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Abstract 
 
Collaboration often relies on all group members having a shared view of a single-user 
application. A common situation is a single active presenter sharing a live view of her 
workstation screen with a passive audience, using simple hardware-based video signal 
projection onto a large screen or simple bitmap-based sharing protocols. This offers 
simplicity and some advantages over more sophisticated software-based replication 
solutions, but everyone has the exact same view of the application. This conflicts with the 
presenter's need to keep some information and interaction details private. It also fails to 
recognize the needs of the passive audience, who may struggle to follow the presentation 
because of verbosity, display clutter or insufficient 
familiarity with the application. 
 
Views that cater to the different roles of the presenter and the audience can be provided 
by custom solutions, but these tend to be bound to a particular application. In this paper 
we describe a general technique and implementation details of a prototype system that 
allows standardized role-specific views of existing single-user applications and permits 
additional customization that is application-specific with no change to the application 
source code. Role-based policies control manipulation and display of shared windows 
and image buffers produced by the application, providing proactive privacy protection 
and relaxed verbosity to meet both presenter and audience needs. 
 

Introduction 
People working in groups increasingly rely on the ability to share views of an entire work 
session or a specific application for co-located or distributed cooperative work. Although 
new tools and frameworks introduced in recent years support a wide range of 
collaboration formats, the dominant format is still that of a single person, the presenter, 
sharing a view of her workstation while others, the audience, watch. This generalized 
presentation setting applies to people giving conference or classroom presentations, 
demonstrating software, training others, or engaging in collaborative work where a 
shared document on a public display is the focus for group discussion. The same pattern 
is applicable during turn-taking editing sessions where at any given time there is only a 
single editor (the presenter) and all the others are just viewers (the audience). 
 
For co-located groups, view sharing is often done by replicating the video signal from the 
presenter's computer onto an external public display. For distributed groups bitmap-based 
screen sharing protocols such as VNC [11] provide view sharing. Functionally, both 
solutions are equivalent and afford three properties that more sophisticated collaboration-
aware solutions may be hard-pressed to achieve: (i) collaboration is transparent because 
any application can be shared without requiring it to know it is shared; (ii) viewers do not 
need to install the application, which is often an unacceptable imposition due to licensing 
or other issues; and (iii) there is no need to synchronize views between the presenter and 
audience because only one copy of the application is running. 
 



The last point is an important benefit, but it is also the chief drawback of these schemes. 
A strict ``What You See Is What I See'' (WYSIWIS) mode is imposed -- all viewers are 
forced to share the exact same view that the presenter sees, despite the roles that they 
play within the group. This conflicts with the different needs of the presenter and 
audience, so a ``relaxed WYSIWIS'' mode has been suggested in the literature [13]. 
Unfortunately, none of the current bitmap-based solutions address this successfully. More 
elaborate collaboration-aware solutions can and often do present different views to each 
participant but only at the expense of application-specific features and coping with 
complex synchronization [16]. 
 

Motivation 
 The initial problem motivating our work was the lack of support for presenter privacy. 
While generally interested in sharing a view with her audience, there are often 
interactions or document components a presenter would like to keep private. These may 
be interactions with other running applications on the desktop (such as a text editor with 
notes) or with parts of the shared application that are deemed private (e.g. a file open 
dialog listing documents in a private folder). It is clear that someone engaged in a live 
presentation might not attend effectively to her privacy at the same time. Moreover, as 
public displays and the means to drive them (such as dual-video-card laptops) become 
ubiquitous, shared presentations will become part of day-to-day work, so presenters may 
find themselves in a presentation-like mode without a chance to prepare or while having 
to do other tasks on their computer while ``on-the-air.'' These make privacy a problem. 
The need to limit the information that is shared on the public display cannot be ignored. 
 
A quite different problem arises when we consider the audience experience. Passive 
viewers may wish to control the type and level of information presented to them and they 
may require assistive cues to accurately follow the presenter's interactions with an 
application. Passive viewers frequently find themselves searching for the current point of 
interaction (a problem intensified on large screen displays [2] or being forced to view 
tedious interactions by the presenter (such as searching for a menu item or adjusting 
display parameters) that are irrelevant to their interests. So we may need to display less 
information, or we may need to display more information to compensate. Some needs are 
already addressed by screen recording tools, like Camtasia.1 Some visual enhancements 
and cleanup can be applied to a recorded movie in a separate editing session. Being able 
to apply these enhancements in real time is beneficial for effective collaboration. 
 
These two problems are actually both manifestations of the need to provide role-
appropriate views of an application to each group member. It is possible to use 
collaboration-aware tools or to adapt existing tools to run in a synchronized mode, so that 
presenter and audience have similar but non-identical views. While these custom 
solutions enable one to flexibly craft views as desired, they fall short of meeting the 
advantages of existing bitmap-based protocols outlined before. The proof of this claim is 
the fact that time and time again people resort to bitmap-based sharing rather than more 

                                                 
1 http://www.techsmith.com 



sophisticated solutions. Thus, any improvements to bitmap-based sharing modes are still 
very relevant to improving collaboration. 
 

