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Abstract

Motion capture is widely used for character animation. One of the
major challenges in this area is modifying human motion in plau-
sible ways. Previous work has focused on transformations based
on kinematics and dynamics, but has not explicitly taken into ac-
count the emerging knowledge of how humans control their mo-
tion. In this paper we show how this can be done using a simple
human neuromuscular control model. Our model of muscle forces
includes a feedforward term and low gain passive feedback. The
feedforward component is calculated from motion capture data us-
ing inverse dynamics. The feedback component generates reaction
forces to unexpected external disturbances. The perturbed anima-
tion is then resynthesized using forward dynamics. This allows us
to create animations where the character reacts to unexpected exter-
nal forces in a natural way (e.g.,when the character is hit by a flying
object), but still retains qualities of the original animation. Such
technique is useful for applications such as interactive sports video
games.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation

Keywords: physically-based simulation, motor control, motion
capture

1 Introduction

Traditional keyframing animation, motion capture, and physical
simulation are the three major computer animation techniques
widely used today. Among the three techniques, motion capture
is increasing in popularity for realistic and stylistic human-like fig-
ure animation. However, the amount of motion we can capture still
cannot meet our needs. In applications such as sports video games,
the lack of variation in similar motions or the lack of changes due
to novel situations greatly reduces the sense of reality.

There has been considerable research in automatic motion edit-
ing and transformation techniques. We review related work in Sec-
tion 2. Kinematic motion editing is relatively cheap, but ignores
dynamic constraints. Dynamic motion transformation can guaran-
tee physical plausibility, and interactions between characters and
their environment can be handled naturally.

However, dynamic human simulation still suffers from being un-
realistic. We believe that the lack of realism is primarily due to the
lack of human motion control models and not due to inadequacies
in physical modeling. After all, an industrial robot obeys the same
laws of physics as humans and also moves in a physically plausible
way. But its motion does not look human because its motors and
control algorithms are different from those of humans.

Dynamic simulation is also expensive, not because of the cost of
dynamics computations (which is reducing rapidly due to Moore’s
law), but due to the difficulty of creating realistic dynamic models
and controllers. One approach to handling this motor control prob-
lem is to manually design motor controllers for various motor skills.
This turns out to be even harder than keyframing animation, and of-
ten results in robotic motions. Another approach is to use optimal
control theory to solve for an optimal motion, given some empirical
objective functions. This also results in loss of stylistic details, and
the computational cost is extremely high. Thus it would be useful if
at least a part of the control can be estimated from motion capture
data.

This situation suggests we explicitly take into account human
motor control mechanisms for human character simulation. One
way is to directly learn motor control mechanisms from the motion
capture data. Motion capture data encapsulates much knowledge of
how humans control their movements, and also contains rich style
information. The other possibility is to borrow research in human
motor control from neuroscience, biomechanics and other related
movement sciences. This is still an active and contentious research
topic with its own arena, and the mystery of human movement con-
trol is far from being completely revealed. Nevertheless, even sim-
plified models and general principles of human motor control can
be useful in increasing the realism of computer animation.

This paper proposes a way to incorporate a simple human neuro-
muscular control model into dynamic simulation systems. Original
motion capture animations can be modified adaptively according to
small unexpected disturbances rising from a dynamically changing
environment. Biological noise can also be introduced on purpose to
avoid repetitive motions.

We will first review some related work in Section 2, and then
describe our motor control model in Section 3. In Section 4 we
give the relevant details of our dynamic simulation system. In Sec-
tion 5 we describe how the dynamic system is coupled with the
proposed motor controller, i.e., how the feedforward torques are es-
timated from motion capture data, and how the feedback torques
are computed during the forward simulation. Experimental results
are shown in Section 6 with relevant discussions. We conclude with
Section 7 and point out possible future work.

