
August 2005

Technical Report TR-2005-21

Theory, Software, and Psychophysical Studies for the Tactile Handheld
Miniature Bimodal Device

Shannon Little

Department of Computer Science

University of British Columbia

2366 Main Mall

Vancouver, B.C. V6T 1Z4, Canada

shannon.little@gmail.com

1

mailto:shannon.little@gmail.com

Table of Contents
1. Introduction... 6
2. Basic Principles...7

2.1. Hardware and Configuration Description...7
2.2. Hardware and Configuration Limitations... 10
2.3. Definitions...12
2.4. Theory...14

2.4.1. Output modes...14
2.4.2. Direction.. 14
2.4.3. Stimulus Speed...15

3. Software...18
3.1. THMB Library..19

3.1.1. Files..19
3.1.2. Dependencies... 19
3.1.3. Compilation and Installation..19
3.1.4. Running the Program... 19
3.1.5. Location in CVS.. 19
3.1.6. Recommendations and Future Work... 20

3.2. THMB Designer..21
3.2.1. Files..21
3.2.2. Dependencies... 21
3.2.3. Compilation and Installation..21
3.2.4. Running the Program... 21
3.2.5. Location in CVS.. 21
3.2.6. Recommendations and Future Work... 21

3.3. Speed Tester..22
3.3.1. Files..22
3.3.2. Dependencies... 22
3.3.3. Compilation and Installation..22
3.3.4. Running the Program... 22
3.3.5. Location in CVS.. 22
3.3.6. Recommendations and Future Work... 22

3.4. Browser...23
3.4.1. Browser Graphical User Interface (browser-ui).. 23

3.4.1.1. Files...23
3.4.1.2. Dependencies.. 24
3.4.1.3. Compilation and Installation ..24
3.4.1.4. Running the Program.. 24
3.4.1.5. Location in CVS... 25

3.4.2. Browser Communications Interface (browser-interface)...25
3.4.2.1. Files...25
3.4.2.2.Dependencies... 25
3.4.2.3. Compilation and Installation...25
3.4.2.4. Running the Program.. 26
3.4.2.5. Location in CVS... 26

2

3.4.3. Browser Server (browser-server)...26
3.4.3.1. Files...26
3.4.3.2. Dependencies ... 26
3.4.3.3. Compilation and Installation...26
3.4.3.4. Running the Program.. 26
3.4.3.5. Location in CVS... 26

3.4.4. Recommendations and Future Work... 27
3.5. MDS ...28

3.5.1. MDS Server (MDS-server)..28
3.5.1.1. Files...28
3.5.1.2. Dependencies ... 28
3.5.1.3. Compilation and Installation...28
3.5.1.4. Running the Program.. 28
3.5.1.5. Location in CVS... 28

3.5.2. MDS Tester..28
3.5.2.1. Files...28
3.5.2.2. Dependencies ... 29
3.5.2.3. Running the Program ... 29

3.5.3. Recommendations and Future Work... 29

4. User Studies...30
4.1. Speed Study.. 30

4.1.1. Introduction ...30
4.1.2. Method... 30

4.1.2.1. Participants..30
4.1.2.2. Design... 30
4.1.2.3. Task...31
4.1.2.4. Data...31

4.2. MDS Study..32
4.2.1. Introduction..32
4.2.2. Method... 32

4.2.2.1. Participants..32
4.2.2.2. Design... 32
4.2.2.3. Tasks... 33
4.2.2.4. Data...34

5. Conclusions and Future Work...35
6. Acknowledgements.. 36
7. References..37

3

1. Introduction

The interface described in [2] uses piezo actuators arranged in a horizontal stack to create tactile
stimuli on a handheld device. The THMB device described in this report uses piezo actuators
arranged in a vertical array to create tactile stimuli on a handheld device. The primary difference
between these two interfaces for handheld devices is that the interface described in [2] creates
vibrotactile patterns, while the THMB device uses a lateral skin stretch method to create tactile
patterns.

The intention of the work described in this report began as an exploratory effort to determine the
basic principles and properties of the THMB device. The result of this experimentation is a
description of the basic configuration and perceptual limits of the THMB device, terminology
and theory to describe the output of the device, libraries that implement this theory, software that
utilizes these libraries to interact with the THMB device, and two user studies, a speed study and
a multi-dimensional scaling (MDS) study, that attempt to relate the terminology and theories
developed to human perceptual limitations and capabilities.

The theory, software, and user studies described in the report are the result of iterative design and
research done through May to August 2005 primarily by the author. The Canadian Distributed
Mentor Project (CDMP) and the National Sciences and Engineering Research Council (NSERC)
funded the research. See the Acknowledgments for more details on these awards and people
involved in the research.

4

2. Basic Principles

2.1. Hardware and Configuration Description
The experiments and studies described in this technical report used a novel tactile device called
the THMB (Tactile Handheld Miniature Bimodal device) developed at McGill University. The
THMB uses distributed lateral skin deformation to display tactile stimuli to the thumb finger.

The THMB is a prototype of a tactile interface for a mobile device, such as a mobile phone,
personal digital assistant (PDA), or an MP3 player. It is comprised of a miniature tactile display
(TD) for the thumb tip, an LCD screen, and a sliding mechanism (see Figure 1). Only the tactile
display component of the THMB was used for the studies reported here.