Our contribution 
We have developed a novel proactive framework for adapting the live shared view of 
applications to meet the presenter's privacy requirements and to provide viewers with 
suitable cues and level of detail, balancing concerns for privacy and awareness. Our 
system uses bitmap-based techniques to transparently share visual information, while 
allowing policies to be specified that control the generation of different views for the 
different roles within a collaborating group, by reusing the visuals from the running 
application. 
 
The system conducts an ``over the shoulder'' monitoring of what the presenter is doing, 
actively manipulating the published visuals in three ways: (i) spatial and hierarchical 
transformations for selective sharing, repositioning and scaling of application 
components (including sub-window regions); (ii) simple local or global “chromatic” 
image filters, such as blurring, applied to the visual surface of the application; and (iii) 
temporal or application-state-based transformations applied to the timeline of captured 
interactions. 
 
To make these manipulations more useful, some reliance on application-specific 
semantics is required to extract locations of semantic UI objects and to acquire the 
application's state. We designed a plug-in architecture and used a set of heuristics for 
obtaining such semantics without giving up too much generalizability. 
 
We implemented a prototype of the system and demonstrated how it can be applied to 
several commercial off-the-shelf popular applications, disproving to some extent the 
misconception that bitmap-based application sharing forces strict WYSIWIS (see 
discussion in [3]). 
 

A Sample Scenario 
Bob and Carol are both managers and Ted and Alice are team members in a group of 
employees. There is a briefing in which a single presenter, Bob, is reviewing with Ted 
and Alice the team's budget using a spreadsheet on Bob's laptop that is being projected 
onto a large shared screen viewable by Bob, Ted, and Alice. Carol is logging into the 
meeting remotely, using VNC. Bob is making modifications to the budget on-the-fly 
during the meeting. 
 
Some of the data and parameters in the spreadsheet are confidential and should not be 
exposed to Ted and Alice, but should be available to both Bob and Carol (see Figure 1). 
Some parameters are in separate worksheets that should not be exposed by Bob, others 
are located on worksheets he needs to share with everyone, and he needs to resolve a few 
of them using other applications or files (e.g. an IM client with Carol). A key requirement 



is that Bob must see the private parameters and change them during the meeting, but 
without exposing them to Ted and Alice. 
 

 
Figure 1: Bob's privacy needs: The ``Params'' worksheet (a) is entirely private, the range of cells with 

individual salaries (b and c) is also private, and the file dialog and file menu (f and g) expose private files. 
Bob uses the IM client with Carol. 

 
Bob could extract just the relevant data to a new spreadsheet and project only that on a 
shared auxiliary screen with the master spreadsheet and the IM client visible solely on his 
laptop screen (also viewed by Carol). In theory this solves the problem, but not in 
practice. Extracting the appropriate information with its dependencies may not be trivial, 
but certainly it is possible. However, synchronizing the spreadsheet versions when 
significant changes are made is time-consuming, error-prone (even when using 
automated scripts) and requires redundant computations. Bob still needs to make sure that 
updates do not reveal private information to Ted and Alice and at the same time must 
keep Carol updated on the private version. 
 
Both Bob's cognitive overhead in managing the session and Carol's limited 
communication channel diminish their ability to focus on the budget. Carol has to watch 
verbose UI interactions Bob makes, some of which are distracting (like his erroneous 
interactions with a wizard) and they take up her screen space. Ted and Alice, on the other 
hand, get to see everything that is intended for them, but looking only at the auxiliary 
screen they do not see any interaction cues such as menus or cursor motions; they only 
see the results of Bob's manipulations  echoed in the secondary spreadsheet. 
 
This scenario demonstrates the need for role-based viewing policies. Bob and Carol need 
to see a different view than Ted and Alice, because of privacy concerns. All passive 
viewers need an augmented, ``cleaned up'' version of what Bob sees in order to 
comfortably follow his actions. 



Privacy Concerns 
 
In the context of live generalized presentation scenarios, we make a distinction between 
two types of privacy concerns. There are privacy concerns that effect security (e.g. 
revealing one's credit card number), and there are privacy concerns that do not pose a real 
security threat, but may put one in an awkward position. As Palen and Dourish [10] note 
``... in video conferencing, shared calendar management and instant messaging 
communications, concerns most salient to users include minimizing embarrassment, 
protecting turf (territoriality) and staying in control of one's time.'' Our system supports 
both types of privacy concerns. 
 
We identify four categories of private information. 
 
Task-specific - A presenter needs only to expose the windows and components that are 
part of the shared task. This may entail sharing several applications or only a subset of a 
single application. It is often not necessary (or desirable) to expose the entire desktop. 
 
Window-specific - An application usually comprises more than just a single window. 
There are dialog boxes, menus, palettes, etc. In many cases these contain private 
information (e.g. recent files) or appear at awkward moments (error dialog boxes). 
 
Content-specific - This is private information visible on a window's surface, such as 
underlying application objects or UI widgets (a specific range of cells in Bob's 
spreadsheet or paragraphs in a text document). 
 
Application-specific - Some states of the application can be considered private. They 
may be mapped to objects that are externally inaccessible, mapped to a large set of 
objects that cannot be treated individually or cannot be associated with a particular 
object. Any visible information or interactions in this state should not be exposed (for 
example, the activation of a private worksheet, a show-comments mode or when arbitrary 
error occurs). 
 
