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Abstract

Computing the frequency of a pattern is a key operation in data mining algorithms. We describe

a simple, yet powerful, way of speeding up any form of frequency counting satisfying the monotonicity

condition. Our method, the optimized segment support map (OSSM), is based on a simple observation about

data: Real life data sets are not necessarily be uniformly distributed. The OSSM is a light-weight structure

that partitions the collection of transactions into � segments, so as to reduce the number of candidate

patterns that require frequency counting. We study the following problems: (i) What is the optimal value of
� , the number of segments to be used (the segment minimization problem)? (ii) Given a user-determined � ,

what is the best segmentation/composition of the � segments (the constrained segmentation problem)? For

the segment minimization problem, we provide a thorough analysis and a theorem establishing the minimum

value of � for which there is no accuracy lost in using the OSSM. For the constrained segmentation problem,

we develop various algorithms and heuristics to help facilitate segmentation. Our experimental results

on both real and synthetic data sets show that our segmentation algorithms and heuristics can efficiently

generate OSSMs that are compact and effective.
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1. Introduction and motivation

Computing the frequency (or support) of a pattern is a key operation in data mining algorithms.

For the algorithms to discover frequently occurring patterns, they have to investigate specific patterns to

find cardinalities of subgroups, or the significance of deviations, etc. Typically, the patterns, whose fre-

quencies are needed, are conjunctions of atomic patterns. A prime example is given by the frequent-set

concept underlying association rules [2, 3]. Moreover, the patterns defined for correlation [6, 8], causal-

ity [25], episodes [19], constrained frequent sets [16, 20, 26], closed sets [23], sequential patterns [4],

multi-dimensional patterns [18], long patterns [1, 5], emerging patterns [7], partial periodicity [9], cyclic

associations [21] and many other important data mining tasks have the same basic form. In all these cases,

we have instances of the following abstract problem:

Given a collection
�

of atomic patterns or conditions, compute for a collection ��� �
the

support �����
	��
� of � . The monotonicity condition ������	��
���������
	�������� holds for all ����� ,

since the frequency or support of � is defined to be the number of observations in the data for

which all atomic patterns in � are true.

In this technical report, we describe a simple, yet powerful, way of speeding up any form of frequency count-

ing satisfying the monotonicity condition. Our method, the optimized segment support map (OSSM), is

based on a simple observation about data: Real life data sets are not random. More concretely, the frequen-

cies of patterns may be different in different parts of the data set. Computing the frequencies separately in

different parts of the data set makes it possible to obtain better/tighter upper bounds for the frequencies of

the collections of patterns, and thus enables one to prune much more effectively. The results are useful to

the mining of any type of patterns mentioned above.

The frequencies of patterns are typically computed in a collection of “transactions”;1 that is, ���
���! �"$#$#$#�"%��&'� . Most algorithms mining the types of patterns mentioned above do so by generating candidate

patterns �
 $"$#$#$#("!�*) , and checking their frequencies against � .2 The OSSM is a light-weight and easy-

to-compute structure that partitions � into � non-overlapping segments (i.e., �+�,�  .- #$#$# - �*/ and

�10324�657�98 ), with the goal of reducing the number of candidate patterns (i.e., : ) for which frequency

counting is required. We make the following specific contributions:

; In Section 3, we present the OSSM and show how it provides a light-weight mechanism to reduce the

number of candidate patterns.
1Transactions may come in different forms. In the case of association rules, a transaction is a set of items [2]. In the case of

episodes, a transaction corresponds to a sequence of events in a sliding time window [19].
2There are algorithms that do not rely on candidate generation (e.g., FP-growth [10], CHARM [29] and GenMax [28]).
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; In Section 4, we consider the segment minimization problem. Given an OSSM � / of � seg-

ments �
 $"$#$#$#�" � / , the OSSM provides for any set � of items an upper bound for the support of � ,

denoted by ���� �3	��
"�� / � . The segment minimization problem is to find the smallest value of � such

that the upper bound, in fact, becomes the actual support of � . In other words, there is no loss of

accuracy using the OSSM. We show that the minimum value of � , denoted by � / 0 & , can be quite

high in the general case.

; Since the OSSM created with � / 0 & segments consumes too much space, we consider the constrained

segmentation problem in Section 5. Given an input value �������
	 (which is smaller than � / 0 & ),

the constrained segmentation problem seeks to find the �����
�
	 segments that minimize the loss of

accuracy. In other words, with the number of segments fixed to �������
	 , we seek to find the best

way to partition � into �� $"$#$#$#(" � /�
������ . Finding the optimal solution turns out to be computationally

expensive. We thus focus on developing heuristic segmentation algorithms. We present three such

algorithms and analyze their complexities. To further optimize the segmentation process, we propose

to run some of these algorithms in a hybrid fashion, and propose a heuristic called the bubble list.

; Given the heuristic nature of our algorithms, we present experimental results in Section 6 evaluating

the effectiveness of the segmentation. We show that all our segmentation algorithms bring about sig-

nificant savings in frequency counting. For example, for an OSSM that occupies only 0.3 megabytes

in total size, it can bring about a speedup of 50 times. Furthermore, with the help of our proposed

heuristics, this OSSM can be constructed in less than 10 seconds of total time, for 5 million transac-

tions.

An outline of this technical report is as follows. The next section discusses the related work. Section 3

introduces the OSSM and the way it reduces the number of candidate patterns. Section 4 analyzes the

segment minimization problem, and Section 5 studies the constrained segmentation problem. Section 6

shows experimental results. Section 7 discusses the additional benefit of using the OSSM in conjunction

with efficiency/performance improving algorithms such as DHP [22], Partition [24] and DepthProject [1].

Section 8 presents conclusions.

2. Related work

The most relevant piece of related work is our case study [15] focusing on the use of an SSM structure

to facilitate the Carma algorithm [11] for online mining. With such a structure, the collection of transactions

is divided arbitrarily into several partitions. Such a case study is different from our current report as follows.

First, in the current report, we discuss how the OSSM is applicable to general pattern discovery algorithms

(e.g., Apriori [3], and many of its variants and extensions). Second, the collection of transactions is divided
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into segments in the OSSM according to some optimization criteria (e.g., to preserve accuracy when dealing

with the segment minimization problem, to minimize the loss in accuracy when dealing with the constrained

segmentation problem). Third, the key technical focus of the current report is on the segment minimization

problem and the constrained segmentation problem, which have not been studied previously.

