
Visual Mining of Power Sets with Large Alphabets

Tamara Munzner∗† Qiang Kong† Raymond T. Ng† Jordan Lee† Janek Klawe†‡

Dragana Radulovic† Carson K. Leung†§

ABSTRACT
We present the PowerSetViewer visualization system for the
lattice-based mining of power sets. Searching for itemsets
within the power set of a universe occurs in many large
dataset knowledge discovery contexts. Using a spatial lay-
out based on a power set provides a unified visual frame-
work at three different levels: data mining on the filtered
dataset, browsing the entire dataset, and comparing mul-
tiple datasets sharing the same alphabet. The features of
our system allow users to find appropriate parameter set-
tings for data mining algorithms through lightweight visual
experimentation showing partial results. We use dynamic
constrained frequent set mining as a concrete case study
to showcase the utility of the system. The key challenge for
spatial layouts based on power set structure is handling large
alphabets, because the size of the power set grows exponen-
tially with the size of the alphabet. We present scalable
algorithms for enumerating and displaying datasets contain-
ing between 1.5 and 7 million itemsets, and alphabet sizes
of over 40,000.

Keywords
frequent set, power set, visualization, interactive data min-
ing

1. INTRODUCTION
Human visualization can play a major role in knowledge dis-
covery from large datasets (KDD). In this paper, we present
a visualization system for lattice-based mining of power sets.
Searching the power set, the set of all itemsets using the
alphabet of items in a given universe, is a fundamental
task in many KDD contexts [14]. Prime examples include
association rules and frequent set methods [1], sequential

∗e-mail:{tmm,qkong,rng,jordanel,dragana@cs.ubc.ca,
jklawe@cs.princeton.edu, kleung@cs.umanitoba.ca}
†University of British Columbia
‡Princeton University
§University of Manitoba

patterns [2], decision trees [4], and data clustering [17]. Our
PowerSetViewer (PSV) system advances the state of the
art by providing scalability in the size of the alphabet. The
power set grows huge as the alphabet size increases: a uni-
verse of only 24 items outstrips the number of pixels on the
screen, and universes of over 32 or 64 items are difficult to
even store in standard data formats. Using a spatial layout
based on a power set presents algorithmic challenges, but
provides a unified visual framework at three different levels:
data mining on the filtered dataset, the entire dataset, and
comparison between multiple datasets or data mining runs
sharing the same alphabet.

Users can find appropriate parameter settings for data min-
ing algorithms quickly through lightweight visual experi-
mentation showing how various parameter settings would
create a filter for the mined data with respect to the entire
dataset. PSV acts as a “windshield” to make the execu-
tion of the data mining algorithms transparent. When the
mining algorithms are steerable, dynamic display of interme-
diate or partial results helps the user decide how to change
the parameters settings of computation in midstream. In our
unified framework, we can support setting the filter parame-
ters to let all itemsets pass through, so that the entire input
dataset is shown to the user. Another benefit of using the
power set for spatial layout is that users can even meaning-
fully compare images that represent two different datasets
that share the same alphabet, for example by comparing
the distribution of purchases between two chain stores in
different geographic regions.

Our visualization system consists of two main parts, as shown
in Figure 1: the power set visualization module, the visual-
izer; and the data mining engine, the miner. In the current
version of our system, the data mining engine implements
dynamic, constrained frequent set mining as a concrete case
study. The appeal of constrained frequent set mining is well
known [20, 8, 18]. One key problem that has not been ad-
dressed in previous work is how to support users in choosing
and changing constraint thresholds and parameters. This
unsolved problem makes dynamic constrained frequent set
mining a perfect case study to showcase the power of our vi-
sualization system. While dynamic constrained frequent set
mining affects the “look” of the visualization system shown
here, the contributions of this paper are not in the domain
of dynamic frequent set mining, which have been presented
previously [18].

• Our first contribution is a visualization module using a
spatial layout based on power sets that scales in both
alphabet size and number of itemsets, handling alpha-
bets of more than 40,000 items and datasets of over
7 million itemsets. The visualization system provides
users with an explorable view of the full complexity of
the actual distribution of the itemsets in a particular
dataset with respect to the space of possibilities.

• Our second contribution is the two-part system which
connects this visualization module to a dynamic fre-
quent set mining server, showing how this visualiza-
tion approach helps users exploit the power of steer-
ability. The back-end data mining engine can act as a
filter for datasets far larger than the 7 million itemset
limit of the front-end visualization module. The ability
of the visualization module to handle large alphabets,
commensurate with what the data mining engine can
support, provides the power to show the distribution
of the filtered itemsets within the same visual space of
all possibilities.

Visualization
Module

(visualizer)
Mining Engine

(miner)
Raw Datasetresult data

data (pass-through)

parameter setting

Figure 1: PSV has a client-server architecture, with
a visualizer that can show either the filtered results
from the miner or the raw data directly.

We begin the paper with a set of example scenarios of use
in the domain of frequent set mining and a discussion of
the features offered by the visualizer in Section 2. Section 3
covers related work. We present the key algorithms for sup-
porting the huge size of the power set of a large universe in
Section 4. Section 5 contains experimental results illustrat-
ing the scalability of our algorithms and a discussion of our
design choices. We end with conclusions and future work in
Section 6.

2. POWER SET VISUALIZATION
PSV supports interactive data mining by displaying the sets
of interest with respect to the the power set; that is, the
space of all possible sets. Users can choose these sets of inter-
est with by specifying constraints for which objects should
be highlighted in the visualizer or filtered by the miner.

