
Integrating Gaussian Processes with Word-Sequence Kernels for Bayesian
Text Categorization

Maryam Mahdaviani, Sara Forghanizadeh and Giuseppe Carenini
Department of Computer Science

University of British Columbia
{maryam,forghani,carenini}@cs.ubc.ca

Abstract

We address the problem of multi-labelled
text classification using word-sequence
kernels. However, rather than applying
them with Support Vector Machine as in
previous work, we chose a classifier based
on Gaussian Processes. This is a prob-
abilistic non-parametric method that re-
tains a sound probabilistic semantics while
overcoming the limitations of parametric
methods. We present the empirical eval-
uation of our approach on the standard
Reuters-21578 datasets.

1 Introduction

Text Categorization is the problem of classify-
ing documents to a set of pre-specified categories.
Filtering a stream of news, indexing documents
for later retrieval, content analysis and spam filter-
ing are just a few applications of text categoriza-
tion. In order to classify texts, we need to iden-
tify a set of features by which we can correlate the
documents to specified classes. Individual words,
subsequence of terms, latent semantic indices are
some widely used features for texts. However,
in the space generated by such features classifi-
cation is often impractical because the boundaries
between classes are not linear.

By using kernel trick in Kernel-based meth-
ods (Aizermanet al. , 1964) this problem can
be effectively addressed. Essentially, documents
are implicitly mapped to a feature space in which
the classification becomes a simpler problem. In
this work, we used non-contiguous sub-sequences
of words as features of documents and computed
the kernel matrix based on them. We focus on
bigram non-contiguous subsequences of words as

well as bag-of-words and averaged them with dif-
ferent weights. We penalized the gaps in non-
contiguous subsequences by a decay factor.

In previous work, word-sequence kernels have
been applied with Support Vector Machine (Can-
cedda et al., 2003). In contrast, we propose to
use these kernels with a Gaussian Processes classi-
fier. This is a probabilistic non-parametric method
that retains a sound Bayesian probabilistic seman-
tics while overcoming the limitations of paramet-
ric methods (Manning and Sch, 1999).

The main motivations behind our choice are
both empirical and theoretical. Empirically, Gaus-
sian Processes have been shown to outperform
Support Vector Machine in text classification
based on bag-of-words (Chai et al., 2002). On
the theory side, by having a sound Bayesian prob-
abilistic semantics, Gaussian Processes provide a
confidence measure in the predications that can be
used for instance to abstain on certain classifica-
tion decisions (Altunet al. , 2004). To our knowl-
edge, the integration of Gaussian Processes with
word-sequence kernels is novel and it represents
the main contribution of this paper.

Computing the similarity of two documents
based on word-subsequences is not practical even
for short documents. Therefore, we adopted and
extended the dynamic programming approach of
(Lodhi et al., 2002) to recursively compute the
similarity.

In order to provide a fair evaluation, we test
the performance of our methods on the Reuters-
21578 dataset that has been used in previous re-
lated work. This dataset contains 21578 doc-
uments from Reuters newswire stories in 1987.
The documents have been classified by human
and have been compiled for public use. We used
the same test/train split as the work of (Lodhi

et al., 2001; Lodhi et al., 2002; Cancedda et al.,
2003). Similarly to (Cancedda et al., 2003), we
limited ourselves to the 10 most frequent cate-
gories rather than all 672 categories available for
Reuters-21578.

As a preview of the paper, in section 2 we mo-
tivate our approach in the context of related work
in text categorization. In section 3, we describe
word-sequence kernels and how they are used to
compute document similarity. After that, in sec-
tion 4 we introduce Gaussian Processes. In sec-
tion 5, we explain our evaluation including details
of the dataset, the balancing of the data and the
experiment settings. The outcomes of the experi-
ments are discussed in section 6.

2 Related Work

In the past few years, a number of Machine
Learning techniques have been applied to ranking
and classification problems in Natural Language
Processing, and text categorization is not an ex-
ception.

Similar to other complex classifications, text
classification not only requires a strong classifier
but also a set of features that represent the doc-
ument. Bag-of-words models have been widely
used in classification tasks (e.g., (Joachims,
1998)). The assumption behind bag-of-words rep-
resentation is that the relative position of terms has
little impact in Information Retrieval.