The next group of related work is on partitioning-based data mining algorithms (e.g., the DHP al-

gorithm [22], the Partition algorithm [24]). Existing algorithms for mining the various types of patterns

mentioned in the introduction do not use the OSSM. On the surface, the hashing-based partitioning done

by the DHP algorithm [22] looks similar to the OSSM. However, there are several key differences. First,

the DHP algorithm uses a hash table to partition the itemsets of the same cardinality (e.g., 2) into buckets;

whereas, the OSSM partitions transactions, not itemsets. Second, the hash table is dynamically created for

each run of the DHP algorithm; whereas, the OSSM is intended to be a static structure. Third, the segment

minimization problem and the constrained segmentation problem are not considered in the DHP algorithm.

Another well-known partition-based mining algorithm is the Partition algorithm [24]. Such an algorithm

divides transactions into partitions, and computes all the itemsets that are locally frequent within each par-

tition. Again, there are several key differences. First, the Partition algorithm does not set up any structure

like the OSSM to reduce the number of candidate patterns. Second, the segment minimization problem and

the constrained segmentation problem are not considered in the Partition algorithm. (As a preview, we will

discuss in Section 7 how the OSSM can be used in conjunction with each of these two partitioning-based

data mining algorithms, and will show the additional benefit brought by the OSSM to these two algorithms.)

The third group of related work is on the FP-growth algorithm [10] and its variants. The FP-growth

algorithm is an example of a framework not requiring candidate generation. The algorithm constructs a

prefix-tree structure, called a Frequent Pattern tree (FP-tree) to mine frequent patterns in a depth-first fashion.

Contrarily, the OSSM framework proposed in the current report—like most studies on frequent-pattern

computation—relies on candidate generation. The two frameworks are different in at least the following

key aspects. First, the FP-tree is query-dependent; the tree is constructed based on a user-defined support

threshold of the query. In contrast, the OSSM is “static” (i.e., operating with any support threshold). Second,

the FP-tree is main-memory based. If the tree is too large to fit into main memory, recursive projections

and partitioning are required, causing additional overhead. On the other hand, once the FP-tree resides

in memory, it does not take advantage of additional memory space. In contrast, given a small amount of

memory space, an OSSM can still be constructed (using fewer segments) and can bring a significant speedup.

Given a large amount of memory space, the OSSM can take advantage of the additional space by using more

segments; this further reduces the number of candidates for which frequency counting is required (i.e., leads

to more effective pruning). In sum, the OSSM is designed to work with any amount of memory space. Its

size is independent of the size of the itemset lattice. In fact, the main focus of the current report is to explore
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how to construct an OSSM given a pre-determined amount of space.

The fourth group of related work focuses on the use of histograms in query optimization. Finding

optimal histograms for numeric data distribution has been studied extensively (e.g., the work of Ioannidis and

Poosala [12], and of Jagadish et al. [13, 14]). Specifically, for a numeric attribute � , let � � ���  $"$#$#$#("���&'�
be its sorted value set, and � ���	�  $"$#$#$#�"
��&�� be the corresponding vector of frequencies. A histogram for �
is constructed by partitioning � into � intervals called bins. Optimality is defined based on such metrics as

sum squared error or average standard deviation. There are several key differences between this line of work

on optimal histogram and the segmentation problems considered in the current report. First, a histogram is

constructed following the ordering imposed on � . In other words, given � 0 "�� 0�
3 and � 0�
�� , it is not allowed

to put � 0 and � 0�
�� in a bin that does not include ��0�
3 . Because of the ordering imposed on � , a dynamic

programming approach gives an optimal histogram [14]. However, for the segmentation problems in the

current report, there is no explicit ordering for the transactions to follow. The lack of an ordering renders

a dynamic programming approach inadequate, and requires the examination of all possible orderings of the

transactions. Hence, for the segment minimization problem in the current report, essentially our theorem

explicitly constructs an optimal ordering. Second, for optimal histograms, there is only one frequency vector

to be partitioned. However, for the constrained segmentation problem in the current report, the segmentation

is to be conducted based on all pairs of domain items simultaneously (cf. Section 5)—not separately. This

is a major complication, and is different from forming multi-dimensional histograms (e.g., the work of Lee

et al. [17]).

3. The optimized segment support map and its utility

Let the collection of transactions � be partitioned into � segments, not necessarily of equal size. In

later sections, we will discuss how to determine the composition of the � segments. An OSSM is a structure

consisting of ����� 0 	�������� for all singleton itemsets ����� , where ����� 0 	�������� denotes the support of ����� in the
�
-th segment �10 , for � � � � � . The support of ����� is then � /0��3 ��� ��0 	�������� . While the OSSM � / only

contains the segment supports of singleton itemsets (for the � segments �  "$#$#$#�" �*/ ), it can be used to give

an upper bound on the support of an arbitrary itemset � :

������3	��
"�� / � �
/�
0��3 

� ��� �(������0%	����6����� � � � � (1)

Example 1 Suppose there are 4 segments in the OSSM ��� , and the (actual) segment supports for items �'"
�
and � are as shown:

�
 ��� ��� � � �
����� 20 10 40 40 110
�!��� 40 40 40 10 130
�"�(� 40 20 20 20 100
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By equation (1), ���� �3	�����"
����"�� � � is � ��� � ��� "�� � ��� � ��� � � � "�� � ��� � ��� �	� � "�� � ��� � ��� �	� � "�� � � , for a total

of 80. Similarly, by equation (1), the support of ���'"
�(" �(� is bounded from above by 60. On the other hand,

if we do not use the OSSM (i.e., just by the last column of the above table), then the upper bound on the

support for ����"
��� is 
���
 � � � � "��	� � � � � � � , while that for ���'"
��" �(� is 
���
3� � � � "��	� � "�� ��� � � � ��� .

The above example shows how the OSSM can provide valuable filtering by reducing the number

of candidate itemsets that need to be counted for their frequencies (e.g., when the support threshold is

less than 100). For many of the frequent-pattern algorithms, such as frequent-set discovery methods or

episode discovery methods, one of the performance bottlenecks is the number of candidates that have to be

considered; even in cases where the true number of frequent patterns is small, there can be a huge number

of candidate patterns. Another important thing to note is that for many algorithms (e.g., those based on

hashing), skewed data can be problematic. In contrast, the more skewed the data, the more effective the

OSSM is.

Clearly, the upper bound ���� �
	��
"�� / � provided by the OSSM � / can be made tighter in two ways.

The first way is to increase the number of segments � . The amount of storage space required is then

increased linearly. In the hypothetical extreme case, where the number of segments � equals the number of

transactions
�

, the upper bound becomes the actual support count of � .