2.1 Example Scenarios
We present four scenarios of using PSV features during a
data mining task.1 These scenarios are built around a real
course enrollment database, where an itemset is the set of
courses taken by a student during a particular term. The
95,776 items cover the six terms of the academic years 2001,
2002, and 2003. The alphabet size, 4616, is the total num-
ber of courses offered. Our example user is an undergraduate
course coordinator interested in finding sets of courses when
taken together, so that she can minimize conflicts when
scheduling the next year’s courses.

1A video showing PSV in action for these scenarios is avail-
able at http://www.cs.ubc.ca/~tmm/papers/psv.

Scenario 1: She first considers medium-sized courses, and
decides to start with the enrollment threshold of 100. Her
first constrained frequent set query is frequency ≥ 0.005
and max(courseSize) ≤ 100. She watches the visualizer
display as it dynamically updates to show the progress of
the miner, and notices from the sparseness of the display
that her initial parameter setting might not be appropriate.
Figure 2 Top Left shows the constrained frequent sets com-
puted so far when she pauses the computation after 10% of
the itemsets have been processed. The sets are shown as a
distribution of small boxes ordered by cardinality, from sin-
gleton sets at the top to 5-sets on the bottom. Hereafter we
use the convention of k-sets to denote sets of size k. Each
cardinality has a different background color, and within each
cardinality the sets are enumerated in lexicographic order,
as discussed in Section 4.1. The coordinator loosens the
frequency constraint to .001, and tightens the enrollment
parameter to 80 or fewer students before resuming the com-
putation. Figure 2 Top Right shows the final result with
the new constraints. After all ninety-six thousand itemsets
have been processed by the miner, the largest constrained
frequent itemset is a 9-set, whereas the the largest set in the
partial result in Figure 2 Top Left is a 5-set.

Scenario 2: The coordinator now returns to the question
of what course size would represent her intuitive idea of
“medium”. Instead of filtering the itemsets with the miner,
she loads in the entire database in pass-through mode so
that she can quickly explore by highlighting itemsets that
satisfy different attribute constraints directly in the visual-
izer. She tries several values for the maximum enrollment
constraint, and in less than a minute settles on the value of
100 as shown in Figure 2 Middle Left.

Scenario 3: She continues by zooming in to 2-sets to in-
vestigate details that cannot be resolved from the overviews
that she has seen so far, which show aggregate information
about multiple sets if they fall into the same spatial region
in the layout. When she zooms far enough in, each on-screen
box in the zoomed-in region represents only a single set. The
relative ordering of itemsets is preserved in both the hori-
zontal and vertical directions. She can still see the highly
aggregated information about 1-sets on top and higher cardi-
nality sets on the bottom, so she can easily keep track of the
relative position of the area that she has zoomed. She can
browse many itemsets in a few seconds by moving the cursor
over individual boxes to check the course names reported in
the lower left corner of the display. Those highlighted sets
give her ideas of which courses to avoid scheduling at the
same time as CPSC 124.

Scenario 4: Having found a good enrollment threshold of
100 that characterizes medium-sized courses, she is ready to
investigate individual courses and whether the set of courses
frequently taken together changes over time. Instead of look-
ing at the combined data over all academic years, she se-
lects only the 2001 data, and returns to using the miner
to filter with the constraints of frequency ≥ 0.001 and
max(courseSize) ≤ 100, and clicks on the box representing
the 1-set CPSC 124. Figure 2 Bottom Left shows that this
1-set and all of its supersets are highlighted. In other words,
she can see the upward closure property of the containment
relation. Using lattice terminology, the highlighted elements

Figure 2: Scenarios for data mining with PSV Top: The user steers the miner by changing a constraint in
midstream. Top Left: The user pauses after 10% of the itemsets are processed to loosen the frequency con-
straint and tighten other the parameters. Top Right: The view is considerably denser, and higher cardinality
sets are shown, after all the itemsets are processed. Middle: The user loads in the entire raw dataset to find
good parameter settings with lightweight experimentation, using the same unified framework as when the
miner was filtering data. Middle Left: Courses with enrollment less than 100 are highlighted. Middle Right:

The rubber-sheet navigation technique of stretching and squishing a box shows details. Bottom: Comparing
different datasets that share the same alphabet. Bottom Left: CPSC 124 and its supersets are highlighted for the
academic year 2001. Bottom Right: Highlighting the same configuration for 2003 allows the visual comparison
between datasets.

form a lower semi-lattice with CPSC 124 as the bottom el-
ement, and they satisfy all the specified constraints. The
courses contained in these highlighted sets are the ones to
avoid scheduling simultaneously with CPSC 124. She then
starts up a second copy of PSV with the same configuration
on the academic year 2003 data, as shown in Figure 2 Bot-
tom Right. With the 2001 and 2003 displays side by side,
she can quickly spot differences and mouseover those boxes
to find the names of courses that became less popular to
take with CPSC 124.

2.2 Features
The features of PSV integrate the visual perception abilities
of human users throughout the data mining process.

2.2.1 Client-Server Architecture
PSV has a client-server architecture, as shown in Figure 1.
The server is a steerable data mining engine, the miner,
that is connected through sockets with a client visualiza-
tion module, the visualizer, that handles graphical display.
The visualizer client includes interface components for con-
trolling both itself and the miner server. The client and
server communicate with a simple text protocol: the client
sends control messages to the server, including constraint
settings, pause, play, and restart. The miner sends par-
tial results to the visualizer as they are completed, allowing
user monitoring of progress. The miner server is written
in C, while the visualizer client is a Java program using
hardware-accelerated OpenGL with the GL4Java bindings.

