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Abstract

Nonnegative tensor factorization (NTF) is a technique for computing a parts-based
representation of high-dimensional data. NTF excels at exposing latent structures in
datasets, and at finding good low-rank approximations to the data. We describe an ap-
proach for computing the NTF of a dataset that relies only on iterative linear-algebra
techniques and that is comparable in cost to the nonnegative matrix factorization.
(The better-known nonnegative matrix factorization is a special case of NTF and is
also handled by our implementation.) Some important features of our implementation
include mechanisms for encouraging sparse factors and for ensuring that they are equi-
librated in norm. The complete Matlab software package is available under the GPL
license.

Keywords N -dimensional arrays, tensors, nonnegative tensor factorization, alternating
least squares, block Gauss-Seidel, sparse solutions, regularization, nonnegative least-squares

1 Introduction

A fundamental problem in the analysis of large datasets is the identification of components
that capture important features and filter less explanatory ones. A notable approach to
this problem is principal component analysis (PCA) [HTF02]. In cases where the data
are nonnegative (such as in images), nonnegative matrix factorization (NMF) has proven
a successful approach for detecting the essential features of the data [LS99, PT94]. A
generalization of the latter approach to include tensors (i.e., multidimensional arrays that
may have order greater than two) can often represent the structure of the data more naturally
than matrices; this approach results in a nonnegative tensor factorization (NTF) [WW01,
SH05]. Several algorithms and implementations exist for the NMF case, but we are not
aware of efficient implementations that have been extended to the more general tensor case.
In this paper we describe an algorithm and its implementation for computing the NTF of a
dataset. An important feature of our implementation is that it maintains factors that are
equilibrated and have unit-norm columns. The resulting modified PARAFAC decomposition
has a diagonal core tensor that captures the scale of the problem. (See, e.g., [FBH03] and
[Kol06, §5.3] for a definition of the PARAFAC decomposition, and [dSL07] for a discussion
on the theory of related decompositions.) Also, the implementation provides a mechanism,
based on 1-norm regularization, that encourages sparse factors.

Consider the N -dimensional data tensor V ∈ RI1×···×IN , where I1, . . . , IN are integers
that describe the size of each of the tensor’s dimensions. Of particular interest to us is
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the case in which each component of V is nonnegative. We henceforth use the shorthand
notation V ≥ 0 to denote componentwise nonnegativity. The goal of NTF is to decompose
V into a set of N + 1 constitutive factors G, A(1), . . . , A(N) that can be combined to form
an approximation of V. A vital property of the NTF is that each factor is also nonnegative.
(Each A(n), indexed over n = 1, . . . , N , is a matrix; G is called the core tensor.) The
factorization then satisfies

V ≈ G ×1 A
(1) ×2 · · · ×N A(N) with G, A(1), . . . , A(N) ≥ 0. (1.1)

(The properties of the operators ×1,×2, . . . are described in detail in §2.1.) When N = 2,
G and V are simply 2-mode tensors—i.e., matrices—and the factorization above reduces to

V ≈ A(1)GA(2)T with G,A(1), A(2) ≥ 0, (1.2)

where G := G and V := V.
The nonnegativity constraints in (1.1) and (1.2) can be motivated in several ways. Based

on intuition, the parts of a dataset (represented by the factors A(1), . . . , A(N)) are thought
to generally combine additively; the core tensor G encodes the relative weights of the various
parts. It is also known that in many applications the quantities involved must be nonnega-
tive; in such cases it can be difficult to interpret the results of a decomposition such as PCA
that does not constrain the factors to also be nonnegative.

There are a variety of applications for nonnegative matrix and tensor factorizations, one
of the most popular of which is image compression. In this application, one approach is to
transform each image of a set into a vector; the set of vectors are then assembled into a
matrix. NMF is then applied to this matrix. An alternative approach based on tensors has
the advantage of treating the data in a more natural way: a set of two-dimensional images
(each represented by a matrix) can be stacked one behind the other into a three-dimensional
tensor. This construction preserves the two-dimensional character of an image and avoids a
loss of information [HPS05]. Shashua and Levin [SL01] demonstrate that the compression
of a tensor representation via NTF can be more efficient than the compression of a matrix
representation.

1.1 The least-squares problem

A common approach to computing a decomposition of V is to minimize the least-squares
error in the approximation shown in (1.1), i.e.,

minimize
G,A(1),...,A(N)

1
2

∥∥G ×1 A
(1) ×2 · · · ×N A(N) − V

∥∥2

F

subject to G, A(1), . . . , A(N) ≥ 0;
(1.3)

for examples of this approach, see [WW01, HPS05, Lin07]. Importantly, such a problem is
ill-posed because the solution set of (NTF) is necessarily unbounded. To see this, note that
if {G, A(1), . . . , A(n)} is any solution of (NTF), then

{
α0G, α1A

(1), . . . , αNA
(N)
}

with
N∏
i=0

αi = 1, (1.4)

for example, is also a solution of (1.3). This is true for any scaling of the factor A(n) or
of the core tensor G. It is therefore necessary to further constraint the factors in order to
phrase (3.2) as a well-posed problem.