Figure 1: Overview of the THMB device

The tactile display is a miniaturized and improved version of the Virtual Braille Display (VBD)
developed at McGill University. The VBD uses lateral skin stretch to create truncated Braille
characters for visually impaired users. The THMB uses the same technique to create tactile
stimuli for users of handheld devices. Refer to [1] for more details on the basic technology used.

Briefly, the mechanical assembly of the tactile display is about the size of a matchbox, with the
contact area about 8.7 mm by 6.4 mm. It consists of 8 piezoelectric actuators that are
intercalated in between pair of rods and held together by clamps (see Figure 2).

5

Figure 2: Tactile Display

The top of the tactile display (the top of the piezoelectric actuators) protrudes through the THMB
device’s case. Users hold the case in their left palm (see Figure 1) and rest their thumb tip across
the top of the tactile display (see Figure 3).

Figure 3: Interaction of the thumb tip with the tactile display

When activated, the tactile display causes lateral skin deformation to the fingertip through
actuator tips that move sideways. The amount of bending of a particular piezoelectric actuator is
controlled with the application of a voltage across its electrodes1.

A PC host running Linux generates the 8 control voltages (one for each piezo-actuator) that con
trol the bending. Referring to Figure 4, the control signals are sent through USB and connected
to analog by a Field Programmable Gate Array (FPGA). They are then filtered and amplified by
a custom built amplifier before being applied across the piezoelectric benders. The resulting con
trol voltages range from ±50V and are updated every 320µs from the FPGA. They are encoded
with a single byte and therefore can only take 256 different values.

1 For more information on piezoelectric actuators, refer to [4]

6

Figure 4: Control system for the THMB

The configuration described above allows for tight control of the timing. The PC host renders the
tactile signals to be displayed on the TD and sends them to the FPGA, through USB communica
tion. The FPGA accepts the input stream from the PC host and outputs it in parallel at a fixed
rate (3125 samples/sec for each piezo-actuator). This strategy overcomes the poor reliability of
USB communication under real-time requirements. The PC host sends data to the FPGA when
ever it can. The FPGA then rectifies the timing discrepancies by outputting data at a fixed fre
quency with a modest but consistent delay.

7

2.2. Hardware and Configuration Limitations
The hardware and configuration were tested with an oscilloscope and an alternating +/-50V
function to determine their characteristics and limitations.

As mentioned in the previous sections, the output sampling rate (parallel for all 8 actuators) of
the FPGA board is 1/320 microseconds = 3.125 kHz. This limits us to a minimum phase of 320
microseconds for travelling waves and a similar, but yet undetermined limitation for navigable
waves (travelling and navigable waves are defined in section 2.4.1). The limitation for navigable
waves will be a combination of this sampling rate, the maximum slider speed possible, and basic
human perceptual limits. This has not yet been precisely tested.

Initially, the amplified output from the FPGA board was not reaching +/-50 V within the 320-
microsecond interval. To solve this, we doubled each sample (i.e. “stretched” it by 2), which has
the effect of halving the resultant sampling rate to 1.5625 kHz and increasing the minimum
phase to 640 microseconds. At this frequency, the amplified output displayed the expected
square wave function. However, because the tactile device also acts as a capacitor and it was not
connected to the circuit for these measurements, it may be necessary to “stretch” each sample by
a factor more than 2 to ensure that the actuators are receiving the intended voltage signal.
Preliminary tests suggest that this factor is at least 5.

When configuring the device for consistent real-time input and output, it is first necessary to
understand the underflow and overflow states of the device. The FPGA outputs images from its
buffer at a constant rate (3.125 kHz). The buffer has four “watermarks”: very low, low, high,
and very high. The normal range of operation is between very low and very high. The device
will go into the underflow state if the number of images in the buffer goes below the very low
mark and it will not output again until the number of images in the buffer reaches the low mark.
Similarly, the device goes into overflow state if the number of images in the buffer goes above
the very high mark, in which case it deletes images until it reaches the high mark.

A synchronous write operation was measured to take 8 milliseconds using the configuration
described earlier. Operating at a constant rate of 3.125 kHz, the FPGA can output 25 images
from its FIFO (First In First Out) buffer in 8 milliseconds. The output rate of this FIFO buffer is
synchronous and always the same, which is not the case for the input into the buffer. The
input/output operations work as follows: a 25-image package is written from the PC to the FPGA
board, where it is added to the FPGA’s buffer. The PC then reads from the FPGA, taking 8 ms.
During the 8 ms read operation, the device outputs the first 25 images from its buffer.
Immediately after outputting the 25th image, another package of 25 images arrives and is added
the end of the FPGA buffer. The process then repeats. This process helps to ensure that the
FPGA never goes into the underflow or overflow state; the buffer is always “topped up” with 25
images after the FPGA has written 25 images.

All experimentation and software in this report was done using the hardware and configuration
described earlier, using (with the exception of the fastest speed in the speed study) at maximum a
sampling rate 1.5625 kHz sampling rate (i.e. a stretch multiplier, as defined below, of 2). The
software and user studies are designed for these specific hardware and configuration limitations.

8

With different hardware and/or under a different configuration, the output sampling rate, the read
time, or other factors may be different, requiring adjustments of the image package size and
other hardware- and configuration-specific theory. Refer to Vincent Levesque at McGill
University for more information about adjusting the configuration specific parameters.

9

2.3. Definitions

For the most part, all stimuli described in this report are travelling pattern. Briefly, a travelling
pattern is a pattern that is propagated across the actuators in the display and is dependent only on
time, not slider position. Travelling waves are defined precisely in section 2.4.1. These
definitions are both general and specific to travelling waves.