2 Related Work

Several researchers have approached the motion editing problem
from a purely kinematic, signal processing point of view [Bruderlin
and Williams 1995; Witkin and Popovic 1995; Unuma et al. 1995;
Lee and Shin 1999]. Various signal processing techniques, includ-
ing multiresolution filtering, displacement mapping, interpolation,
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extrapolation, warping and blending are applied to kinematic mo-
tion data.

Highly skilled specialists have successfully designed motor con-
trollers for dynamic human simulation by hand [Hodgins et al.
1995]. Such controllers are composable using machine learning
techniques [Faloutsos et al. 2001]. Incoporating motion capture
into dynamic simulations makes the control problem much easier
to solve, which in its simplest form is to directly use a tracking
controller connected to a motion capture device [Zordan and Hod-
gins 1999]. Adjusting controller parameters results in force-based
editing techniques [Pollard and Behmaram-Mosavat 2000].

Spacetime constraints (SC), first proposed by Witkin and Kass
[Witkin and Kass 1988], put the motion editing problem into
a constrained optimization framework. SC combines kinematic
keyframimg (space constraints) with dynamic simulation (time con-
straints). Conceptually, a constrained optimizer is used as the motor
controller. The optimization approach has also been used and is still
in use in relevant neuroscience and movement science disciplines.
There are various improvements and extensions to the basic SC ap-
proach [Cohen 1992; Ngo and Marks 1993; Liu et al. 1994; Rose
et al. 1996; Gleicher 1998; Popovic and Witkin 1999]. They either
try to make SC practical by addressing the inherent high cost of
the optimization, or extend SC to address specific types of anima-
tion tasks. Muscle dynamics can also be incorporated into the SC
framework[Komura and Shinagawa 1997; Komura et al. 2001].

Motor learning techniques [van de Panne and Fiume 1993;
Grzeszczuk and Terzopoulos 1995; Grzeszczuk et al. 1998] for
physically-based animation are able to discover motor controllers
for basic motion tasks such as locomotion. Body configuration and
evolution/optimization criteria are provided by the user. It is un-
clear how one could introduce explicit motion control knowledge
into this framework, and how to scale this technique to more com-
plex systems like entire humans.

The related work from neuroscience and movement science will
be described in detail in the following section.

3 A Biologically-based Motor Control
Model

The computational study of biological motor control is fundamen-
tally concerned with the relationship between sensory signals and
motor commands [Jordan and Wolpert 1999; Wolpert and Ghahra-
mani 2000]. There are two basic transformations involved. The first
transformation is from sensory signals to motor commands. It is
often refered to as motion planning in Computer Graphics commu-
nity. Our central nervous system (CNS) issues the motor commands
for a specific task based oninternal modelswe have learned. The
second transformation is from motor commands to their sensory
consequences. It is governed by the physics of the environment, the
musculoskeletal system and sensory receptors.

One fundamental fact of biological motor systems is that neu-
rons, and especially the chemical synapses between them, are very
slow. Therefore sensory feedback through the periphery is de-
layed by a significant amount. For example, visual feedback on
arm movements ranges from 150-250ms. Even a spinal reflex loop
involving as few as three neurons can take on the order of 30ms.
These are very large delays when compared with the total move-
ment duration of very fast (150ms) to intermediate (500ms) move-
ments. Such delays can result in instability when trying to make
rapid movements under high-gain feedback control. Therefore,
high-gain feedback controllers which are widely used in robotics
and control engineering are unrealistic for biological systems.

During the last decade, it has become increasingly accepted that
the brain utilizes internal models of dynamics in planning and con-
trolling motion. The internal model theory proposes that the brain

needs to acquire an inverse dynamics model of the object to be con-
trolled through motor learning, after which motor control can be
executed using feedforward muscle forces, in an almost open-loop
manner [Kawato 1999; Mussa-Ivaldi 1999]. This explains why our
movements show highly stereotyped and stylized patterns, although
almost any task can in principle be achieved in infinitely many dif-
ferent ways. This also explains the observation that well-trained
movements exhibit relatively low joint stiffness (i.e., changes in net
torque at the joint due to displacements from the reference motion),
while during motor learning the stiffness is higher due to lack of
good internal models.