The Tucker decomposition [Kol06, §4.4] accomplishes this goal by requiring each of the
factors A(n) to be orthonormal, so that ‖A(n)‖2 = 1. (The Tucker decomposition, however,



Computing nonnegative tensor factorizations 3

does not enforce nonnegativity.) Coupled with a nonnegativity constraint, however, such a
requirement may in practice be too costly to compute, or lead to an infeasible problem. We
therefore strike a balance by imposing a constraint on the column norms of each A(n), and
choosing the factors as the solution of the nonlinear least-squares problem

(NTF) minimize
G,A(1),...,A(N)

1
2

∥∥G ×1 A
(1) ×2 · · · ×N A(N) − V

∥∥2

F

subject to G, A(1), . . . , A(N) ≥ 0, ‖A(n)‖1 ≤ 1, n = 1, . . . , N.

For the matrix case (N = 2), the NTF problem reduces to

(NMF) minimize
G,A(1),A(2)

1
2

∥∥A(1)GA(2)T − V
∥∥2

F

subject to G,A(1), A(2) ≥ 0, ‖A(n)‖1 ≤ 1, n = 1, . . . , N.

We choose to express the 1-norm constraint as an inequality, as this preserves the convexity
of the feasible set; the magnitude on the right-hand side of this constraint is arbitrary—what
matters most is that it is bounded.

We note that in the literature, (NMF) typically appears with the objective
1
2‖A

(1)A(2) − V ‖2F ;

the implication is that the core matrix G ≡ I. (See, e.g., [LS99, WW01, LS01, HS05, Hoy04,
Lin07].) However, our formulation keeps G explicit. A second, apparently small, difference
is the transpose on the second factor. As we discuss in §4.1, these two differences play a
vital role in enforcing the 1-norm constraint in (NTF) and (NMF).

1.2 Approach

Two different types of algorithms are commonly used for computing nonnegative matrix and
tensor factorizations. The first, and more popular, approach is based on the multiplicative
update rule [LS99]. The method is simple to implement, but has been observed to converge
slowly in practice. The second approach is based on alternating least squares (ALS), which
is a special case of the block Gauss-Seidel method for more general nonlinear optimization
problems. Applied to (NTF), the ALS approach holds all variables fixed except for one; this
results in a nonnegative linear least-squares subproblem for each variable. The Gauss-Seidel
approach solves each subproblem in turn and updates the variables before solving the next
subproblem.

Throughout our algorithm development, we consider the most general case where (NTF)
is optimized over a general tensor G, and each of the N factors A(n). However, our imple-
mentation is restricted to the situation that generally arises in practice: G is a diagonal
3-mode tensor (implying N = 3). Moreover, we do not explicitly optimize over G. Instead,
we exploit the diagonal elements of G as a device for equilibrating the scalings of the tensor
factors A(1), . . . , A(N), thus enforcing the 1-norm constraints.

We choose ALS as the basis for our approach because it allows us to apply an efficient
bound-constrained linear least-squares solver for each subproblem. It turns out that keeping
the factors equilibrated is critical for the efficiency of our implementation, which uses a
conjugate-gradient approach for solving the bound-constrained least-squares subproblems.
We describe this solver in §4.2.

2 Tensor notation and basic operations

The symbol A (and any version of A modified by superscripts or superscripts) always denotes
a matrix. The symbols G and V always denote n-mode tensors. Lower case roman letters
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always denote vectors, and lower case Greek letters always denote scalars. The In × In
identity matrix is denoted by I(In). A vector of all ones is denoted by e, and its size is
implied by its context. The operator vec(·) stacks the columns of its matrix argument into
a single vector.

Let G ∈ RJ1×···×JN be an N -dimensional tensor and let A(n) be a matrix of size In×Jn,
for each n = 1, . . . , N . (Note that we use n as an index variable throughout the remainder
of the paper.) Denote the (i1i2 . . . iN)th element of the tensor G by gi1i2...iN . In the case
when G is a matrix, for example, gij denotes the (i, j)th element of G, as usual.

A tensor G is diagonal if

(G)i1i2...iN =

{
gi1i2...iN if i = i1 = i2 = · · · = iN with i = 1, . . . ,min{Jk},
0 otherwise;

and is the identity tensor if each gi1i2...iN above is equal to one.
The Khatri-Rao product (denoted by �; see [Kol06, §3.1]) of an I-by-K matrix A and a

J-by-K matrix B results in an (IJ)-by-K matrix, and is given by

A�B = [a:1 ⊗ b:1 a:2 ⊗ b:2 · · · a:K ⊗ b:K ],

where ⊗ is the Kronecker product of the columns a:· and b:· of A and B, respectively. The
Kronecker product and the Khatri-Rao product of N − 1 matrices (skipping the nth matrix
A(n)), are defined as

An⊗ = A(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1),

An� = A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1);

in both cases the result is a matrix. The Kronecker product of the N matrices A(N), . . . , A(1)

is given by
A⊗ = A(N) ⊗ · · · ⊗A(1).

The core of our implementation relies on two main tensor operations: the n-mode product
and the n-mode matricization. We follow Kolda’s description [Kol06] of these operations
and briefly summarize below the needed notation. See also [dLdMV01] for background on
tensors and their operations.

