3.10a) holds.

In order to derive (3.10b), we first observe that (3.11) implies that

‖xk − x∗‖ ≤
√
n ωk + ‖[xk − x∗]I∗‖. (3.17)

Also, from the first set of equations in (3.15),

‖[xk − x∗]I∗‖ ≤ ‖Ĥ−1
k ‖ ‖z

k
I∗‖+ ρk‖Ĥ−1

k ATk ‖ ‖yk−1 − y∗‖.

Substitute (3.10a) into the above, and subsequently substitute the result into (3.17)
to obtain (3.10b).

To derive (3.10c), use the definition yk and the triangle inequality to derive the
bound

ρk‖Axk − b‖ = ‖yk−1 − yk‖ ≤ ‖yk − y∗‖+ ‖yk−1 − y∗‖.

Substituting (3.10a) into the above and rearranging terms, we arrive at (3.10c).
It is important to note that the conclusion of Theorem 3.8 does not imply linear

convergence of the Lagrange multiplier estimates. However, it still holds that yk → y∗:
repeatedly apply (3.10a) to obtain

‖yk+` − y∗‖ ≤ δ1
∑̀
i=1

γ`−iωk+i−1 + γ`‖yk − y∗‖

for ` ≥ 1. Because ωk → 0 and γ < 1, it follows that yk+` → y∗ as ` → ∞. Thus,
yk → y∗, and with (3.10b) and (3.10c), xk → x∗ and ‖Axk − b‖ → 0.
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4. Finite identification of the active set. An interesting feature of the QP-
FIL algorithm is its finite identification of the optimal active set: the gradient of
the augmented Lagrangian reveals the optimal active set after a finite number of
iterations. This key property implies that only finitely many KKT systems need
to be solved in order for the algorithm to converge to an exact solution of (GQP).
This property is based on the requirement that a gradient projection step on the
augmented Lagrangian subproblem must ensure at least a Cauchy decrease. A strict-
complementarity assumption is needed.

Definition 4.1 (strict complementarity). The first-order point (x∗, y∗) satisfies
strict complementarity if [∇xL0(x∗, y∗)]i > 0 for all j ∈ A∗.

Theorem 4.2. Assume that the inner minimization performs a gradient projec-
tion that ensures at least Cauchy decrease on the augmented Lagrangian, that (GQP)
satisfies strict complementarity, and that (xk, yk) → (x∗, y∗), which is a local mini-
mizer of (GQP). Then Algorithm 3 identifies the correct active set in a finite number
of iterations.

Proof. The gradient projection in the inner iteration computes the projected-
gradient path and then finds the first minimum of the augmented Lagrangian along
this piecewise linear path. The proof largely follows the derivation of the breakpoints
and local minima presented in [56, §16.6].

Because the penalty parameter ρk is updated finitely often (see Lemma 3.5), we
can assume that it is fixed for all k large enough and that ρk ≡ ρ. Consider only
such k, and let ∇Lk := ∇xL0(xk, yk). It follows from the convergence of (xk, yk) and
the assumption of strict complementarity that, for all k large enough, there exist a
neighborhood Nε and a positive constant τ � ε such that (xk, yk) ∈ Nε and

[∇Lk]i ≥ τ and xki ≤ ε for all i ∈ A∗, (4.1a)

|[∇Lk]i| ≤ ε and xki ≥ τ for all i ∈ I∗. (4.1b)

We now consider the projected gradient path for the augmented Lagrangian. The
breakpoints along the piecewise linear projected gradient path from xk in the direction
−∇Lk are given by

t̄i =

{
xki /[∇Lk]i if [∇Lk]i > 0
∞ otherwise.

Together with (4.1), this implies that the breakpoints t̄i satisfy

t̄i ≤
ε

τ
∀i ∈ A∗, and t̄i ≥

τ

ε
∀i ∈ I∗. (4.2)

Because τ � ε, it follows that the breakpoints corresponding to active constraints
A∗ are much smaller than the breakpoints corresponding to inactive constraints I∗.
Note also that if xki = 0, then t̄i = 0, and this bound therefore remains active because
[∇Lk]i ≥ τ > 0.

