
TopoLayout: Graph Layout by Topological Features
Daniel Archambault∗

University of British Columbia
Tamara Munzner∗

University of British Columbia
David Auber†

Université de Bordeaux I

ABSTRACT

We describe TopoLayout, a novel framework to draw undirected
graphs based on the topological features they contain. Topological
features are detected recursively, and their subgraphs are collapsed
into single nodes, forming a graph hierarchy. The final layout is
drawn using an appropriate algorithm for each topological feature.
A more general goal is to partition the graph into features for which
there exist good layout algorithms, so in addition to strictly topo-
logical features such as trees, connected components, biconnected
components, and clusters, we have a detector function to deter-
mine when High-Dimensional Embedder is an appropriate choice
for subgraph layout. Our framework is the first multi-level ap-
proach to provide a phase for reducing the number of node-edge
and edge-edge crossings and a phase to eliminate all node-node
overlaps. The runtime and layout visual quality of TopoLayout de-
pend on the number and types of topological features present in the
graph. We show experimental results comparing speed and visual
quality for TopoLayout against four other multi-level algorithms on
ten datasets with a range of connectivities and sizes, including real-
world graphs of web sites, social networks, and Internet routers.
TopoLayout is frequently faster or has results of higher visual qual-
ity, and sometimes, it has both. For example, the router dataset of
about 140,000 nodes which contains many large tree subgraphs is
drawn an order of magnitude faster with improved visual quality.

nformation Visualization, Graphs and Networks, Graph Visual-
ization

1 INTRODUCTION

TopoLayout is a framework for drawing large, undirected graphs.
Our approach is multi-level: we decompose the graph into a hier-
archy of subgraphs of decreasing size and exploit the hierarchy for
layout. Unlike previous multi-level approaches, TopoLayout par-
titions the graph into topological features, which can be laid out
with an algorithm tuned for feature topology. The features detected
are primarily strict topological features such as trees, connected
components, and biconnected components. A more general goal
is to partition the graph into features for which there exist good
layout algorithms. Thus, we have also developed an algorithm to
detect when the very fast High-Dimensional Embedder [19] algo-
rithm, or HDE, will perform well on a subgraph. Previous multi-
level algorithms draw the hierarchy of subgraphs beginning with
the coarsest graph in the hierarchy to the finest. TopoLayout is
the first to draw the subgraph hierarchy using a depth-first, post-
order traversal. Traversing the hierarchy in this way allows features
at lower levels to determine their screen-space extents before the
higher level feature is drawn. Thus, our framework works best if the
algorithms used to draw our feature types are area-aware or take
varying node size into account. TopoLayout is also the first multi-
level algorithm to include passes to eliminate node-node overlaps
and a pass to reduce the number of node-edge and edge-edge cross-
ings in the layout. These passes contribute to the high visual quality
of our layouts with comparable running times to previous reason-
able multi-level approaches.

∗{archam, tmm}@cs.ubc.ca
†auber@labri.fr

2 PREVIOUS WORK

2.1 Multi-Level Graph Drawing Algorithms

Significant work has been done in developing hierarchical methods
for graph drawing to improve algorithm run time with drawings of
equal or increased visual quality. The spirit of these multi-level
graph layout approaches is to recursively apply a coarsening oper-
ator to divide the graph into a hierarchy of coarse graphs that are
used to represent a very large input graph. These techniques exploit
the property that coarser graphs in the hierarchy are representative
of the more detailed ones, but are cheaper to lay out.

In Walshaw [26], an estimate of a solution of the maximal match-
ing problem is used as a coarsening operator to construct the hier-
archy. The maximal matching problem selects the largest possible
set of edges in the graph such that no two edges are incident to the
same node. However, the author acknowledges his technique may
not be suitable for densely connected graphs or graphs containing
high degree nodes.

Niggemann and Stein [22] describe a multi-level algorithm based
on the recursive application of Λ-maximization clustering. For each
recursively clustered subgraph, the algorithm constructs a feature
vector, which stores statistics about the subgraph, including the
number of connected components, biconnected components, and
Λ-clusters found. This feature vector is passed to a function which
determines the best layout. This function is refined by applying re-
gression learning to a large database of many typical graphs. This
best layout method for a typical graph is determined by laying out
all the graphs in the database with as many graph drawing algo-
rithms as possible and evaluating a quality metric on each. Al-
though the work does produce some visually convincing results,
the largest graph drawn was 1000 nodes. Even though no perfor-
mance numbers were given, one can assume that the large amounts
of precomputation required is a major limitation.

Harel and Koren [15] recursively apply an approximate solution
to the k-centres problem, using graph theoretic distance as the ideal
distance between two nodes. The k-centres problem groups a set
of points into k clusters where the distance between any pair of
points in the cluster is minimized. Their algorithm relies on the as-
sumption that the Euclidian distance between two nodes should be
proportional to their graph theoretic distance. However, for highly
connected graphs, the graph theoretic distance between many pairs
of vertices is similar and the chosen clustering could be poor. Sim-
ilarly, for graphs of low connectivity, such as trees, the assumption
that graph theoretic distance should be proportional to Euclidian
distance leads to poor layouts.

Gajer et al. [11] coarsen by applying a filtration to the node set
of the input graph. The filtration operator constructs a maximal
subset at each level i using the input graph at level i− 1 such that
the graph theoretic distance between any two nodes of the subset is
at least 2i−1− 1. Although the technique works well on graphs of
low connectivity, the authors acknowledge that it does not perform
well on graphs of higher connectivity.

The ACE algorithm [18] solves for the eigenvectors of the Lapla-
cian matrix to determine a suitable projection of the graph into two,
three, or any dimension less than or equal to the number of eigen-
vectors of the matrix. The eigenvectors are computed by construct-
ing a hierarchy of coarse matrices and computing the eigenvectors



of the coarsest matrix. The solution is recursively used as an esti-
mate for the eigenvectors one level down until the eigenvectors of
the original graph have been computed. However, a recent empiri-
cal evaluation of fast graph drawing algorithms [14], demonstrates
that it does not perform well on many types of graphs.