2.1 The n-mode product

The n-mode product defines the multiplication of a tensor with a matrix. The n-mode
product of the N -mode tensor G with the matrix A(n) is denoted by G ×n A(n). The result
is of size J1 × · · · × Jn−1 × In × Jn+1 × · · · × JN . Elementwise, the n-mode product can be
expressed by

(G ×n A(n))j1...jn−1ijn+1...jN =
Jn∑
jn=1

gj1j2...jNaijn .

The number of columns in A(n) must be equal to the size of nth mode of G.

2.2 The n-mode matricization

We often make use of transformations that change tensors into matrices (n-mode matriciza-
tion), and matrices into vectors (vectorization). The n-mode matricization transforms the
tensor G into a matrix G(n) defined by

G(n) ∈ RJn×K with K =
N∏

i=1
i6=n

Ji,
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for each n = 1, . . . , N . Note that the number of rows of G(n) is equal to the size of the nth
dimension of the tensor; the number of columns is expanded to accommodate all the other
dimensions of the tensor. The matrix G(n) can be expressed elementwise as

(G(n))ink = gi1i2...iN with k = 1 +
N∑

m=1
m6=n

(im − 1)
m∏

m′=1
m′ 6=n

Im′

 .
2.3 Derivatives

In order to verify optimality of a solution estimate of (NTF), we need an expression for the
derivatives of the objective

φ(G, A(1), . . . , A(N)) := 1
2

∥∥∥G ×1 A
(1) ×2 · · · ×N A(N) − V

∥∥∥2

F

with respect to G and each A(n). Let

R := G ×1 A
(1) ×2 · · · ×N A(N) − V (2.1)

be the residual. The derivatives of R with respect to G and A(n) are derived in [Kol06, §4.5]
and are given by(

∂R
∂G

)
i1···iN j1···jN

= a
(1)
i1j1

a
(2)
i2j2
· · · a(N)

iN jN
and

(
∂R
∂A(n)

)
= An⊗G

T
(n) ⊗ I(IN ),

where a
(k)
ij is the (ij)th element of A(k). The first derivative has dimensions

∏N
i=1 Ii ×∏N

i=1 Ji and the second derivative has dimensions
∏N
i=1 Ii × JnIn. (With the appropriate

matricization, the derivative ∂R/∂G can be expressed simply as A⊗.) The Frobenious
norm is quadratic, and so ∂φ(·)/∂R = R. We then apply the chain rule, and use [Kol06,
Proposition 4.3(c)] to obtain

∂φ(·)
∂G

= R×1 A
(1)T ×2 · · · ×N A(N)T , and

∂φ(·)
∂A(n)

= R(n)A
n
⊗G

T
(n).

The reduced gradients (components corresponding to variables that are positive) must be
small at an approximation solution.

3 The NTF algorithm

Given a nonnegative tensor V ∈ RI1×···×IN , NTF computes an approximate factorization

V ≈ G ×1 A
(1) ×2 · · · ×N A(N)

into the N nonnegative matrix factors A(n) ∈ RIn×Jn , n = 1, . . . , N , and the nonnegative
tensor G ∈ RJ1×···×JN . These factors are chosen to solve the constrained nonlinear least-
squares problem (NTF). The ALS approach transforms (NTF) into a sequence of N + 1
subproblems. In order to formulate each linear least-squares subproblem, we need to develop
two transformations that allow us to isolate each factor A(n) and the core tensor G.

The matrix An⊗G
T
(n) arises at several key points in our implementation. This overall

product

An⊗G
T
(n) has dimensions

N∏
i=1
i6=n

Ii × Jn (3.1)
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(where typically Jn � Ii), whereas the intermediate matrix

An⊗ has dimensions
N∏

i=1
i6=n

Ii ×
N∏

i=1
i6=n

Ji,

which can be much larger than (3.1) and prohibitively large to store. If we make the
assumption that G is diagonal, then we can use the Khatri-Rao product [Kol06, §3.1] to
derive an equivalent expression that does not involve the large matrix An⊗. In particular, if
G is diagonal, then

An⊗G
T
(n) = An�D

T , (3.2)

where the diagonal (and possibly rectangular) matrix D has elements (D)ii = (G)i...i, i =
1, . . . ,mink{Jk}. Importantly, the intermediate matrix

An� has dimensions
N∏

i=1
i6=n

Ii × Jn,

which is the same as the overall matrix shown in (3.1). Our general algorithmic development
does not assume that G is diagonal, and so we continue to use An⊗G

T
(n); we make the switch

to An�D
T in §4, where we assume that G is diagonal.

3.1 The linear least-squares subproblems

At each iteration of the ALS method, we need to isolate one of the factors in order to derive
a linear least-squares subproblem. We use two properties of n-mode matricization for this
purpose. It follows from [Kol06, Proposition 3.7] that if

X = G ×1 A
(1) ×2 · · · ×N A(N),

then for each n = 1, . . . , N ,
X(n) = A(n)G(n)(An⊗)T (3.3)

and
vecX(n) = A⊗ vecG(n). (3.4)

In order to isolate any given factor A(n), n = 1, . . . , N , we use (3.3) to rewrite the
objective of (NTF) as

φ(G, A(1), . . . , A(N)) ≡ 1
2

∥∥∥G ×1 A
(1) ×2 · · · ×N A(N) − V

∥∥∥2

F

= 1
2

∥∥∥A(n)G(n)(An⊗)T − V(n)

∥∥∥2

F

= 1
2

∥∥∥An⊗GT(n)A
(n)T − V T(n)

∥∥∥2

F
.

