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Abstract

Crossover is believed to initiate at specific sites called
hotspots, by combinational-repair mechanism in which the initi-
ating hotspot is replaced by a copy of its homologue. Boulton et
al. studied through simulation the effect of this mechanism, and
observed in their model that active hotspot alleles are rapidly
replaced by inactive alleles. This is paradoxical because active
hotspots alleles do not disappear in natural systems. We give a
theoretical analysis of this model, which confirms their experi-
mental result, and we argue that they failed to take properly into
account the benefits of recombination, because of the optimal-
ity of their initial population. On the other hand, we show that
even with an initial population of low fitness the model does not
sustain the active hotspot alleles. Those results suggest that at
least one model is wrong, either the one for the recombination of
chromosomes, or the one for the diffusion of the hotspot alleles:
we suggest another model for the diffusion of hotspots alleles.
Keywords: yeast, sexual reproduction, crossover, hotspots.

1 Introduction
When diploid organisms produce gametes, a cell re-

produces and divides itself into 4 haploid gametes [3].
During this division the paired chromosomes can re-
combine their genes: it happens that the structure of
one of the chromosomes breaks in some specific points
called “hotspots”. The structure is then repaired by copy-
ing the corresponding allele from the homologue chro-
mosome, which results eventually in the exchange of
whole sections of the chromosomes, phenomenon called
“crossover”. The hotspot alleles can be inactivated by mu-
tations, which change them so that they do not break, and
do not initiate a crossover any more. If a recombination is
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still initiated by the homologous chromosome, its hotspot
is repaired using the mutated allele, and the gametes will
contain an inactivated hotspot allele.

Boulton, Myers and Redfield [1] observe that this
mechanism seems to favour the diffusion of inactive
hotspot alleles, which is paradoxical since active hotspots
are predominant in natural systems. They consider the
positive effect of the chromosome recombination on their
migration during the cell division: without recombination
some gametes are sterile with probability .5. Their simu-
lations show that this effect is not strong enough to sustain
a positive proportion of active hotspot alleles, and they
conclude that the crossover model might be wrong, as it
is not self-sustainable.

In this paper we formalize Boulton et al.’s model (sec-
tion 2), and give a theoretical analysis of it (section 3),
which confirms the results of their simulations. We out-
line another contribution of active hotspot alleles, con-
cerning the evolution of the species. This contribution
is only feebly taken into account by the simulations of
Boulton et al., where the population is initially optimal.
We show that even with an initial population of low fit-
ness, the model does not sustain any proportion of active
hotspots (section 4). In our conclusion (section 5) we dis-
cuss the importance of spatiality, a property lacked by the
models discussed.

2 Model
We consider a pool of freely interacting haploids. Each

haploid consists of a single chromosome, with a single
hotspot, and is noted Hi, of fitness fi, which corresponds
to its ability to grab resources. The population size is vari-
able, regulated by the amount N of resources (e.g. food)
available. At each step of the process: with probability
.5 one haploid Hi is chosen uniformly at random, of fit-
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ness fi, and duplicates with probability fiP
fi

N
2 , otherwise

dies. Otherwise, with the remaining probability .5, two
haploids Hi and Hj are chosen uniformly at random, of
fitness fi and fj . They combine and try to reproduce with
probability fi+fjP

fi

N
4 , and otherwise die. If both hotspot

alleles are inactive, the haploids are inviable with proba-
bility .5, otherwise they are duplicates of the original hap-
loids.

If both hotspot alleles are active, the haploids combine
by a crossover at this site, and the four haploids produced
have active hotspot alleles. If only one hotspot allele is
active, the chromosomes combine by a crossover at this
site, but three out of four haploids produced have inactive
hotspot alleles, and the one with an active hotspot is a du-
plicate of the original chromosome whose hotspot allele
was active.

Note that for simplicity, the active hotspot alleles al-
ways break: in a model with only one hotspot allele this
doesn’t change the result and simplifies the proofs.

Lemma 1 The average population size converges to N .

3 Segregation effect
The segregation produces aneuploids (inviable ga-

metes) with higher probability when no crossover occurs.
As this happens more often when there are fewer active
hotspot alleles, Boulton et al. studied the effects of this
property. Their simulations show that this force is not suf-
ficient to maintain a positive proportion of active hotspots
alleles. They use a model with a single chromosome per
individual, and a single hotspot per chromosome. We
give the theoretical analysis of a broader class of models,
which shows that the active hotspot alleles indeed disap-
pear in the stationary distribution.

Theorem 1 Starting from an optimal population, active
hotspot alleles disappear in the stationary distribution.