The Fast Multipole Multilevel Method, or FM3, algorithm [13]
is the first multi-level algorithm for general graphs with a prov-
able worst case asymptotic runtime of O(N logN + E). The graph
is partitioned into subgraphs called solar systems. Sun nodes are
the central node of the solar system. Planet nodes are the nodes
immediately adjacent to a sun node. Moon nodes are the set of
nodes immediately adjacent to a planet node. The solar systems
are contracted down to single nodes and the process is repeated to
create a hierarchy. They show a fixed fraction of nodes and edges
are present in each solar system, proving the hierarchy is balanced.
Using this fact, they are able to prove that the final graph layout
can be obtained in O(N logN + E) time. A subsequent evaluation
of FM3 convincingly demonstrates that FM3 yields higher visual
quality results than previous work [14]. Although TopoLayout can-
not be proven to be asymptotically faster than FM3, we will show
that, in terms of speed and visual quality, it empirically outperforms
FM3 on many types of graphs.

The work of Six and Tollis [24] is perhaps closest in spirit to our
own. Although the method is not technically multi-level because
the hierarchy is not recursively constructed, it does share some
properties of multi-level techniques; they decompose the graph into
biconnected graphs and lay out the tree of biconnected components
using a radial tree layout algorithm which is area-aware. The indi-
vidual biconnected components are drawn using a circular layout.
However, the only topological feature type detected is biconnected
components, whereas TopoLayout handles many feature types.

We also describe preliminary work on TopoLayout in a recent
poster [1].

2.2 High-Dimensional Embedder (HDE)

In addition to strict topological features, TopoLayout detects when
the High-Dimensional Embedder, or HDE algorithm [19] of
Harel and Koren, is an appropriate choice. This approach is re-
lated to a rich family of mathematical approaches which have been
explored as solutions to problems ranging from flattening curved
surfaces [23] to texture mapping in computer graphics [27]. These
algorithms start by selecting a subset of d points called pivots and
compute the pairwise geodesic or graph theoretic distance between
the pivots and all other points on the surface. Each pivot corre-
sponds to a dimension, and the graph theoretic distance between
a pivot and all other points defines a position for each point in a
d-dimensional space. The point set is centred, and principal com-
ponent analysis (PCA) or multi-dimensional scaling (MDS) maps
the d-dimensional embedding down to a two or three dimensions.

In HDE, the first pivot of the graph is selected randomly. The
graph theoretic distance between the first pivot and all other nodes
in the graph is computed using Dijkstra’s algorithm1. For the re-
maining m− 1 pivots, the node with furthest graph theoretic dis-
tance from the pivot is selected in order to maximize variance on
each axis. Once the graph is embedded in the d-dimensional space,
PCA is used to map the graph down into two dimensions. A typical
value for d is 50 and the algorithm has an asymptotic runtime of
O(d(N logN +E)).

1The graph theoretic distance can be computed using either Dijkstra’s
algorithm or breadth-first search; here we use Dijkstra’s algorithm because
we need weighted HDE to handle graphs of positive, unequal edge weights.

Figure 1: TopoLayout algorithm phases.

3 ALGORITHM

The TopoLayout framework consists of four main phases as shown
in Figure 1. The decomposition phase is the same as the coarsening
operator in other multi-level techniques. It is recursively called on
the input graph, creating our hierarchy and identifying the feature
type of the subgraph. The feature layout phase draws the subgraph
using an appropriate algorithm for the feature type. The crossing
reduction phase reduces, but does not completely eliminate, the
number of node-edge and edge-edge crossings in the subgraph by
rotating nodes. Finally, the overlap elimination phase ensures that
no two nodes overlap in the final drawing. The last three algorithms
are applied to each subgraph in the post-order traversal and then
recursively are computed for higher levels of the hierarchy.

Many of the algorithms used in these phases are directly drawn
from previous work, some are slight modifications of previous
work, and some are novel algorithms of our own. Similar work on
reducing node-edge and edge-edge crossings has been presented,
but we present a new algorithm for this problem in Section 3.2.2.
All algorithms used directly from previous work or those with small
modifications are described in these sections and cited.

3.1 Decomposition

The decomposition phase consists of a series of topological feature
detection algorithms, which are applied to the input graph. Upon
detection of a topological feature, the subgraph of the feature is
collapsed into a single node. This process forms a hierarchy, where
a node at level i containing a subgraph is a parent and the nodes of
the subgraph it contains at level i+1 are its children. Nodes which
contain a subgraphs are known as meta-nodes. We call the nodes of
the input graph leaves of the hierarchy as they are the only nodes in
the subgraph hierarchy which are not meta-nodes and terminate all
paths in the subgraph hierarchy. Note that the computed hierarchy
is rarely balanced and leaves can occur at any level. During the
construction of a meta-node n, for any edge e adjacent to a node
contained in the subgraph of n and a node outside the subgraph
of n, we create a meta-edge which connects the meta-node to the
other node adjacent to e. Meta-edges contain a list of pointers to
the edges in the input graph which they represent. Figure 2 shows
an example hierarchy created by our decomposition phase. Meta-
nodes are the rectangles in the diagram and their subgraphs are the
set of nodes contained within the box. The nodes are coloured by
topology type. This same colour encoding is used for all drawings
produced by TopoLayout for the remainder of this paper.

Figure 3 describes the decomposition algorithm in detail and
the topological features we detect. The boxes in the diagram are
coloured using the same scheme introduced in Figure 2. Trees are
subgraphs without cycles. A connected component is a subgraph
where there exists a path between any pair of nodes in it. A bicon-
nected component is a subgraph where the removal of any node or
edge within the subgraph does not disconnect it into two or more
connected components. A cluster is a subgraph formed by some
clustering algorithm. In our implementation, we use the strength
metric [3] for clustering. We then determine if HDE is a suitable
algorithm to lay out the subgraph. We note HDE components are
not topological features, but HDE component detection is a first
step in selecting appropriate graph layout algorithms for subgraphs



Figure 2: Subgraph hierarchy after decomposition, with topology en-
coded by colour. Top: Layout annotated with bounding boxes to show
hierarchy structure: meta-nodes encompass the subgraphs of their
children. Bottom: Diagram of subgraph hierarchy, with levels enu-
merated and nodes labeled by feature type. The hierarchy is not
necessarily balanced: leaves can occur at any level.

in our hierarchy. Finally, if the decomposition phase cannot identify
the topology of the subgraph, it is labeled unknown.