(3.5)

From (3.5) we see that the optimization of φ over A(n) reduces to In independent linear
least-squares problems: each involves the same matrix An⊗G

T
(n), but In different right-hand-

side vectors that constitute the rows of V(n); the solution of each of these least-squares
problems corresponds to a row of A(n). In principal, each of the rows of A(n) can be solved
for in parallel.
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In our implementation, we use An⊗G
T
(n) as an operator and solve for all of A(n) simul-

taneously. We do this by vectorizing the term within the norm of (3.5) and rewriting φ
as

φ(G, A(1), . . . , A(N)) = 1
2‖diag

(
An⊗G

T
(n), . . . , A

n
⊗G

T
(n)

)
vecA(n)T − vecV T(n)‖

2
2

= 1
2‖
(
I(In) ⊗ (An⊗G

T
(n))
)

vecA(n)T − vecV T(n)‖
2
2

The resulting N subproblems (one for each A(n)) are constrained linear least-squares prob-
lems over the vector vecA(n)T :

(NTFA(n)) minimize
A(n)

‖
(
I(In) ⊗ (An⊗G

T
(n))
)

vecA(n)T − vecV T(n)‖2
subject to A(n) ≥ 0, ‖A(n)‖1 ≤ 1.

Note that An⊗ is the contracted Kronecker product and does not include A(n), which is the
optimization variable. Also, each I(In)⊗ (An⊗G

T
(n)) in (NTFA(n)) is a block diagonal matrix,

with the submatrix An⊗G
T
(n) appearing at each block entry. Because An⊗G

T
(n) is only used as

an operator, it is not necessary to form this matrix explicitly.
To isolate G for the (N + 1)st subproblem, we use (3.4) to transform the objective as

φ(G, A(1), . . . , A(N)) = 1
2

∥∥A⊗ vecG(1) − vecV(1)

∥∥2

2
. (3.6)

The optimization over G is then reduced to the nonnegative linear least-squares problem
over the vectorized 1-mode matricization of the tensor G:

(NTFG) minimize
G

‖A⊗ vecG(1) − vecV(1)‖2
subject to G ≥ 0.

The 1-norm constraint ‖A(n)‖1 ≤ 1 imposes a constraint on each of the columnwise sum
of absolute values of A(n). Importantly, the componentwise nonnegativity constraint on
A(n) can be leveraged to express the nondifferentiable 1-norm as a linear function: for any
vector x,

‖x‖1 = eTx if x ≥ 0. (3.7)

Hence, the 1-norm constraint ‖A(n)‖1 ≤ 1 can be imposed by a collection of simple linear
inequality constraints. We describe in §4.1 an approach that imposes these constraints
implicitly.

3.2 Alternating least squares and block Gauss-Seidel

Algorithm 1 describes the basic ALS method for (NTF) that is based on solving a sequence
of subproblems defined by (NTFA(n)) and (NTFG). The ALS approach is a special case of
the block coordinate-descent method, also knows as the nonlinear block Gauss-Seidel (BGS)
method. The nonlinear BGS method is originally an iterative method for solving systems of
linear equations, and has been generalized to the minimization of nonlinear functions (see,
e.g., [Kel95, Chapter 1], and [Ber99, §2.7]). At each iteration of the block Gauss-Seidel
method, a subset of the variables are held fixed while the problem is minimized over the
remaining variables. In the NMF and NTF cases, this partitioning leads to constrained
linear least-squares subproblems.

These subproblem solution generate a sequence {A(1)
k , A

(2)
k , . . . , A

(N)
k ,Gk). If the solution

A
(n)
k and Gk of each subproblem (NTFA(n)) and (NTFG) is uniquely attained, then every

limit point of the sequence {A(1)
k , A

(2)
k , . . . , A

(N)
k ,Gk} is a stationary point for (NTF). (See,
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Algorithm 1: The alternating least-squares algorithm for (NTF)

Input: V ∈ RI1×···×IN

Output: G∗ ∈ RJ1×···×JN , A(n)
∗ ∈ RIn×Jn for n = 1, . . . , N

Initialize A(1)
0 , . . . , A

(n)
0 ≥ 0, G0 ≥ 0

k ← 0
repeat

for n = 1, . . . , N do
A

(n)
k+1 ← solve (NTFA(n))

Gk+1 ← solve (NTFG)
k ← k + 1

until converged

G∗ ← Gk, and A
(n)
∗ ← A

(n)
k for n = 1, . . . , N

e.g., [Ber99, §2.7] for a detailed discussion of BGS methods.) The convergence rate of BGS
is linear [LT92]. No convexity assumption on the objective is needed, though the Cartesian
product of the subproblem constraints must be convex, as it is in the NTF case.

The “uniquely attained” assumption is satisfied if the least-squares problems have full
rank. One possible way to safeguard against a lack of uniqueness is to augment the subprob-
lems with a convex regularization term that makes the subproblem solutions unique. Our
implementation relies on an additional 1-norm regularization function—which although is
not strictly convex and thus does not guarantee uniqueness of the solution—has the benefit
that it can help encourage sparse solutions to the overall problem. We discuss this further
in §4.