The second way to generalize the OSSM is to store not only the actual segment supports of singleton

patterns or itemsets, but also the actual segment supports of itemsets of higher cardinalities (i.e., itemsets

of sizes greater than one). For example, to determine an upper bound on the support of ����"
�(" �(� , the actual

segment supports based on ���'"
��� , ���'" �(� and �!�(" ��� may provide a tighter bound than those based on ���6� ,
�!��� and �"��� . The price is that the amount of storage space required is then increased exponentially with

respect to the sizes of the stored itemsets. Thus, we consider in this technical report segment supports

only for singleton itemsets. In this way, we keep the OSSM as a very light-weight structure. For instance,

suppose there are 150 segments. Using 2 bytes for each segment costs 300 bytes of storage for each item.

For 1000 items, the total size of the OSSM is merely 0.3 megabytes. As a preview, the results shown in

Section 6 indicate that even with an OSSM of 0.3 megabytes in size, the gain in performance can easily be

more than an order of magnitude.

We also note that knowledge discovery is typically an iterative process. One first computes certain

patterns, investigates them, and then re-computes them using perhaps different thresholds. In this context,

an advantage of the OSSM is that it is a fixed structure that can be computed once at “compile-time” (pre-

processing), and can be used regardless of how the support threshold is dynamically changed by the user

during “exploration-time” (query execution). In other words, the OSSM is query-independent. This is

different from such mining algorithms as DHP [22] or FP-growth [10], which are query-dependent; they
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Symbols Meanings�
The collection of reference transactions� The number of segments������� The minimum number of segments without loss of accuracy���
	���
 The user-specified number of segments���
����������� � The � segments of transactions�
A set of items� � � ����������� ��� ������� Individual items�
The total number of individual domain items� � An OSSM consisting of � segments �!#"%$ �'& The actual support of

�
with respect to the collection of transactions

� �!#"($ � � � � & An upper bound on  �!)"*$ �'& based on
� �

" The number of pages occupied by the collection of transactions

Figure 1. Definitions of the main symbols

construct summary structures (e.g., hash table or FP-tree) based on a given support threshold of the query

(cf. Section 2).

Finally, we note that there is no searching involved when the OSSM is used. Once the singleton

itemsets are enumerated based on some canonical ordering, the itemsets themselves (i.e., the first column of

the table in Example 1) need not be stored, and direct addressing into the OSSM makes use of equation (1)

very efficient.

4. The segment minimization problem

While the previous section highlighted the potential benefit of the OSSM, there are two main questions

that need to be addressed:

1. What is the optimal number of segments (i.e., the value of � )?

2. What is the best composition of the � segments?

The primary focus of this section is the first question. In particular, we consider the segment minimization

problem, as stated below.

Definition 1 Given a collection of transactions � , the segment minimization problem is to determine the

minimum value � / 0 & for the number of segments in the OSSM � /,+.-0/ , such that ���� �3	��
"�� /,+.-1/ � �
�����
	��
� for all itemsets � . That is, the upper bound on the support for any � is exactly its actual support.

To make it easier to understand our analysis, we begin with the simple (hypothetical) situation where

there are only 2 individual items. Then, we present the key theorem giving the � / 0 & value for the general

case with 243 �
items. Finally, we generalize the analysis to cover a more practical and relaxed notion of

accuracy. For reference, Figure 1 gives a summary of the main symbols used in this technical report.
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4.1. Lessons learned from the situation with only 2 items

For ease of understanding, we begin our analysis for the hypothetical situation where there are only

two items, � and � .

Example 2 Suppose there is a collection of transactions as shown:

Transactions in � Contents

�! �����
� � ���'"
���
� � �����
� � �����
��� �!���
��� �!���

Let us consider the following OSSM ��� containing 6 segments, each of which consisting of a single

transaction:

�
 ��� ��� ��� ��� ���
����� 1 1 1 1 0 0
�!��� 0 1 0 0 1 1

While it is impractical to consider one transaction per segment, this example does illustrate an important

observation. Consider the following OSSM ��� , which contains 2 segments:

� � � ��
����� 4 0
�!��� 1 2

Specifically, the first segment � � consists of all transactions containing � (i.e., transactions �� $"%� � "%� � and

� � ), and the second segment � �� consisting of all transactions containing � but not � (i.e., transactions ���
and ��� ). Now, with this OSSM � � , it is easy to verify that the upper bound ������
	����'"
����"�� ��� is given by
� ��� �	� "���� � � ��� � � " � ��� � , which is the exact support of ����"
��� . Furthermore, suppose the segmentation

is done slightly differently—with � � moved from segment � � to � �� :
� � �� � � � �� - � �

����� 3 1
�!��� 1 2

The resulting upper bound is then given by � ��� � � "���� � � ��� � � " � � � �
, which is no longer the exact

support of ����"
��� .

The following analysis shows that what we have seen from the above example is not a coincidence.

The definition of segment � � in Example 2 necessitates that ������	����6����3 �����
	��!����� in the segment. From
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now on, we use the notation 	 � � �$� to describe this situation, and we refer to this description as the

configuration of the segment. Similarly, we denote the configuration of segment � �� as 		� � � � .
The following lemma shows that when we merge two segments �30 and �65 that are of the same config-

uration, we preserve the configuration and do not change the upper bound due to the two segments.

Lemma 1 Let � 0 and �65 be two segments of the same configuration from a general collection of trans-

actions. If we merge � 0 and �65 into one combined segment � � , then the merged segment is of the same

configuration, and ���� �
	����'"
����" �10�� � ������3	����'"
����" � 5 � � ������3	����'"
����" � � � .

To understand this lemma, let � 0 and �65 be of the configuration 	 � � �$� . Then, we have the following:

�*0
����� �  
�!��� � �

� 5
���6� � �
�!��� � �

with �  3 � � , and � � 3 � � . Now, with � 0 and � 5 merged, we have the following:

� � � �10 - � 5
����� �  � � �
�!��� � � � � �

It is easy to verify that �������	�����"
����" �10�� � ���� �
	�����"
����" �65 � � ���� �3	�����"
����" � � � . The case for two segments of

the configuration 		� � � � is similar.

4.2. Generalization to the situation with � items

In general, for 2 items �  "$#$#$#�" ��� , the configuration of a segment is of the form 	 � 0�� � #$#$# � � 0�� � ,
where 	 � 0��$"$#$#$#�" � 0 � � is a permutation of the 2 items. This descriptor indicates that in this segment, it is the

case that ��� �
	���� 0 � ��� 3�#$#$#*3 �����
	���� 0 � ��� .3 Clearly then, there are 2
	 possible configurations of segments.