The resulting hierarchy, and therefore the resulting layout, can
change with the order in which these detection algorithms are ap-
plied. Our order is based on the following logic. Connected com-
ponents of the graph should be detected first, since if there are mul-
tiple components, we can lay them out independently. Trees need
to be detected before biconnected components because the removal
of any edge or node from a tree disconnects the tree into two com-
ponents. Therefore, a biconnected algorithm run on a tree would
fragment all trees into disjoint nodes and edges. Before we further
decompose the graph using strength clustering, we check to see if
HDE is an appropriate algorithm for layout. Finally, cluster detec-
tion provides a reasonable decomposition to partition the graph into
highly connected subgraphs as a last step when more meaningful
topological features cannot be found.

3.1.1 Topological Feature Detection Algorithms

We detect connected components using a series of depth-first
searches to compute spanning trees for each component. We refer
the reader to the Baase and Van Gelder textbook [4] for details of
this standard algorithm for connected component detection, which
runs in O(N +E).

We detect trees by finding the first cycle in the graph and select-
ing a node n on that cycle. If a cycle is not found, the entire graph is
a tree. Otherwise, starting at n, we perform a depth-first search on
the entire graph. When we visit a node of degree one, we remove
it and continue the depth-first search. The algorithm removes all
nodes of degree one it encounters until there are no more, or when
a maximal tree is detected. The time required for tree detection is
therefore O(N +E).

A good description of a standard biconnected component detec-
tion algorithm is given by Baase and Van Gelder [4]. Biconnected
components are detected in the graph by performing a depth-first
search through the graph. Edges that point back to higher levels of
the depth-first search are called back edges. When a subtree s of

the depth-first search tree has no back edges to any ancestor of s, it
is a separate biconnected component. The algorithm takes at most
O(N +E) time.

We compute clusters using the strength metric [3]. The strength
metric partitions the graph into subgraphs by the number of 3- and
4-cycles shared by the nodes of the subgraph. For each edge sub-
tending nodes u and v, we partition nodes adjacent to u and v into
three sets: M(u), those adjacent to u; M(v), those adjacent to v;
and W (u,v), those adjacent to both u and v. The total number of
3-cycles is the number of elements in W (u,v). We determine the
number of 4-cycles by checking for the existence an edge between
an element of W (u,v) and an element of either M(u) or M(v). These
edges can be computed in O(r) time using a hash table, where r is
the maximum degree of a vertex in the graph. We can thus detect
clusters in O(rE) time.

Finally, to determine if HDE is a suitable layout algorithm for
the subgraph, we lay out the subgraph with HDE and compute
the unweighted Kruskal Stress-1 function [20] on a random sub-
set of

√
N nodes taken from the graph. Because HDE is a very

fast graph drawing algorithm, we can afford to perform the lay-
out and evaluate the stress. When evaluating the stress of the re-
sulting layout, we exclude the pivots chosen by HDE because the
stress was inherently minimized for them by the algorithm. The
Kruskal Stress-1 is frequently used in MDS to evaluate how faith-
fully the low-dimensional embedding of a set of points represents
the high-dimensional distances between them. It determines the
normalized disparity between the high-dimensional representation
of the point set and the low-dimensional representation. Kruskal
Stress-1 produces a value between [0,1] with zero corresponding
to no disparity between the two-dimensional drawing and the high-
dimensional space, and one corresponding to maximum disparity.
Although HDE uses PCA to map the d-dimensional space down to
two dimensions, Kruskal Stress-1 is still applicable as a good lay-
out will place nodes of small shortest path distance close together
and nodes large shortest path distance far apart. Thus, good HDE
layouts should have low stress. The time required to compute the
stress is O((N logN + E)

√
N) as Dijkstra’s shortest path algorithm

is computed for each of the
√

N nodes of the subset. This stress
computation is computed a small constant number of times and if
one of those stresses is below a threshold of 0.2, the layout is ac-
cepted.

3.2 Layout

During the layout phase of level i of a hierarchy, the features at level
i + 1 contained by all the meta-nodes at level i must be laid out
first to determine the screen-space bounds of the meta-node. The
required screen space of the leaves at level i is already known: the
original size of the node. The layout stage, shown in Algorithm 1,
draws the topological feature at level i using an appropriate layout
algorithm, rotates meta-nodes of the hierarchy to reduce crossings,
and eliminates all node-node overlaps in the subgraph.

Algorithm 1 Pseudocode for the feature layout phase.
layout (subgraph s)

for all meta-nodes c ∈ s do
c.size←boundingBox (layout (c.subgraph));

layOutFeature (s);
reduceCrossings (s);
eliminateOverlaps (s);



Figure 3: Decomposition phase for TopoLayout. Detection algorithms in coloured boxes with the same colouring scheme used for the features in
Figure 2. If a clause on a horizontal is true, we transition along the arrow. Otherwise, we follow the vertical arrow to save some subgraphs and
recursively decompose others.

3.2.1 Feature Layout

The initial layout of the topological features in the graph depends
on the detected topological type. We employ four types of layout
algorithms: tree, circular, HDE, and force-directed.

Area-aware tree layout algorithms are used for the tree and bi-
connected component topological types. Clearly, tree layout algo-
rithms are appropriate for trees, but the reason to use them to draw
biconnected components is less obvious. For a set of biconnected
components residing at level i with their collapsed subgraphs at
level i + 1, the topology of the subgraph at level i is a tree; if it
were not, there would be a cycle at level i and all subgraphs on
that cycle would be merged into a single biconnected component
at level i + 1. If the removal of an edge created two biconnected
components, the edge appears as an edge in the tree at level i. If the
removal of a node created two biconnected components, we use one
of the methods suggested by Six and Tollis [24] and place the node
between the two components. TopoLayout can use any tree layout
algorithm that is area-aware to draw these trees. We use the bubble
tree algorithm [12] for trees of low depth and high branching factor
and an area-aware version of the Walker algorithm [5] for all other
trees. The bubble tree algorithm requires O(N logN) time while the
version of the Walker algorithm runs in O(N) time.