The piecewise linear projected gradient path can now be parameterized in t ≥ 0:

xi(t) =

{
xki − t [∇Lk]i if t ≤ t̄i,
xki − t̄i[∇Lk]i otherwise.

Next, we remove duplicate and zero entries from the breakpoints {t̄1, . . . , t̄n} and sort
the remaining entries into an ordered sequence

0 < t1 < t2 < · · · < ta−1 < ta < ti < ti+1 < · · · .
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Observe that (4.2) implies that this ordering separates the active indices 1, . . . , a from
the inactive indices i, i+ 1, . . ., and that

ta ≤
ε

τ
� τ

ε
≤ ti.

We now show that the first minimizer of the augmented Lagrangian occurs in the
interval [ta, ti] for ε sufficiently small, and therefore the correct active set is identified.
We must first demonstrate that the augmented Lagrangian has no minimizer in any
of the intervals [tj−1, tj ] for j ≤ a. Let j ≤ a, and consider the piecewise search
direction on [tj−1, tj ]:

pj−1
i =

{
−[∇Lk]i if tj−1 ≤ t̄i,
0 otherwise.

(4.3)

Next, consider the path segment given by

x(t) = x(tj−1) +∆t pj−1 for ∆t ∈ [0, tj − tj−1],

and look for a minimizer of the augmented Lagrangian in this segment. We expand
the Lagrangian along this segment and compute the directional gradient on [tj−1, tj ]:

−f ′j−1 = −(∇Lk)Tpj−1 − x(tj−1)T(H + ρATA)pj−1.

From (4.1a) and (4.3), it follows that the first term on the right-hand side above is
bounded below by τ2, whereas the second term is O(ετ). Therefore, the first term
dominates, and −f ′j−1 ≥ τ2 for j ≤ a+ 1.

Next, observe that the directional Hessian on [tj−1, tj ],

f ′′j−1 = pj−1(H + ρATA)pj−1,

is bounded because H + ρATA and pj−1 are bounded. Using (4.1a) and (4.3), we
conclude that there exist positive constants κ1 and κ2, independent of ε, such that
κ1τ

2 ≤ f ′′j−1 ≤ κ2. Because f ′′j−1 > 0, the minimizer of the augmented Lagrangian on
the segment [tj−1, tj ] is given by

t∗j = min
{−f ′j−1

f ′′j−1

, tj − tj−1

}
.

The first term in the minimum can be bounded below by τ2/κ2 � ε, and the second
term is O(ε). Thus, for ε sufficiently small, the minimum of the quadratic on the
segment [tj−1, tj ] occurs at tj for all j ≤ a, and the projected gradient search proceeds
to the next segment, [tj , tj+1]. Repeating this argument for all j ≤ a shows that there
is no minimum of the augmented Lagrangian in any of the segments [tj−1, tj ] for
j ≤ a. Therefore, all active constraints are identified correctly.

Next, we show that the interval [ta, ti] contains a minimum of the augmented
Lagrangian in its interior. We can use the same estimates as above for the directional
gradient and the Hessian because the left-hand boundary corresponds to an active
index. Thus, we again consider the case where f ′′a = O(κ2) > 0 and f ′a = O(τ2) > 0.
It follows that the quotient −fa/f ′′a is a constant independent of ε. However, the
right-hand boundary of the segment

∆t ∈ [0, ti − ta] = [0, τO(1/ε)]
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becomes large as ε becomes small. Thus, for ε sufficiently small, the minimum of the
augmented Lagrangian occurs in the interior of the segment [ta, ti], and no additional
inactive constraints are identified as active.

Theorem 4.2 implies the following corollary, which establishes global convergence
of Algorithm 3.