2.2.2 Visual Metaphor
PSV uses the visual metaphor of accordion drawing [5],
an information visualization technique first used for tree
browsing and comparison [19]. This technique for exploring
two-dimensional spatial layouts features rubber-sheet nav-
igation [21] and guaranteed visibility [19]. Rubber-sheet
navigation allows the user to select any rectangular area to
stretch out, showing more detail there, and that action au-
tomatically squishes the rest of the scene. All stretching and
squishing happens with smoothly animated transitions, so
that the user can visually track the motions easily. Parts of
the scene can become highly compressed, showing very high-
level aggregate view in those regions. However, no part of
the scene will ever slide out of the field of view, following
the metaphor that the borders of the malleable sheet are
nailed down. Although the absolute location of an itemset
changes, the relative ordering of the itemset with respect to
its neighbors is always preserved in both the horizontal and
vertical directions.

Accordion drawing allows interactive exploration of datasets
that contain many more itemsets than the fixed number of
pixels available in a finite display. A second critical prop-
erty of accordion drawing is the guaranteed visibility of
visual landmarks in the scene, even if those features might
be much smaller than a single pixel. Without this guaran-
tee, a user browsing a large dataset cannot know if an area
of the screen is correctly blank because it is truly empty, or
if it is misleadingly blank because itemsets in that region
happen to be smaller than the available screen resolution.

2.2.2.1 Layout
PSV introduces a novel layout that maps a related family of
datasets, those sharing the same alphabet of available items,

into the same absolute space of all possibilities. That space
is created by enumerating the entire power set of a finite
alphabet as a very long one-dimensional list, where every
possible set has an index in that list. That linear list is
wrapped scanline-style to create a two-dimensional rectan-
gular grid of fixed width, with a small number of columns
and a very large number of rows. We draw a small box repre-
senting a set if it is passed to the the visualizer by the miner,
located at the position in the grid corresponding to its index
in this wrapped enumeration list. Without guaranteed visi-
bility, these boxes would be much smaller than pixels in the
display for alphabets of any significant size because of the
exponential nature of the power set. This guarantee is one
fundamental reason why PSV can handle large alphabets.

In areas where there is not enough room to draw one box
for each set, multiple sets are represented by a single aggre-
gate box. The color of this box is a visual encoding of the
number of sets that it represents using saturation: objects
representing few sets are pale, and those representing many
are dark and fully saturated. Color is also used in the back-
ground to distinguish between areas where sets of different
cardinality are drawn: those background regions alternate
between four unobtrusive, unsaturated colors. The mini-
mum size of boxes is controllable, from a minimum of one
pixel to a maximum of large blocks that are legible even on
high-resolution displays.

In this layout, seeing visual patterns in the same relative
spatial region in the visualization of two different datasets
means they have similarities in their distribution in this ab-
solute power set space. Side by side visual comparison of
two different datasets sharing the same alphabet is thus a
fruitful endeavor, as described in Scenario 4 above.

2.2.3 Constraints
PSV allows the user to specify the following types of con-
straints for interactive constrained frequent-set mining:

(a) aggregation constraints such as max(courseSize) ≤
100, which specifies that all courses in the itemset must
not exceed 100 in student enrollment. Other forms of
aggregations, such as minimum, sum, and average, are
also allowed. The attribute courseSize is an auxil-
iary attribute associated with each item. Examples of
other attributes includes the class average, the number
of assignments, and so on;

(b) frequency constraint, such as frequency ≥ .0001;

(c) containment constraints, which find all the sets
that contains any of the specified items. In Scenario
4 above, the containment constraint finds all the sets
containing the course CPSC 124. This allows the user
to examine the parts of the lattice of interest.

Constraints are processed at different locations within PSV:
some can handled by both the visualizer and the miner,
while others are only processed by the miner or only pro-
cessed by the visualizer. Frequency constraints are computa-
tionally intensive, and are thus “pushed inside” to the miner,
in order to provide as much pruning as possible. The miner
can handle a combination of frequency and aggregation con-
straints. Sets that satisfy these miner constraints are sent
to the visualizer for display. Scenario 1 above showcases the
dynamic specification and processing of miner constraints.

Specifying constraints for the miner is also a way to filter
datasets larger than the current 7-million itemset capacity of
the visualizer, which maintains all loaded itemsets in main
memory to support fluid realtime exploration.

The current proof-of-concept miner handles only a single
aggregation constraint, but extending it to handle multi-
ple aggregation constraints would be straightforward. Fur-
thermore, it can be extended to support other more general
types of constraints, such as wild card matching, considered
in [18].

The visualizer supports aggregation and containment con-
straints by visually highlighting the matching sets from among
those it has loaded. It can handle multiple simultaneous con-
straints, coloring each with a different color. This capacity
is also used to visually show history, as described below.

The visualizer supports immediate exploration of multiple
simple constraints but has the limited capacity of 7 million
itemsets, whereas the miner can handle very large datasets
and more sophisticated constraints but requires a longer pe-
riod of time for computation. Scenarios 3 and 4 above high-
light the true power of PSV, in that the user first uses fast
and lightweight exploration features on the visualizer side
to find an appropriate value for the aggregation constraint
max(courseSize). Then, when the user is satisfied, the con-
straint can instead be pushed to the more heavyweight miner
side for efficiency. The more powerful computational miner
engine will then prune more sets, imposing less burden on
the visualizer.