Figure 5 Left: A pattern, showing pattern length and a sample. Right: A travelling pattern, showing phase,
duration, and a frame. Only 3 of 8 actuators are shown for simplicity.

Sample interval (i, measured in microseconds): an interval during which an actuator can only be
a single, unchanging voltage. In this system: i = 320 µs, as restricted by the FPGA output rate
described above.

Sample: the value of a single actuator in one sample interval. In Figure 5 Left, each dot
represents a single sample in the pattern.

Frame: the set of values across all actuators in one sample interval. In Figure 5 Right, the frame
shown at time 5 is made up of 3 samples from actuators 1, 2, and 3. On the THMB, a frame is
composed of 8 samples from the 8 actuators.

Pattern: a set of samples on a single actuator measured over time (divided into sample intervals).
Figure 5 Left shows a simple pattern.

Pattern length (l, measured in samples): the number of samples intervals in an unstretched
pattern (see below). The pattern length in Figure 5 Left is 5 samples.

Phase (Θ, measured in sample intervals): the amount of time between a particular sample of a
pattern on one actuator and the same sample of the same pattern on the adjacent actuator. The
phase in Figure 5 Right is one sample interval (1i).

10

Sample rate (ws, measured in number of samples/sample interval): The number of samples per
second on a single actuator. In the system described in this report, the maximum sample rate is
1/320 µs = 3125 samples/s.

Frame rate (wf, measured in number of frames/sample interval): The number of frames per
second on all actuators. In the system described in this report, the maximum sample rate is 1/320
µs = 3125 samples/s. In general, the frame rate is the same as the sample rate in this parallel
configuration.

Stretch multiplier (m, measured in sample intervals per sample): The number of sample intervals
over which each individual sample in a pattern is played. Stretching a pattern has the effect of
reduces the frame rate by 1/m.

Duration (d measured in seconds): The total amount of time for a pattern to be played on all
actuators. For a travelling pattern, duration is a function of the pattern length (l), stretch
multiplier (s), number of actuators (N) (on the THMB device N is 8), phase (Θ), and frame rate
(320 µs):

d = l *m + (N – 1) * Θ

The duration in Figure 5 Right in a simplified 8-actuator system is:

d = (5 samples)*(i / sample) + (3 – 1) * 1i
= 5i + 2i
= 7 * 320 µs
= 2240 µs
= 2.24 ms.

Travelling speed: For a travelling wave, the speed at which the stimulus is perceived to travel
across the display (described further in section 2.4.5.).

11

2.4. Theory

2.4.1. Output modes
The following modes are the way of creating a tactile stimulus on the THMB device. For the
purposed of the user studies described below, only the first mode was used.

1.Travelling pattern (i.e. “movie”): a pattern is propagated from one end of the tactile display
to the next. Each sample of the pattern is separated by a phase to create a frame across the
actuators. The output frames are dependent only on time, not on slider position.

2.Navigable pattern: the output frames are dependent on the slider position and, optionally,
the relative speed of the slider.

3.Static pattern: the output frames are not dependent on time or on slider position/speed. The
output frames are produced on demand.

2.4.2. Direction
To propagate a travelling pattern “up” the display, the pattern is propagated from highest to
lowest sample number, starting on the lowest actuator. To propagate a travelling pattern “down”
the tactile display, the pattern is propagated from lowest to highest sample number, starting on
the highest actuator. Table 1 shows the samples from the pattern shown in Figure 5 Left on each
actuator for each time frame in the travelling pattern. It is shown in a 3-actuator system for
simplicity. In this example, actuator 1 is the actuator located at the bottom (i.e. lowest position
of the stack).

“Up” propagation samples
Actuator

 Time 1 2 3
1 5
2 4 5
3 3 4 5
4 2 3 4
5 1 2 3
6 1 2
7 1

Table 1: Frames for a 3-actuator TD for travelling pattern shown in Figure 5 Left. Only 3 of the 8 actuators
are shown for simplicity.

12

“Down” propagation samples
Actuator

Time 1 2 3
1 1
2 1 2
3 1 2 3
4 2 3 4
5 3 4 5
6 4 5
7 5

2.4.3. Stimulus Speed
The stimulus speed of a travelling pattern is affected by at least two parameters: the phase of the
travelling pattern and the stretch multiplier of the pattern, as defined above. Figure 8 Left shows
the effect of increasing the phase of the travelling pattern shown in Figure 5 Left from one 320 µ
s interval to two 320 µs intervals (this halves the frame rate). A pattern is stretched by
multiplying the time intervals of each sample by a constant factor. Figure 8 Right shows the
effect of stretching the travelling pattern shown in Figure 5 Left. Increasing the phase has an
additive effect on the duration, while stretching the pattern has a multiplicative effect.

Figure 8 Left: the travelling pattern from Figure 5, shown with a phase of 2. Right: the travelling pattern
from Figure 5 with a stretch multiplier of two.

Both changing the phase of a pattern and stretching a pattern may have unpredictable and
unverified tactile effects because they both change the set of frames that the actuators receive.
This may change the patterns of skin stretch created and therefore change the perceived shape
and/or texture of the stimulus. In a pattern, a frame is read as shown in Figure 5 from top to
bottom. Table 2 shows the frames of the patterns in Figures 5 and 8. The vertical frames from
Figure 5 are rotated to horizontal in the table so that they can more easily be read from left to
right. The values 1 through 5 indicate the sample number, as shown in the pattern in Figure 5.
The character ‘-‘ indicates that the actuator voltage is set to the base value (a “neutral” actuator
value that can be set in the THMB software library described below) and is not a component of
the propagating pattern.