4 Selection effect
The active hotspot alleles also have an evolutionary

utility: without them, the population evolve only by muta-
tion. A sub-population with active hotspot alleles should
have an evolutionary advantage.

Boulton et al.’s simulation is starting with a popula-
tion of optimal individuals, and mutations introduce sub-
optimal individuals. In such a model, with a small muta-
tion rate, only a few sub-optimal individuals are generated
at each generation, and there is no need of recombination
to obtain a better population, as selection just suppresses
sub-optimal individuals. On the other hand, with a mu-
tation rate large enough to disrupt the optimality of the
population, the possible benefits from recombination are
most likely disrupted by a mutation.

With a sub-optimal initial population, recombinations
are much more likely to generate better individuals, and
the active hotspot alleles triggering these recombinations
are more likely to be promoted. To obtain an upper bound
on the proportion of active hotspot alleles sustained in
such a model, it is sufficient to study a much simpler
model where the offsprings obtained by recombination
are always better than their parents: this model’s unreal-
ism can only increase the proportion of active hotspot al-
leles. In such a model, the proportion of active hotspot al-
leles in the stationary distribution is still null: hence even
the evolutionary role of the active hotspot alleles does not
permit to sustain them in Boulton et al.’s model.

Theorem 2 Even in the model where new individuals are
always better than their parents, the active hotspot alleles
do not persist.

5 Conclusions
In this paper we provided a theoretical confirmation of

some experimental results on a model of the diffusion
of active hotspots, and we gave an analysis proving that
even a more general model does not solve the paradox
observed.

The models discussed in the literature neglect many
properties of natural systems, among which one is the spa-
tiality. The models neglecting this property are analogous
to the situation where the haploids are continuously shuf-
fled: this happens only rarely in nature, where the hap-
loids can form colonies.
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Appendix

A Model

In this model the size S of the population is stable on
average. At each step of the process, the probability that
the haploids chosen duplicate and increase the population
is proportional to the share of resources they get. This
share is proportional to their relative fitness, but inversely
proportional to the size of the population. Hence the size
of the population decreases when it is too large, and in-
creases when it is too small: the lemma 1 proves this for-
mally.
Proof of Lemma 1:

First consider the case when a single haploid is cho-
sen for duplication. Let be S the size of the population,
∆S the variation of this size in the first phase of one step,
E(∆S|clone) the average variation when a single haploid
is chosen for cloning, and E(∆S|Hi) the average varia-
tion when the haploid Hi has been chosen:

E(∆S|Hi) = +1
[

fi∑
l fl

N

2

]
− 1

[
1 − fi∑

l fl

N

2

]

=
fi∑
l fl

N − 1

E(∆S|clone) =
∑

i

E(∆S|Hi)
1
S

=
N

S
− 1

Note that ∆S is equal to 1 or −1, and that E(∆S|clone)
is positive if and only if S is smaller than N .

Now consider the case when two haploids are chosen
for breeding. Let be ∆S the average variation of the size

of the population in this phase, E(∆S|breed) the average
variation when a couple of haploids is chosen for breed-
ing, and ∆S|Hi, Hj the average variation when the hap-
loids Hi and Hj have been chosen:

E(∆S|Hi, Hj) = +2
[
fi + fj∑

l fl

N

4

]

−2
[
1 − fi + fj∑

l fl

N

4

]

=
fi + fj∑

l fl
N − 2

E(∆S|breed) =
∑

i,j,i�=j

E(∆S|Hi, Hj)
1

S(S − 1)

=

∑
i,j(fi+fj) − 2

∑
i fi∑

l fl

N

S(S − 1)
− 2

= (2S − 2)
∑

i fi∑
l fl

N

S(S − 1)
− 2

= 2
(

N

S
− 1

)

Note that here ∆S is equal to 2 or −2, and E(∆S|breed)
is positive if and only if S is smaller than N .

Considering the two cases, the average variation of
the size of the population is positive if and only if S is
smaller than N . On the other hand this variation is al-
ways bounded. By analogy with a Markov chain describ-
ing ∆S, results from [2] permit to conclude that E(S)=N
in the stationary distribution. ��

B Segregation Effect

Proof of Theorem 1: As the fitness is uniform, the dupli-
cation of haploids doesn’t modify on average the repar-
tition of active hotspot alleles, only the sexual reproduc-
tion does. Let be p the proportion of active hotspot alle-
les in the population. As a pair of haploids with nonac-
tive hotspots can product 4 haploids or nothing, 3 types of
pairs can be formed with 4 possible outcomes:

1. [AA → AAAA] if the two chosen haploids have
active hotspot alleles;

2. [AN → ANNN ] if exactly one chosen haploid has
an active hotspot allele;
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3. [NN → NNNN ] if none of the chosen haploids
has an active hotspot allele, and the gametes properly
segregate;

4. [NN → ∅] if none of the chosen haploids have an
active hotspot allele, and the gametes does not prop-
erly segregate.