2.2.4 Interaction
Interactions that can be accomplished quickly and easily al-
low more fluid exploration than those that require significant
effort and time to carry out. The PSV design philosophy is
that simple operations should only require minimal interac-
tion overhead. The rubber-sheet navigation, where the user
sweeps out a box anywhere in the display, and then drags the
corner of the box to stretch or shrink it, is just one example.
Mouseover highlighting occurs whenever the cursor moves,
so that the box currently under the cursor is highlighted and
the names of the items in that highlighted itemset are shown
in a status line below the display. Mouseover highlighting
is a very fast operation that can be carried out many times
each second because it does not require a redraw of the en-
tire scene. Highlighting the superset of an itemset can be
done through the shortcut of a single click on the itemset’s
box. In contrast, the more general aggregation constraints
that require setting several parameters are handled through
a more heavyweight control panel interaction.

The layout and rubber-sheet navigation provide a spatial
substrate on which users can explore by coloring sets accord-
ing to constraints, as described above. We do not support
changes in the relative spatial position of itemsets, because
it would then be impossible to usefully compare visual pat-
terns at different times during the interaction. The under-
lying mechanism for coloring is to assign sets to a group,
which has an assignable color. Users can create an arbi-
trary number of colored groups, so they can be a mecha-
nism for tracking the history of both visualizer and miner
constraints, by saving each interesting constraint choice as
a separate group. The priority of groups is controllable by

the user; when a particular set belongs to multiple enabled
groups, the highest priority group color is shown.

2.2.5 Monitoring
The visualizer shows several important status variables:

• total: the total number of itemsets in the raw dataset;

• processed: the number of itemsets processed so far by
the miner;

• shown: the number of itemsets passed on to the visu-
alizer to display;

• rows: the number of visualizer rows needed so far;

• maxrow: the biggest visualizer row needed so far;

Comparing these numbers helps users make choices: for in-
stance, total vs. processed is the progress of the miner, and
processed vs. shown shows the amount of filtering done by
the miner. Comparing rows with maxrow shows the aver-
age distribution density of itemsets; and comparing shown

with processed gives the user feedback on whether the miner
constraints should be changed to make the filter tighter or
looser. In addition to the mining issues discussed in Scenario
1 above, tightening filter constraints is especially important
if the shown value begins to approach the finite capacity of
the visualizer. Section 5 contains a discussion of that limit,
which currently ranges from 1.5 to 7 million itemsets.

3. RELATED WORK
Developing effective visualization tools for KDD is the sub-
ject of many studies, which can be sub-classified into two
general categories. The first category focuses on data visual-
ization systems. Examples include VisDB [13], Spotfire [3],
Independence Diagrams [7], and Polaris [23]. These sys-
tems provide features to arrange and display data in various
forms. For example, VisDB provides pixel-oriented tech-
niques, parallel coordinates and stick figures to the user for
exploring large datasets; Polaris provides a visual interface
to help the user formulate complex queries against a multi-
dimensional data cube. However, these systems are not con-
nected to any data mining engine, nor are they designed to
display data mining results. The PSV system, while allow-
ing the raw data to be visualized and explored, provides a
unified visual framework to the user to examine the data
mining (partial) results as well. This framework allows the
user to steer the data mining process midstream, and to
compare between multiple data mining runs using the same
alphabet.

The second category of related work focuses on visualiz-
ing mining results. Examples include decision trees [4, 11]
association rules [10, 12], and clustering [17]. The visual
framework proposed by Ankerst et al [4] focuses on involv-
ing the user in the building of decision trees. The visualiza-
tion method developed by Koren and Harel [17] is designed
for cluster analysis and validation. The visual metaphors of
these systems are very different from the PSV system, which
uses a spatial layout based on the power set of an alphabet.

The rule visualization system developed by Han and Cer-
cone [10] focuses on the discretization of numeric attributes.
The system uses parallel coordinates to show the mined as-
sociation rules. In [12], Hofmann et al use a variant of mo-
saic plots, called double decker plots, to visualize associa-

tion rules. Their focus is to help user understand associ-
ation rules. PSV instead operates at the level of frequent
sets and constraints. Furthermore, unlike the two previous
frameworks, PSV supports the steering of the mining pro-
cess midstream. Again, our use of a spatial layout based on
a power set is unique.

Accordion drawing was originally proposed for browsing phy-
logenetic trees [19, 6], and was then adapted for the task
of visually comparing multiple aligned gene sequences [22].
The power set-based spatial layout used by PSV was first
presented in a recent paper on a general framework for accor-
dion drawing [5]. That paper deals mainly with the graphics
challenges of navigation and rendering at interactive frame
rates, whereas here we focus on issues of interest in data
mining. In particular, that previous work did not support
large alphabet sizes, whereas scalable algorithms to do so are
the first contribution of this paper. The second contribution
of this paper is in combining the visualizer with a data min-
ing engine to provide a unified framework that handles the
three levels of data mining on the filtered dataset, the entire
dataset, and comparison between multiple datasets sharing
the same alphabet.

4. ALGORITHMS
The mapping from a set to a box that is drawn in a display
window has three main stages:

• convert from an m-set {s1, . . . , sm} to its index e in
the enumeration of the power set

• convert from the enumeration index e to a (row, column)
position in the grid of boxes

• convert from the (row, column) grid position to a pixel
location (x, y) after rubber-sheet navigation has stretched
and squished the grid

Figure 3 gives an overview of the mapping process. The
first two stages happen once when the set is loaded in PSV,
whereas the last mapping must be recalculated for every
frame. We present an efficient O(m) algorithm for the first
stage of computing an enumeration index e given an arbi-
trary set in Section 4.1. The second stage is straightforward:
row is e divided by the width of the grid, and column is e

modulo the width. The third stage uses the hierarchical
data structures of the accordion drawing framework, and
Section 4.2 describes the challenges of extending that data
structure to handle large alphabet sizes. The details of the
graphics algorithms that use the accordion drawing hierar-
chy for navigation and rendering are discussed in previous
work [5].