A close examination reveals that the number of possible configurations can be reduced. Given a col-

lection of transactions of 2 items, it produces at most
� �

� � distinct non-empty itemsets. Among these

itemsets, 2 of them have the same configuration. Hence, the number of possible configurations of segments

can be reduced to
� �
� 2 .

Theorem 1 Let � be a general collection of
�

transactions for 2 items. If we allow the transactions in �
to be rearranged, then the minimum number of segments � / 0 & required in the general case for the upper

bound on �����
	��
� to be exact for all itemsets � , is the number of segments with distinct configurations.
3To be more precise, if there are ties (i.e., �
��������� -�������� ����������� -���� ���!� ), then we adopt the following convention. Without loss

of generality, we assume that there is a canonical enumeration of the individual items. Ties are broken by following the canonical
enumeration (i.e., "$#&%'"(#*) � ).
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To understand the above theorem, suppose there are initially more than
� �
� 2 segments. Then, there

must be at least two segments with the same configuration, say 	 �'0 � � #$#$# � � 0 � � . The reasoning articulated

in Lemma 1 applies. Thus, even if there are initially more than
� �
� 2 segments, repeated merging would

reduce the number of segments to be no more than
� �
� 2 .

To go one step further, let us consider merging two segments �  and ��� with different configurations.

While the general case can be proved by induction, let us focus on a simple case to understand the situation—

the configurations being the following:

	 � 0�� � #$#$# � � 0 # � � 0 # ) � � #$#$# � � 0 � � for �
 ,
	 � 0�� � #$#$# � � 0 # ) � � � 0 # � #$#$# � � 0�� � for � � .

That is, two successive items � 0 # and � 0 #*) � swapped in the permutation. The following shows the part of the

OSSM corresponding to �  and � � :
�  � �

��� 0 # � �  � �
��� 0 # ) � � � � � �

for some non-negative integers �  �"$#$#$#�"�� � . Because � 0 # � � 0 # ) � in �
 , it is the case that �  3 � � . However,

in ��� , it is the opposite, namely � � � � � . If we merge these two segments, we get the following:

� � � �3 - ���
��� 0 # � �  + � �
��� 0 #*) � � � � + � �

Now, consider estimating the support ������	���� 0 # " � 0 #*) � ��� . It is always the case that � � � � 	 �  � � ���!"�	 � � �
� � � � 39	 � � � � � � . The inequality is strict, unless �  � � � and � � � � � . This shows that merging seg-

ments with differing configurations can cause the upper bound on �����
	�� � for some itemset � to be inexact.

Hence, if the transactions themselves give rise to all
� �
� 2 possible configurations, � / 0 & is exactly

� �
� 2 .

4.3. A relaxed notion of accuracy: The page version

The above analysis formally addresses the segment minimization problem. However, from a utility

standpoint, the results obtained clearly indicate that segment minimization is computationally expensive

(i.e., requiring, in the general case,
� �
� 2 segments to ensure that the upper bound on �����
	�� � is exact for

all itemsets � ). The number
� �
� 2 is simply too huge to be practical.

If we were to relax the notion of accuracy in segment minimization, would we be able to reduce the

number of required segments to a much more manageable number? Specifically, as analyzed so far, the

segment minimization admits no loss of accuracy. That is, the upper bound from the OSSM on ������	��
�
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exactly matches the actual support for all itemsets � . As transactions are stored in pages, one natural form

of relaxation of the segment minimization problem is to consider the page version of the problem. Recall

that in the earlier analysis, we made the implicit assumption that initially we know the frequency of every

item in every transaction in the segment. The page version of the segment minimization problem begins

with a higher granularity level. Initially, we have the aggregate frequency of every item per page. Suppose

the collection of transactions � is physically organized into � pages, denoted by � � "$#$#$#�" � �� . Then, the page

version of the segment minimization problem can be described as follows.

Definition 2 Given a collection of transactions � organized in � pages � � "$#$#$#�" � �� , the page version of the

segment minimization problem is to determine the minimum value � / 0 & for the number of segments in

the OSSM � / +.-1/ , such that ���� �
	��
"�� /,+.-0/ � � ������3	��
"�� �
� � for all itemsets � . That is, the upper bound

suffers no loss of accuracy compared to the initial � segments in � �
� � � � � "$#$#$#(" � �� � .

Corollary 1 Let � be a collection of transactions for 2 items in � pages � � "$#$#$#(" � �� . If we allow these

pages to be rearranged, then the minimum number of segments � / 0 & required in the general case for

������3	��
"�� /,+.-0/ � � ���� �3	��
"�� �
� � for all itemsets � , is the number of segments with distinct configurations.

For academic interest, this corollary of Theorem 1 is a positive result because it indicates that the

previous analysis carries over to the page version of segment minimization problem. However, from a

practical perspective, this corollary is negative stating that even if we were to relax the notion of accuracy

from a per-transaction basis to a per-page basis, we would still end up with a huge number of segments for

segment minimization. This motivates us to explore the constrained segmentation problem.

5. The constrained segmentation problem

Recall that concerning the creation of an OSSM, there are two issues: (i) the number of segments, and

(ii) the composition of the segments. The segment minimization problem we have analyzed so far begins

by focusing on having the minimum number of segments. In this section, we look at these issues from a

different angle. Here, we study the constrained segmentation problem, as stated below.

Definition 3 Given a collection of transactions in � pages and a fixed number of segments � ���
��	�� � / 0 &
(and � ���
��	�� � ) to be formed, the constrained segmentation problem is to determine the best composition

of the � �����
	 segments that minimizes the loss of accuracy.

We first introduce a way to quantify the loss of accuracy when merging two segments of differing

configurations. Given the properties of this quantification, we argue that finding the optimal solution is

computationally expensive. Thus, in the rest of this section, we focus on developing different heuristics to

solve the constrained segmentation problem. These heuristics will be compared in Section 6.

11



5.1. Properties of merging segments of differing configurations

Given � pages of the transactions, we assume, without loss of generality, that they are all of different

configurations. (If this is not true, then we can simply merge those segments with the same configuration

into one combined segment, due to Lemma 1.) To reduce � to �����
��	 , we cannot avoid merging segments

with differing configurations. Thus, in the following, we explore various aspects of this operation.

When it comes to merging segments with differing configurations, there exists one immediate com-

plication—namely, the resultant segment may have a totally different configuration. This can be seen by a

simple example below.

Example 3 Suppose for 3 items, the configurations for segments �  and ��� are 	 � � � � ��� and 	 � � � � � �
respectively. This implies that �  satisfies the condition that �����  	�������� 3 �����  	��!����� 3 �����  	��"�(��� , and � �
satisfies ����� � 	��"�(��� 3 ��� � � 	��!����� 3 ����� � 	�������� . However, once these two segments are merged, the rank

ordering of � �����  	�������� �7����� � 	���������� , � ��� �  	��!����� �7����� � 	��!������� and � ��� �  	��"�(��� �7����� � 	��"�(����� can be of any

one of the 6 possible permutations.