The internal models consist of two modules:forward modelsand
inverse models. Forward models predict the behavior of the body
and world with its knowledge about the body dynamics and envi-
ronment. Inverse models invert the system by providing the motor
command which will cause a desired change in state. Forward mod-
els are important in motor planning in biological systems, since they
can provide fast internal predictive feedback instead of relying only
on the delayed feedback from the periphery. How these models are
used by the brain for planning motion is currently being investi-
gated [Harris and Wolpert 1998].

The precise details of the internal models are not necessary to
transform human motion due to unexpected disturbances of short
duration. It is sufficient to know the important role of feedforward
torques in generating human motion, and the use of low gain feed-
back. Instead of computing the feedforward torques, we directly
estimate it for a given motion using motion capture data as shown
in Section 5.

The intrinsic mechanical properties of muscles and tendons pro-
duce proportional (stiffness) and derivative (viscosity) feedback
forces without delay [Hall 1998]. Our model uses this muscle prop-
erty as a low-gain feedback controller to stabilize the limb along
the desired trajectory. The muscle force-length relationships can
be quite complex, but it is well known that muscle stiffness in-
creases with generated force [Wise and Shadmehr 2002]. A simple
model of this non-linear relationship is the so-called bilinear model
of muscle impedance [Hogan 1990; Winters and Crago 2000]. This
model implies that the effective stiffness is proportional to the neu-
ral input, and hence the generated muscle forces. We assume that
muscle viscoelasticities also increase in a similar way and are small
for well-trained movements.

Figure 1: Motor control model for motion transformation upon un-
expected external disturbances

Figure 1 shows our reference motor control model [Wang et al.
2001]. The internal model is treated as a black box whose output
is the feedforward motor commandψ and desired trajectoryqd.
The muscle-tendon system is driven by the motor command and
generate the forceξ . Muscle force and external force act upon the
human inertial dynamic system and produce the actual trajectory.
There are three feedback paths: muscle-tendon feedback which has
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essentially zero delay; spinal reflex which has 30-50ms delay; and
sensory feedback to the brain which has 150-250ms delay.

Our assumption is that for short duration unexpected distur-
bances such as being hit by a ball, the brain has no time to complete
the long latency feedback loops and replan the motion. The tra-
jectory is restored by the low gain muscle-tendon feedback forces.
Thus we simplify our model by omitting the long latency feedback
modules and only consider the muscle feedback module. The mus-
cle feedback controller we use is a hard-wired, low-gain and signal-
dependent feedback controller. For well-trained unperturbed mo-
tion, muscle feedback has low gain. So we can estimate the muscle
force ξ by inverse dynamics from motion capture data, and useξ

as an approximation of feedforward commandψ (see Section 5.1).

4 Dynamic Simulation of Motion Capture
Data

We have developed a general-purpose rigid body simulation sys-
tem, and extended it to meet the requirements of motor control. Our
simulator is based on a Lagrange multiplier approach for comput-
ing constraint forces, inspired by the work of Baraff [Baraff 1996]
(see references of Baraff for other work in the area). We extend
this approach by allowing the simulator to solve both forward and
inverse dynamics problems. We also introduce some new matrix
notation that we use to describe the muscle forces and include them
in our equations of motion.

4.1 Dynamics Framework

In the Lagrange multiplier approach, the velocity of each body is
parameterized by a full 6 coordinate representation. Each joint in
an articulated body is represented by a constraint equation, which
is a linear equation on the velocities of the bodies. Constrainti
between bodiesa andb is given by the equation:

jiava + jibvb = 0, (1)

where the Jacobian matricesj have 6 columns and one row for each
degree of freedom they remove from the system (the number of
rows is referred to as the degree of the constraint). For a system
with many constraints and many bodies we construct one large ja-
cobian matrixJ, containing all of the constraint equations, and con-
catenate the velocities of all of the bodies into a single vectorv. For
example, if we had a chain of four rigid bodies connected by joints,
the constraint equation would appear as follows:

Jv =

j1a j1b 0 0
0 j1b j1c 0
0 0 j1c j1d


va

vb
vc
vd

 = 0 (2)

If the constraint is workless (i.e., a frictionless joint), then the con-
straint forces are multiples of the rows ofJ. The sum of all con-
straint forces is given by

fc = JT
λ , (3)

whereλ is a vector of Lagrange multipliers. The dimension ofλ

is the sum of the degrees of all of the constraints, which we will
denote withn.