13

Table 2: Frames for patterns appearing in Figures 5 and 8. Again, only 3 of the 8 actuators are shown for
simplicity.

Notice that the frame “21-” at time 2 for the Phase 1 pattern doesn’t occur in either of the other
two patterns. This implies that the skin-stretch pattern created by this particular frame does not
exist in the other two patterns, and so the tactile feeling of the patterns may be different.

One solution to this problem is to change the phase and the “stretch” of a pattern together by a
constant factor, thus retaining the same frames but extending the time that the set of actuators
spends at each of the frames. This is functionally equivalent to dividing the frame rate by the
constant factor. Figure 9 shows the travelling pattern creating using this combined phase/stretch
method with a constant factor of 2. Notice that the frame rate has been effectively halved.

Figure 9: the travelling pattern from Figure 5 with a phase of 2 and a stretch multiplier of 2.

14

Figure 5 Left
(Phase 1)

Figure 8 Left
(Phase 2)

Figure 8 Right
(Stretch 2)

Actuator Actuator Actuator
Time 1 2 3 1 2 3 1 2 3

1
2
3
4
5
6
7
8
9
10
11
12

1
2
3
4
5
-
-

-
1
2
3
4
5
-

-
-
1
2
3
4
5

1
2
3
4
5
-
-
-
-

-
-
1
2
3
4
5
-
-

-
-
-
-
1
2
3
4
5

1
1
2
2
3
3
4
4
5
5
-
-

-
1
1
2
2
3
3
4
4
5
5
-

-
-
1
1
2
2
3
3
4
4
5
5

Table 2 shows the resulting frames in relation to the frames from the pattern in Figure 5.

Figure 5 (Phase 1) Figure 9 (Phase 2 +
Stretch 2)

Actuator Actuator
Time 1 2 3 1 2 3

1 1 - - 1 - -
2 2 1 - 1 - -
3 3 2 1 2 1 -
4 4 3 2 2 1 -
5 5 4 3 3 2 1
6 - 5 4 3 2 1
7 - - 5 4 3 2
8 4 3 2
9 5 4 3
10 5 4 3
11 - 5 4
12 - 5 4
13 - - 5
14 - - 5

Table 2: Frames for patterns appearing in Figures 5 and 9

Notice that the set of frames between the original pattern in Figure 5 and the pattern in Figure 9
remain the same, but their duration doubles. This eliminates the potential skin-stretch
inconsistency problem that occurs when using just phase or stretch to vary the stimulus speed of
the travelling pattern. This combined phase/stretch technique is used in the Speed Study
described later.

15

3. Software

The software designed for the THMB device is a work in progress. It is designed to be modular
and to enable quick prototyping of different tactile patterns and applications based on tactile
patterns for the THMB device.

Figure 10 shows an overview of the software hierarchy. With the exception of the stressd
library, ACEXML, and MDS-tester, all software in the diagram was designed and written by the
author. The stressd library was written by Vincent Levesque at McGill University
(www.cim.mcgill.ca). ACEXML is a small and portable XML parser and can be found at
www.dre.vanderbilt.edu/Doxygen/Beta/acexml. MDS-tester is a modified version of software
written by Mario Enriquez in the UBC SPIN Lab (www.cs.ubc.ca/labs/spin).

Figure 10: THMB software hierarchy

16

http://www.dre.vanderbilt.edu/Doxygen/Beta/acexml
http://www.cim.mcgill.ca/

3.1. THMB Library

This library is an implementation of the output modes described above. It contains the logic to
produce the raw data to create travelling patterns, navigable patterns, and static patterns and
output these patterns to the device using methods in the stressd libraries. Its intention is to
abstract this input/output logic from client applications and to define a finite set of data fields
required to create these patterns. A client application using this library should never need to
directly call any methods in the stressd library or communicate directly with the THMB device.

THMB-library logs all the output images it writes to an output file defined in
DeviceUpdateThread.cpp as OUTPUT_FILE. Use this file to verify that the output you expected
is the output created.

3.1.1. Files
DeviceUpdateThread.h
DeviceUpdateThread.cpp
This file contains a thread that reads slider position and click count from the THMB device and
writes output images to the device. The output images are built from the patterns stored in
SharedData.cpp using logic specific to the output mode of the pattern.

SharedData.h
SharedData.cpp
This file contains getter and setter functions for all data required to build and play an output
pattern in any mode. It uses XMLParser.cpp to save the data in XML format that can be loaded
later, enabling any pattern to be reused in any application.

XMLParser.h
XMLParser.cpp
This file uses ACEXML to parse patterns saved in XML format by SharedData.cpp and set the
appropriate data values in SharedData.cpp

3.1.2. Dependencies
•Requires ACEXML (dynamic)
•Requires stressd >= version 0.1 (dynamic)
•Writes to OUTPUT_FILE (defined in DeviceUpdateThread.cpp), by default
/usr/share/thmb-lib/wave-output.txt.