We use an area-aware circular layout algorithm to highlight
complete graphs. Circular layout consists of simply placing the
nodes of the graph around a circle, so area-aware circular layout
is a straightforward adaption. Although circular layouts yield low
visual quality drawings for general graphs because they have many
crossings, they are a good choice for complete graphs; the symme-
try of all lines crossing and the feature-based color coding leads to
the visual pop-out of cliques. The algorithm runs in O(N) time.

When appropriate, we use area-aware HDE [19] to lay out un-
known components that preform well during detection. Area-aware
HDE is simply normal HDE with weighted edges. The weight of
each edge is set to the maximum radius of the adjacent nodes with
a minimum weight of one.

We use area-aware GEM for all other cases of clusters and un-
known components. Area-aware GEM is a minor modification of
the GEM Frick algorithm [9] where nodes are considered charges
and the edges are considered springs. The system is placed in an ini-
tial configuration, often random, and is released until it reaches an
equilibrium. Oscillations and rotations about equally optimal posi-
tions are dampened. We use an area-aware version of GEM, which
is similar to the algorithms developed by Harel and Koren [16]
who adapted Fruchterman-Reingold [10], Kamada-Kawai [17], and
combinations of these algorithms.

The forces for area-aware GEM can be defined for a pair of nodes
ni and n j . Let ri and r j be the the radii of the bounding circles of
these nodes respectively. Let pi and p j be their positions, and let l
be some ideal spring length for the distance between the boundaries
of the two nodes. The GEM forces that a node n j exerts on a node
ni are:

~r

~f

τ

c

o

(o,c)
nc

no

(a)

c

o

(o,c)

nc
no

(b)

Figure 4: Reducing crossings with torque. (a) Computing the tor-
sional force τ on c exerted by the edge (no,nc). (b) Applying τ results
to rotate c. Dashed nodes and edges are meta-nodes and edges.
Solid nodes are leaves. The square box is the centre of node c.

frepulsive(ni,n j) =
l + dri + rje
‖pi− p j‖2 (pi− p j) (1)

fattractive(ni,n j) =
‖pi− p j‖2

l + dri + rje
(p j− pi) (2)

The bold terms in (1) and (2) are the terms we added to make
GEM area-aware. The ceiling of the sum of the radii is taken so
that the forces are still computed purely with integer arithmetic.
Oscillation and rotation control in the algorithm is the same. The
complexity of the algorithm remains O(N3).

3.2.2 Crossing Reduction

We introduce an algorithm to reduce the number of edge-edge
crossings and node-edge crossings in our drawing. Our heuristic is
to rotate meta-nodes in our hierarchy to reduce crossings of edges
in the original graph connecting nodes in different subgraphs of the
hierarchy as shown in Figure 4. The heuristic does not guarantee
an elimination of node-edge or edge-edge crossings, but it reduces
the number of them in most cases and shortens edge length between
subgraphs as well. Our approach is similar to that of Symeonidis
and Tollis [25] who provide a solution to this problem by mini-
mizing what they call inter-group crossings. In their approach, an
energy function is minimized to apply a good rotation to their cir-
cular drawings to reduce the number of crossings. This approach is
analogous to Kamada-Kawai [17] in graph layout. In contrast, our
approach is similar to GEM [9] and includes oscillation control.

Let o and c be meta-nodes in a subgraph at level i of our graph
hierarchy. Let no and nc be leaves in our graph hierarchy. We use



the positions of no and nc in the coordinate frame in the subgraph
at level i to compute the torque τ . The nodes of no and nc are
not necessarily at level i + 1 and can be nested in several levels of
meta-nodes, each with their own relative coordinate frames. For the
moment, we assume the location of the nodes no and nc is known in
the coordinate frame of the subgraph at level i and show later how
these positions can be computed efficiently. The torque computed
is physically inspired, but is not physically realistic. Let the force
vector ~f be a unit force along the edge (no,nc). Let ~r be the ra-
dius vector from the centre of node c to the node nc. The function
sg(~x) returns the sign of the normal perpendicular to the embedding
plane. The torque exerted by (no,nc) on c is given by Equation (3).

τ =
π
2

sg(~r× ~f )(~r ·~f ) (3)

Analogous to that of force-directed graph drawing techniques,
our solution to the problem is incremental. The average value of
τ is computed for all edges in the list of edges contained in the
meta-edge (o,c). The process is repeated, computing an average τ
for each meta-node in the subgraph containing o and c, using their
incident meta-edges. Once the average τ is computed for all meta-
nodes in the subgraph, it is applied to the cumulative rotation of
each meta-node.

Meta-nodes can oscillate around equally good orientations. Our
approach to dampening oscillations is similar to that of GEM [9].
We store the torque for each meta-node applied during the previ-
ous iteration and compare it with the torque computed during the
current iteration. If the signs of the torque in the two iterations
are opposite, we are oscillating around an optimal orientation, and
a damping factor is applied. Currently, this factor is the fraction
of completed iterations to the Ni iterations which will be executed,
where Ni is the number of meta-nodes in the subgraph at level i.

Computing the positions of the no and nc nodes in the coordinate
frame of the subgraph at level i is relatively straightforward if every
node in the graph hierarchy has a pointer to meta-node which con-
tains it. This information can be constructed in the decomposition
phase with no asymptotic runtime penalty when we construct meta
nodes. Each meta-edge has a list of edges it represents, so each no
and nc involved in a torque computation can be determined in con-
stant time. We traverse the hierarchy up to the subgraph at level i
composing translations and rotations to determine the positions of
no and nc in the subgraph at level i. If no or nc is at a depth of
i+L, this traversal takes O(L) time. Since each edge is involved in
at most one torque computation and Ni iterations of torque are ex-
ecuted, the overall asymptotic complexity of the crossing reduction
phase is O(LNiE).