We can distinguish between several sources of private data. 
 
External data - Data that is not part of the currently shared document or task, such as  
recent files or browser navigation history, are often private. There is an ever-increasing 
number of these information bits, as applications become more personalized and cached 
versions of user's preferences and selections appear without explicit action on the part of 
the user. 
 
Semantic objects - Part of the shared document model, these may have several visual 
representations. Often, a presenter would like to specifically mark these objects as 
confidential or private. 
 



Interactions - These may be deemed private because they affect the presenter's reflected 
image, regardless of the data they operate on. Some examples are committing syntax 
errors, searching for the right menu item, or struggling with a wizard. 
 
We need to make distinctions based on how predictable is the exposure of a piece of 
private information. The exposure of some pieces of information is an immediate 
outcome of the presenter's direct manipulations and fits well within the presenter's mental 
model of the application. These may be avoided or bypassed by the presenter at the price 
of forcing clumsier interactions or more careful preparation ahead of time. Other 
exposures are byproducts of agents that work on behalf of the user (e.g. an error message, 
the contents of an auto-complete text widget, or the navigation history list). These are less 
predictable and require more automated help to avoid accidental exposure. In either case 
it is disclosure to viewers we need to control, not the appearance or content of these 
elements. 
 
It may seem that some of the private interactions described above are very brief, and thus 
the amount of information viewers can extract is limited. However, it is very common for 
shared sessions to be recorded, allowing later analysis that makes ephemeral information 
persistent [10]. Even without recording, it has been shown that viewers are more likely to 
read sensitive text on a large-screen public display than on a smaller personal display 
[14]. 
 
While our focus is on controlling visibility of private elements, it is also desirable to 
control their modifiability or access. An extension of the system that regulates access 
control deals with this. 
 

Improving Viewer Experience 
 
In our scenario Carol, Ted and Alice are passive viewers of Bob's manipulation. We can 
customize each person's view by adding, deleting, or modifying the application's 
presentation (bitmap) to provide a more useful experience. 
 

Inadequacy of single-user GUIs for passive viewers 
Passive viewers must follow the interactions performed by the presenter, but there is a 
perceptual gulf between presenter and viewers. While the presenter translates her 
intentions and semantic-level operations into GUI interactions, the passive viewers are 
doing the reverse process, inferring the underlying intentions and semantics from the 
interactions. This is not an easy process, even when verbal explanations are provided by 
the presenter (these are usually insufficient, inconsistent, and they require extra effort on 
the presenter's part). 
 
One of the root problems is that the visual language of most GUIs is highly tuned for a 
single active user, ignoring the needs of passive viewers. For example, when a presenter 
decides to perform a contextual menu selection, the cue for a passive viewer that 



some interaction is about to take place is the appearance of the menu, by which time it 
already obscures most of the context for the operation (Figure 2a ). Another problem is 
that passive viewers tend to follow the presenter's point of interaction (often highlighted 
in GUIs), yet in some cases the presenter would like to draw their attention to other 
regions (Figure 2b). 
 

 
 
Figure 2: Inadequacy of conventional GUI for passive viewers showing (a) context obscuration, and (b) a 
situation where the presenter interacts with the top cells, but wants viewers to focus on the bottom cells. 
 
Other low-level parameters such as cursor size or shape, the time a menu selection 
remains on-screen, or interaction without a specific visual indication (e.g. keyboard 
shortcuts), are tuned for the performance of a single active user. These are not suitable for 
passive viewers, who are trying to follow the interactions without the benefit of knowing 
the intention of the action or experiencing the kinesthetic feedback of mouse or keyboard 
interaction. 
 

Controlling verbosity 
Viewers may have different levels of expertise and familiarity with a shared application. 
It is beneficial to adapt their view to this level. A key aspect to be controlled is the 
verbosity of interactions. For example, if Bob is to teach Ted and Alice how to fill out a 
report using an application unfamiliar to them, exposing the fine details of his 
interactions (menu selections, dialog boxes, etc.) and adding cues (like keyboard 
shortcuts and change highlighting) could be crucial. On the other hand if Ted and Alice 
are experienced users, exposing detailed interactions will prevent them from 
concentrating on the report semantics. From a pedagogical point of view, it sometimes 
makes more sense to show one logical interaction unit as a single visual step so the high-
level semantics are not obscured by the low-level details. 
 

Mitigating visual clutter 
We have already implied that it is desirable to share only relevant windows or 
components, rather than the entire desktop. This can assist viewers in making better use 
of their screen space (especially if they need to work with or view other applications 



in parallel). However, if all sub-windows, dialog boxes and menus are shared as well, it 
can quickly clutter a viewer's display. This is somewhat like violating acoustical privacy 
with cellular phones [10]. The presenter imposes his “conversation” with the application 
on the viewers, much like a person talking on a cellular phone imposes on others in a 
public area. A viewer should be capable of controlling how much of this conversation 
penetrates his display and replace some interactions with other ``low volume'' 
representations. In all cases viewers need to maintain some level of awareness of the 
presenter's actions, but not always in a one-to-one manner. 
 