4.1 Enumeration
The spatial layout described in Section 2.2.2.1 requires an
enumeration of the power set. Although many possible ways
to enumerate power sets exist, such as Gray codes [15], most
of them are not suitable for creating meaningful visual pat-
terns that are easy for data mining users to relate to. In the
domain of data mining, lattice structures are often used to
traverse the power set in order of set cardinality. We thus
base our enumeration on a primary ordering by cardinality:
all 1-sets appear before the 2-sets, which appear before the
3-sets, and so on.

Within a given cardinality, we choose a lexicographic or-
dering for alphabet items, again to match the power set

traversal order of many lattice-based mining algorithms. For
example, an alphabet of {a,b,. . .,z} yields the enumera-
tion {a},{b},. . .,{z},{ab},{ac},. . .,{yz},{abc},. . .. We
assume the underlying alphabet has a canonical lexicographic
ordering; for example, a = 1, b = 2, . . . , z = 26. All com-
putations involving sets assume that their internal item or-
dering is also lexicographically sorted. The challenge here
is to devise an efficient way to convert between an arbitrary
set and its index in this enumeration of the power set. We
start with an example of computing the enumeration index
e = 1206 of the 3-set {d,h,k} given an alphabet of size 26.
The computation is done in two steps.

Given a particular m-set, the first step is to compute the
total number of k-sets, for all k < m. These are all the sets
with a strictly smaller cardinality. For the {d,h,k} example,
the first step is to compute the total number of 1-sets and
2-sets, which is given by

`

26

1

´

+
`

26

2

´

= 26 + 325 = 315. The
general formula, where A is the size of the alphabet, is

m−1
X

i=1

A

i

!

.

The second step is to compute the the number of sets be-
tween the first m-set in the enumeration and the particular
m-set of interest. For the {d,h,k} example, the second step
computes three terms:

• the number of 3-sets beginning with the 1-prefixes {a},
{b}, or {c}:

`

26−1

2

´

+
`

26−2

2

´

+
`

26−3

2

´

= 300 + 276 +
253 = 829. Picking a as a 1-prefix leaves 2 other
choices that yield a 3-set containing a; there are 25
other items left in the alphabet from which to choose
2. Similarly, when b is then picked as the 1-prefix,
there are only 24 choices left; since the m-set is in-
ternally ordered lexicographically, neither a nor b are
available any more as choices.

• the number of 3-sets beginning with 2-prefixes {d,e},
{d,f}, or {d,g}, which is given by

`

26−5

1

´

+
`

26−6

1

´

+
`

26−7

1

´

= 21 + 20 + 19 = 60; and

• the number of 3-sets between the 3-prefixes {d,h,i}
and {d,h,j}, which is

`

26−9

0

´

+
`

26−10

0

´

= 1 + 1 = 2.

This example suggests a formula of

m
X

i=1

pi−1
X

j=pi−1+1

A − j

m − i

!

where pi is the lexicographic index of the ith element of
the m-set and p0 is 0. In the worst case, the number of
terms required to compute this sum is linear in the size of
the alphabet. However, we can collapse the inner sum to be
just two terms by noticing that

j
X

i=0

n − i

k

!

=

n + 1

k + 1

!

−

n − j

k + 1

!

.

We derive this lemma using the identity
`

n

k

´

=
`

n−1

k

´

+
`

n−1

k−1

´

.
The general formula is thus given by

m
X

i=1

"

A − pi−1

m − i + 1

!

−

A − pi + 1

m − i + 1

!#

(1)

Combining these two steps, we can compute the enumera-
tion index as

m−1
X

i=1

A

i

!

+

m
X

i=1

"

A − pi−1

m − i + 1

!

−

A − pi + 1

m − i + 1

!#

(2)

The complexity of computing the index of a set can be re-
duced to O(m), where m is the cardinality of the set, by us-
ing a lookup table instead of explicitly calculating

`

n

k

´

. We
compute such a table of size n ∗ k using dynamic program-
ming in a preprocessing step. As we discuss in Section 4.2.2,
the maximum set size k needed for these computations is of-
ten much less than the alphabet size n, but we do not want
to hardwire any specific limit on maximum set size. Our
time-space tradeoff is to use the lookup table for the com-
mon case of small k, 25 in our current implementation, and
explicitly compute the binomial coefficient for the rare case
of a large k.

4.2 SplitLine Hierarchy
The accordion drawing framework that handles navigation
and rendering in the visualizer uses the core data structure
of SplitLines that represent a hierarchical subdivision of
space. There are two hierarchies, one for the horizontal
direction and one for the vertical. A SplitLine can be in-
terpreted in two ways, as a line or as a region, as shown in
Figure 4 Left. First, the set can be considered as a linear
list of lines, where each line falls between two spatial neigh-
bors, and the line indices can be ordered from the minimum
to the maximum absolute spatial position in window space.
Second, it forms a hierarchical binary tree structure, where
each SplitLine splits a higher-level region into two pieces.
The highest-level region is the entire window, which is split
by the root SplitLine. The SplitValue associated with a
line gives the relative position of the region split as a num-
ber between 0 and 1, and dynamically changes with user
navigation. The AbsoluteValue, the absolute position of
each line in screen space, can be calculated in O(log s) time,
where s is the number of SplitLines, by recursively finding
the absolute location of the boundaries of each line’s parent
region up to the base case of the window boundaries.

A

B

C

D

E

F

Figure 4: A set of SplitLines provides both a lin-
ear ordering and a hierarchical subdivision of space.
Linearly, SplitLine B falls spatially between A and
C. Hierarchically, it splits the region to the left of its
parent SplitLine D in two, and its range is from the
minimum SplitLine to its parent SplitLine D. The
diagram here shows only the horizontal SplitLines;
the vertical situation is analogous.