Corollary 4.3. Let the assumptions of Theorem 4.2 hold, and assume in addi-
tion that the augmented system (2.3) in step 4 of Algorithm 3 is solved exactly. Then
the algorithm terminates finitely at a KKT point of (GQP).

Proof. The proof follows because Algorithm 3 identifies the correct active set in a
finite number of iterations, and an exact solve of (2.3) subsequently gives the solution
of (GQP).

5. Numerical results. We implemented the QPFIL algorithm on a subset of
medium-scale QPs from the CUTEr [45] test set, with the aim of demonstrating the
global convergence and active-set identification properties of QPFIL.

Our test problems are taken from the AMPL versions of the CUTEr test prob-
lems [59]; we selected a subset of the test problems that had up to 20,000 variables
or constraints. General inequality constraints were converted into equalities by intro-
ducing slack variables. The chosen test problems and their sizes are listed in Table 5.

The QPFIL algorithm is based on two computational kernels: the gradual min-
imization of the bound-constrained augmented Lagrangian function (step 3 of Algo-
rithm 2) and the solution of an EQP (step 5 of Algorithm 3). Our implementation
uses the bound-constrained solver within TAO [8] (version 1.8.1) which is based on
TRON [51] for step 3 of Algorithm 2. TAO’s flexible interface allows a user-defined
termination criterion; we use this feature to implement the filter-based termination
criterion defined in steps 11–12 of Algorithm 2.

The EQP in step 5 of Algorithm 3 is solved by using PETSc [3–5] (version 2.3.1).
We use PETSc’s implementation of GMRES with a restart frequency of 300 and an
iteration limit of 1000. Other linear solvers can easily be used within the PETSc
framework, and specialized linear solvers and preconditioners for KKT systems are
currently an active area of research (see, e.g., [31,43,57]). We have deliberately chosen
the general-purpose solver GMRES because it is readily available within PETSc and
because it simplifies our initial implementation.

We compare our implementation with two general-purpose interior-point solvers:
KNITRO [18, 61] and LOQO [60]. Although these methods are targeted to general
nonlinear optimization problems, both solvers detect whether the problem is a QP and
use appropriate algorithmic options. At this stage we are not interested in a direct
comparison between QPFIL and these production-quality interior implementations;
rather, we are interested in the number of iterations it takes for QPFIL to identify
the optimal active set—KNITRO and LOQO serve as relative benchmarks.

All tests were performed on a desktop PC with a 2.5 GHz Intel Pentium 4 pro-
cessor with 512 KB RAM, running Red Hat Linux version 7.3. Our implementation
is compiled using the GNU gcc compiler (version 3.3.5) with the -O flag. The source
code and makefiles are available from the second author upon request.

We present our numerical results in Table 5 comparing major (i.e., outer) itera-
tions and CPU time. The first metric is the most similar across the solvers: at each
outer iteration, QPFIL solves a KKT system that is structurally similar to the KKT
system that interior-point methods need to solve at each of their own major iterations.
The second measure is more dependent on the implementation of the linear algebra.
We note that QPFIL easily outperforms the two interior-point methods in terms of



20 MICHAEL P. FRIEDLANDER AND SVEN LEYFFER

Table 5.1
Major iteration counts and CPU times (seconds) for KNITRO, LOQO, and QPFIL