The row space ofJ is the space of constraint forces. We now
wish to introduce an analogous matrixH whose row space is the
space of all possible “muscle forces” which the joints can apply
to their neighboring bodies. The rows ofH correspond to equal
and opposite torques applied at the joint. Similar to equation 3, the
muscle forces are given by

fm = HT
τ. (4)

Combining the constraint equations with the Newton-Euler equa-
tions of motion gives us the following matrix equation:

[
M −JT −HT

J 0 0

]a
λ

τ

 =
[
fext
0

]
(5)

HereM is the mass-inertia matrix of the bodies in the system (a
block diagonal matrix with each block corresponding to one body),
a is the acceleration vector of the bodies, and vectorfext contains
external forces such as gravity and coriolis forces.

Equation 5 is a unified expression that is true for both forward
and inverse dynamics. We will later rearrange this equation to re-
flect the known and unknown values in these two types of problems.

4.2 Details of Matrices J and H

For a joint connecting one body to another, the matricesJ
and H both have twelve columns (they multiply with a vector
[νT

a ωT
a νT

b ωT
b ]T containing the linear and angular velocities of both

bodies that the joint is connected to). The number of rows inJ is the
number of degrees of freedom (DOF) that the joint removes from
the system, while the number of rows ofH is the number of degrees
of freedom in the rotation of the joint. These two numbers always
add up to six. For instance, in a hinge joint, there is 1 degree of
rotation freedom, and five DOF are removed from the system. For
a ball joint, there are 3 degrees of rotational freedom, and 3 DOF
are removed. If we recall that the rows of these matrices are used as
force basis vectors, we can also note that the first and second halves
of these vectors must correspond to equal and opposite forces ap-
plied to the pair of bodies. This constraint restricts the row space
of J andH to a six-dimensional subspace ofR12. The row space
J andH must always span this entire 6D subspace containing all
equal-and-opposite force pairs.

In our implementation, we follow the convention for describing
rigid body velocities that is described by Baraff and Witkin [Baraff
and Witkin 1997]. The velocity of a rigid body is given as a vector
v = [νTωT ]T , whereνT is the velocity of the centre of mass of the
object, given in world coordinates, andω is the world coordinates
of the angular velocity vector. Under this convention, our matrices
J andH has the following structure:

[
J
H

]
=


1 0 0
0 1 0
0 0 1

−[ra]
−1 0 0
0 −1 0
0 0 −1

[rb]
0 0 0
0 0 0
0 0 0

eT
1

eT
2

eT
3

0 0 0
0 0 0
0 0 0

−eT
1

−eT
2

−eT
3

 , (6)

wherera is the vector from the centre of mass of bodyA to the
joint, andrb is the vector from bodyB’s centre of mass to the joint.
The notation[r ] denotes the 3× 3 skew-symmetric cross product
matrix of vectorr . The axis vectorse1,e2,e3 are three orthogonal
vectors in world coordinates, some of which are the free rotation
axes of the joint, and some of which may be axes that joint bodies
are constrained not to rotate around. Which of the rows of the above
matrix belong toJ and which belong toH depends on the type of
joint.

For a more detailed derivation, see [Cline 2002].

4.3 Forward Dynamics

In forward dynamics, the muscle force multipliersτ are known
quantities. MovingHTτ to the right hand side of equation 5, and
then discretizing gives[

M −JT

J 0

][
vt+h

λ

]
=

[
−Mvt −hk

0

]
(7)
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whereh is the time step size,vt andvt+h are the velocity of the rigid
bodies at timet andt +h, andk = fext+HTτ. Solving this equation
at each time step gives us the updated velocity of the system.