Previous applications that used accordion drawing statically
instantiated the SplitLines hierarchy as a preprocessing step.
A critical aspect in supporting large alphabets is to instead
dynamically instantiate the SplitLines hierarchy, to handle
the case where the distribution of itemsets to show in the

viewer is very sparse with respect to the full power set. Fig-
ure 3 illustrates this important concept. We use the well-
known red-black tree data structure [9] for maintaining
nearly-balanced binary tree with an insertion and deletion
cost of O(log n), where each of the n tree nodes corresponds
to a SplitLine. As discussed previously [5], we extend this
data structure so that SplitValues are correctly maintained
when rebalancing the tree through local rotations. Dynamic
layout is important for horizontal SplitLines, since the num-
ber of rows grows very large, but the vertical SplitLine hier-
archy is instantiated statically because it has a small fixed
width: typically 64 or 128 columns.

Figure 3 illustrates the algorithm for adding SplitLines only
as needed. When a node is added to the scene, its enu-
meration index is calculated, then its row and column num-
ber. We check whether we need to instantiate the SplitLines
flanking the itemsets: we may need to create both, just one,
or no lines. In the example, the alphabet size is 8 and the
fixed width of the grid is also 8. The first itemset a has
enumeration index 0, calculated with Equation 2, and is
mapped to grid position (0, 0). Since the minimum Split-
Line already exists, only SplitLine 1 must be instantiated.
The next itemset a,b,c,d,e,f ,g has index 254 and is mapped
to the bottom row: (31, 6). Similarly, the maximum Split-
Line is already allocated, so line 31 is created. There is
one empty row between the bottom and the top box on the
screen. The third itemset, b, is right next to the first one,
and the horizontal line beneath it has already been created
so the red-black tree storing the SplitLine hierarchy does
not change. The fourth itemset, a,b,c,e, has index 93 and is
mapped to (11, 5). Two new SplitLines need to be created,
and the red-black tree automatically rebalances so that line
11 is at its root instead of line 1. Finally, the fifth itemset
a,b,d,h has index 100 and maps to (12, 4). Because line 12
has already been created, only one more SplitLine, namely
13, must be instantiated. The 255 items in the power set
would require 31 horizontal SplitLines in a statically allo-
cated grid of width 8; dynamic instantiation exploits the
sparsity of the itemset distribution, creating only 5 lines.

4.2.1 Large Alphabets
When the alphabet size A is large, the power set size P

is a huge number: 2A. Dynamic allocation of the SplitLine
hierarchy, as discussed above, is necessary but not sufficient.
The indices in the power enumeration do not fit into an
integer or a long when the alphabet size is greater than 31
or 63, whereas we support alphabets over 40,000. The näıve
approach would be to simply switch data structures from
integer to bignum everywhere that indices are used in the
SplitLine hierarchy. However, computations using bignums
are far more expensive than those using integers or longs,
and storing them imposes a heavy memory footprint, so we
would like to minimize their use. In contrast, the visualizer
must store all N sets actually shown in main memory, so our
algorithms are optimized for the case where N << P . In the
current implementation, N is limited to the range of 1.5 to 7
million sets, a number far smaller than the two trillion limit
of integer data storage. Operations that use the number of
shown sets N can be done much more efficiently, as opposed
to those that use the alphabet size A or the power set size
P .

SetNo. Index Row Col Lines

1 {a} 0 0 0 1

2 {a,b,c,d,e,f,g,h} 254 31 6 31

3 {b} 1 0 1

4

-

{a,b,c,e} 93 11 5 11,12

5 {a,b,d,h} 100 12 4 13

1 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

2

3

4

5

6

7

8

9

10 30

31

1

31

11

1 13

12 31

max

min

31

1

1

2

max

min

12

13

11

1

31

31

5

2

4

Figure 3: Mapping from sets to boxes with alphabet size 8. Top Left: As sets are sent to the visualizer, their
enumeration index is computed and used to find the row and column in the grid where boxes are drawn.
Bottom Left: The horizontal SplitLines hierarchy would require 25 = 32 nodes if it were statically allocated,
but only 5 are needed when using dynamic allocation. Top Middle: After two sets have been loaded, lines 1
and 31 have been instantiated. Top Right: A single empty row visually separates the two sets, which are the
first and last itemsets in the enumeration. Bottom Middle: As more sets are added, the red-black tree storing
the SplitLines rebalances, changing the root. Bottom Right: The grid fills in with boxes, with visual separation
between non-contiguous itemsets in the enumeration.

Our spatial layout does fundamentally depend on the power
set size P , so we cannot completely eliminate bignums. The
key insight is that we only need to use these high-precision
values when adding and deleting SplitLines from the hierar-
chy as sets are added and deleted from the scene. Specifi-
cally, we use bignums in two computations: finding the enu-
meration index as described by Equation 2, and then when
dividing that index by the fixed width of the grid to get a
bignum row index. The row index does need to be stored:
as illustrated in Figure 3, a full-precision SplitLine row in-
dex may be necessary when resolving the spatial relation-
ship between the box in question and boxes that are added
or deleted later. By storing this row index as a bignum, we
support lazy evaluation and avoid unnecessary computation.
Although the computation of the enumeration index requires
bignums, we do not need to incur the memory overhead of
storing it, so we throw it away after its use in computing
the row index.

Our rendering and navigation routines remain fast because
we do not need to use bignums when traversing the SplitLine
hierarchy. Although the bignum row indices must be stored
at each node of the hierarchy, we can traverse the tree with-
out them by maintaining pointers or object references in the
node data structure linking it to its children and parent.