3.2.3 Overlap Elimination

In TopoLayout, neither area-aware GEM nor HDE provides a guar-
antee of no node-node overlaps. The crossing reduction phase may
also introduce node overlaps between meta-nodes and other nodes
in each subgraph of the hierarchy. To ensure that pairs of nodes do
not overlap in our final layout, we perform a pass to test for and
reduce or eliminate these overlaps.

We experimented with several algorithms to reduce or eliminate
node overlaps in the drawing. In all cases, we tried overlap reduc-
tion two ways: separately for each subgraph of the hierarchy, or
a single pass on the entire final drawing after TopoLayout had ex-
ecuted all other phases. We found that the former approach was
best, because a single pass on the final drawing causes overlap of
topological features.

First, we tested the naive approach of considering every pair of
nodes to determine the set of overlaps. If two nodes overlapped,
they were shrunk down in size until no overlap was present. Al-
though this O(N2) method was slow, it does guarantee a drawing

Algorithm Complexity
Detection

Tree O(Ni +Ei)
Biconnected Component O(Ni +Ei)
Connected Component O(Ni +Ei)
HDE O((Ni logNi +Ei)

√
Ni)

Cluster O(rEi)
Initial Layout

Bubble Tree O(Ni logNi)
Walker Tree O(Ni)
Circular O(Ni)
Area-Aware GEM O(N3

i )
HDE O(d(Ni logNi +Ei))

Refinement
Crossing Reduction O(LNiE)
Overlap Elimination O(Ni logNi)

Figure 5: Time complexity of TopoLayout framework components, for
each hierarchical level.

free of node-node overlaps and produced drawings of high visual
quality for many types of graphs.

We also implemented the Cluster Buster algorithm of Lyons et
al. [21], which computes the Voronoi diagram of the node set and
iteratively pulls the nodes towards the centroid of each Voronoi
cell. For a constant number of iterations, the algorithm runs in
O(N logN) time. Unfortunately, this method does not guarantee
no node overlaps in the final drawing, and the results were usually
of low visual quality.

We obtained the best results from implementing the fast node
overlap removal algorithm without Lagrange multipliers [7], which
is discussed in detail in Dwyer et al’s technical report [8]. In this
work, two, separate passes along the x-axis and the y-axis eliminate
all node overlaps in the graph. The algorithm constructs a weighted,
directed constraint graph along each dimension and uses quadratic
programming to minimize node displacement. Assuming that each
node in the graph overlaps with a constant number of nodes, the
algorithm is O(N logN). This method guarantees no overlaps in the
final drawing and was applied to every subgraph of the hierarchy to
produce the results in Section 5.

The overlap elimination phase is always executed on graphs
drawn with HDE and area-aware GEM, since we cannot guaran-
tee the absence of overlaps in drawings generated from these algo-
rithms. Overlap elimination is only executed on other topological
features if they contain meta-nodes, because the crossing reduction
phase can introduce overlaps. As the fast overlap removal algo-
rithm only considers axis aligned nodes, the axis aligned bounding
box of the rotated meta-node is computed.

4 ALGORITHM COMPLEXITY

Figure 5 shows the time complexity of the algorithms we use in
TopoLayout. We report the number of operations performed on
each subgraph of the hierarchy: Ni is the number of nodes in a
subgraph, and Ei is the number of edges in a subgraph at level i.
The maximum degree of a node in the subgraph at level i is r. The
value of d is the dimensionality of the high-dimensional space of
the HDE algorithm, which is typically fifty. The value of L is the
number of levels we must traverse up the hierarchy to compute the
level i positions of no and nc when computing torques.

5 EXPERIMENT

We implemented the TopoLayout framework on top of the Tulip [2]
graph visualization system and have tested it against other multi-



level algorithms on datasets with a range of connectivities and sizes.
All benchmarks were run on a 3.0GHz Pentium IV with 3.0GB
of memory running SuSE Linux with a 2.6.5-7.151 kernel. The
majority of the data used for testing was taken from Hachul and
Jünger’s empirical study [14] of graph drawing algorithms and Fig-
ures 6 and 7 demonstrate that we have reproduced the results of
their work. In fact, even the running times are nearly the same as
our hardware setup was similar. In these figures, every row is the
same dataset and every column is a layout algorithm. The name and
size of the dataset for each row is in the upper left hand corner of
the leftmost column. The time taken to lay out each dataset with a
particular algorithm appears in the upper right hand corner of each
table entry. For space reasons, a representative subset of the graphs
and algorithms used in this evaluation were chosen. The code for
GRIP2, ACE3, and HDE4, was available online and was incorpo-
rated into the Tulip framework. Stephan Hachul kindly supplied the
FM3 code, which was also incorporated into Tulip for testing. Harel
and Koren’s multi-level approach [15] was not tested. The source
code for this implementation was unavailable and restricted graph
sizes of less than ten thousand nodes due to quadratic size memory
requirements. As our observed running times and visual quality re-
sults were very similar to those in the empirical study [14], one can
refer to their results for a comparison. We allowed TopoLayout to
colour topological features in the graph, using the scheme defined
in Section 3.1. Since the other graph drawing algorithms do not de-
tect topological features automatically, the comparison is fair and
demonstrates another advantage of our approach.

From the datasets in the study [14], we chose one of their
real world graphs, the B-size graphs for each of their challeng-
ing artificial graphs classes, and one challenging real world graph.
When comparing our results to their study, note that smaller
snowflake A and spider A drawings were shown, whereas
we are providing drawings for the larger snowflake B and
spider B. All other drawings we provide match those in the
study. In addition to the datasets present in the study, we added
four of our own. We show the drawings obtained from the experi-
ment in Figures 6 and 7.
Crack is a standard graph drawing dataset part of the Walshaw

Graph Partition Archive5. It was the real world graph used in the
study. The 6-ary, snowflake B, spider B, and flower B
datasets are one size of each of the challenging artificial graphs
supplied by Stephen Hachul. The 6-ary tree dataset is simply a
6-ary tree of depth five. Snowflake is a tree of very high variance
in degree. Spider has a subset of nodes S which consists of 25%
of the nodes in the graph. The elements of S are each connected to
twelve unique members of S. The remaining nodes are rooted at a
single node along eight paths of equal length. Flower has a rela-
tively high density. It consists of joining six circular chains of the
graph K30, a complete graph of thirty nodes, at a single instance of
K30. LaBRI is the hyperlink structure of www.labri.fr. IMDB
Subset is a subset of the Internet Movie Database6. Nodes in
this graph are actors and edges are present if two actors appeared
in the same movie. Add32 is a graph which models the hardware
structure of a thirty two bit adder from the Walshaw Graph Parti-
tion Archive. It was a challenging real world dataset used from
the study. Bico Walshaw is fourteen datasets from the Walshaw
Graph Partition Archive connected by thirteen single edges into one
component. Routers is a near-spanning tree with a few cycles of
the major routers on the Internet backbone from the Internet Map-
ping Project [6] taken in February 2002.