Apart from this complication, we know from the earlier analysis that merging segments of differing

configurations leads to a loss in accuracy. To solve the constrained segmentation problem, we need to

capture this loss precisely, leading to the definition of the following quantity:

������� ��	��$�3 �" �������
� �
� -�� � #

� ������3	���� 0 " � 5 ��"�� �
 � � ���� �
	���� 0 " � 5 ��"�� � � ��� (2)

The first term ������3	���� 0 " � 5 ��"�� �  � is the upper bound on �����
	���� 0�" � 5 ��� based on � �  , which consists of

1 combined segment formed by merging segments �  and � � . The second term ���� �3	���� 0 " � 5 ��"�� � � � is the

upper bound based on � � � , which keeps the 2 segments �  and ��� separated. The difference between the

two terms quantifies the amount of “sub-optimality” on the set ��� 0 " � 5 � to have the two segments merged.

The quantity �������!�
	��$�� �" ������� then sums over all pairs of items to measure the total loss. Note that, to be

more precise, we could also consider all sets of sizes 3 or larger (e.g., ���
	 " � 0�" � 5 � ). However, this would

require the computation of ��� ���!�
	��$�  �" ������� to cost an effort exponential on 2 , the number of items. Thus,

we restrict our measurement to sets of size 2 only.

Let � � �$�
 �"$#$#$#�" �
� � be a set of segments with � 3 �
. Then, equation (2) generalizes in an obvious

way, as follows:

��� ���!�
	
� � � �
� -
� � #

� �������	���� 0 " � 5 ��"�� �
 � � ������3	���� 0 " ��5 ��"�� �

� ��� (3)

where � �  consists of 1 combined segment formed by merging all � segments in � , and � �� keeps the

� segments �� "$#$#$#(" �
� separated.

The quantity �������!�
	�� satisfies several natural properties, as stated in the following two lemmas.
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Lemma 2 If segments �  and ��� are of the same configuration, then �������!�
	��$�
 �" �������
� �
.

The above lemma shows that the quantity �������!�
	�� is consistent with the analysis shown earlier—

namely, merging segments with the same configuration leads to no loss of accuracy. The following lemma

shows that ��� ���!�
	�� satisfies other natural properties.

Lemma 3 Let � be a set of segments. Then, the following holds:

(a) If all segments are of the same configuration, then ������� ��	
� �
� �
.

(b) If there exists at least two segments with differing configurations, then ��� ���!�
	
� ��� �
.

(c) If � � is another set of segments such that � � � � , then ��� ���!�
	
� � � �������!�
	
� � � .

While the above lemma shows that the quantity ��� ���!�
	�� is well-behaved, a complication with the con-

strained segmentation problem is that there are really too many possibilities to form � ���
��	 segments from

� pages. The total number of possibilities can be enumerated exactly; however, because it is not a closed

form formula, we omit the details here. We only show below a simple example to illustrate the explosion.

Example 4 Suppose � = 5 and � ���
��	 = 3. Then, the total number of combinations is given by the following:

(i) the number of combinations for one segment to be of size 3 pages, and the other two of size 1 page each;

plus (ii) the number of combinations for two segments to be of size 2 pages each, and the other segment

of size 1 page. Thus, there are 25 possible combinations. For �����
�
	 = 3, if � is raised to 6 and to 7, the

numbers of combinations quickly jump to 90 and to 301 respectively.

5.2. Heuristic algorithms for the constrained segmentation problem

Given � initial pages/segments, the constrained segmentation problem amounts to finding � ���
��	 final

segments to minimize the total ��� ���!�
	�� quantity. Partly due to the complication illustrated in Example 3,

and partly due to the huge number of possibilities that make up the � ���
��	 segments, the optimal segmen-

tation is too expensive to be computed. Thus, in the remainder of this section, we focus on developing

heuristic algorithms.

One obvious heuristic is the Greedy algorithm shown in Figure 2. Given the � initial segments, it first

computes the �������!�
	��$�� $" ������� quantity for each pair of segments �
 �" ��� . Then, the pair of segments with

the minimum �������!�
	�� value is selected and merged. However, the merged segment ��& � )4� �
 - ��� may be

of a different configuration (see Example 3). Thus, it is necessary to compute ������� ��	��$��& � ) " � � ��� for every

remaining segment � � . Then, the next pair of segments with the minimum ��� ���!�
	�� value is selected and

merged, and so on. This continues until � ���
�
	 segments are obtained.
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Algorithm Greedy
INPUT: " initial segments in ����� �%� ���������������
OUTPUT: � with only � �
	���

	 " segments
0. initialize a priority queue
1. for each pair of segments

�*��� ����
 � do
compute  �! ��� "%$ � � � ��� � � & and insert it into the priority queue

2. for ( ��� " downto ����� ) do
3. obtain the pair

� � � � �
having the minimum  �! ��� "*$ & in the queue

4. merge
� � � � �

to give
� � ��� � � ��� � �

5. remove all pairs involving
� �

or
� �

from the priority queue, and remove
� � � � �

from �
6. for all remaining segments

����
 � do
insert  �! ��� "*$ � � � ��� ������� &

into the queue, and add
� � ��� to �

Figure 2. A skeleton of the Greedy algorithm

Algorithm RC
INPUT: " initial segments in ����� � � ����������� � �
OUTPUT: � with only � �
	���
 	 " segments
1. for ( ��� " downto ����� ) do
2. pick a random segment

� � 
 �
3. find a segment

� �
closest to

� �
(i.e.,  �! ��� "*$ � � � � � � � & � � �����  �! � � "%$ � � � � ���!� &#" ����$� � � �

)
4. remove

�%��� ���
from � , but add $ �%� � ��� &

to �
Figure 3. A skeleton of the RC algorithm

Let us determine the complexity of the Greedy algorithm. According to equation (2), each computation

of the �������!�
	�� quantity for a pair of segments requires % 	�2 � � effort, due to % 	�2 � � pairs of items to sum over.

Because there are % 	 � � � pairs of segments to compute, the complexity of Step 1 is % 	 � � 2 � � . For Step 2,

each insertion into, and deletion from, the priority queue takes % 	�&!')( � � � �*% 	�&�')( �1� effort. However, for

each iteration of the loop, the total effort is % 	 �,+ 	�2 � �-&�')( � �%� . Because the loop in Step 2 is executed 	 � �
� � times, the total complexity of the Greedy algorithm becomes % 	 � � 2 � � � � &!')( �1� . Note that segmentation

is a compile-time operation. That is, it is done only once, and the result can be used by many different

mining queries.