However, recent work in text categorization in-
dicates that, in order to obtain a better classifica-
tion, taking the order of terms is essential.

String Kernels are an effective way to take or-
der into account. In this approach, the similar-
ity between two documents is measured by the
number of similar non-contiguous subsequence of
items that the documents share. Non-contiguous
sub-sequences are penalized with the number of
gaps they have. The items considered can be, in
order of increasing linguistic complexity, charac-
ters, words or concepts (i.e., senses)

Among the many different available classifiers,
Support Vector Machine (SVM) and Boosting
have been widely applied recently to text classi-
fication. (Joachims, 1998) has shown that SVM
outperforms competing methods, such as decision
trees and neural networks using bag-of-words as
features. In (Chai et al., 2002), SVMs have been
compared against Gaussian Processes (GPs from
now on) also using bag-of-words. Results show

that GP outperforms SVM on the Reuters-21578
dataset. Finally, in (Lodhi et al., 2002) and (Can-
cedda et al., 2003) SVM were successfully applied
on the same dataset with kernels of character se-
quences and word sequences respectively.

Their results are currently the best reported in
the literature. All this previous work motivated
us to move a step further by integrating GPs with
word sequence kernels.

Figure 1 shows our approach along with pre-
vious works in the context of the decision space
for applying machine learning to text classifica-
tion. At the top, the three most popular algorithms
are considered (i.e., Neural Networks (NN), Ker-
nel Methods (KM) and Decision Trees (DT)).
The second level further specializes only KMs for
which a classifier and a kernel have to be selected.
Previous works and our approach are then pointed
to by the corresponding classifier and kernel.

ML for Classification

NN KM DT

Classifier Kernel

GP SVM BOW Sequence

CSeq WSeq

Our Approach

 2002

[Chai]
2003

[Cancedda]

 2002

[Lodhi]

1998

[Joachims]

Figure 1: Previous work and our approach in the
context of the decision space for applying machine
learning to text categorization.

2.1 Word-Sequence Kernels

2.2 Representation and Explicit
Computation of Document Similarity

Word Sequence Kernels (Cancedda et al.,
2003) is a special case of string kernels. In String
Kernels (Lodhi et al., 2001; Lodhi et al., 2002),
one of the first departures from bag-of-words mod-
els, documents are not represented by word fre-
quencies but by all possible ordered subsequences
of characters. Following their notation, let Σ be

a finite alphabet, and s = s1s2...s|s| a sequence
over Σ. Let i = [i1 i2, ... in], where 1 ≤ i1 < i2 <
... < in ≤ |s|, be a subset of the indices in s. We
also write l(i) = in−i1+1. Then the similarity of
two strings of characters s and t over Σ is defined
as:

kn(s, t) = Σu∈ΣnΣi:s[i]=uΣj:t[j]=uλl(i)+l(j) (1)

where λ ∈ [0, 1] is a decay factor for penaliz-
ing the gaps. Equation (1) defines a valid ker-
nel function since in fact it is performing an inner
product in a feature space with one feature per or-
dered subsequences u ∈ Σn with value: Φu(s) =
Σi:s[i]=uλl(i). The intuition behind this formula-
tion is that we match all possible subsequences of
length n, penalizing for the gaps in these subse-
quences. The longer the subsequence, the larger
the power of λ will be. Their results show that
character sequence kernels perform comparable to
traditional bag-of-words methods. But (Cancedda
et al., 2003) argue that since gaps within the se-
quences are allowed string kernels could also pick
up parts of stems of consecutive words. As a re-
sult, (Cancedda et al., 2003) introduced Word-
Sequence kernels in which Σ is a finite alphabet
of all possible words rather than characters and
Φu(s) is the sum over lengths of all subsequences
of document s in which feature u, a subsequence
of words of length n, occurs. Table (2.2) shows ex-
amples of calculating Φ for two short documents
s and t after POS-tagging and Lemmatization are
applied and stop-words are removed. s = China

bought tons of U.S. wheat under the export enhancement pro-

gram., and t = China exported tons of wheat from US.