To counteract drift at the joints due to numerical error, we use
a post-step stabilization scheme [Ascher et al. 1995; Cline 2002],
where after each simulation step we make a small correction to the
position of the bodies so that the constraints are maintained.

4.3.1 Accomodating Stiffness

When using explicit integrators for forward simulation, we found
that for the simulation to remain stable, we were forced to use small
time steps and unrealistically low stiffness and damping constants,
making our model very sensitive to external forces. In order for
the techniques in this paper to work well, an implicit integrator is
essential.

We use an implementation of the linearly implicit time stepping
method [Anitescu and Potra 2000]. Fortunately this requires only
small modifications to our existing simulator. The main require-
ment of this implicit method is that we must calculate the gradients
of the stiff forces with respect to changes in the position and veloc-
ity of the rigid bodies.

To derive the linearly implicit method, we start with a backward
Euler discretization of rigid body dynamics equation:

M
(vt+h−vt

h

)
= k

(
pt+h,vt+h, t +h

)
(8)

The difficulty in solving this is that the force vectork is not known
unless the position and velocity vectorspt+h andvt+h are known.
We make the linear approximation (hence the term ’linearly im-
plicit’) that

k
(
pt+h,vt+h, t +h

)
≈

k
(
pt ,vt , t

)
+∇p h vt+h +∇v(vt+h−vt),

(9)

where∇p and∇v are the gradients of the functionk with respect
to change in position and velocity, respectively, and evaluated at
(pt ,vt , t).

If we substitute this into equation 8 and move all of the terms
with vt+h to the left hand side, we obtain

(M−h2∇q−h∇v)vt+h =

Mvt −h∇vvt +h k
(
pt ,vt , t

) (10)

It is convenient to use the notation

M̂ = M−h2∇q−h∇v (11)

and

k̂ = k
(
pt ,vt , t

)
−∇vvt (12)

so that the linearly implicit equation for forward dynamics closely
resembles equation 7. The implicit version is:[

M̂ −JT

J 0

][
vt+h

λ

]
=

[
−Mvt −hk̂

0

]
(13)

In our implementation, we estimate the force gradients∇p and∇v
numerically, by evaluatingk for several position and velocity values
in the neighborhood of the current state of the system [Anitescu and
Potra 2000].

4.4 Inverse Dynamics

Inverse dynamics is the process of finding a set forces that explain a
given motion. The inverse dynamics equations we solve are another
form of equation 5. We moveMa to the right hand side of the
equation (because the acceleration is a known quantity). Assuming
the constraint equationsJv = 0 are satisfied by the given motion,
we no longer need the second row of equation 5. We are left with:

[
JT HT

][
λ

τ

]
= Ma+ fext (14)

If we can estimate the mass properties of the bodies of our artic-
ulated figure, along with the accelerations of its component bodies,
then equation 14 can be solved to determine the muscle forces mul-
tipliers τ.

5 Implementation Details

The implementation of our method consists of two main compo-
nents. The first is a preprocessing stage, where we use inverse dy-
namics to estimate the feedforward torques from the motion cap-
ture data. The second component, which happens during the dy-
namic simulation, is the calculation of the actual muscle torques,
which are a combination of the precomputed feedforward torques,
and feedback torques which depend on the difference between the
trajectories of the rigid bodies in the motion capture and the trajec-
tories in the dynamic simulation.

5.1 Inverse Dynamics Preprocessing

Before beginning our dynamic simulation, we estimate a set of
feedforward muscle torque multipliersτ for each time step. Given
the mass matrixM, the constraint jacobianJ, the matrixH, the ex-
ternal force vectorfext, and the accelerationa, we can calculateτ
using equation 14.

We can estimate the accelerations of the rigid bodies in each
frame by fitting a smooth curve to the position data, and then find-
ing the second derivative of the curve.