3.1.3. Compilation and Installation
Run make as root (creates a dynamic library "libTHMB.so" in /usr/lib).

3.1.4. Running the Program
Not applicable. The library is dynamically loaded by client applications.

3.1.5. Location in CVS
/imager/project/spin/proj/THMB/cvsroot/src/thmb-library

17

3.1.6. Recommendations and Future Work
The library currently implements only the “travelling pattern” output mode, but should be
improved to support the other output modes (navigable pattern, static pattern) as well. It uses
terminology that is inconsistent with the definitions in this report: “speed” refers to combined
phase/stretch, “slider” refers to sample, “under” refers to a travelling pattern, “over” refers to a
navigable pattern, and “static” refers to a static pattern. The concept of phase (independent of
stretch) is not yet implemented.

All files in the library and all applications that use the library should be updated to consistently
use the correct terminology.

18

3.2. THMB Designer

This is essentially a graphical user interface for the THMB library that allows a user to visually
design a pattern and manipulate details relevant the pattern and how it is played on the device.
During runtime all of the data is stored in an instance of SharedData.cpp from libTHMB.so. The
program can save and load patterns to and from XML files in the formats defined in
SharedData.cpp/XMLParser.cpp in libTHMB.so

3.2.1. Files
GUI.h
GUI.cpp
This implements the graphical user interface for the designer, written in gtkmm (a C++ interface
to GTK+, the GIMP toolkit).

Main.cpp
This sets up the connection with the device and instantiates the GUI.

3.2.2. Dependencies
•Requires libTHMB.so
•Requires gtkmm >= 2.4
•Reads from FIRMWARE_FILE (defined in main.cpp), by default default.sdf.
•Reads from HARDWARE_FILE (defined in main.cpp), by default default.sdh.

3.2.3. Compilation and Installation
run make

3.2.4. Running the Program
> ./thmb-designer

3.2.5. Location in CVS
/imager/project/spin/proj/THMB/cvsroot/src/thmb-programmer

3.2.6. Recommendations and Future Work
This program was developed in parallel with THMB library, and is likewise incomplete. Design
interfaces for the “navigable pattern” and “static pattern” output modes need to be created and
implemented. There also may be some old terminology used in the application that should be
updated to reflect the terminology described in the “Definitions” section of this report.

19

3.3. Speed Tester

This is a simple application to run the Speed Study described later in this report. It consists of a
simple GTK graphical interface and uses the THMB library to load and store pattern data and
read and write to and from the device. This program can be used as a model for other programs
that use the THMB library.

3.3.1. Files
GUI.h
GUI.cpp
This implements the graphical user interface for the designer, written in gtkmm (a C++ interface
to GTK+, the GIMP toolkit). It generates random integers between 1 and 20 that determine the
amount of phase/stretch used to vary the stimulus speed. It also saves experimental output to a
file.

Main.cpp
This sets up the connection with the device and instantiates the GUI.

3.3.2. Dependencies
•libTHMB.so
•gtkmm >= 2.4
•Reads from input_file_dir (defined in gui.cpp), by default /home/slittle/device-lib/waves.
•Reads from FIRMWARE_FILE (defined in main.cpp), by default default.sdf.
•Reads from HARDWARE_FILE (defined in main.cpp), by default default.sdh.
•Writes to output file defined in the command line arguments.

3.3.3. Compilation and Installation
run make

3.3.4. Running the Program
> ./speed-tester output-file subject-number

3.3.5. Location in CVS
/imager/project/spin/proj/THMB/cvsroot/src/speed-tester

3.3.6. Recommendations and Future Work
This application is complete and tested, but can be modified for future similar studies.

20

3.4. Browser

This incomplete application is a simple web browser that uses the THMB device as an input and
output interface. The user moves the THMB slider up and down to navigate through the
hyperlinks on a web page. Moving the THMB slider up or down has two effects: it highlights
links in the web page and scrolls the displayed portion of the page by focusing on the highlighted
link. If the slider position matches a link position on the web page, the link is highlighted in the
graphical display and a tactile stimulus is played on the tactile display; otherwise, nothing is
highlighted and no tactile stimulus is played. Clicking the slider button when a link is highlighted
will follow the link and load the new web page.

The indices of the links’ relative positions, computed from the vertical and horizontal positions
of the HTMLElement in the Document Object Model (DOM) for the webpage2, are mapped to
slider positions, resulting in a tactile mapping of the page that corresponds spatially to the visual
layout of the links.

The application consists of three components: the graphical user interface, the communications
interface, and the “server” component. The communication between the components is shown
below in Figure 11.

Figure 11: Browser software structure .

3.4.1. Browser Graphical User Interface (browser-ui)
The graphical user interface is implemented in XUL and JavaScript using the Mozilla
framework. It runs the web browser using the Mozilla browser component
(www.xulplanet.com/references/elemref/ref_browser.html), reads the current slider position from
the communications interface, computes the highlighted link, and updates the UI and the
communications-interface with the current highlighted link.

3.4.1.1. Files
content/browser.js

2 See www.xulplanet.com and http://www.mozilla.org/docs/dom for information on the HTMLElement and the
Mozilla DOM.

21

http://www.mozilla.org/docs/dom
http://www.xulplanet.com/

This implements the listeners for the graphical user interface components in browser.xul. It also
instatiates the browser-interface and calls the methods implemented in MyComponent.cpp.

content/browser.xul
This creates the graphical user interface of the browser.

content/contents.rdf
Mozilla required file.

locale/contents.rdf
Mozilla required file.

skin/webscroller.css
Stylesheet for graphical user interface.

skin/contents.rdf
Mozilla required file.