3.3 Regularizing for sparseness

An important feature of NTF is that it can decompose data into parts that have intuitive
meaning and can easily be interpreted in terms of the original data. Hoyer [Hoy04] has
observed that NMF tends to produce parts that are sparse—that is, the factors tend to
have many small or zero entries. With the idea that a parsimonious representation of
the data yields parts that are well defined, we introduce a mechanism for encouraging the
sparsity of the factors obtained via NTF.

Our approach is based on regularizing (NTF) with an 1-norm penalty function. This
nondifferentiable function has a well-observed property of pushing small values exactly to
zero while leaving large (and significant) entries relatively undisturbed. Similar applications
of 1-norm regularization include signal processing for the recovery of sparse signals; see, e.g.,
[CDS01, CRT06, CRT05, DT05].

We define the regularized NTF problem as

(NTFsp) minimize
G,A(1),...,A(N)

φ(G, A(1), . . . , A(N)) + γψ(A(n),G)

subject to G, A(1), . . . , A(N) ≥ 0,

where γ is a nonnegative regularization parameter and

ψ(G, A(n)) := ‖ vecG(1)‖1 +
N∑
n=1

‖ vecA(n)‖1

is the 1-norm regularization function. The alternating least-squares approach derived in
§3.1 extends easily to the regularized problem (NTFsp). With (3.7), we can write the linear
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least-squares subproblems (NTFA(n)) and (NTFG), respectively, as

minimize
A(n)

1
2‖
(
I(In) ⊗ (An⊗G

T
(n))
)

vecA(n)T − vecV T(n)‖
2
2 + γeTvecA(n)T

subject to A(n) ≥ 0, ‖A(n)‖1 ≤ 1,
(3.8a)

and
minimize

G
1
2‖A⊗ vecG(1) − vecV(1)‖22 + γeTvecG(1)

subject to G ≥ 0.
(3.8b)

Each subproblem now has an additional linear term. Note that we discard the constant
linear terms that correspond to the other fixed variables.

There is an important distinction between the explicit matrix 1-norm constraint on A(n)

and the vector 1-norm regularization on vecA(n)T , although the two are clearly related. The
explicit constraint imposes a bound on the maximum column sum; the regularization term
imposes a bound on the overall sum of the matrix entries.

3.4 Specialization to matrices (NMF)

For interest, and to draw a relationship to the existing NMF literature, we describe the
linear least-squares subproblems that arise in the matrix case, corresponding to N = 2. The
subproblems analogous to (NTFA(n)) and (NTFG) are

(NMFA(1)) minimize
A(1)≥0

‖(I ⊗A(2)G) vecA(1)T − vecV T ‖2 subject to ‖A(1)‖1 ≤ 1,

(NMFA(2)) minimize
A(2)≥0

‖(I ⊗A(1)G) vecA(2)T − vecV ‖2 subject to ‖A(2)‖1 ≤ 1,

(NMFG) minimize
G≥0

‖(A(2) ⊗A(1)) vecG− vecV ‖2.

As discussed in the context of (NTFA(n)), the analogous problems (NMFW ) and (NMFG)
can each be solved as a set of independent linear least-squares problems with a different right-
hand-side vector that corresponds to a row (or column) of V . Also, the 1-norm-regularization
approach discussed in §3.3 extends immediately to the matrix case with the addition of a
linear term to each of the subproblems.

4 Implementation

Our algorithm development up to this point has allowed for a general core tensor G and an
arbitrary number of factors N . For our implementation of the NTF algorithm, we make the
simplifying assumption that N = 3, which is the situation that arises most often in practice.
However, we note that our implementation can be generalized to any N with only trivial
modifications, although the subproblems will grow as more matrix factors are added (cf.
(3.1)).

We discuss below a method for enforcing the 1-norm constraint ‖A(n)‖1 ≤ 1. It turns
out that maintaining factors that are equilibrated is vital for the efficiency of our approach.
We also briefly describe the algorithm used for solving the resulting bound-constrained
linear-least-squares subproblems.

4.1 Scaling

In the implementation of our NTF method, we maintain G diagonal and remove the sub-
problem (NTFG) from the loop in Algorithm 1. Having removed G as one of the optimization
variables, we may then use it as a degree of freedom to enforce the 1-norm constraint by
ensuring that ‖A(n)‖1 = 1. It turns out that keeping the factors equilibrated is a useful
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device for maintaining iterates with a scale most favourable for an efficient solution of the
underlying linear least-squares subproblems (cf. §3.1), as we describe below. A further ad-
vantage of maintaining factors that have unit norm is that it ensures that the iterates stay
away from zero, which is necessarily a nonoptimal stationary point.

The role of G as a scaling device is most easily understood in the matrix case where G
is a diagonal matrix (and not necessarily the identity). Let G := D(1)D(2) be a product of
diagonal matrices D(1) and D(2), and rewrite (1.2) as

A(1)GA(2)T = A(1)D(1)D(2)A(2)T = (A(1)D(1))(A(2)D(2))T = Ā(1)Ā(2)T , (4.1)

where
Ā(1) := A(1)D(1) and Ā(2) := A(2)D(2).