System Description 
 
We have implemented a prototype of the system in C\# on Windows and tested it with 
three widespread commercial applications (MS Excel, Word, and Internet Explorer). The 
principles apply to any modern operating system and they work with any application, 
although some ``semantic glue'' layers that we describe later may be required. 
 

 
 
Figure 3: System architecture. The viewer client (upper right) requires only a ``thin'' frame buffer player. 
 

Cloning Windows 
In order to support differentiated views, the system should first have the ability to grab 
the visual surface of shared application windows on the presenter's machine and convey a 



manipulated version of the bitmap to a viewer's display (published in clone windows). In 
this way the viewer client can be a very thin image buffer player (Figure 3). 
 
The process of capturing a window's image and transferring it to a different machine can 
be realized using a modified version of the Remote Frame Buffer protocol [11]  that has 
to be adapted to work on separate windows. In the prototype, we used a less optimized 
technique, relying on timer-based copying from the window's device context similar to 
MSR's Wincuts [15]. This matched our initial focus on co-located scenarios (where the 
presenter's laptop generates both views). 
 
Rather than a conventional video signal duplication onto the public display, we use the 
extended desktop mode. The public display is a continuation of the presenter's desktop 
(although often physically located on a wall behind the presenter). A clone of each of the 
shared application's windows is created by querying the system's list of windows and 
making bitmap copies. The clones are automatically placed on the part of the desktop 
lying on the public display. The presenter can move any of the application's windows on 
her display and cover these with other windows without affecting the published clones.2 
The novelty is in how we modify the bitmap images and window set before they are 
placed on the public display. 
 

Applying “semantic glue” 
To alter the shared view along the lines discussed in previous sections, the system needs 
to monitor a shared application. It should be able to tell where visual representations of 
private elements or elements that need verbosity adjustments are on the visual surface 
and determine if the application is in a private state. This requires methods for obtaining 
information about the application's GUI components, the underlying semantic objects, 
and their visual representations. The following query layers are used. 
 
L1: OS windowing queries - Enumerating all windows belonging to a specific 
application (or process), detecting creation/destruction of such windows, visibility, titles 
and locations is possible in a modern operating system. Many of the widgets used in an 
application are themselves windows and can be accessed the same way. This layer also 
supports capturing of keyboard and mouse events. 
 
L2: Accessibility API - These are common APIs often targeted to sight-impaired users. 
They enable third-party tools, like screen readers, to systematically expose information 
about UI elements. We have successfully re-purposed these APIs as a resource to expose 
elements that should be kept private or highlighted (e.g. GUI components, menu items, 
rendered HTML objects). These APIs are supported by many commercial tools and UI 
toolkits.3 Our use of them can be further generalized. 
 

                                                 
2 see [15] for more details 
3 Supported by Microsoft Accessibility, Java APIs, OS X and more. Some level of accessibility is now 
required by law and will no doubt increase over time. 



L3: Application specific API -  Many commercial applications provide an API for 
integration and automation. These APIs can be used via COM (Windows), JavaBeans, 
AppleScript and other frameworks. Within our system, we used these APIs in a very 
simple manner to extract information on the application's state and identify the visual 
representations of semantic objects. While writing some code to work with the API is 
required, our experience when developing the prototype shows that this is a very focused 
effort with a limited amount of coding. Modern APIs already provide methods for 
locating an object on the document surface or an Application object can usually be 
queried for its current state. Furthermore, coding occurs only once and can then be used 
in flexible ways. 
 
L4: Extracting information from surface drawing operations - This is a somewhat 
limited technique introduced in [9] (see the related work section). Its requirements are 
quite problematic, especially for the commercial tools we worked with, therefore this 
technique was not used and it is not shown in Figure 3. However, it is still a possible 
semantic glue layer that could be used in some cases. 
 
To create a generalizable framework, we chose to provide all of these methods using a 
plug-in architecture for our system. Each shared application has a middleware plug-in 
that functions as the semantic glue. A plug-in encapsulates the knowledge about a 
specific application and its monitoring, and supports a common API that the Monitor 
module (Figure 3) can use. The PAPI (Plug-In API) provides methods that return text or 
keyword-based descriptions of the current state, dialog or palette. Other methods extract 
lists of areas of the visual surface containing private information that need highlighting or 
specific sub-window areas to be displayed (instead of the full window). Each of the areas 
are accompanied by keyword descriptions that can be used to control display parameters. 
 
A plug-in translates these general PAPI queries into appropriate queries in one of the four 
layers. For example it uses L1 and L2 queries in Excel to check if the file open dialog or 
cell protection tab are visible and L3 Excel API calls to obtain the currently visible 
worksheet or comment to determine the application state. Similarly, a private regions 
query is translated to L3 cell locating calls or L2 queries to locate the formula auditing 
box and toolbars. Similar queries in Internet Explorer may result in a L2 query to check if 
the favorites menu is visible, L1 query to search for auto-complete text window boxes or 
L3 to look for private HTML fields. 
 
Default base plug-ins, providing a set of application-independent capabilities to track 
menus, dialog boxes and other common entities, were also developed. They serve as a 
toolbox for developing more specifically tailored plug-ins. 
 