Next, we describe another heuristic method, the RC (Random Closest) algorithm, for finding the
� ���
��	 segments that minimize the total ������� ��	�� quantity. See Figure 3. During each iteration of the loop in

the RC algorithm, a segment is randomly selected. Then, the segment closest to it is found (i.e., in terms of

the smallest ��� ���!�
	�� value). Merging two segments that are close to each other is a natural strategy because

this merge does not incur a high level of “sub-optimality” (i.e., it has a low ������� ��	�� value). On this issue, the

RC algorithm is similar to the Greedy algorithm. The key difference, though, is that the RC algorithm starts

with a random segment, and does not require a priority queue to be maintained to find the pair of segments

that give the lowest �������!�
	�� value. In terms of complexity, each iteration takes % 	 �*2 � � effort. Because the

loop is executed 	 � � � � times, the total complexity of the RC algorithm is % 	 � � 2 � � .
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Algorithm Random
INPUT: " initial segments in ����� �%� ���������������
OUTPUT: � with only � �
	���

	 " segments
1. for ( ��� " downto ����� ) do
2. pick a random segment

�*� 
 �
3. pick another random segment

� � 
 �
4. remove

� � � � �
from � , but add $ � � � � � &

to �
Figure 4. A skeleton of the Random algorithm

From the Greedy algorithm to the RC algorithm, we relax the requirement that the pair of segments

with the absolute minimum ��� ���!�
	�� value be found. To go in the same direction one step further, we can

even relax the requirement that the segment closest to �  be found. This leads to the Random algorithm.

As shown in Figure 4, the Random algorithm is almost identical to the RC algorithm, except that Step 3 is

now replaced by a simple random selection of a segment � � .4
Before we dismiss this algorithm as too simplistic, there are two reasons why we include this heuristic

in our discussion and experimentation. First, the Random algorithm is fast, with a complexity of % 	 �1� .
Therefore, in our experimentation, it forms a good baseline for us to judge whether the other more sophisti-

cated heuristics are cost-effective. Second, as will be shown very soon, the Random algorithm, because of

its speed, can form part of a hybrid strategy for efficient segmentation.

5.3. The bubble list optimization: Dealing with the �
�

factor

Note that in the Random algorithm, there is no need to compute any ��� ���!�
	�� value. This is why there

is no 2 � factor in the complexity of the Random algorithm. However, in the other two algorithms, because

the selection of segments is based entirely on the ��� ���!�
	�� values, 2 � becomes a dominant factor in their

complexity. To eliminate the 2 � factor, one heuristic is to find a constant number of items that are “on the

bubble”. These are the items whose frequencies barely satisfy, and are the closest to, the support threshold.

Then, in the ��� ���!�
	�� calculation, we restrict the summation in equation (2) only over all pairs of items in

the “bubble list”. This is reasonable because the filtering offered by the OSSM is expected to be the most

applicable to those items whose frequencies are closest to the threshold. For example, there may be 2 =

1000 items in all, but the bubble list may contain only 2 � = 100 items. In this case, for each computation of

��� ���!�
	�� , the number of pairs considered in the summation reduces from 	 �� � = 499 500 to 	 ���� � = 4950.

Note that the content of the bubble list depends on a support threshold. This bubble list then turns the

focus of the segmentation squarely on the items in the list. However, it is important to remember that, while

segmentation with the bubble list requires some support threshold, the OSSM produced can be used for any
4Similar to the construction of the SSM structure [15], the Random algorithm constructs the OSSM by arbitrarily/randomly

partitioning pages of transactions into segments.
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support threshold. In Section 6, we will evaluate the effectiveness of an OSSM that was produced with a

bubble list based on one support threshold, but is used dynamically to handle different support thresholds.

5.4. Hybrid segmentation strategies: Dealing with the �
�

factor

With the bubble list heuristic, the 2 � factor disappears from the complexity of the Greedy and RC

algorithms. What about the � � factor? As a heuristic to cope with situations where � is large, we offer

hybrid segmentation strategies. Examples include Random-RC and Random-Greedy. That is, for a large

initial value � , we use the Random algorithm to merge the � pages into � / 0�� segments (where � / 0�� � � ���
�
	 )
in the first phase. Then, in the final phase, the RC algorithm or the Greedy algorithm is used to merge the

� / 0�� segments into the � �����
	 segments. In the next section, we will evaluate whether these hybrid strategies

work at all.

6. Experimental evaluation

In this section, we provide extensive experimental evaluation of all the segmentation algorithms and

heuristics proposed above. Specifically, we provide empirical evaluation on the following:

1. the speedup an OSSM provides at query execution or exploration time; and

2. the segmentation cost of producing the OSSM, with or without the bubble list and the hybrid strategies.

We conclude this section with a recommended recipe for different circumstances.

6.1. Experimental setup

The segment minimization problem and the constrained segmentation problem apply to the many al-

gorithms that conduct mining of various types of patterns based on candidate generation (see Section 1).

The results reported here are based on a specific instance of these algorithms—namely, the classical Apriori

algorithm [3] for association rule mining. Nonetheless, the presented ideas and algorithms apply to other

instances as well.

All the experiments were performed on a time-sharing environment using a 700 MHz machine. All

the programs were written in C. There are two kinds of execution times. The first is the segmentation time,

which includes all the CPU and I/O costs incurred for segmentation. The second is the runtime of Apriori

with or without the OSSM, which includes all the CPU and I/O costs to find all the frequent itemsets. The

reported results are based on the average of multiple runs. There are three data sets we used:
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Figure 5. Effectiveness of the segmentation algorithms

1. Nokia data set, which is a real data set from Nokia on a sequence file containing about 5000 transac-

tions of about 200 distinct types of telecommunications network alarms. For proprietary reasons, we

cannot describe this data set further.

2. regular-synthetic data set, which is a synthetic data set generated using the program developed at

the IBM Almaden Research Center [3]. The exact number of transactions is not important because

the key parameter is the number of pages � . In our experimentation, � varies from 200 to 50 000, and

the number of items is 2 = 1000.

3. skewed-synthetic data set, which is a synthetic data set that has skewed “seasonal” behavior. Specif-

ically, 50% of the items have a higher probability of appearing in the first half of the collection of

transactions, and the other 50% have a higher probability of appearing in the second half. The reason

for using this data set is that in the real world, there are many databases that do not follow a reg-

ular or uniform distribution. An example is a supermarket database consisting of transactions over

a few months, in which items sold during the summer can be very different from those sold during

the winter.