The diagonal operators D(1) and D(2) simply rescale the columns of A(1) and A(2). Given
factors Ā(1) and Ā(2), the freedom to choose G in (4.1) implies that we can choose any scale
we like for the columns of A(1) and A(2), and instead absorb the scales of Ā(1) and Ā(2)

into the core matrix G. In some sense, this is analogous to the singular value decomposi-
tion, which has orthogonal factors and a “core” matrix (the singular values) that express
the scale of the matrix. The transpose on A(2) is an important ingredient in making the
transformation in (4.1) possible.

In the tensor case, the core tensor G can be similarly used to ensure that the factors
have a chosen scale. For each n = 1, . . . , N , we rescale the columns of the factors A(n) with
diagonal matrices D(n) as follows: define the diagonal tensor

G := I ×1 D
(1) ×2 · · · ×N D(N),

(with I as the identity tensor), so that

G ×1 A
(1) ×2 · · · ×N A(N)

=
[
I ×1 D

(1) ×2 · · · ×N D(N)
]
×1

[
A(1) ×2 · · · ×N A(N)

]
= I ×1

[
A(1)D(1) ×2 · · · ×N A(N)D(N)

]
= I ×1 Ā

(1) ×2 · · · ×N Ā(N),

(4.2)

where each Ā(n) := A(n)D(n), and the second equality follows from [Kol06, Proposition
4.2(a)]. We define scaling matrices D(n) that ensure each A(n) is well scaled. Thus G ×1

A(1)×2 · · ·×NA
(N) is in fact a PARAFAC decomposition [FBH03] with scaled matrix factors;

when N = 2 (and G is a matrix, (4.2) and (4.1) are equivalent expressions.
When G is diagonal, (3.2) can be used to express (NTFA(n)) as

minimize
A(n)

‖
(
I(In) ⊗ (An�D

T )
)

vecA(n)T − vecV T(n)‖2
subject to A(n) ≥ 0,

(4.3)

where D is the product of the diagonal matrices D(n) in (4.2). After this linear least-squares
subproblem is solved at iteration k, the solution A

(n)
k is rescaled by

D(n) = diag
(
eTA(n)

)−1
, (4.4)

so that the resulting columns of the scaled matrix A(n)D(n) each sum to one. Thus,∥∥A(n)D(n)
∥∥

1
= 1. In effect, this iteration can be viewed as solving the subproblem for

Ā(n) and then choosing A(n) and D(n) so that Ā(n) ≡ A(n)D(n). Importantly, this re-
definition of the latest iterate continues to be feasible and does not cause the objective
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Algorithm 2: The alternating least-squares algorithm (with scaling) for (NTF)

Input: V ∈ RI1×···×IN

Output: G∗ ∈ RJ1×···×JN , A(n)
∗ ∈ RIn×Jn for n = 1, . . . , N

Initialize A(1)
0 , . . . , A

(n)
0 ≥ 0, D(n)

0 = I for n = 1, . . . , N
k ← 0
repeat

for n = 1, 2, . . . , N do
A(n) ← solve (4.3)
Compute D(n)

k from A(n) [compute column scales; see (4.4)]
A

(n)
k+1 ← A(n)D

(n)
k [compute scaled factor]

Dk+1 ← Dk(D(n)
k )−1 [update diagonal core tensor]

k ← k + 1
until converged

(G∗)i···i ← (Dk)ii for i = 1, . . . , N , and A
(n)
∗ ← A

(n)
k for n = 1, . . . , N

function to increase. Therefore, Proposition 2.7.1 of [Ber99] holds, and the rescaling does
not interfere with the convergence of the Gauss-Seidel iterations. Algorithm 2 describes our
implementation of this scaling strategy.

We can interpret this rescaling as a projection of each of the Gauss-Seidel iterates onto
the convex set of nonnegative matrices with induced matrix 1-norm. (Note that if the entire
matrix was scaled so that vecA(n) would have unit 2-norm, then we could not interpret the
rescaling as a projection onto a convex set.)

4.2 Solving the least-squares subproblems

The computational kernel of the alternating least-squares algorithm is the solution of the
nonnegative linear least-squares problems (NTFA(n)) and (NTFG) described in §3.1. The
efficiency of the overall method ultimately depends on the efficient solution of the large-scale
subproblems that can arise in this context. In the context of the large datasets that can
arise in applications of NTF, we must be prepared to apply optimization methods that do
not rely on matrix factorizations, which can be prohibitively expensive. Our approach is
based on an implementation that uses matrices only as operators.

We give here a brief description of the software package BCLS [Fri06] used to solve
the nonnegative least-squares subproblems. BCLS is a separate implementation for solving
least-squares problems with bound constraints. We describe the BCLS algorithm in context
of the generic problem

minimize
x∈Rn

1
2‖Ax− b‖

2
2 + cTx+ 1

2γ
2‖x‖22

subject to ` ≤ x ≤ u,
(4.5)

where A is an m × n matrix and b and c are m- and n-vectors. The n-vectors ` and u are
lower and upper bounds on the variables x; γ is a nonnegative regularization parameter that
can be used to control the norm of the final solution. A value of γ = 0 is permitted in the
implementation and simply eliminates the regularization term.