One difficulty in evaluating equation 14 is that the mass proper-
ties of the character’s component rigid bodies are unknown. We
deal with this by approximating the shape of the character with
polyhedra and computing the mass matrix for these, assuming the
density of water (the body’s average density is reasonably close to
that of water).

We believe it may be possible to directly estimate the mass-
inertia matrix of the figure from the motion capture data by making
the mass properties unknowns in the inverse dynamics equation.
However, this approach would require solving the inverse dynam-
ics for every frame in the animation simultaneously, making it more
computationally challenging. Estimating the mass properties from
the geometry, on the other hand, allows us to solve each frame’s
inverse dynamics separately.

We can use equation 6 to computeJ andH. In order to do this,
we require a kinematic model of the character to tell us the location
and type of each joint. In our experiments, this model was given
with the data set.

Using equation 14, we precompute feedforward torques for each
of the frames in the animation before beginning the forward simula-
tion. The total feedforward torque is given byHTτ. But for the next
section, we will need to break this down into smaller components
ψ1, ...,ψn, each of which correspond to one degree of freedom of
the joints.
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HT
τ =

[
h1 h2 . . . hn

]
τ1
τ2
...

τn


=h1τ1 +h2τ2 + . . .+hnτn

=ψ1 +ψ2 + . . .+ψn

(15)

Theψ ’s are stored in body relative coordinates rather than world
coordinates, because the orientation of the joints with respect to the
world may be different in forward simulation than in the original
motion capture animation.

5.2 Combining Feedback and Feedforward Torques
During Forward Simulation

The muscle torques applied during forward simulation are a com-
bination of the feedforward torque (the torques calculated during
the initial inverse dynamics phase) and the feedback torque, which
models the muscle dynamics module of our motor control model.

Individual feedback torques are calculated for each degree of
freedom of all of the joints. Letθ1,θ2, ...θn be joint angles corre-
sponding to each degree of freedom, andθ̇1, θ̇2, ...θ̇n be joint veloc-
ities. The joint anglesθd1,θd2, ...θdn are the “desired” joint angles
– the joint angles from the motion capture data.

The feedback torque tries to compensate small drifts and distur-
bances during the simulation. It is given by

γi = hi |τi |
(

ks(θdi−θi)+kd(θ̇di− θ̇i)
)

(16)

whereks andkd are the stiffness and damping constants. Note
that the stiffness is proportional to the magnitude of the muscle
torque,hi |τi |, as observed empirically in muscle biomechanics.

Our total muscle torques are given by the sum of the feedforward
and feedback torques:

ξ =
n

∑
i=1

(γi +ψi) (17)

The muscle torques are added into the dynamics equation along
with any other external forces, such as gravity and perturbations.

5.3 Algorithm Summary

Our approach can be summarized by the following steps:

• Preprocessing: inverse dynamics

– Estimate the mass matrixM for rigid bodies which ap-
proximate the shape of the character.

– Fit a smooth curve to the position data.

– Sample the accelerations of the rigid bodies at the rate
at which we wish to run the dynamic simulation.

– For each sampled time step:

∗ ComputeJ andH given the positions of the rigid
bodies.

∗ Solve the inverse dynamics equation to determine
the muscle torque multipliersτ.

∗ Store the feedforward torquesψ1, ...,ψn in body
coordinates.

∗ Store the current joint anglesθd and joint veloci-
ties θ̇d.

• For each step during forward simulation:

– Compute the current joint anglesθ and joint velocities
θ̇ .

– Compute the feedback torquesγ1, ...,γn, using equation
16.

– Compute the total external forcefext.

– Solve the dynamics equation 13 to determine the state
of the system at the next time step.