4.2.2 Maximum Set Size
Often the dataset semantics dictate that the maximum set
size is much smaller than the alphabet size. For example, it
is essentially impossible to buy every item in a grocery store
in one shopping trip or to take the thousands of courses of-
fered at a university during the same term. Figure 2 Middle
Left shows that the university enrollment dataset with al-
phabet 4616 has a maximum set size of 13, and the market
basket data in Figure 6 Bottom has a maximum set size of

115 out of the 1700 items in the alphabet. In contrast, al-
though the particular software engineering dataset shown in
Figure 6 Top has a maximum set size of 48 files checked in
together during a bug fix out of 42,028 files in the alphabet,
the domain semantics could allow a maximum set commen-
surate with the entire alphabet; for instance, if the copyright
notice on top of each file needed changing, every file in the
repository would be touched. An important property of our
algorithm is that there is no hardwired prior limit on the
maximum set size; we can accommodate a maximum set
size up to the cardinality of the alphabet itself.

5. RESULTS AND DISCUSSION
We now discuss the performance of the PowerSetViewer sys-
tem with several datasets, documenting that PSV can scale
to datasets of up to 7 million itemsets and alphabet sizes of
over 40,000, while maintaining interactive rendering speeds
of under 60 milliseconds per frame.

The real-world course dataset shown in Figure 2 contains
95,776 itemsets that represent set of courses taken by a stu-
dent during a particular term, with an alphabet size of 4616
courses offered. A second real-world Mozilla dataset, shown
in Figure 6 Top, contains 33,407 itemsets that are the set
of source code files checked in for a particular bug fix, with
an alphabet size of 42,028 files in the repository. A third
real-world market-basket dataset, shown in Figure 6 Bot-
tom, has 515,575 itemsets that represent simultaneous store
purchases by an individual, with an alphabet size of 1700
items for sale at a large electronics retailer [16].

Figure 5 shows the PSV performance results for memory us-
age and render speed for these three real-world datsets. The
five datasets that share the same alphabet size of nearly 5
thousand items have the same initial memory requirements.

The sixth Mozilla dataset has the much larger alphabet size
of over 40,000 items, and requires more memory to handle
the same number of itemsets. The graphs also show perfor-
mance for two different families of synthetic datasets, sparse
and dense. The dense synthetic datasets are the extreme
case of the densest possible distribution: they are random
samples from the full power set of an alphabet of 10,000
items. PSV can handle 7 million itemsets from this dataset
before running out of memory, giving an upper bound on
supportable dataset size. The limits of PSV depend on the
distribution of the dataset within the power set. Sparser
datasets require the instantiation of more SplitLines than
dense ones, resulting in less total capacity in the visualizer.
The sparse synthetic datasets have a distribution density
roughly similar to the market-basket dataset, and use its
alphabet. They represent the typical use case. PSV can
handle over 1.5 million itemsets from this dataset family be-
fore its memory footprint outstrips the maximum Java heap
size of 1.7GB. We reiterate that when using the miner as a
filter, PSV as a client-server system can handle much larger
datasets than the limits of the visualizer.

Figure 5 First shows that the visualizer capacity limits are
linear with respect to transaction size and depend on the
sparsity of the distribution of the dataset with respect to
the power set. Figure 5 Third shows that the rendering
time is near-constant after a threshold dataset size has been
reached, and this constant time is very small: 60 millisec-
onds per scene, allowing over 15 frames per second even in
the worst case. The render time also depends linearly on
the horizontal width of the grid. The full details of the data
structures and algorithms that affect render time and mem-
ory usage are given elsewhere [6, 5]. We show these graphs
here to document that our extension of these algorithms to
support large alphabet sizes was indeed successful.

The main challenge with PSV was to accommodate large
alphabet and maximum set sizes, a difficult goal given the
exponential nature of the power set used for spatial layout.
We have done so, showing examples of PSV in use on alpha-
bets ranging from 4,000 to over 40,000. Larger alphabets
require more bits in the bignums used in the enumeration,
affecting both the speed memory usage of PSV.

All performance results are based on the following config-
uration: a 3.0GHz Pentium 4 with 2GB of main memory
running SuSE Linux with a 2.6.5 kernel, Java 1.4.1 02-b06
(HotSpot), an nVidia Quadro FX 3000 graphics card, and
an 800x600 pixel window.

6. CONCLUSION AND FUTURE WORK
In this paper, we have reported the development of the PSV
visualization system for lattice-based mining of power sets.
It provides a unified visual framework at three different lev-
els: data mining on the filtered dataset, the entire dataset,
and comparison between multiple datasets sharing the same
alphabet. PSV is also connected to a dynamic frequent set
mining server, showcasing how this visualization approach
helps users exploit the power of steerability.