3.4.1.2. Dependencies
•Requires Mozilla SDK (on SUSE Linux, you’ll need the mozilla and mozilla-devel
packages).

3.4.1.3. Compilation and Installation

1.Open installed-chrome.txt at MOZILLA_PATH/lib/chrome, where MOZILLA_PATH is the
installation directory of Mozilla. This may differ on other configurations, but the default on
SUSE Linux is /opt/mozilla.
2.Add the following three lines to the end of installed-chrome.txt:

content,install,url,file://YOUR_FILE_PATH/content/
skin,install,url,file://YOUR_FILE_PATH/skin/
locale,install,url,file:///YOUR_FILE_PATH/locale/

Where YOUR_FILE_PATH is the location of the files described in the above Files
section. Ensure that the last line in installed-chrome.txt is a newline.

3.Delete MOZILLA_PATH/lib/chrome/chrome.rdf.
4.Restart mozilla.
5.Run the extension as described in “Running the Program” below.

For more information, refer to: www.xulplanet.com/tutorials/xultu/packaging.html. If you need
to change the application id, you’ll need to change the three contents.rdf files as described in the
“Quick Steps” section in the above URL.

Once you have installed the extension, there is no need to compile or re-install anything when
you make a change to browser.js or browser.xul. Instead, just restart the application

3.4.1.4. Running the Program
> mozilla –chrome chrome://webscroller/contents/browser.xul

22

http://www.xulplanet.com/tutorials/xultu/packaging.html

Note that browser-server must be started before browser-ui.

3.4.1.5. Location in CVS
/imager/project/spin/proj/THMB/cvsroot/src/browser-ui

3.4.2. Browser Communications Interface (browser-interface)
The communications component is implemented in C++ and IDL (interface definition language).
It is instantiated by the graphical user interface component. It provides methods for
setting/getting the slider position, getting the click count, and indicating a highlighted link. It
communicates with the server component via flat files ending in .pos for the slider position,
.click for the click count, and .icon for the highlighted links (by default these files are in
/usr/share/thmb-lib/browser-work).

3.4.2.1. Files

MyComponent.cpp
Implementation of interface functions. Writes graphical interface data to a file and reads tactile
interface data from a file. Both files are used by browser-server.

MyComponent.h
MyComponentModule.cpp
Module definitions file. Generated semi-automatically from IMyComponent.idl.

IMyComponent.h
Generated automatically by xpidl from IMyComponent.idl.

IMyComponent.idl
Interface definition file. Defines the methods and attributes of the interface.

IMyComponent.xpt
Generated automatically by xpidl from IMyComponent.idl.

3.4.2.2.Dependencies
•Reads from WORKING_DIR (defined in MyComponent.cpp), by default /usr/share/thmb-
lib/browser-work.

3.4.2.3. Compilation and Installation
For changes made only in MyComponent.cpp and/or MyComponentModule.cpp, run make as
root (creates MyComponent.so in MOZILLA_PATH/lib/components/ and registers it with
Mozilla).

For changes to IMyComponent.idl (i.e. to add or remove functions from the interface), refer to
the “Creating the component” section of www.iosart.com/firefox/xpcom. Note that there should

23

be no need to install the gecko-sdk if you have installed the mozilla-devel package. The xpidl
program it refers to can be found at MOZILLA_PATH/lib.

3.4.2.4. Running the Program
Not applicable. The component is instantiated by browser.js in the browser-ui.

3.4.2.5. Location in CVS
/imager/project/spin/proj/THMB/cvsroot/src/browser-interface

3.4.3. Browser Server (browser-server)
The “server” component is implemented in C++. It runs a thread that checks for highlighted
links from the communications interface, creating tactile output as necessary, and writes the
slider position and click count to the communications interface.

3.4.3.1. Files
DataUpdateThread.h
DataUpdateThread.cpp
Reads slider position and click count from the device and writes them to a file for browser-
interface. Reads the current highlighted link from a file created by browser-interface and writes
corresponding output to the device.

main.cpp
Sets up the connection with the device and starts the DataUpdateThread.

3.4.3.2. Dependencies
•Requires libTHMB.so
•Reads from FIRMWARE_FILE (defined in main.cpp), by default default.sdf.
•Reads from HARDWARE_FILE (defined in main.cpp), by default default.sdh.
•Reads from WORKING_DIR (defined in DataUpdateThread.cpp), by default
/usr/share/thmb-lib/browser-work.
•Reads from LINK_ICON (defined in DataUpdateThread.cpp), by default
/home/slittle/device-lib/waves/down-19-^.xml.

3.4.3.3. Compilation and Installation
Run make.

3.4.3.4. Running the Program
> ./browser-server

Note that browser-server must be started before browser-ui.

3.4.3.5. Location in CVS
/imager/project/spin/proj/THMB/cvsroot/src/browser-server

24

3.4.4. Recommendations and Future Work
The tactile feedback part of this application is not yet fully implemented. Other additions and
improvements include the addition of tactile components other than just hyperlinks (i.e. images,
text, etc.) and the improvement of the links’ relative position calculation.

25

3.5. MDS
The MDS software was used to run the MDS Study described later in this report. The software
is composed of two parts: the MDS Server and the MDS Tester.

3.5.1. MDS Server (MDS-server)
MDS-server is written in C++ and behaves similarly to browser-server. It checks a directory for
files created by the MDS-tester that indicate a pattern to play and then plays the pattern using the
THMB library.