6 Experiments and Discussions

We perform our experiments on captured arm motions and full-
body motions in football games. Figure 2 shows the skeleton model
and the surface model we use in our simulation and rendering. Al-
though our skeleton model is relatively complex for the dynamic
system, it is still very simple for realistic human motion simulation.
For example, the whole spine is represented by only 3 segments,
which will cause unrealistic body response under some cases. For
people who are familiar with human anatomy, the human shoulder
is far from an ideal ball-and-socket joint. The supination and prona-
tion of hand is achieved by the proximal and distal radioulnar joints
in real life, not by an 1dof joint in-between the elbow and the wrist.
The surface geometry is of rather low resolution, 590 vertices for
the body and 136 vertices for the helmet, which may also degrade
realism to some extent.

Figure 2: The skeleton model for our character simulation is shown
on the left. Each square represents a joint. The total degrees of
freedom is 54, and the degrees of freedom for each joint are labeled
nearby. The skin geometry model for final rendering is shown on
the right.

Figure 3 shows motion perturbation on a sequence of arm mo-
tion. Figure 4 shows motion perturbation on a sequence of full-
body motion. In both cases, the simulated skeleton responds to
external disturbances and restores to the original motion naturally.
Skinned character animations are shown on the video that accom-
panies this paper.

There are several limitations in this work. First, our motor con-
trol model is very simple right now. It can only cope with small dis-
turbances. We work under the assumption that small disturbances
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Figure 3: A sequence of a ball hitting a simulated arm (left to right, top to bottom). The motion capture data (left arm in each frame) is
shown for comparison. The simulated arm reacts to the impact of the ball (which happens between frames 2 and 3), and then
returns to the same path as the motion capture.

Figure 4: A sequence of a ball hitting a simulated body (left to right, top to bottom). The motion capture data (left body in each frame) is
shown for comparison. The simulated body reacts to the impact of the ball (two collisions occur, one between frames 2 and 3,
the other between frames 5 and 6), and then restores to the original motion.

are totally recoverable by muscles, without triggering the brain to
replan the motion. In a real-life interactive sports video game, re-
alistic dodges and realistic falls are absolutely desirable but very
difficult. We know of no system that can do this yet. More sophisti-
cated motor control models need to be developed. We also simplify
the system by constraining the root joint (the joint located roughly
at the Lumbosacral angle of the spine) to move along the motion
capture path. We can thus omit the contact dynamics with the floor.
This turns out acceptable since we are dealing with small upper
limb perturbations. Even though motion perturbation is a subset
of possible motion modifications, it is a large and common subset
important for video games.

We developed our own dynamic simulator instead of using a
commercial package. We simulate dynamics in maximal coordi-
nates instead of in reduced (generalized) coordinates. These deci-
sions make our work different from most of other works on human
simulation in Computer Graphics community, however, they give
us better flexibility. These decisions do bring in problems. Cur-
rently the performance is not real time. For a full body with an
extra ball, the simulation runs at 7 frames per second on a Pentium
III machine. The frame rate drops even further when collision hap-
pens. By simple performance analysis, we found out the compu-
tation mainly goes to: finite-differencing for the implicit integrator
(see Section 4.3.1), forward dynamics, and post-step stabilization

(both see Section 4.3). The finite-differencing can be sped up by
distributed parallel computation, or better yet, replaced by analyti-
cal differentiation or their approximations. For forward dynamics,
we tried the linear-time approach [Baraff 1996] without auxiliary
constraints. It only gives us about a factor of two speedup for a
full body system with 84 Langrange multipliers. This conforms to
Baraff’s results [Baraff 1996], where a system with 99 Lagrange
multipliers has a factor of two speedup. For more complex sys-
tems, such as several-player simulations, linear-time dynamics is
definitely the right way to go.

7 Conclusion

Motor control is one of the major challenges in physically based hu-
man simulation. In this paper, we address this problem by explicitly
incorporating human neuromotor control models into the human
simulation system. We test our approach with motion perturbation
tasks on motion capture data, and the results are promising. We
believe using a biologically-based motor control module is the ul-
timate way to solve control problems in physically-based character
animation. We intend to explore better computational motor control
models from the biomechanics and neural control literature [Win-
ters and Crago 2000; Wise and Shadmehr 2002], and apply them to
more challenging motion transformation tasks.
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