Features Φu(s) Φu(t)
China λ λ

buy λ 0
ton λ λ

U.S. λ λ

wheat λ λ

export λ λ

enhance λ 0
program λ 0

Table 1: Mapping documents s and t to the fea-
ture space of word subsequences of length 1.
Note that by lemmatization for example “tons”
and “exported” have been mapped to “ton” and
“export” respectively, and that stop-words such
as “of” and “under” have been eliminated

Similarly documents can be mapped to the
feature spaces of word subsequences of higher
lengths. Bi-gram subsequences contain all pos-
sible sequences of two words in two documents.
For example u =“export program” is a non-
contiguous subsequence that is seen in s and not
in t. Therefore in feature space, the value of Φu

for t is 0 and for s is λ3 where 3 is the length of
“‘export enhance program”.

The similarity of each pair of documents s and t
can then be computed by the inner product of their
coordinates in feature space:

k(s, t) = ΣuΦu(s).Φu(t) (2)

As an example, for the two sample documents
mentioned above, we have k1(s, t) = 6λ2 , and
k2(s, t) = 2λ9 +λ8 +λ6 +2λ5 (corresponding to
1-grams and 2- grams respectively).

In order to keep the kernel values comparable
for different values of n and independent of the
length of sub-sequences, the normalized version
of the above formula was used:

k̂(s, t) =
k(s, t)√

k(s, s).k(t, t)
(3)

Taking all n-grams into consideration, we will
have the following formula which gives the sim-
ilarity between two documents:

k̄n(s, t) = Σn
i=1µ

l−ik̂i(s, t) (4)

As we saw above, kernel values for different sub-
sequence lengths are normalized independently
before being combined. In this way it is possi-
ble to control the relative weight given to different
subsequence length using the parameter µ.

2.3 Implicitly Computing Kernel Matrix
The proposed solution for computing the sim-

ilarity of documents based on all possible subse-
quences is extremely expensive and impractical
even for short documents. To solve this prob-
lem, (Lodhi et al., 2002) proposed a more efficient
dynamic-programming-based approach to implic-
itly expand the feature space and recursively com-
pute the similarity between two documents. The
recursive formulation is based on the following
reasoning: if we already know the value of the
kernel for two strings s and t, we can compute
the kernel for sx and t, where x is a word, by
considering all word subsequences common to s
and t and all new matching subsequences ending

in x which occur in t and whose (n − 1)-symbol
prefix occur in s. They formulate this reasoning
in equation (5), where k′n−1(s, t) counts match-
ing subsequences of n − 1 symbols, but instead
of discounting them according to the length of the
subsequence; it discounts them according to the
distance from the first symbol in the subsequence
to the end of the complete sequence.

kn(sx, t) = kn(s, t)+Σj:tj=xλ2k′n−1(s, t[1 : j−1])
(5)

In order to make the kernel computation even
more efficient, (Lodhi et al., 2002) introduced
k′′i (sx, t) to recursively compute k′i(sx, t). Intu-
itively k′′i (sx, t) stores the sum of the discounted
masses of matches of length (i − 1) ending just
before x. For further information on this implicit
computation, the reader can refer to the appendix
of (Cancedda et al., 2003).

While adopting this dynamic-programming
technique in our approach, we observed that in
longer documents, those subsequences with large
power of λ can be ignored without effecting the
accuracy of the performance. Therefore to en-
hance the efficiency of computation, we introduce
parameter b to be the size of the window for con-
sidering subsequences. Therefore in feature-space
any values smaller than λb is set to 0. By this mod-
ification, we managed to reduce the complexity of
the system from O(n|s||t|) to O(nmax(|s|, |t|)),
where n is the gram and |s| and |t| are the length
of documents s and t.

3 Prediction by Gaussian Processes
(GPs)

As we mentioned in previous sections, (Lodhi
et al., 2001; Lodhi et al., 2002; Cancedda et
al., 2003) who devised and applied sequence ker-
nels for text categorization, used Support Vec-
tor Machines as their kernel methods. In con-
trast, we propose to use GPs, which are non-
parametric techniques for performing Bayesian in-
ferences. Like SVMs, their non-parametric char-
acteristic enables us to work in high and possi-
bly infinite dimensional spaces. Although GPs are
well-known for being computationally expensive,
recent work on approximation methods (Smola
and and Scholkopf, 2000; Seegaret. al., 2003)
is addressing this problem. Furthermore, in our
approach (like in (Cancedda et al., 2003)) the cost
of the prediction step is much less that the cost

of computing similarity of documents. As a re-
sult, GPs not only represent a promising computa-
tional alternative to SVMs, but they can bring up
additional advantages because of their sound prob-
abilistic nature.