2www.cs.arizona.edu/˜kobourov/GRIP
3research.att.com/˜yehuda/programs/ace.zip
4research.att.com/˜yehuda/programs/embedder.zip
5staffweb.cms.gre.ac.uk/˜c.walshaw/partition
6www.imdb.com

6 DISCUSSION

One strength of TopoLayout is that the running time performance
is proportional to the amount of a particular topological feature
present in the graph. For the most part, the topological feature de-
tection algorithms are quick enough to determine if something is
definitely not present in the graph. As a result, we have an algo-
rithm whose performance is sensitive to topology type.

Figures 6 and 7 show another advantage of our approach: by
choosing a layout algorithm for a feature that creates a characteris-
tic pattern, we get visual pop-out effects that allows these features
to be easily noticed. For example, we can easily pick out the node
and edge biconnectivity in LaBRI, the cycles and tree structures in
routers, and the cliques in IMDB Subset.

For nearly all datasets, except crack, neither ACE nor HDE is
able to produce layouts of high visual quality, because they place
many nodes at the same location. It has been noted in Hachul’s
study [14] that these algebraic methods do not work well on graphs
with many biconnected components. For this reason, the remainder
of the discussion will focus on the performance of GRIP, FM3, and
TopoLayout.

On crack, TopoLayout is able to outperform FM3, but is slower
than GRIP. As expected from the literature, all the algorithms pro-
duced pleasing drawings.

TopoLayout is able to outperform GRIP and FM3 in terms of
running time on 6-ary and snowflake and it outperforms them
in terms of visual quality as well. As TopoLayout detects trees, it is
able to visualize the global structure of 6-ary and snowflake
more effectively. For snowflake, the FM3 algorithm actually
hides part of the graph’s global structure, because clumps the single
nodes attached to the root near the centre of the drawing as shown
in the inset. GRIP can show part of the structure around its root
node as shown in its inset. Topolayout pulls them out into the fan
structure visible in the lower left of the drawing.

TopoLayout has a slower run time on FM3 and GRIP on
spider. The reason is that it runs O(N3) area-aware GEM on the
highly connected head component. The visual quality of the layout
is similar for FM3, GRIP, and TopoLayout in the head region of the
spider shown in the inset, but the eight fold symmetry of the legs is
difficult to see.

TopoLayout is slower than FM3 and GRIP on flower, because
the strength metric [3] has slow performance when the connectivity
of the graph approaches near-complete. The drawing of flower
produced by TopoLayout has better information density; we can
see the individual cliques in each loop at a single scale, whereas it
is less true for the GRIP and FM3 drawings. However, the topology
of the loops are better drawn by FM3. The structure of the cliques
is more apparent using TopoLayout because they are detected and
drawn using circular layout as shown in the inset. It is difficult
to see the structure of the cliques in the FM3 and GRIP drawings
because many nodes overlap.

On LaBRI, the running time of TopoLayout is of the same or-
der as that of GRIP and FM3. The drawings are of similar visual
quality, but the trees and biconnected components in the dataset are
displayed more clearly in the TopoLayout drawing.

There are many cliques in IMDB Subset and all three algo-
rithms are able to separate them out in their drawings. As Topo-
Layout is able to detect complete graphs and draw them using a
circular layout, the topology of these cliques is made immediately
apparent whereas it is hidden by GRIP and FM3. The areas of bi-
connectivity are visible in all three drawings and the running times
are of the same order.

For add32, the drawing speed of GRIP is considerably faster
than that of FM3 and TopoLayout whose running times are on the
same order. As add32 describes a 32-bit adder, it is no surprise that
it contains many biconnected components and has a tree-like shape.



ACE HDE GRIP FM3 TopoLayout

PSfrag replacements

crack
N=10,240
E=30,380

0.79

PSfrag replacements

0.83

PSfrag replacements

4.23

PSfrag replacements

22.19

PSfrag replacements

8.17

PSfrag replacements

6-ary
N=9,331
E=9,330

1.11

PSfrag replacements

0.37

PSfrag replacements

1.76

PSfrag replacements

17.04

PSfrag replacements

0.88

snowflake
N=9,701
E=9,700

(T)

PSfrag replacements

0.59

PSfrag replacements
0.59

PSfrag replacements

3.62

PSfrag replacements
3.62

PSfrag replacements

17.60

PSfrag replacements
17.60

PSfrag replacements

0.94

PSfrag replacements
0.94

PSfrag replacements

spider
N=10,000
E=20,000

14.11

PSfrag replacements
spider

N=10,000
E=20,000

14.11
PSfrag replacements

0.64

PSfrag replacements
0.64

PSfrag replacements

5.26

PSfrag replacements
5.26

PSfrag replacements

16.39

PSfrag replacements
16.39

PSfrag replacements

1404.99

PSfrag replacements
1404.99

PSfrag replacements

flower
N=9,030
E=131,241

0.25

PSfrag replacements
flower

N=9,030
E=131,241

0.25
PSfrag replacements

0.93

PSfrag replacements
0.93

PSfrag replacements

9.12

PSfrag replacements
9.12

PSfrag replacements

11.30

PSfrag replacements
11.30

PSfrag replacements

88.39

PSfrag replacements
88.39

Figure 6: Layouts of several datasets using ACE, HDE, GRIP, FM3, and TopoLayout for several datasets described in Section 5. For all rows,
blank squares indicate no drawing produced. Dataset name, number of nodes, and number of edges appear in the top left hand corner of the
leftmost column. Times in seconds, or reasons for no drawing, appear in the upper right corner of each entry. (T) indicates no drawing produced
in four hours of program execution.