The Monitor module directs its calls to a plug-in repository manager, which loads the 
appropriate application plug-in at run time (possibly even from remote servers). If no 
appropriate plug-in exists the default base plug-in will be used, offering some monitoring 
capabilities. (It could query the presenter before displaying any menu or dialog box, and 
then apply ``program by example'' techniques.) 
 



The Director module handles the published representation to be played on the public 
display. It uses the Monitor module to track the application and extract descriptions of its 
state and visible elements. It then applies policies that determine how to manipulate the 
visuals. 
 

Policies and rules 
When instantiating a policy, a tuple comprising the application, the state or element, and 
the viewer's role is the input. The output is a rule that determines what manipulations will 
be applied to the published visual representations. We must determine how private 
elements, states or elements that need verbosity control can be extracted, assuming shared 
applications do not know about privacy. There are two complementary approaches to 
consider. 
 
The first approach (taken in the initial prototype) is letting the presenter mark these 
elements explicitly. When working with a document in an editor we can readily support 
what we call a “Magic Marker” that maps a visual property of an object to a privacy 
state (most editors have a notion of object style properties). 
 
For example, a presenter can mark a document object as private by coloring it with a 
specific color, using the native application tools (e.g. a background color for cells in 
Excel or a highlight color for paragraphs in Word as shown in Figure 4). When writing in 
this color the semantic glue layer will recognize these objects as private. A policy that 
regulates blurring for marked objects will create the effect of a magic marker that cannot 
be seen by viewers, while the presenter can interact normally. This mode provides visual 
feedback and awareness on what the audience cannot see (demonstrated in [12] to be 
crucial). 
 
Other means for coding attributes can also be used (like adding a ``Private'' prefix for a 
worksheet's name or comment text). Another option is to use the application's built-in 
selection mechanism, so for example the paragraph containing the insertion point can 
extracted by querying the application. 
 
The situation for UI widgets is different. The generalized marking scheme we have been 
using relies on recording the path to the specific widget on the Accessibility widget tree 
or the window tree. These may be provided as a script for the plug-in. A similar scripting 
approach can be applied to extracting application states (in the prototype most of these 
are hard coded). In the general case a plug-in may expose its own UI to allow 
application-specific privacy control. 
 
A second approach is to use a rule-guided search for privacy leaks. We have 
experimented with searching for private text in a spreadsheet or document (phone 
numbers, names, etc.) and automatically blurring them. Another interesting domain is 
web pages, where it is possible to search the HTML code for both private UI widgets and 
content elements (for example, searching for form fields that may contain private 
information, such as userids, e-mail addresses, etc.). It is possible to run similar searches 



on dialog boxes or other UI widgets through the Accessibility API, extracting their text 
and determining if they convey private information (e.g. search for error messages, field 
names related to security, network settings or personal information) and then apply a 
suitable policy to issue blurring or indicate a private state. 
 
We believe that a combination of these approaches is required for better privacy 
protection. Together with the visual manipulations (described later), it allows a flexible 
range of rules: ``do not expose any dialog related to files or the network in any 
application to any public viewer,'' ``blur any document element in any application marked 
in pink to group A members'' or ``if there is any viewer from group B, do not expose in a 
public view any web page not coming from company servers.'' 
 
Our prototype is a work-in-progress that serves as a proof-of-concept. We have 
concentrated on the system architecture and a collection of manipulations (discussed in 
the next section). Our goal has not been to develop a robust mechanism for describing 
policies, only to illustrate the value of having role-based policies to control views. This is 
probably the most fruitful area for future investigation. 
 

Manipulating The Visual Representation 
 
The Director component takes in the ``raw'' captured frame buffers grabbed from the 
application windows and applies one or more of the following manipulations. 

Blurring 
When private elements are visible, the challenge is guaranteeing viewers cannot see 
them, while the presenter works freely. The PAPI can extract the locations of such 
elements on the visual surface at any time (with attributes and hints, such as the 
suggested blur effect to use). In some cases a private information unit may appear in 
several places (e.g. the contents of a selected private spreadsheet cell will also appear in 
the formula bar). This demonstrates why tighter integration with application 
semantics is crucial for ensuring privacy. 
 

 



Figure 4: (a) The presenter view of a spreadsheet, (b) Greeking cells marked with a pink ``magic pen'' 
exposing the presenter's interactions and orders of magnitude for the values, and (c) complete draw-over of 
a cell range. 
The Director can apply several image blurring operators on extracted private zones 
(Figures 4  and 5). Since blurring occurs at the frame buffer level it can be applied 
regardless of what the underlying element is (UI control, text, image etc.) or how the 
bitmap was drawn. Different filters offer different visual affordances, balancing between 
the presenter's privacy and the audience's awareness. 
 

• Draw over - Invoked for full privacy, with no awareness. 
• Greekify - Creates a ``Greeked text'' effect by searching text line boundaries on 

the image and replacing them with filled rectangles. Useful for exposing structure, 
style and some notion of the presenter's interactions (such as selection). 

• Pixelize - This is a general purpose filter, mostly useful for image-based content. 
It provides awareness cues for viewers, but may be insufficient for privacy. 