GPs are a generalization of a finite Gaus-
sian distributions and an instance of the class of
stochastic processes. Similar to multivariate Gaus-
sian distributions, they operate on functions in-
stead of vectors. These processes are classical
non-parametric methods. In recent years they have
attracted a great deal of interest in machine learn-
ing (Gray, 2004). Formally, a GP is a distribution:

p(t|K, {xn}) =
1
Z

exp(−1
2
(t− µ)K−1(t− µ)),

where t is a set of random functions indexed by
{xn}, t = {t(x1), t(x2), ...}, and matrix K is
the covariance matrix of these functions. With a
Gaussian Process model we can predict the value
of tN+1 given xN+1 and a set of observations on
variables. GPs is a promising non-linear interpo-
lation tool, but they can be modified to produce
efficient classifiers (Lang, 2004). In the classi-
fication task the goal is to predict the labels of
test variables based on their similarity to labeled
training data. The prediction can be approximated
(Williams and Barber, 1998; Williams and Seeger,
2000) and formulated in the form of matrix vector
multiplication:

y(u) = KulKll
−1y(l). (6)

where y(u) and y(l) represent vector of labels for
test and train variables respectively, Kll is the co-
variance matrix for labeled variables and Kul is
the similarity matrix between train and test vari-
ables. We can measure the similarity between
variables with different kernel functions as long
as they produce a valid kernel matrix. As de-
scribed in the previous section, in our approach we
use word-sequence Kernels which is a variation of
polynomial kernels for measuring the similarity of
documents. Therefore, the similarity between doc-
uments xi and xj is measured by k̄n(xi, xj), de-
fined in equation (4), where xi and xj can be train
or test documents.

Note that entries in matrix Kll represent the
similarity for all pairs of train variables (i.e.,
documents) x

(l)
i and x

(l)
j . As a result matrix

Kll is a valid kernel matrix and consequently
symmetric positive definite. Entries of matrix

Kul, k(x(u)
i , x

(l)
j), represent the similarity be-

tween unlabeled variables x
(u)
i ’s and labeled vari-

ables x
(l)
j ’s. Therefore, Kul and Kll are NxM

and MxM matrices where N is the size of unla-
beled test variables and M represents the size of
the training set. With our choice of kernel func-
tion, higher similarity values will be assigned to
points that are closer to each other in feature space.
We can extend binary classification with Gaus-
sian Process to multi-class classification. In other
words we can introduce a matrix of labels Y(u)

and Y(l) instead of vector of labels. Consequently,
equation (6) can be written as:

Y(u) = KulKll
−1Y(l). (7)

where now Y(u) ∈ RNxT , Y(l) ∈ RMxT and T
is the number of classes including the background
class.

Yuj is a vector of responses for test documents
for class j. Entry i in this vector corresponds to the
chance that document i belongs to class j. Ylj is a
vector of binary values of 0 and 1 for each classi-
fied document. A value of 1 is assigned to the label
of a document if that document belongs to class j.
Kul is just a kernel matrix in which entries are the
similarities between all pairs of unlabeled and la-
beled documents. Similarly, Kll holds the similar-
ity measure between all labeled documents. After
computing Yu for all classes, for each document i
we have a set of responses, which are correlated to
the likelihood of having document i in each class.
For further information on this process, the reader
may refer to David Mackay’s tutorial (MacKay,
1997) and Mark Gibbs’ thesis (Gibbs, 1997).

Since we know that all documents belong to at
least one class, we take the topic corresponding to
maximum response, as the first class of the doc-
ument. Next, a document is also assigned to all
additional classes for which the response is above
a given threshold. We determined this threshold
by cross-validation on a development dataset.

4 Evaluation

4.1 Dataset of Documents: Reuters-21578

In order to provide a fair evaluation, we need
to test the performance of our methods on the
same dataset that has been used in previous related
work. Most text classification methods in the re-
cent years have been tested on the Reuters-21578
dataset. This dataset contains 21578 documents

from Reuters newswire stories in 1987. The doc-
uments have been classified by human and have
been compiled for public use.