6.2. Runtime speedup

The first set of experiments evaluates whether the OSSM provides significant speedup. The speedup for

a segmentation algorithm � is defined to be the ratio of the execution time of the Apriori algorithm without

the OSSM, to that with the OSSM produced by � (where � is the Random, RC, or Greedy algorithm).

This gives the y-axis of the graph in Figure 5(a). The x-axis shows the number of segments � ���
�
	 allowed

in the OSSM.
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Segmentation algorithms aside, the first observation from Figure 5(a) is that the OSSM is a useful

structure. It is light-weight. For � ���
��	 = 100 segments, and for 1000 items, the OSSM consumes only about

0.2 megabytes. However, it can bring about a speedup from around 7 times to about 22 times. In addition,

for � ���
��	 = 150 segments (thus consuming 0.3 megabytes), the speedup can be about 50 times.

The second observation is that, as expected, the larger the value of �������
	 , the higher the speedup.

Interestingly, even the Random algorithm can offer a speedup that is better than an order of magnitude. In

terms of the speedup, the rank in descending order is always the Greedy algorithm, the RC algorithm and

the Random algorithm. The gaps between them open up gradually as �����
��	 becomes larger.

The speedup can be directly linked to the number of candidates that require frequency counting (i.e.,

candidates that are not pruned based on equation (1)). Figure 5(b) compares the number of candidate 2-

itemsets required with or without the OSSM. Again, the ratio is shown on the y-axis, the ratio 1 being the

case without the OSSM. Clearly, the OSSM provides significant pruning. For example, with � ���
��	 = 150

and the OSSM produced by the Greedy algorithm, only about 3% of candidate 2-itemsets ordinarily checked

by Apriori are not pruned by the information kept in the OSSM. Figure 5(b) only shows the reduction for

candidate 2-itemsets. The OSSM applies to candidate itemsets of higher cardinalities. Given our synthetic

data sets, the reduction for higher cardinalities is minimal. However, this is not as negative as it may seem,

because it is well known that the main bottleneck of the Apriori algorithm is on its processing of candidate

2-itemsets [22]; this is precisely the area where OSSM excels.

The results reported in Figure 5 are based on the regular-synthetic data set and a support threshold

of 1%. In addition, we experimented with other data sets mentioned above and various support thresholds.

Here, we summarize how the results vary when these parameters are changed:

; For the Nokia data set, similar conclusions can be drawn. To avoid repetition, we do not show further

details.

; For the skewed-synthetic data set, there are two interesting differences. First, the speedup is even

larger. For small values of � �����
	 (e.g., 40), the speedup is already better than an order of magnitude.

This confirms that an OSSM is particularly effective for skewed data. Second, even the OSSM pro-

duced by the Random algorithm is almost as good as that produced by the Greedy algorithm. Thus,

while in Figure 5(a) we see the gaps between the three segmentation algorithms open up as � ���
�
	

increases, the gaps in this situation gradually close down.

; The speedup offered by an OSSM increases even further for a higher support threshold. This is

because the more stringent the support threshold is, the more the items fail the filtering provided by

the OSSM. For lower support thresholds, the speedup reduces. Nonetheless, for a moderate value of
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Pure strategy Segmentation time Speedup

Random 0.02 � 0.00s 2.6 � 0.1
RC 2791 � 7s 5.5 � 0.4

Greedy 5439 � 6s 5.9 � 0.3
(a) Pure strategies with " = 500

Hybrid strategy Segmentation time Speedup

Random-RC 521 � 2s 4.3 � 0.0
Random-Greedy 1051 � 1s 5.2 � 0.1

(b) Hybrid strategies with " = 50 000, " � ��� = 200

Figure 6. Segmentation costs: Pure and hybrid strategies with �����	��
 = 40

� �����
	 (e.g., 100), the OSSMs produced by the Greedy and RC algorithms can still deliver a speedup

better than an order of magnitude.

6.3. Segmentation cost

In light of the significant speedup offered by an OSSM, the natural question to ask is whether this

speedup is achieved by a high “compile-time” segmentation cost. The key parameters here are � and � �����
	 .
While we experimented with many combinations, we only report some of them below, so as to avoid repe-

tition. For example, Figure 6(a) reports the results for � = 500 and �����
��	 = 40.

Effectiveness of the pure segmentation strategies: As expected, both the RC and Greedy algorithms take

a long time to produce the OSSM. However, is it too long? Is the additional one-time cost of 5439 � 0.02
� 5439 seconds worthwhile to increase the speedup from 2.6 to 5.9 for each mining query? The answer

to this question is subjective, depending on the relative importance of segmentation cost to dynamic query

execution cost for the specific application. It also depends on the amount of space the OSSM can occupy

(i.e., the value of � ���
�
	 ). In the experiments, we deliberately take a smaller value �����
�
	 = 40 to allow the

segmentation process to take longer. If the application can afford a larger value of � ���
�
	 , the segmentation

cost drops while the speedup increases. In this case, the choice becomes more obvious—namely, it pays off

to use a more elaborate segmentation algorithm to produce a higher-quality OSSM.

Effectiveness of the hybrid segmentation strategies: Given the numbers in Figure 6(a), a natural question

to ask is how well the more elaborate algorithms scale up with respect to � . If it takes 5439 seconds for

the Greedy algorithm for � = 500 pages, how long does it take for � = 50 000 pages? (For a page size of

4 kilobytes, each page can contain roughly 100 transactions. Thus, 50 000 pages correspond to 5 million

transactions.) This is an important question because data mining applications are supposed to have a huge

number of transactions (and pages).

Fortunately, the Random algorithm comes to the rescue. Recall from Figure 6(a) that the Random

algorithm takes a negligible amount of segmentation time, but still delivers reasonable speedup. This opens
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Figure 7. Effectiveness of the bubble list optimization

the possibility of hybrid segmentation strategies for large values of � . Figure 6(b) shows the situation for the

hybrid strategies Random-RC and Random-Greedy. More specifically, the initial value of � is 50 000 pages.

The Random algorithm is used to quickly reduce � to � / 0�� = 200. From that point on, either the RC or

Greedy algorithm is used to select the final � ���
�
	 = 40 segments.

Notice that for Random-RC, the total segmentation time for 50 000 pages is only 521 seconds, as

opposed to 2791 seconds for only 500 pages using purely the RC algorithm. Yet, there is a minimal drop in

speedup. Similar observations can be obtained for Random-Greedy. In general, given a large initial � value,

a good strategy is to use the Random algorithm to reduce � to a much smaller � / 0�� value (e.g., between 100

to 500 pages/segments), and then to use an elaborate algorithm to complete the segmentation.