The GRIP and FM3 algorithms are able to visualize this large-scale
shape, but with TopoLayout we are also able to see some internal
structure.

TopoLayout has a running time of the same order as FM3 on
bico walshaw and GRIP is unable to produce a drawing. The
drawings produced by FM3 and TopoLayout are of similar visual
quality.

TopoLayout draws routers an order of magnitude faster than
FM3, while GRIP is unable to produce a drawing. In fact, the run-
ning time of TopoLayout is similar to that of HDE. All algorithms
are able to draw the cycles present in the dataset, but only Topo-
Layout is able to visualize the tree structures properly.

7 FUTURE WORK

Two obvious ways to improve our framework would be to have
better detection and layout algorithms for the existing set of topo-
logical features, and to add support for new feature types. Fig-
ure 5 shows that the most expensive algorithm in the decomposition
phase is cluster detection, and it is reflected in the slower running
times for the flower graphs. For the feature layout phase, the most
expensive algorithm is the O(N3) area-aware GEM algorithm, and
we see it reflected in the running time of spider as the large head
component is laid out using this algorithm. Adding more special-
ized detection algorithms would not only improve the visual quality
of the layout, but could also improve performance if they led to a



ACE HDE GRIP FM3 TopoLayout

PSfrag replacements

LaBRI
N=578
E=1,178

0.14

PSfrag replacements

0.03

PSfrag replacements

0.21

PSfrag replacements

0.80

PSfrag replacements

0.80

PSfrag replacements

IMDB Subset
N=419
E=5,651

0.06

PSfrag replacements

0.04

PSfrag replacements

0.25

PSfrag replacements

1.21

PSfrag replacements

3.69

PSfrag replacements

add32
N=4,960
E=9,462

1.26

PSfrag replacements

0.35

PSfrag replacements

1.50

PSfrag replacements

11.90

PSfrag replacements

14.78

PSfrag replacements

bico walshaw
N=77,251
E=183,945

96.23

PSfrag replacements

6.69 (E)

PSfrag replacements

160.06

PSfrag replacements

104.87

PSfrag replacements

routersroutersroutersroutersroutersroutersrouters
N=139,516N=139,516N=139,516N=139,516N=139,516N=139,516N=139,516
E=139,520E=139,520E=139,520E=139,520E=139,520E=139,520E=139,520

566.17566.17566.17566.17566.17566.17566.17

PSfrag replacements
routers

N=139,516
E=139,520

566.17
PSfrag replacements

17.6317.6317.6317.6317.6317.6317.63

PSfrag replacements
17.63

(E)

PSfrag replacements

415.23415.23415.23415.23415.23415.23415.23

PSfrag replacements
415.23

PSfrag replacements

18.2218.2218.2218.2218.2218.2218.22

PSfrag replacements
18.22

Figure 7: Layouts of several datasets using ACE, HDE, GRIP, FM3, and TopoLayout for several datasets described in Section 5. For all rows,
blank squares indicate no drawing produced. Dataset name, number of nodes, and number of edges appear in the top left hand corner of the
leftmost column. Times in seconds, or reasons for no drawing, appear in the upper right corner of each entry. (E) indicates no drawing produced
because of an error in the executable.

smaller set of nodes being passed to the final cluster detector. In
particular, adding different cluster detection methods is an obvious
next step.

For laying out unknown components, it would be interesting
to use an area-aware version of FM3 instead of area-aware GEM
for its fast running time and high visual quality on many types of
graphs. Since FM3 is based on a spring embedder, adapting it to be
ara-aware should be feasible. With area-aware FM3, we would be
able to significantly improve the slow run time of TopoLayout on
spider, where the spring embedder takes over 99% of the time.
However, the visual quality of the drawing would most likely re-
main the same. The visual quality of flower would be signifi-
cantly improved, and we would most likely be able to see the six

fold symmetry of the loops. However, we would probably not see a
great improvement in the run time, since cluster detection forms a
significant fraction of it.

Improving area-aware HDE and creating area-aware variants of
other typical graph drawing algorithms is a topic for future re-
search. Currently, we make HDE area-aware by using the obvious
approach of weighting the edges proportionally to adjacent nodes
size, which works well on graphs with uniform node sizes. How-
ever, information density suffers with nonuniform node sizes, as
occurs in routers. We conjecture that a more sophisticated ap-
proach would result in better information density. We would also
like to improve the precision of our HDE detection algorithm.

Although TopoLayout handles many types of graphs better than



previous work, it still does not produce high-quality layouts for
all graphs in the information visualization domain. If none of the
topological feature types we detect occur in the graph, results are
poor. In this case, we simply have a hierarchy of clusters and
unknown components which are drawn using area-aware force-
directed placement. However, our framework allows for the ad-
dition of detection functions, and incorporating better layout algo-
rithms for specific features will improve its performance. Detection
and layout of approximate large-scale topological structures such as
quasi-cliques and quasi-trees, rather than exact topological features,
would be an interesting next step.

8 CONCLUSION

We have presented TopoLayout, a novel framework for drawing
large, undirected graphs. Unlike previous multi-level approaches,
TopoLayout partitions the graph into topological features, which
can be laid out using an algorithm tuned for their topology. In ad-
dition to topological features, we have developed an algorithm to
detect when HDE will perform well on a subgraph. In contrast
to previous multi-level algorithms, TopoLayout is the first to draw
the subgraph hierarchy using a depth-first, post-order traversal.
Traversing the hierarchy in this way allows features at lower levels
to determine their screen-space extents before the higher level fea-
ture is drawn. TopoLayout is also the first multi-level algorithm to
provide passes to eliminate node-node overlaps and a pass to reduce
the number of node-edge and edge-edge crossings in the layout. It
guarantees a final layout of no node-node overlaps with comparable
running times to reasonable multi-level approaches, where runtime
and layout visual quality depends on the number and types of topo-
logical features present in the graph. The experimental results com-
paring TopoLayout to four other multi-level approaches on a range
of datasets show that TopoLayout is frequently faster or has results
of higher visual quality, and in some cases, it has both.