There is a so-called “ModApte split” in Reuters,
which uses a total number of 12,902 documents:
9,603 documents for training and 3,299 for test-
ing. In all recent work on word sequence kernels,
only the documents in the ten most frequent cate-
gories from this set have been used. For the sake
of comparison, we focused on the same ten cat-
egories, which left us with 7,193 documents for
training, and 2,787 documents for testing. Table
(4.1) shows the ten categories that were used.

Category # of test # of training Neg/Pos
earn 2877 1087 3
acq 1650 719 6
money 538 179 18
grain 433 149 22
crude 389 189 25
trade 369 117 26
interest 347 131 28
ship 197 89 49
wheat 212 71 45
corn 181 56 53

Table 2: Number of positive examples in the
ten most frequent categories of the Reuters-
21578 corpus (ModApte split)

4.2 Balancing the Data
Similar to many other real-world classification

tasks, in this classification task we are facing un-
balanced data. To reduce the impact of unbalanced
data in their tasks, (Cancedda et al., 2003) set the
parameter of SV M light to the integer closest to
the ratio of Negative/Positive examples for each
category. However using GPs, we need to use a
different strategy. Since we are performing multi-
labeled classification (rather than binary classifi-
cation for each topic), we would like to have a rel-
atively similar Negative/Positive ratio for all cat-
egories of train documents. To achieve this goal
we can either under-sample the majority classes
and leave the minority classes unchanged or we
can over-sample the minority classed and leave
the majority classes unchanged. Each of these
approaches have their own advantages and disad-
vantages. On the one hand, by under-sampling
we only use a randomly chosen subset of exam-
ples from majority classes. The problem with

this approach is that we may miss a number of
good training examples and as a result the accu-
racy of supervised prediction decreases. On the
other hand, by over-sampling minority classes, we
can duplicate the minority classes. And the prob-
lem with this solution is that as a result the ker-
nel matrix will have dependent rows, becoming
ill-conditioned (Kueck, 2004). Our solution is
a compromise of these two approaches. We ran-
domly split the majority classes in a way that each
split contains between 180-220 documents. We
then randomly picked a split from each category
and formed 7 sets of training documents. With
each of these training sets, we calculated the la-
bels for test documents. At the end we averaged
the labels obtained by each training set.

4.3 Experiments

In all experiments we fixed the value of decay
factor, λ, and the weight factor, µ, to 0.5. (Can-
cedda et al., 2003) had extensively experimented
with different values of λ, µ and n. They sug-
gested to define λmatch for rewarding matches and
λgap for penalizing gaps. They claimed that their
best results were achieved by varying λmatch and
λgap. However, we limited ourselves to fixed de-
cay factors, λ, without introducing any parameter
for rewarding matches. So, we compare our re-
sults only with the results of their approach with
fixed parameters. As for the parameter n, the
length of subsequences of words, we also followed
(Cancedda et al., 2003). (Cancedda et al., 2003)
reported that by considering subsequences longer
than 2, although the precision increases slightly,
the recall drops significantly. As a result, we also
set n to 2, (i.e. we also consider only unigrams
and bigrams).

We performed two sets of experiments. In the
first set of experiments, we initially performed
POS-tagging by applying java QTag. Next
we lemmatized all documents by applying the
Stanford JavaNLPlemmatizer. Then, we
computed the similarity of documents represented
by sequences of lemmas except for stop words.
This pre-processing of documents is the same as
that of (Cancedda et al., 2003). Therefore, GPs
can be compared to SVMs under similar condi-
tions, and both using word-sequence kernels.

In the second set of experiments, we again per-
formed POS-tagging with the same java tagger.
But then we only kept the nouns contained in the

documents without any further processing. Af-
ter that, we computed the similarity of documents
represented by sequences of nouns. The purpose
of the second set of experiments was to explore the
accuracy of document-classifications when doc-
uments are represented only with some parts of
speech. Since computing string kernels are expen-
sive, we are looking for ways of improving the ef-
ficiency without considerably losing accuracy.