Effectiveness of the bubble list optimization: Apart from the hybrid strategies, we also propose the bubble

list heuristic, with the objective of focusing the computation to the ��� ���!�
	�� value only to those items that

are on the bubble list. Figure 7 shows the situation where the bubble list was formed based on the support

threshold 0.25%, and yet during query evaluation, the actual support threshold is 1%. The x-axis shows the

varying size of the bubble list, expressed as the percentage of 2 , the total number of items in the domain.

The key observation is that the segmentation cost is drastically reduced. For example, the Random-Greedy

hybrid strategy with the bubble list can produce an OSSM in about 10 seconds of total time, for 5 million

transactions (i.e., 50 000 pages), as opposed to 1051 seconds for that without the bubble list (cf. Figure 6(b)).

A similar reduction applies to the Random-RC hybrid strategy. This shows that the bubble list heuristic is

very effective in reducing the segmentation cost.

Figure 7(b) shows that even though the segmentation time is significantly reduced, the quality of the

OSSM produced by the hybrid strategies is not significantly compromised. Furthermore, even though the

support threshold used during segmentation is different from the one used at query execution time, the

speedup offered by the OSSM is still significant. As expected, the longer the bubble list, the higher the
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Figure 8. Recommended recipe

quality of the OSSM, and thus the speedup.

6.4. Summary: A recommended recipe

In sum, we have provided extensive experimental results evaluating the various proposed segmentation

algorithms and heuristics. Figure 8 shows a “recipe” we recommended for deciding on which segmentation

algorithm to use for various kinds of applications. First, if the application can afford a lot of space for the

OSSM (i.e., � �����
	 is large) and the data is skewed, the Random algorithm, which is the simplest, is sufficient

for segmentation. Otherwise, if the segmentation cost is not an issue at all, the Greedy algorithm with the

bubble list is the choice. However, if the number of initial pages � is large, then we recommend either the

Random-RC or Random-Greedy algorithm, with the bubble list.

7. Discussion

In previous sections, we showed how the OSSM helps improve the efficiency of the Apriori algorithm

(an instance of pattern discovery algorithms). Being a generic data structure, the OSSM can be equally

applicable to the discovery of episodes, constrained frequent sets, sequential patterns, etc. As mentioned

in Section 2, the OSSM technique is rather different from the DHP algorithm [22] and the Partition algo-

rithm [24]. An observant reader may wonder whether the OSSM provides better pruning than these two

algorithms. However, this is the wrong question to ask because the OSSM can be made to work in conjunc-

tion with each of the two algorithms.

Recall that the DHP algorithm [22] hashes a 2 -itemset (e.g., 2 = 2) into a bucket, which may even-

tually be pruned due to an insufficient number of itemsets being hashed into such a bucket. However, if an

OSSM is used simultaneously, then known infrequent 2 -itemsets are not generated in the first place. Itemsets

that pass through the pruning by the OSSM can now be further pruned by the DHP algorithm. A prelimi-

nary result, presented in the following table, shows the additional benefit brought by an OSSM (constructed

using the Random-RC algorithm with � = 40 segments) to the DHP algorithm with 32 768 buckets.
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Algorithms Runtime Number of Candidate 2-itemsets

DHP without the OSSM 4.01 � 0.13s 292
DHP with the OSSM 1.96 � 0.01s 142

Here, when the DHP algorithm is used in conjunction with the OSSM, the number of candidate 2-itemsets

is about half and the speedup is about 2 times (when compared to the DHP algorithm without the OSSM).

Similarly, the OSSM can bring additional benefits to some other algorithms. We briefly discuss below

how the OSSM can be applicable to the Partition algorithm [24] and to the DepthProject algorithm [1].

Recall that the Partition algorithm [24] executes in two phases. In the first phase, the algorithm

divides the database in a number of non-overlapping partitions and essentially runs Apriori on each partition

to find all itemsets that are locally frequent. In the second phase, the Partition algorithm computes the actual

global supports for all itemsets that are locally frequent. However, if an OSSM is built for each partition,

then the execution time for each partition will be significantly reduced because known local infrequent

itemsets are pruned by the OSSM. To improve performance further, if the OSSMs for all the partitions are

available, then many of the global candidates (i.e., itemsets that are locally frequent in a partition), which

are known to be globally infrequent with respect to the OSSMs, can in fact be pruned.

Recently, a pattern discovery algorithm, called DepthProject [1], was proposed to generate long pat-

terns by using a depth-first search on a lexicographic tree of itemsets. More precisely, at each step, the

algorithm generates possible frequent lexicographic extensions (i.e., candidates) of a tree node and tests for

frequency. If an OSSM is used simultaneously, then known infrequent candidates can be pruned before the

frequency counting.

8. Conclusions

In this technical report, we proposed a light-weight structure called optimized segment support map

(OSSM). In addition to improving the pruning in pattern discovery algorithms, it also provides direct in-

formation about the variability of frequencies in different segments of the transactions. Unlike many algo-

rithms which cannot handle skewed data, the strength of the OSSM is to exploit the variability. Concerning

the OSSM, we studied two main problems: (i) the minimum number of segments for an OSSM to incur no

loss in accuracy (the segment minimization problem), and (ii) the best composition of the segments given a

user-determined number of segments (the constrained segmentation problem).

For the segment minimization problem, we provided a thorough analysis showing that no loss in accu-

racy using the OSSM requires too many segments in general. For the constrained segmentation problem, we

developed the heuristic segmentation algorithms called the Random, RC and Greedy algorithms. To further

reduce the segmentation cost, we proposed optimizations that use a bubble list and run the algorithms in a

hybrid fashion. Our experimental results are strong indicating that for a small OSSM (e.g., 0.3 megabytes),
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the speedup can be very significant (e.g., 50 times), yet the segmentation cost is small (e.g., 10 seconds

for 5 million transactions). We concluded by presenting a recommended recipe for various circumstances.

While our experiments were based on finding frequent itemsets using the Apriori algorithm, it is important

to remember the generality of the OSSM: It is applicable to many pattern discovery algorithms (many of

which are listed in the introduction). We expect the OSSM to be equally effective for those algorithms.

If the order of the transactions is chronological, then an OSSM may actually give a very good com-

pressed way of representing the changes that occurred in the characteristics of the data. In ongoing work,

we are exploring this direction. Moreover, the problem of finding OSSMs has similarities with the change-

point problem in statistics [27]. In ongoing work, we are exploring how some of the approaches used for

that problem can be applied to the OSSM context.
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