The key technical challenge for PSV is the size of the al-
phabet. We develop a fast scheme for computing the enu-
meration position of a given m-set in O(m) time, devise a

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 1 2 3 4 5 6 7

m
em

or
y

(M
B

)

total transaction size (millions of sets)

sparse synthetic dataset
dense synthetic dataset

real Mozilla data set
real course date set

real market basket data set

 0

 100

 200

 300

 400

 500

 600

 0 0.25 0.5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6 7

sc
en

e
re

nd
er

in
g

tim
e

(m
s)

total transaction size (millions of sets)

sparse synthetic: 128 columns
sparse synthetic: 64 columns
dense synthetic: 64 columns

Mozilla: 64 columns
real course dataset: 64 columns

real market basket dataset: 64 columns

 0

 10

 20

 30

 40

 50

 60

 0 0.25

Figure 5: First: PSV memory usage is linear in the
transaction log size, and depends on the sparsity of
the dataset distribution within the power set. Sec-

ond: Inset showing memory usage for small datasets.
Third: PSV rendering time is under 60 milliseconds
per frame, near-constant after passing a threshold,
and linear in the width of the grid. Fourth: Inset
showing render times for small datasets.

dynamic data structure for managing SplitLines, and han-
dle bignums carefully to avoid inefficiencies. We conduct
empirical evaluation of the PSV system with both real and
synthetic datasets. The latter datasets are designed to ex-
pose the limits of the current implementation of the PSV
system. The empirical evaluation shows that the current
version is capable of handling an alphabet size over 40,000
items and a transaction dataset exceeding 7 million transac-
tions. Maintaining high frame rates is critical to the success
of interactive visual mining, and our framework succeeds in
keeping the time to render the entire visible scene below one

Figure 6: Two real-world datasets. Top: The Mozilla dataset has 33,407 itemsets and an alphabet of 42,028.
Bottom: The market-basket dataset has over a half-million itemsets and an alphabet of 1700 items.

tenth of a second.

There are several directions of future work that we would
like to pursue. First, we would like to characterize the
effectiveness of different enumeration orderings in helping
users find visual patterns that convey important informa-
tion about the dataset. Secondly, we would like to juxtapose
different datasets sharing the same alphabet in a single win-
dow. Finally, we would like to adapt the current version of
PSV to support comparison of different partial data mining
outcomes for other data mining tasks, including sequential
pattern mining [2], decision tree construction [4, 11], and
clustering [17].

7. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules in large databases. In Proc. VLDB, pages
487–499, 1994.

[2] R. Agrawal and R. Srikant. Mining sequential patterns. In
Proc. ICDE, pages 3–14, 1995.

[3] C. Ahlberg. Spotfire: an information exploration
environment. SIGMOD Rec., 25(4):25–29, 1996.

[4] M. Ankerst, C. Elsen, M. Ester, and H.-P. Kriegel. Visual
classification: an interactive approach to decision tree
construction. In Proc. KDD, pages 392–396, 1999.

[5] Anonymous. Accordion drawing: Scalable visualization of
malleable dataset surfaces. Submitted for publication, 2005.

[6] D. Beermann, T. Munzner, and G. Humphreys. Scalable,
robust visualization of large trees. In Proc. EuroVis, 2005.
To appear.

[7] S. Berchtold, H. V. Jagadish, and K. A. Ross.
Independence diagrams: A technique for visual data
mining. In Proc. KDD, pages 139–143, 1998.

[8] C. Bucile, J. Gehrke, D. Kifer, and W. White. Dualminer:
A dual-pruning algorithm for itemsets with constraints.
Data Min. Knowl. Discov., 7(3):241–272, 2003.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. MIT Press, 1990.

[10] J. Han and N. Cercone. AViz: A visualization system for
discovering numeric association rules. In Proc. PAKKD,
pages 269–280, 2000.

[11] J. Han and N. Cercone. RuleViz: a model for visualizing
knowledge discovery process. In Proc. KDD, pages 244–253,
2000.

[12] H. Hofmann, A. P. J. M. Siebes, and A. F. X. Wilhelm.
Visualizing association rules with interactive mosaic plots.
In Proc. KDD, pages 227–235, 2000.

[13] D. A. Keim and H.-P. Kriegel. Visualization techniques for
mining large databases: A comparison. IEEE Trans.
Knowledge and Data Engineering, 8(6):923–938, 1996.

[14] J. Kleinberg, C. Papadimitriou, and P. Raghavan. A
microeconomic view of data mining. Data Min. Knowl.
Discov., 2(4):311–324, 1998.

[15] D. E. Knuth. Generating all combinations, Section 7.2.1.3,
The Art of Computer Programming Vol. 4A: Enumeration
and Backtracking. Preprint distributed as
cs-faculty.stanford.edu/~knuth/fasc3a.ps.gz.

[16] R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng.
KDD-Cup 2000 organizers’ report: Peeling the onion.
SIGKDD Explorations, 2(2):86–98, 2000.

[17] Y. Koren and D. Harel. A two-way visualization method for
clustered data. In Proc. KDD, pages 589–594, 2003.

[18] C. Leung, L. V. Lakshmanan, and R. T. Ng. Exploiting
succinct constraints using FP-trees. ACM Trans. Database
Systems, 28:337–389, 2003.

[19] T. Munzner, F. Guimbretiere, S. Tasiran, L. Zhang, and
Y. Zhou. TreeJuxtaposer: scalable tree comparison using
Focus+Context with guaranteed visibility. ACM Trans.
Graph. (Proc. SIGGRAPH), 22(3):453–462, 2003.

[20] R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang.
Exploratory mining and pruning optimizations of
constrained associations rules. In Proc. SIGMOD, pages
13–24, 1998.

[21] M. Sarkar, S. S. Snibbe, O. J. Tversky, and S. P. Reiss.
Stretching the Rubber Sheet: A Metaphor for Viewing
Large Layouts on Small Screens. In Proc. UIST ’93, pages
81–91, 1993.

[22] J. Slack, K. Hildebrand, T. Munzner, and K. St. John.
SequenceJuxtaposer: Fluid navigation for large-scale
sequence comparison in context. In Proc. German
Conference on Bioinformatics, pages 37–42, 2004.

[23] C. Stolte, D. Tang, and P. Hanrahan. Query, analysis, and
visualization of hierarchically structured data using Polaris.
In Proc. KDD, pages 112–122, 2002.