In all our experiments, to test the effectiveness
of our approach, we compared our predicted class
labels with real labels of test documents to com-
pute the true positives TP (number of documents
the model correctly identifies as belonging to the
target class), the false positives FP (number of
documents the system falsely identifies as belong-
ing to the target class) and the false negatives FN
(number of documents the model fails to identify
as belonging to the target class). The performance
measures will be:
Precision: the ratio of true positives among all re-
trieved documents, p = TP

TP+FP
Recall : The ratio of true positives over all posi-
tives, r = TP

TP+FN
F-score: The harmonic mean of precision and re-
call, F1 = 2pr

p+r .
We report our results by computing the micro and
macro averages of these three performance mea-
sures as it is standard in text categorization.

5 Results

We compared the accuracy of our approach
against the best results reported in the literature
(Cancedda et al., 2003). The outcome of our
first set of experiments when we consider all
lemmas except for stop words are shown in Ta-
ble 3 and Table 4. In particular, Table 3
shows that our approach, GPs with word-sequence
(GP-WK) outperforms SVMs with the same ker-
nels (SVM-WK) when compared with respect to
macro-average. Since the authors of (Cancedda
et al., 2003) shared with us their results for each
category, we could also run a paired two-tailed t-
test on performance of (Cancedda et al., 2003),
SVM-WK, and our approach, GP-WK, for each
category. The differences for accuracy, precision
and F1 measure were all statistically significant
(p− value < .009).

In contrast, as shown in Table 4, SVM-WK
outperforms GP-WK when compared with respect
to micro-average. However, this difference is

Table 3: Macro-Average: All lemmas (stop-words
removed)

method and kernel Macro-Average
p r F1

GP-WK 90.58 89.69 90.13
SVM-WK 85.37 76.71 80.64

Table 4: Micro-Average: All lemmas (stop-words
removed)

method and kernel Micro-Average
p r F1

GP-WK 88.73 85.85 87.26
SVM-WK 93.01 88.09 90.52

much less pronounced (3% vs. 10%) than the one
for macro-average. So, it appears that GP-WK
should be the approach of choice unless in the
target application micro-average performance is
substantially more critical than the macro-average
one. As for statistical significance of the micro-
average differences, since we did not have access
to raw data about multiple runs of the SVM-WK
approach, we cannot provide a definite estimate.
However, given the size of the differences and the
size of the population, we hypothesize the differ-
ences in micro-average also to be significant.

With respect to the second set of experiments,
notice that, as shown in Tables 6 and 5, even when
only nouns are used, we obtain rather accurate re-
sults for both micro and macro averages. This
confirms that nouns carry most of the information
needed for text categorization and since consider-
ing nouns only is computationally more efficient
in some domains this can represent in practice the
most satisfactory solution.

6 Conclusions and Future Work

Text categorization is a key task in NLP. All the
most popular machine learning algorithms have
been applied to this task, with kernel methods be-
ing the most successful. Most combinations of

Table 5: Macro-Average: All Nouns

method and kernel Macro-Average
p r F1

GP-WK 87.35 84.77 86.04

Table 6: Micro-Average: All Nouns

method and kernel Micro-Average
p r F1

GP-WK 85.64 79.26 82.32

different kernels and classifiers have been tested
in previous work, but to our knowledge the inte-
gration of Gaussian Processes with word-sequence
kernels is novel and it represents the main contri-
bution of this paper.

In our experiments, we compared GPs with
word-sequence kernels against the best approach
reported in the literature, namely SVMs with
word-sequence kernels. These experiments indi-
cate that while GPs outperform SVMs with re-
spect to macro-average, they are outperformed by
SVMs with respect to micro-average. However
the dominance of GPs on macro-average is much
more pronounced than the dominance of SVMs on
micro-average. Furthermore, GPs provide an addi-
tional critical advantage when compared to SVMs.
Since GPs have a sound Bayesian probabilistic se-
mantics, they can be effectively used in Bayesian
decision making. For instance, they provide a con-
fidence measure in the predications that can be
used to abstain on certain classification decisions.

The next step in our research is to combine GPs
with concept-sequence kernels. In practice, in-
stead of computing similarity of documents by ex-
act matching of subsequences of words, we plan to
consider a form of soft matching in which similar-
ity scores are based on the semantic distance of the
constituent words. Initially, we intend to experi-
ment with measures of semantic distance based on
Wordnet.