 

 
 
Figure 5: A magic pink marker was used to mark private paragraphs: (a) Word document with a private 
paragraph automatically Greeked, (b) a paragraph containing an image pixelized, and (c) a login web 
page where the userid field is detected by the system and Greeked.  
 

Salience and highlighting 
The system supports a highlighting mechanism that is independent of the shared 
application's own selection and highlighting tools. In Figure 6a the presenter is 
interacting with the tools palette, but wants to keep viewers focused on a specific 
paragraph. The PAPI provides a method, through which the shared application can be 
queried for regions to highlight. We found it useful to highlight the context for the active 
selection as the contents of the document change. This is application-dependent (the 
paragraph, sentence or section containing the active insertion point in Word, the table 
surrounding the selected cells or dependent cells in Excel). The system has a unified 
framework to handle image buffer manipulations, regardless of application semantics. 
We chose to produce highlights by placing a semi-transparent colored mask on top of 
non-highlight areas (visually similar to  [9]). Detaching the highlighted object from 
selection is also useful and can be done by caching the previous highlighting bounds or 



by caching a pointer to the previously selected object within the plug-in (detaching / 
attaching is controlled via a keyboard combination). Another mode of highlighting makes 
changes more salient to viewers (mostly indirect changes in parts of the visual surface far 
from the presenter's interaction). A considerate presenter would point out these changes 
to an audience and perhaps even mark them on the screen. To assist the presenter, the 
semantic glue layer can extract such changes and provide automatically generated 
highlighting (Figure 6c shows hand-style circling of changed cells that also exposes 
changes in blurred data). 
 

 
Figure 6: Highlighting of the active context: (a) a paragraph is highlighted while the presenter interacts 
with other components, (b) outlining table, and (c) ``by-hand'' style circling of changed cells. 
 
Other manipulations that can affect salience and attention are magnifying relevant 
regions of the visual surface or even re-rendering of textual elements in a bigger font 
(many of these underlying texts can be extracted through the semantic glue layer). 
 

Spatial manipulations 
One set of manipulations allows the presenter to share only a partial view of an 
application's window. This is useful for reducing screen space use and clutter, and in 
addressing privacy. The PAPI provides a method through which the window part to be 
shared can be accessed. Computing this window part can take into account several 
policies.  



 
• Excluding the UI - Remove UI layers such as toolbars and embedded windows 

that take a substantial amount of screen space. 
• Active context - Share only the active context, based on the presenter's selection 

as described in the previous section. 
• Sharing a specific element - Sharing only a specific paragraph, table or UI 

element chosen by the presenter. 
 
The semantic layer guarantees that the window part computed will adhere to the stated 
policy and will take into account changes to the window's dimension, scrolling or UI 
changes, as opposed to the manual definitions presented in~\cite{Desney2004} or to 
fixing a portion of the screen to be shared. 
 
Another set of manipulations uses affine transformations. Rotating windows is very 
useful for single tabletop display sessions, where viewer orientation should be part of the 
policy. Automatically scaling down the size of dialog boxes, palettes and other secondary 
windows (identified by PAPI), together with a careful placement of these next to the full 
sized main window can assist in reducing clutter and support privacy (Figure 7d). 
Combining several spatial transformations together can be quite powerful. For example, 
it is possible to publish only the selected paragraph context, flipped vertically so a viewer 
on the other side of a tabletop display can follow the discussion without requiring 
replication of the full document window(Figure 7a). 
 

 



Figure 7: Spatial manipulations: (a) publishing only active context (paragraph containing insertion point) 
+ vertical flip for tabletop displays, (b) auto-exclusion of toolbars, menus and embedded frames from an 
Explorer window (compared to the size of original, and (c and d) automatically downsizing an ``options'' 
dialog and attaching it to the main window. 
 

Temporal manipulations 
There are situations when it is more reasonable to define the entire state of the application 
as private, rather then extensively applying blurring transformations (e.g. when the 
presenter interacts with a private worksheet, uses the file open dialog, or works with a 
wizard). 
 

 
Figure 8: File open dialog (a) is dynamically replaced with an iconic representation (b). The system will 
treat the auto complete text box (c) and private comment (d) as private states and will not expose them. 
 
The semantic glue layer can query the application state. If it matches the privacy policy, 
the system can trim the interaction timeline by not sending updates to the viewer's display 
until the presenter exits the private state. To keep some level of awareness for the viewer, 
the system can display an iconic representation summarizing the state. For example, an 
open file icon appears instead of exposing the dialog itself (Figure 8) to prepare a viewer 
for a document change or an icon indicating interactions on a private worksheet gives the 
viewer hints about what the presenter is doing. 
 
In other situations, it is better to not provide any indication at all, maintaining complete 
privacy. For example, when the presenter interacts with an auto-complete text box 



(Figure 8c), an error dialog, a private comment or commits syntax errors when taking 
notes in public. Some of these states are quite unpredictable by the presenter (e.g. an error 
dialog popping up or auto-complete suggestions), so automatic detection of these is 
crucial. 
 
Another set of timeline manipulations can be applied to the place at which certain 
operations (as extracted by PAPI) are played on the public display or by letting viewers 
roll back recorded interactions (for instance using the semantic glue to tag recorded 
interactions for quick roll-back). One example we implemented involves menu selections, 
discussed in the next section. 
 