In each case we study the variation in the number of active
hotspot alleles and in the size of the population, expressed
by the variation in the proportion of active hotspot alleles.

1. The first case happens with probability [p2], and the
proportion p then increases by 4−4p

S+4 .

2. The second case happens with probability [2p(1 −
p)], and the proportion p then increases by 1−4p

S+4 .

3. The third case happens with probability [(1 − p)2 1
2 ],

and the proportion p then increases by 4p
S+4 .

4. The fourth case happens with probability [(1−p)2 1
2 ],

and the proportion then does not change.

The expression of the average variation of p is then ex-
pressed as the sum of the variations in each case, weighted
by their probabilities:

E(∆p) =
1

S + 2
(2 − 2p)[p2]

+(−4p)
[
2p(1 − p) + (1 − p)2

1
2

]

+
1

S + 2
p(1 − p)2

=
1

S + 2
p(1 − p)(−2)(2p + 1)

+
1

S + 2
p(1 − p)2

As long as p ∈ (0, 1) this is positive if and only if

−2(2p + 1)(S − 2) + (1 − p)(S + 2) > 0
⇔ 6 + 6p − S − 5pS > 0

⇔ p <
S − 6
6 − 5S

For any value of S larger than 6, the fraction S−6
6−5S is nega-

tive. This condition is fulfilled whenever N is sufficiently
large (see Lemma 1).

So as long as N is large enough, E(∆p) is never posi-
tive and p is always decreasing to 0 on average. ��

C Selection Effect

Proof of Theorem 2:
As before, p is the proportion of active hotspot alleles

in the population. For a random individual chosen in the
population, let be A the event that it has an active hotspot
allele, N the event that it has an inactive hotspot allele,
and new the event that this individual is different from its
parents.

Haploids with a new combination of alleles (event new)
and active hotspot alleles (event A) can be generated only
by breeding two haploids which both have active hotspot
alleles. Haploids with a new combination of alleles (event
new) and inactive hotspot alleles (event N ) can be gen-
erated only by breeding one haploid, which has an ac-
tive hotspot allele, with an haploid which has an inactive
hotspot allele. In each case, two such haploids are gener-
ated.

From the probabilities of those events, we can deduce
the probability of generating a new haploid, and the prob-
ability that such a haploid has an active hotspot allele:

Pr{A ∧ new} =
p2

2

Pr{N ∧ new} =
2p(1 − p)

2
Pr{new} = p(1 − p

2
)

Pr{A|new} =
Pr{A ∧ new}

Pr{new}
=

2
2 − p

− 1

This number, which corresponds to the probability that
a new haploid has an active hotspot allele, is smaller than
p, the proportion of individuals with an active hotspot in
the whole population. ∀p ∈ [0, 1]:

2
2 − p

− 1 < p ⇔ 2 < (p + 1)(2 − p)

⇔ p(1 − p) < 0
⇔ p ∈ [0, 1]

Hence the proportion of active hotspot alleles among
new (and potentially better) solutions is smaller than the
proportion of active hotspot alleles among the old solu-
tions. So the active hotspot alleles do not persist. ��
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D More on Spatiality

A theoretical analysis shows that in one dimension,
spatiality “saves” the active hotspots by permitting a
colony of haploids with active hotspots to compete
with its neighbouring colonies of haploids with inactive
hotspots, as long as active hotspots permit to produce bet-
ter solutions.

We failed to perform a theoretical analysis of the spa-
tial model in more than one dimension, but simulations
in two and three dimensions show a similar behaviour:
for a finely tuned parameterization of the model, a sub-
population of haploids with active hotspots survive and
compete efficiently against an environment of haploids
with inactive hotspots.

One obvious perspective from here is to study spatial
models of the diffusion of active hotspots. Spatial models
are random cellular automata, and it is known that some
cellular automata are Turing equivalent, and hence can-
not be analyzed in a complete way: it is possible that a
theoretical analysis of spatial models is not possible.

(a)

(b)

(c)

(d)

Figure 1: Crossover Mechanism: when an hotspot allele
“breaks”, it is repaired and replaced by the hotspot allele
from the homologous chromosome, initiating a crossover
(a), or not (b); when no hotspot allele break, the chromo-
some are just cloned (c), and sometime do not segregate
properly (d).

(a)

(c)

(b)

Figure 2: Life cycle of the haploids: when an individual
is selected, it duplicates (a) or dies (b); when a couple is
selected, its members combine (c) or die (b).
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