7 Acknowledgements

We would like to thank Nando de Freitas and
Kevin Murphy for their helpful insights and ad-
vice. We also thank Nicola Cancedda, Eric
Gaussier, Cyril Goutte and Jean-Michel Renders
for providing us with their experimental results.

References
M Aizerman, E Braverman and L Rozonoer. 1964.

Theoretical foundations of the potential function
method in pattern recognition learning. Automation
and Remote Control,volume 25, pages 821-837.

Y Altun, T Hofmann and A Smola. 2003. Gaussian

Process Classification for Segmenting and Annotat-
ing Sequences. 21th International Conference on
Machine Learning.

L Cai, T Hofmann. 2005. Text Categorization by
Boosting Automatically Extracted Concepts. the
26th Annual International ACM SIGIR onference
on Research and Developement in Information Re-
trieval, Toronto, Canada.

N Cancedda, E Gaussier, C Goutte, J Renders. 2003.
Word-Sequence Kernels. Journal of Machine Learn-
ing Research, volume 3, pages 1059-1082 .

K M A Chai, H T Ng, H L Chieu. 1997. Bayesian
Online Classifier for Text Classification and Filter-
ing. 25th ACM International Conference on Re-
search and Developement in Information Retrieval,
Tampere, FL.

E Gabrilovich, S Markovitch. 2004. Text Categoriza-
tion with Many Redundant Features: Using Aggre-
sive Feature Selection to Make SVMs competetive
with C4.5. the Twenty-First International Confer-
ence on Machine Learning.

T Joachims. 1998. Making Large Scale SVM Learning
Practical. Bernhard Scholkopf, Chris Burges, and
Alex Smola, editors, Advances in Kernel Methods-
Support Vector Learning, MIT Press, 1999.

D MacKay. 1997. Introduction to Gaussian Processes.
http://www.cs.toronto.edu/ mackay/gpB.ps.gz.

M N Gibbs. 1997. Bayesian Gaussian Processes for
Regression and Classification. PhD Thesis, Univer-
sity of Cambridge.

E Gabrilovich, S Markovitch. 2004. Text Categoriza-
tion with Many Redundant Features: Using Aggre-
sive Feature Selection to Make SVMs competetive
with C4.5. the Twenty-First International Confer-
ence on Machine Learning.

A G Gray. 2004. Fast Kernel Matrix-Vector Multipli-
cation with Application to Gaussian Process Learn-
ing. Technical Report, Carnegie Mellon University,
CMU-CS-04-110,.

H Kueck. 2004. Bayesian Formulations of Multiple
Instance Learning with Applications to General Ob-
ject Recognition. MSc Thesis, Department of Com-
puter Science, University of British Columbia.

D Lang. 2004. Fast Methods for Inference in Graphi-
cal Models and Beat Tracking the Grapgical Model
Way. MSc Thesis, Department of Computer Sci-
ence, University of British Columbia.

H Lodhi, C Saunders, J Shaw-Taylor, N Cristiani, C
Watkins. 2001. Text Classification using String Ker-
nels. Advances in Neural Information Processing
Systems, 13. MIT Press

H Lodhi, C Saunders, J Shaw-Taylor, N Cristiani, C
Watkins. 2002. Text Classification using String
Kernels. Journal of Machine Learning Research, 2,
pages 419-444.

C D Manning and H Schutze 1999. Foundations
of Statistical Natural Language Processing. Cam-
bridge, Massachusetts

M Seegar, N D Lawrence and R Hebrich. . Fast Gaus-
sian Sparse Methods: The informative vector ma-
chine. Advances in Neural Information Processing
Systems.

A J Smola and B Scholkopf. 2000. Sparse Greedy
Matrix Approximation for Machine Learning. 17th
International Conference in International Conf. on
Machine Learning, pages 911-918.

C K I Williams and D Barber. 1998. Bayesian Classifi-
cation with Gaussian Processes. IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol-
ume 20, pages 1342-1351

C K I Williams and M Seeger. 2000. Using the Nys-
trom Method to Speed-uo Kernel Machines. Ad-
vances in Neural Information Processing Systems.

Y Yang and X Liu. 1999. A re-examination of text cat-
egorization methods. Proceeding of the 22nd ACM
SIGIR Conference on Research and Developement
in Information Retrieval, pages 42-49.