KNITRO LOQO QPFIL

Problem n m iter. CPU iter. CPU iter. CPU

aug2dc 20200 9996 13 1.9 13 3.5 3 27.5
aug2dcqp 20200 9996 19 4.4 24 3.2 4 85.7
aug2dqp 20192 9996 20 4.6 23 3.1 2 99.2
aug3dcqp 3873 1000 21 0.8 15 0.3 5 0.4
aug3dqp 3873 1000 21 0.8 17 0.3 3 0.5
avgasa 12 6 16 0.0 12 0.0 3 0.0
avgasb 12 6 18 0.0 12 0.0 3 0.0
biggsc4 11 7 17 0.2 21 0.0 5 0.0
blockqp1 2006 1001 21 0.6 15 0.1 2 0.0
blockqp2 2006 1001 21 0.6 10 0.1 1 0.0
blockqp4 2006 1001 21 0.6 16 0.2 8 11.0
cvxqp1 1000 500 16 1.7 25 0.7 18 39.8
dual1 85 1 22 0.2 17 0.1 6 0.0
dual2 96 1 17 0.2 16 0.1 5 0.0
dual3 111 1 16 0.2 16 0.1 6 0.0
dual4 75 1 16 0.1 15 0.1 4 0.0
dualc5 8 1 11 0.0 13 0.0 4 0.0
genhs28 10 8 1 0.0 2 0.0 1 0.0
hatfldh 11 7 13 0.0 16 0.0 2 0.0
hs021 3 1 16 0.0 12 0.0 1 0.0
hs035 4 1 13 0.0 10 0.0 2 0.0
hs044 10 6 6 0.0 15 0.0 6 0.0
hs053 5 3 5 0.0 11 0.0 1 0.0
hs076 7 3 12 0.0 11 0.0 3 0.0
hs118 32 17 22 0.0 17 0.0 10 0.0
hs268 10 5 16 0.0 26 0.0 2 0.0
huestis 10000 2 18 1.2 500 11.0 1 7.9
ksip 1020 1000 17 0.4 42 0.3 17 1.2
liswet11 20002 10000 30 2.3 500 22.9 9 794.0
liswet12 20002 10000 56 4.1 500 22.9 7 680.0
liswet2 20002 10000 31 2.4 10 0.5 12 1200.0
liswet7 20002 10000 27 2.1 11 0.5 8 559.0
lotschd 12 7 12 0.0 19 0.0 1 0.0
mosarqp1 3200 700 18 0.4 15 0.1 7 29.6
mosarqp2 1500 600 15 0.2 19 0.1 6 680.0
ncvxqp5 1000 250 51 2.2 205 11.8 4 4.1
ncvxqp6 1000 250 89 3.6 117 6.9 8 10.7
tame 2 1 2 0.0 9 0.0 1 0.0
zecevic2 4 2 12 0.0 11 0.0 3 0.0

major iterations. This indicates that our strategy for finding the optimal active set is
efficient.

In terms of CPU time, the interior-point codes are faster than QPFIL. This disap-
pointing performance of our algorithm can be traced mainly to the poor performance
of the GMRES solver on the KKT system (2.3) (the interior-point methods, on the
other hand, compute sparse factors of the KKT system). On a typical run, for exam-
ple, code profiling indicates that the KKT solver consumes almost 90% of CPU time.
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This situation is discouraging considering the ease with which we are able to solve
the bound-constrained subproblem with a conjugate gradient method. We expect
that preconditioners and iterative solvers that are specially designed for KKT sys-
tems (see, e.g., [10]) will dramatically improve this performance. We plan to explore
this in future implementations.

6. Discussion and conclusions. We have presented a new active-set method
for solving QPs that has the potential for solving very large problems and holds the
promise of working efficiently on high-performance architectures. We are encour-
aged by the speed with which the method identifies a correct active set (see Proposi-
tion 4.2). One of the remaining challenges for an efficient implementation is finding
a computationally effective way to solve the KKT systems arising from the equality-
constrained QP subproblems. This is the same problem that must be faced by any
interior-point implementation, however; the advantage that we hope to leverage in
the QPFIL framework is that the KKT systems are not arbitrarily ill-conditioned.

Two interesting questions remain which we will address in future reports. The
first question arises out of Theorem 4.2: Is it possible to simplify the inner iterations
further and require gradient projection steps only until a filter-acceptable point is
found? This approach may require a Cauchy-like condition on the inner iteration
(which currently is included implicitly by assuming that we perform a few iterations
of the minimization of the augmented Lagrangian). Such an approach would have
the advantage of removing the need for conjugate gradient iterations involving the
Hessian of the augmented Lagrangian—namely, H + ρATA—which may be difficult
to precondition because of the presence of the term ρATA.