The BCLS algorithm is based on a two-metric projection method (see, e.g., [Ber82,
Chapter 2]). A partitioning of the variables is maintained at all times; variables that are
well within the interior of the feasible set are labeled free, and variables that are at (or near)
one of their bounds are labeled fixed. Conceptually, the variables x and the data A and c
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are correspondingly partitioned into their free (B) and fixed (N) components:

x =
[
xB xN

]
, c =

[
cB cN

]
, and A =

[
AB AN

]
. (4.6)

At each iteration, the two-metric projection method generates independent descent di-
rections ∆xB and ∆xN for the free and fixed components of x; these are generated from an
approximate solution of the block-diagonal linear system[

ATB AB + γ2I 0
0 D

] [
∆xB

∆xN

]
= ATr − c− γ2x, (4.7)

where r = b− Ax is the current residual, and D is a diagonal matrix with strictly positive
entries. The right-hand side of the above equation is the negative of the gradient of (4.5).
Thus a Newton step is generated for the free variables xB, and a scaled steepest-descent step
is generated for the fixed variables xN . The aggregate step (∆xB,∆xN) is then projected into
the feasible region and the first minimizer is computed along the piecewise linear projected-
search direction (see, e.g., [CGT00] for a detailed description on projected search methods).

The linear system (4.7) is never formed explicitly. Instead, ∆xB is computed equivalently
as a solution of the least-squares problem

minimize
∆xB

1
2‖AB∆xB − r‖22 + cTB∆xB + 1

2γ
2‖xB + ∆xB‖22. (4.8)

We find an approximate solution to (4.8) by applying the conjugate-gradient-type solver
LSQR [PS82] to the problem

minimize
∆xB

∥∥∥∥∥
[
AB

βI

]
∆xB −

[
r

1
β cB − γ2

β xB

]∥∥∥∥∥ , (4.9)

where β = max{γ, γ̄} and γ̄ is a small positive constant. (In principle, this least-squares
problem could alternatively be solved via a direct method, e.g., the QR factorization; but
BCLS is aimed at large-scale problems where such an approach may be infeasible.) If
γ < γ̄ (as it is with the ALS subproblems of §3.1), then the resulting step is effectively a
modified Newton step. Although this can lead to slower convergence, it has the side effect
of safeguarding against rank-deficient systems.

The scaling strategy described in §4.1 implies that the solution ∆xB will be well scaled.
This is an especially favorable circumstance for CG-type solvers.

5 Numerical experiments

We implemented Algorithm 2 in Matlab. Two separate interfaces are available. The first
interface (lsNTF) implements the nonnegative tensor factorization for N = 3 and relies on
the Matlab Tensor Toolbox [BK06b, BK06a]. The second interface (lsNMF) implements
the nonnegative matrix factorization (e.g., N = 2) and does not rely on the Tensor Toolbox.

We illustrate the performance of lsNTF and lsNMF on a set of images from the CBCL
Face Database [BL06]. For the tensor case, we assemble 1000 gray-scale images, each 19×19
pixels, into a tensor V with dimensions 19 × 19 × 1000. For the matrix case, we assemble
the same images into a matrix V with dimensions 192 × 1000. For both cases we choose
a fixed inner dimension of 15, which corresponds to J1 = J2 = J3 = 15 in the tensor case
and J1 = J2 = 15 in the matrix case. (Our choice of the inner dimension is arbitrary and
empirical. Indeed, how to choose this dimension is an open problem, and out of the scope
of this paper. For relevant background, see [LMV00, dSL07].)
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Original
images

NTF basis
(regularized)

NTF basis
(unregularized)

NMF basis
(regularized)

NMF basis
(unregularized)

NTF
reconstruction
(regularized)

NTF
reconstruction
(unregularized)

NMF
reconstruction
(regularized)

NMF
reconstruction
(unregularized)

Figure 1: The first row shows six of the original images in the CBCL test set. The next
four rows show the bases computed from 1000 images in the dataset using the NMF and the
NTF with and without 1-norm regularization. The last four rows display reconstructions
of the original faces using the tensor and matrix factorizations with and without 1-norm
regularization.
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Algorithm Iterations Optimality Total time (sec)

lsNTF 6 1.9e−04 315
lsNMF 3 5.9e−05 357
projGradNMF 47 9.9e−01 260
multUpdateNMF (1000) (9.0e+00) (320)

Table 1: Performance of four algorithms on the nonnegative factorization of 1000 images
with 15 leading factors

Table 1 shows the relative performance of our matrix and tensor factorization implemen-
tations (lsNMF and lsNTF, respectively). For interest, we also show the results of solving
the same NMF problem with a projected gradient method [Lin07] and multiplicative up-
date method [LS01] (these are the rows labeled projGradNMF and multUpdateNMF). The
multiplicative update method failed to converge within its allotted maximum of 1000 itera-
tions. The numbers of iterations are not comparable across algorithms, but are shown only
for interest. Most relevant are the last two columns, which show the optimality achieved
(the norm of the reduced gradient) and the solution time to achieve that level of optimality,
though we caution that CPU times are generally a poor gauge of an an algorithm’s efficiency.
Importantly, however, the timings in the table indicate that we are able to solve the NTF
and NMF problems with very similar computing times. All runs were conducted on a 3.2
GHz Intel Pentium 4 running Linux 2.6.16 and Matlab 7.2.