ACKNOWLEDGMENT

We thank Stephan Hachul for supplying the FM3 code and the
datasets used in his empirical study. Partial funding was provided
by the ACI Jeunes Chercheurs Cube de Données: Construction
et Navigation Interactive and INRIA IPARLA. We thank Ciaran
Llachlan Leavitt for help in editing this paper.

REFERENCES

[1] D. Archambault, T. Munzner, and D. Auber. TopoLayout: Graph lay-
out by topological features. In S. Carpendale and C. North, editors,
IEEE Information Visualization Posters Compendium (InfoVis’05),
pages 3–4, 2005.

[2] D. Auber. Tulip : A huge graph visualization framework. In P. Mutzel
and M. Jünger, editors, Graph Drawing Software, Mathematics and
Visualization, pages 105–126. Springer-Verlag, 2003.

[3] D. Auber, Y. Chiricota, F. Jourdan, and G. Melancon. Multiscale vi-
sualization of small world networks. In Proc. IEEE Symposium on
Information Visualization (InfoVis’03), pages 75–81, 2003.

[4] S. Baase and A. Van Gelder. Computer Algorithms: Introduction to
Design and Analysis. Addison-Wesley, 3rd edition, 2000.

[5] C. Buchheim, M. Jünger, and S. Leipert. Improving Walker’s algo-
rithm to run in linear time. In Proc. Graph Drawing (GD’02), LNCS,
pages 344–353. Springer, Berlin, 2002.

[6] H. Burch, B. Cheswick, and S. Branigan. Mapping and visualizing the
Internet. In Proc. USENIX, 2000.

[7] T. Dwyer, K. Marriott, and P. J. Stuckey. Fast node overlap removal.
In Proc. 13th Int. Symp. on Graph Drawing. Springer-Verlag, 2005.

[8] T. Dwyer, K. Marriott, and P. J. Stuckey. Fast node overlap removal.
Technical report, School of Comp. Science & Soft. Eng., Monash Uni-
versity, Australia, August 2005.

[9] A. Frick, A. Ludwig, and H. Mehldau. A fast adaptive layout algo-
rithm for undirected graphs. In Proc. Graph Drawing (GD’94), vol-
ume 894 of LNCS, pages 388–403, 1995.

[10] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by
force-directed placement. Software - Practice and Experience,
21(11):1129–1164, November 1991.

[11] P. Gajer, M. Goodrich, and S. Kobourov. A multi-dimensional ap-
proach to force-directed layouts of large graphs. In Proc. Graph
Drawing (GD’00), volume 1984 of LNCS, pages 211–221. Springer,
Berlin, 2001.

[12] S. Grivet, D. Auber, J. Domenger, and G. Melancon. Bubble tree
drawing algorithm. In International Conference on Computer Vision
and Graphics, pages 633–641, 2004.

[13] S. Hachul and M. Jünger. Drawing large graphs with a potential-field-
based multilevel algorithm. In Proc. 12th Int. Symp. on Graph Draw-
ing, pages 285–295. Springer-Verlag, 2004.

[14] S. Hachul and M. Jünger. An experimental comparison of fast algo-
rithms for drawing general large graphs. In Proc. 13th Int. Symp. on
Graph Drawing. Springer-Verlag, 2005.

[15] D. Harel and Y. Koren. A fast multi-scale method for drawing large
graphs. In Proc. Graph Drawing (GD’00), volume 1984 of LNCS,
pages 183–196. Springer, Berlin, 2001.

[16] D. Harel and Y. Koren. Drawing graphs with non-uniform vertices.
In Proc. Working Conference on Advanced Visual Interfaces (AVI’02),
pages 157–166, 2002.

[17] T. Kamada and S. Kawai. An algorithm for drawing general undi-
rected graphs. Information Processing Letters, 31:7–15, 1989.

[18] Y. Koren, L. Carmel, and D. Harel. ACE: A fast multiscale eigenvec-
tors computation for drawing huge graphs. In Proc. IEEE Symposium
on Information Visualization (InfoVis’02), pages 137–144, 2002.

[19] Y. Koren and D. Harel. Graph drawing by high-dimensional embed-
ding. In Proc. Graph Drawing (GD’02), pages 207–219, 2002.

[20] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964.

[21] K. A. Lyons, H. Meijer, and D. Rappaport. Algorithms for cluster
busting in anchored graph drawing. Journal of Graph Algorithms and
Applications, 2(1), 1998.

[22] O. Niggemann and B. Stein. A meta heuristic for graph drawing.
learning the optimal graph-drawing method for clustered graphs. In
AVI 2000: Proc. of the Working Conference on Advanced Visual Inter-
faces, pages 286–289, 2000.

[23] E. L. Schwartz, A. Shaw, and E. Wolfson. A numerical solution to the
generalized mapmaker’s problem: Flattening nonconvex polyhedral
surfaces. IEEE Trans. on Pattern Analysis and Machine Intelligence,
11(9):1005–1008, September 1989.

[24] J. M. Six and I. G. Tollis. A framework for circular drawings of net-
works. In Proc. Graph Drawing (GD’99), volume 1731 of LNCS,
pages 107–116. Springer, Berlin, 1999.

[25] A. Symeonidis and I. G. Tollis. Visualization of biological information
with circular drawings. In Intl Symposium on Medical Data Analysis
(ISBMDA), pages 468–478, 2004.

[26] C. Walshaw. A multilevel algorithm for force-directed graph drawing.
In Proc. Graph Drawing (GD’00), volume 1984 of LNCS, pages 171–
182. Springer, Berlin, 2001.

[27] G. Zigelman, R. Kimmel, and N. Kiryati. Texture mapping using sur-
face flattening via multidimensional scaling. IEEE Trans. on Visual-
ization and Computer Graphics, 8(2):198–207, April–June 2002.