3.5.1.1. Files
DataUpdateThread.h
DataUpdateThread.cpp
Reads the pattern to play from a file created by MDS-tester and writes corresponding output to
the device.

main.cpp
Sets up the connection with the device and starts the DataUpdateThread.

3.5.1.2. Dependencies
•Requires libTHMB.so
•Reads from FIRMWARE_FILE (defined in main.cpp), by default default.sdf.
•Reads from HARDWARE_FILE (defined in main.cpp), by default default.sdh.
•Reads from WORKING_DIR (defined in DataUpdateThread.cpp), by default
/home/slittle/device-data/waves.
•Reads from WAVE_DIR (defined in DataUpdateThread.cpp), by default
/home/slittle/device-lib/MDS-server/waves.

3.5.1.3. Compilation and Installation
Run make.

3.5.1.4. Running the Program
> ./MDS-server (as root)

Note that MDS-server must be started before MDS-tester.

3.5.1.5. Location in CVS
/imager/project/spin/proj/THMB/cvsroot/src/MDS-server

3.5.2. MDS Tester
MDS-tester is a modified version of the Visual Basic 6.0 (VB6) software written by Mario
Enriquez to run the MDS study explained in [1]. It is a graphical user interface consisting of a
set of buttons and two to fifteen groups that the buttons can be sorted into. When one of the
buttons is pressed, a file is created that indicates a pattern and phase, which is then read and
played by MDS-server.

3.5.2.1. Files

26

The project files for the MDS Tester are located on the SPIN machine garibaldi on the Desktop
in a folder called MDS\THMB\MDS Test THMB Device. These files should be placed in CVS as
soon as possible (garibaldi was unavailable when this report was written).

3.5.2.2. Dependencies
•Requires Visual Basic 6.0

3.5.2.3. Running the Program
Start the project in Visual Basic 6.0 and press ‘Play’.

Note that the MDS Server must be started first.

3.5.3. Recommendations and Future Work
This application is complete and tested, but can be modified for future similar studies.

27

4. User Studies

4.1. Speed Study

4.1.1. Introduction
The intention of this study was to determine the relationship between the stimulus speed of a
travelling pattern and a user’s accuracy in identifying the direction of the pattern at that speed.
We hypothesized that as the stimulus speed of a travelling wave decreases, accuracy of direction
identification increases. In the case of this study, the stimulus speed was varied using the
combined phase/stretch method described in the “Stimulus Speed” section of this document.

4.1.2. Method

4.1.2.1. Participants
Two iterations of the study were performed. In total there were 8 participants, 5 male and 3
female. 6 participants participated in both iterations. 1 participant participated in only the first
iteration and 1 participant participated in only the second iteration. In total, there were 7
participants in each iteration. The participants were between 20 and 40 years old and were all
right handed. The participants were other students in the lab and neighbouring labs and they were
not paid.

4.1.2.2. Design
The stimuli were formed by randomly selecting one of the two patterns shown in Figure 12, a
direction (“up” or “down”), and a stimulus speed. The stimulus speed ranged from fast (1) to
slow (20), where 1 indicates a phase/stretch of 1 and 20 indicates a phase/stretch of 20.
In total, there were 80 possible stimuli. The duration of the stimuli increased linearly with speed
according to the following equation:

d = 17 * speed * 320 µs

The two patterns used in this study are shown in Figure 12. They are both similar, with the only
difference being that one begins at +50 volts and goes to –50 volts and the other does the
opposite.

28

Figure 12: the two patterns used in the Speed Study

4.1.2.3. Task
Participants were presented with a simple graphical interface that asked them to feel a tactile
stimulus, then to identify the direction of the stimulus (“up” or “down”) and their confidence in
their answer (“confident” or “guess”).

In the first iteration participants were given a practice set of 5 stimuli for which they were given
the correct answer (“up” or “down”) after they entered their response. In the second iteration
there was no practice set. Both iterations used a test set of 40 randomly selected stimuli from the
set of 80 described above, for a total of 80 test stimuli per participant over the two trials (the
results from the practice set was not recorded).

Each iteration of 40 stimuli took between 5 and 7 minutes with several days between iterations.

4.1.2.4. Data
The subject number, source file for the pattern, speed/phase (1 to 2), waveform (“^” or “v”),
actual direction (“up” or “down”), subject’s direction response (“up” or “down”), and subject’s
confidence (“confident” or “guess”) were recorded for each trial.

29

4.2. MDS Study

4.2.1. Introduction
The intention of this study was to demonstrate the richness and variety of tactile stimuli possible
on this novel tactile interface and to identify the structure and dependence of the multiple
perceptual dimensions of tactile stimuli. We use the Multidimensional Scaling (MDS) technique
described by MacLean et al. in [1] and adapted it to our handheld tactile display.

4.2.2. Method

4.2.2.1. Participants
We used 10 right-handed subjects (7 male, 3 female) between the ages of 19 and 31. Subjects
were paid $10 for a 1-hour session.

4.2.2.2. Design
The study used a set of 30 stimuli that combined 5 travelling patterns, 2 amplitudes (50% and
100% of maximum), and 3 stimulus speeds (10, 15, 20). The stimulus speeds were produced
using the combined phase/stretch method that was used the speed study. See the “Stimulus
Speed” section earlier in this report for more details. All patterns were created with a stretch
(independent of the phase/stretch used for stimulus speed) of 2.

Figure 13 shows the patterns used in the study and their relative pattern lengths and shape.