Handling Menus 
Menus are fundamental interaction components that are often problematic in a 
generalized presentation scenario. They create a lot of clutter (being arbitrarily long, 
regardless of the size of their parent window), and they often bundle private information 
(recent files, bookmarks). More importantly, menus are becoming highly tuned for the 
active user and less for a passive viewer (adaptive menus with personalized order and 
gestural menus that do not show on the screen). It is possible to obtain a full description 
of a menu (items, locations, selection) through Accessibility APIs so the manipulations 
presented below are highly generalizable. 
 
At the basic level, menus are windows and as such can undergo any of the previously 
mentioned manipulations. For example, blurring recent file menu items or marking the 
exposure of the favorite links menu as a private state. A critical moment is when the 
presenter makes a selection on a menu. From her point of view there is no need for the 
menu anymore and it is taken away. The system, however, can capture the selection event 
and pause the timeline so that the menu lingers on the public screen for an extended 
period suitable for passive viewers (possibly with animated highlighting of the selected 
menu item). It is also possible to identify the creation of a context menu, and smoothly 
move its clone to a neutral placement that does not block the operation's context (Figure 
9a). 
 
Watching interactions with menus is not the best way to convey operations to viewers. In 
many cases, replacing the menu selection with a different feedback, such as specifying 
the selection in a subtitle is better (Figure 9b). Consider a presenter who scrolls through a 
menu until finding a specific item. It is hard for a viewer to tell if the menu was closed 
because a selection was made or the menu was released with the ESC key. On the other 
hand, the subtitle scheme reports only when a selection is actually made. This scheme 
still works if the presenter uses keyboard shortcuts or gestural menus because semantic 
glue translates these back to a menu item description for display. 
 



 
Figure 9: Manipulating menus: (a) moving a context menu to the side + highlighting selection, (b) 
replacing a menu selection with a subtitle. 
 

Mouse Cursor manipulations 
We are able to provide viewers with a different representation for the mouse cursor to 
better suit their needs, while the presenter can continue working with the normal cursor. 
 
Some of these alternative representations are shown in Figure 10. They assist viewers in 
tracking the cursor and the presenter's focus of interaction. Alternative cursors can 
support augmented or relaxed verbosity. They can increase verbosity by visually 
encoding low-level interactions (such as mouse button clicks or keyboard presses) or 
reduce it by displaying only the state indicators discussed previously. Finally, it may be 
desired to conceal the mouse cursor altogether when the presenter interacts with 
components that are private so mouse positions do not disclose interactions. 
 

 
Figure 10: (a and b) changing cursor size, shape and transparency, (c) visual feedback on the presenter's 
mouse clicks, (d) a private state indicator embedded on the cursor, (e) spotlight focus+context cursor, and 
(f) the cursor is hidden when going into the privacy-protected security tab. 
 



Access Control 
Tools like [11], [7] and remote desktop solutions enable the presenter to give a viewer 
control over keyboard and mouse input to her machine (coarse floor control). As far as 
the OS is concerned the input is coming from the presenter and therefore a viewer can do 
whatever the presenter can do. This is highly undesirable, since a viewer may make 
changes to non-shared applications or make unwanted changes to the application shared. 
We integrated the basic functionality of PointRight into our system, yet we are able to use 
the semantic layer to identify locations of widgets, menus and controls that should not be 
accessed. Thus when a viewer sends a mouse click event on such a control, the system 
will not pass this event to the OS. Similar treatment can be applied to keyboard events 
(this requires more queries on the application). In this way a fine grained access control 
policy can be applied to applications that were not designed for it. 
 

Related Work 
There is a large corpus of research on collaboration-aware tools and frameworks that 
allow custom view sharing, including commercial tools (see a survey in [3] or [16]). Our 
system is targeted at existing collaboration transparent single-user tools, that were not 
designed for multiple views and cannot accommodate code changes. In this context, it is 
useful to classify these based on a mapping of the sharing architecture space. The Zipper 
model, presented in [4], looks at the common layers comprising an application:  User, 
Screen, Window, Widget, View, Model to determines the share branching level. In each 
architecture one of these layers is the branching point. All layers below it are shared and 
all layers above it are replicated. 
 
Closest to our approach are tools that replicate the screen or window layers (known as 
centralized tools), such as VNC [11], NetMeeting4 or XTV [1] (replicating X-Windows 
display commands). VNC forces sharing of the entire screen, including windows of 
applications a presenter might like to keep private. NetMeeting and XTV share all 
windows of a specific application, but lack the ability to keep some dialogs or palettes 
private. In terms of supporting different views, NetMeeting allows a presenter to “pause 
and play” the view sharing, which could be used for concealing private states or 
interactions. However, this is manually controlled and very error-prone, leaving the 
presenter with the onus to identify privacy concerns, some of which are unpredictable. 
All of these tools lack any ability to change the contents of the replicated screen parts and 
therefore cannot handle sub-window elements or provide highlighting. 
 
Flexible JAMM [3] is a framework for transparently replicating the widget layer. It is 
based on replacing some widgets and components of existing single-user applications 
with multi-user versions that can be synchronized with some degree of differentiation. 
This approach puts different constraints on the running environment and underlying code 
that make it unsuitable for commercial off-the-shelf applications. 
 