The second question concerns the usefulness of the second-order step. If we are far
from the minimum, then it may be better to choose the step that adds the largest area
to the filter, rather than take a short step in the direction generated by the second-
order step. Also, because global convergence relies only on the first-order sequence, it
should be possible to save work by solving the KKT systems only approximately, and
then tighten the tolerances for the KKT solves when it appears that a correct active
set has been identified. We plan to investigate these questions numerically.

7. Appendix. As discussed in section 3, an alternative to step 6 of Algorithm 2
is to increase the penalty parameter if the current reduced Jacobian in rank deficient.
The following theorem, analogous to Theorem 3.4, confirms that the main effect of
this increase is that it encourages iterates to move closer to feasibility.

Theorem 7.1 (convergence of inner iterations). Suppose that step 6 of Algo-
rithm 2 is replaced by ρj+1 ← 2ρj. Then the algorithm terminates finitely, or every
limit point x∗ of {xj} is a KKT point of (GQP), or it solves (2.12).

Proof. The case where step 5 tests true finitely many times has already been
covered by Theorem 3.4. Therefore, we only treat the cases where step 5 tests true
infinitely many times (and thus ρj →∞) and A∗ either has full rank or does not.

Case 1. (ρj → ∞ and A∗ has full rank.) Let x∗ be any limit point of the
sub-sequence {xj}J . Each xj , for j ∈ J , satisfies (2.11), and because Lρj (xj , ȳ) =
L0(xj , yj), Lemma 3.3 holds for the sequences {xj}, {yj}, {ρj}, and {εj}, where we
let xk = xj , yk = yj , ρk = ρj , and ωk = εj . Therefore, there exist positive constants
α1 and α2 such that

‖yj − y∗‖ ≤ βj := α1‖xj − x∗‖+ α2ε
j (7.1)

for all j ∈ J large enough, where y∗ := ŷ(x∗). Because limj∈J x
j = x∗ and εj → 0,

the above implies that limj∈J = y∗. Hence, (x∗, y∗) satisfies (1.3a).
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In order to show that x∗ is feasible for (GQP), we use the definition of yj to derive

ρj‖Axj − b‖ = ‖yj − ȳ‖ ≤ ‖yj − y∗‖+ ‖y∗ − ȳ‖ ≤ βj + ‖y∗ − ȳ‖,

where we used the triangle inequality and (7.1). Then εj → 0, limj∈J x
j = x∗, and

ρj →∞ imply that Ax∗ = b. Therefore, x∗ satisfies (1.3b), and so (x∗, y∗) is a KKT
point of (GQP), as required.

Case 2. (ρj → ∞ and A∗ does not have full rank.) The necessary and sufficient
optimality condition for (2.12) is that x∗ satisfy

min{x∗, AT(Ax∗ − b)} = 0. (7.2)

Each xj and zj satisfies (2.11). Therefore,

lim sup
j∈J

zj ≡ c+Hx∗ −ATȳ + lim sup
j∈J

ρjAT(Axj − b) ≥ 0,

which, because ρj →∞, necessarily implies that

z∗ := lim
j∈J

AT(Axj − b) = AT(Ax∗ − b) ≥ 0. (7.3)

If we consider only the components I∗ of zj , then by (2.11) and εj → 0, (7.3) holds
with equality. But because ρj → ∞ and AT(Ax∗ − b) ≥ 0, we must have that
z∗I = [AT(Ax∗ − b)]I∗ = 0. Therefore, x∗ and z∗ satisfy (7.2).
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[8] S. J. Benson, L. C. McInnes, J. Moré, and J. Sarich, TAO user manual (revision 1.8),
Tech. Rep. ANL/MCS-TM-242, Mathematics and Computer Science Division, Argonne
National Laboratory, 2005. http://www.mcs.anl.gov/tao.



TWO-PHASE FILTER METHOD FOR GENERAL QUADRATIC PROGRAMS 23
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