Figure 13: the patterns used in the MDS Study and their pattern lengths

We are redefining the wave shape parameter used by MacLean et al. in [1] to instead be a
pattern, which defines both a shape and a length. The duration of a pattern (see Table 4 for the
durations of each of the patterns at each phase/stretch), the tactile feeling (shape) of a pattern,
and the stimulus speed of a pattern may all be independent dimensions identified by MDS.

30

Pattern Pattern
length

Duration at speed
10 (seconds)

Duration at speed
15 (seconds)

Duration at speed
20 (seconds)

vibration 80 0.28 0.42 0.56

sine 48 0.18 0.26 0.35

progressive saw 20 0.09 0.13 0.17

sinusoidal bump 18 0.08 0.12 0.16

square bump 18 0.08 0.12 0.16
Table 4: Durations of each of the patterns show in Figure 8 at each phase/stretch value.

Using patterns of variable length allows us to separate duration from speed and consider the
following questions in our data analysis:

Duration: Does a short pattern played slowly feel similar to a long pattern played quickly? For
example, does a vibration played at speed 10 (0.28 seconds) similar to a sinusoidal bump played
at speed 20 (0.35 seconds)?

Tactile feeling (shape): Does a given pattern at any speed feel similar?

Apparent speed: Do two patterns feel similar only when played at the same speed? For example,
are sinusoidal bumps and square bumps similar only when both are played at speed 10, 15, or
20?

Another dimension that may differentiate the stimuli is amplitude. It is possible that there are
other perceptual dimensions; MDS will help us identify how many are needed to best design
tactile icons that are differentiable and individually salient.

4.2.2.3. Tasks

The participants were told to hold the device in their left hand with their left thumb resting
lightly on the tactile display. They were told not to press down hard with their thumb or rub their
thumb over the display. They were told to take a break whenever needed and that they were
required to take at least a one-minute break after each trial.

Participants were presented with a group of 30 buttons that were graphical representations of the
30 tactile sensations. They could play a stimulus by clicking the left mouse button on one of the
30 buttons. The stimuli could be played as many times as needed.

The buttons could be moved to another location of the screen individually by clicking the right
mouse button on the button (picking it up) and right clicking again to drop the button. The
buttons could only be dropped in one of two to fifteen boxes (groups) on the screen. The buttons
could be moved between these boxes as many times as desired.

The study consisted of 5 sorting tasks each using the same set of stimuli. Participants were told
that they could use any criteria they wanted to sort the tactile stimuli. They were told to take at
least a one-minute break between each task.

31

Task 1 asked participants to sort the stimuli into as many (from 2 to 15) boxes that they wanted.
By default they initially received 2 boxes for sorting and could add or remove boxes by clicking
buttons labelled “+” and “-“. The boxes initially had blank labels. Participants were required to
label each box with a description that would help them to identify the boxes as they sorted the
stimuli.

Tasks 2-5 were similar to Task 1 except participants could not choose the number of groups.
Rather, the number of groups was randomly selected from a predetermined set of 3, 6, 9, 12, and
15 groups. The value in this predetermined set that was closest to the number of groups the
participant chose freely in the first task was removed from the set. For example, if the
participant chose 5 groups in Task 1, then the remaining four groups would be (in random order)
3, 9, 12, and 15.

4.2.2.4. Data
A similarity matrix was calculated and converted to a dissimilarity matrix in the same way
described in [1]. The similarity matrix, dissimilarity matrix, stimulus groupings for each of the
five tasks, participants’ group labels was saved.

32

5. Conclusions and Future Work
The intention of the work described in this technical report was to determine the basic
configuration and perceptual limits of the THMB device, develop terminology and theory about
the output of the device, design libraries that implemented this terminology, implement
applications that used these libraries to interact with the THMB device, and design user studies
that would relate these theories and output to human perceptual limitations and capabilities.

Further work is necessary to improve our understanding of the theory of the formation of
patterns on the device, what kind of skin stretch patterns these patterns create, and the perceptual
effect of the different properties of patterns.

The libraries and software described should, for the most part, be considered as still in
development. It has been designed and written to allow for easy future implementation and
improvements. It is assumed that these improvements will be done for the software to continue
to be useful.

The data analysis on the user studies described is not yet complete; once it is, the results should
be related to the theory described in this report. This work is currently in preparation for two
conference paper submissions.

33

6. Acknowledgements
The author would like to thank Professor Faith Ellen Fich, the rest of CRA-W (Committee on the
Status of Women in Computing Research) and NSERC (National Sciences and Engineering
Research Council) for their grants that supported this research, Professor Karon MacLean for the
opportunity to participate in this research, and Joseph Luk, Jerome Pasquero, and Vincent
Levesque for their indispensable help and support.

34

7. References

[1] MacLean, K., Enriquez, M., “Perceptual Design of Haptic Icons,” in Proc. of EuroHaptics
2003, Dublin, UK, July 2003.

[2] Poupyrev, I., Maruyama, S., Rekimoto, J., “Ambient Touch: Designing Tactile Interfaces for
Handheld Devices,” in Proc. of UIST 2002, Paris, France, October 2002.

[3] V. Levesque, J. Pasquero, H. V., and M. Legault, “Display of virtual Braille dots by lateral
skin deformation: Feasibility study.” ACM Transactions on Applied Perception, vol.2, no. 2, pp.
132-149, 2005.

[4] http://www.piezo.com/tech2intropiezotrans.html

35