                                                 
4 http://www.microsoft.com/windows/netmeeting/ 



Recently some research efforts have focused on synchronizing two running single-user 
applications (i.e. replicating the Model layer), using operational transformation 
techniques. A prominent example, working with an off-the-shelf editor (MS Word) is 
CoWord [16]. Each user has independent control of her copy while the system 
synchronizes the underlying document models using the application's API (typically 
without support for private document parts). This solution assumes complete 
independence of views, which is not suitable for presentation scenarios. Still, with some 
effort views can be synchronized as well (replicating the View layer). The solution 
requires both presenter and viewer to have a copy of the application (or to run two copies 
of the application on a single computer, which is not always possible). 
 
The major drawback of JAMM, CoWord and other replication-based solutions is the need 
to synchronize the different application replications. Synchronization can be a very hard 
Problem [4], requiring resource locking or forcing expensive calculations to be carried 
out multiple times. 
 
Wincuts [15] is a bitmap-based system that provides some spatial manipulation of shared 
windows. It allows a presenter to manually select a region of the window and publish 
only that part. Similar ideas are presented in regards to window layouts and screen space 
use in [6]. While still allowing a lot of flexibility and addressing clutter and privacy 
issues, this approach quickly breaks down when a presenter needs to resize or scroll a 
window. Our system completely subsumes these approaches, automating spatial 
manipulations and blending them with other filters. 
 
A limited set of manipulations to the application's visual surface were presented in [9]. 
Some of the manipulations are similar to ours (e.g. region highlighting), but they are 
entirely targeted at supporting the work of a single user. Our system demonstrates how 
these can be used in a multi-user shared view scenario. On the technical side, this 
approach requires overriding some of the low-level drawing routines, consistent ordering 
and grouping of component drawings and cannot reason about information that does not 
go through the display pipeline (like field names). These demands are not fully met by 
off-the-shelf tools and are very hard to support under some operating system (Windows). 
Still, this may be a viable way for performing some of the semantic glue operations and 
other manipulations. Our plug-in architecture allows us to incorporate these techniques 
into our system. 
 
In regards to privacy and clutter, Pebbles [8] offers to replicate some application 
components on a handheld device. Thus a presenter may choose to conduct some 
interactions on her handheld or auxiliary computer to avoid exposure. This approach 
requires extra hardware to be present and it does not address viewer needs for awareness 
cues. Most importantly this approach is limited in the type and complexity of components 
that can be recreated on the handheld (text fields and menu work well, but part of a 
worksheet relying on other spreadsheet parts may not). 
 
Research into single display privacyware has resulted in several platforms enabling each 
user to have a different view of a shared display ([12]). However, these systems still 



require running software that is capable of supporting differentiated views, so 
collaboration-aware tools must be used. Our solution enables using such systems with 
off-the-shelf applications. 
 
Finally, commercial presentation authoring and playback tools such as Microsoft 
PowerPoint or Apple Keynote have recently taken advantage of multi-display technology 
to play the presentation on a public screen, while providing a private view to the 
presenter (where she can view her notes or check other slides). Our approach can provide 
similar advantages to other single-user applications. 
 

Future Work and Discussion 
 
We expect to improve the performance of our system by relying on window paint events 
for updates rather than on a timer, and to support distributed view sharing based on a 
variant of the RFB protocol. When considering security, access control and privacy 
protection as well as performance, we intend to look at different models of where 
blurring and other window manipulations occur (presenter's machine, viewer's machine, a 
trusted third party server). 
 
We need a higher degree of automation in extracting private elements, states, and hints on 
what level of verbosity to use. One possible direction is applying user modelling and 
machine learning techniques to learn what elements are considered private by a presenter 
and apply these to search the widget space and document model. Another possible 
direction is harnessing ``programming by example'' techniques. 
 
We will run a formal user study on the next version of the system to evaluate its benefit 
to viewers and presenters. To date we have verified the problems identified with informal 
studies and tested the framework with several collaboration practitioners. 
 

Conclusions 
 
We have introduced a unified solution for privacy concerns and verbosity control to assist 
a presenter and her audience in generalized presentation scenarios. These growing 
concerns are not addressed by current single-user application sharing modes. Our design 
introduces role-driven views for each type of participant, balancing between the 
presenter's privacy needs and the audience's awareness needs. Our system is based on 
applying image filters, spatial and timeline manipulations to bitmap representations of 
shared windows in contrast to similar techniques that have been recently shown to be 
unsuitable for addressing privacy in video [5]. 
 
The system's framework is general and works with off-the-shelf applications, requiring 
only a limited glue layer. A prototype of the system was created and tested with several 
commercial applications. As part of our work we discovered how Accessibility APIs can 
be leveraged to address privacy concerns. Our system allows additional intermediate 



sharing layers to be introduced through an extensile plug-in architecture beyond the 
conventional screen, application or window layers of the Zipper model [4]. 
 
The system improves the quality of generalized presentation sessions. It protects a 
presenter from exposing private information and elements, allowing her to work normally 
and comfortably. It assists viewers in maintaining a suitable level of awareness and in 
better understanding the presenter's intentions. 
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