The images in Figure 1 illustrate the results of the NTF and NMF factorizations. The
first row shows six typical images in the CBCL test set. The next four rows show six
of the fifteen basis images computed using NTF and NMF, both with and without 1-norm
regularization. The tensor factorization stores the bases in G×1A

(1)×2A
(2) (each basis image

is stacked behind the other); analogously, the matrix factorization stores the vectorized bases
in the columns of A(1)G. The reconstructions from these bases are obtained by completing
the multiplication with the final matrix factor in order to obtain the approximations (1.1)
and (1.2). The remaining rows display the reconstruction of the original faces using the
tensor and the matrix factorization with and without 1-norm regularization.

As we expect, the 1-norm regularization encourages sparse factors. In Figure 1 the NTF
and NMF bases computed with 1-norm regularization are sparser (i.e., contain more black
pixels) than the unregularized factors. In this experiment, the regularized NTF factors are
about 10% sparser than the unregularized factors; in the NMF case, the regularized factors
are nearly twice as sparse and the unregularized factors. In both cases we chose γ = 10−2

for the regularization parameter.
An advantage of NTF over NMF is storage efficiency. In our implementation, both

the core tensor G (for NTF) and the matrix G (for NMF) contain J nonzero elements
(J := J1 = J2 = J3 for G and J := J1 = J2 for G). Hence, we have to store J(I1+I2+I3+1)
entries for NTF, and J(I1I2 + I3 +1) entries for NMF. In the example of Figure 1 with 1000
images of size 19 × 19 and an inner dimension of 15, the NTF requires storage for 15585
entries, and the NMF requires storage for 20430 entries. Thus, NMF requires just over 30%
more storage than NTF on this example.

Our entire Matlab implementation, including the scripts needed to reproduce Table 1
and Figure 1, can be obtained at http://www.cs.ubc.ca/~mpf/lsntf.

6 Looking ahead

We outline some of the important ingredients that need to be considered for the efficient
implementation of an algorithm for computing the nonnegative tensor factorization. The

http://www.cs.ubc.ca/~mpf/lsntf
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techniques we use for regularizing (§3.3) and scaling (§4.1) play important dual roles: they
are useful for ensuring the efficiency of the method and also for encouraging solutions have
desirable properties. Importantly, it seems that the tensor factorization can be computed
without much more effort than is needed to compute the matrix factorization.

6.1 A Gauss-Newton approach

The alternating least-squares method given in Algorithm 1 has the attractive property that
it decomposes the nonlinear problem into a sequence of well-structured subproblems for
which there are effective solution methods. Although the asymptotic convergence rate of
Gauss-Seidel methods is at most linear, the ALS algorithm still seems to perform effectively.
An alternative to the ALS algorithm is to apply a Gauss-Newton method to (NTF), and
optimize over all factors simultaneously (as opposed to one factor at a time).

The NTF problem can be reformulated as a generic nonlinear least-squares problem:

minimize
x

1
2‖c(x)‖22 subject to x ≥ 0.

In this case, c(x) is an appropriate vectorization of R defined by (2.1). A variant of the
Gauss-Newton method could be based on obtaining a correction ∆x for the current iterate
x via the solution of the regularized least-squares subproblem

minimize
∆x

1
2‖c(x) + J(x)∆x‖22 + 1

2λ‖∆x‖
2
2 subject to x+ ∆x ≥ 0,

where J is the Jacobian of c, and λ is a positive damping parameter. Standard Levenberg-
Marquadt rules can be used to update λ (see, e.g., [DS96]). With the simplifying assumption
that Jn ≡ J for each n = 1, . . . , N , then the Jacobian for the NTF problem is

J(x) =


D1 R1 B1

D2 R2 B2

...
...

...
DI3 RI3 BI3

 ,
where

X` =


X1`1 X1`2 · · · X1`J

X2`1
. . . X2`J

...
. . .

...
XI2`1 · · · XI2`J

 , ` = 1, . . . , I3, X = (D,R,B),

and the matrices Dijk, Rijk, and Bijk are defined by

Dijk = gkkka
2
ika

3
jkI(I1), Rijk = gkkka

3
jkA

(1)
(:,k)e

T
i , Bijk = gkkka

2
ikA

(1)
(:,k)e

T
j .

The Jacobian J is a large matrix, but its regular structure makes it amenable to the efficient
implementation of a matrix-vector product routine.

6.2 Multiple right-hand sides

As commented in §3.1, the ALS subproblem (NTFA(n)) is actually a set of independent linear
least-squares problems that can in principle be solved in parallel. If the subproblems did not
have nonnegativity constraints, then it would be possible to compute a QR factorization of
An⊗G

T
(n) and reuse it to solve for each row of A(n). However, the nonnegativity constraints

imply that only subsets of the columns of An⊗G
T
(n) participate in the solution of each least-

squares problem. Because these subsets cannot be known in advance, such an approach
is not viable. Still, we can consider applying the same bound-constrained least-squares
technique described in §4.2 to solve each of these problems in parallel.
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