
Loosely Coupled Optimistic Replication for Highly Available,
Scalable Storage

Dima Brodsky, Jody Pomkoski, Michael J. Feeley, Norman Hutchinson, and Alex Brodsky

Department of Computer Science
University of British Columbia�

dima,jodyp,feeley,norm,abrodsky � @cs.ubc.ca

Abstract

People are becoming increasingly reliant on computing
devices and are trusting increasingly important data to
persistent storage. These systems should protect this
data from failure and ensure that it is available anytime,
from anywhere. Unfortunately, traditional mechanisms
for ensuring high availability suffer from the complexity
of maintaining consistent, distributed replicas of data.

This paper describes Mammoth, a novel file system that
uses a loosely-connected set of nodes to replicate data and
maintain consistency. The key idea of Mammoth is that
files and directories are stored as histories of immutable
versions and that all meta-data is stored in append-only
change logs. Users specify availability policies for their
files and the system uses these policies to replicate cer-
tain, but not necessarily all, versions to remote nodes to
protect them from a variety of failures. Because file data
is immutable, it can be freely replicated without compli-
cating the file’s consistency. File and directory meta-data
is replicated using an optimistic policy that allows parti-
tioned nodes to read and write whatever file versions are
currently accessible. When network partitions heal, in-
consistent meta-data is reconciled by merging the meta-
data updates made in each partition; conflicting updates
manifest as branches in the file’s or directory’s history
and can thus can be further resolved by higher-level soft-
ware or users. We describe our design and the implemen-
tation and performance of an early prototype.

1 Introduction

Humans at home, at play, and at work are becoming in-
creasingly dependent on computing devices and their stor-
age systems. Persistent storage plays a central role in most
interactions people have with computers, because it holds
the data they produce and manipulate. As people’s de-
pendency on computers increases, this data becomes an
increasingly valuable asset. It thus seems only reasonable

for users to expect that this data be protected from failure
and be available anytime, from anywhere. The capabili-
ties of most file systems, however, fall far short of these
expectations.

Commodity file systems typically offer users only one
simple protection from failure: periodic backup of their
data to offline storage. This traditional backup and re-
store approach, however, provides limited protection, has
high cost, and scales poorly. While offline backups pro-
tect most data from loss, they do nothing to increase avail-
ability and they leave updates that occur between backups
vulnerable to loss. Backup is costly because it typically
requires substantial human administration. As a result,
for example, people rarely backup data themselves and
many professionally backed-up file systems provide op-
tional unbacked-up storage, which has a lower cost. Fi-
nally, offline backup systems are being strained to the
breaking point by dramatic increases in the amount of data
users store and by the number of users they are expected
to service.

A few systems improve things somewhat by auto-
matically maintaining a collection of file system check-
points [13, 10, 3]. If available online, these checkpoints
automate the recovery of files that users have recently,
accidentally deleted or overwritten. They do not, how-
ever, protect data from failure or increase its availability,
because for efficiency checkpoints are copy-on-write im-
ages of the active file system and thus unable to stand-in
for the active data in the event of a failure. In fact, check-
points are even limited in their ability to protect users from
their mistakes, because they typically limit either the fre-
quency of backups or the number of backups the system
maintains. In an earlier paper, we described a solution to
this limitation that uses per-file, rather than per-file system
checkpoints [15].

Some research systems [5, 17, 14, 9, 8, 16, 2, 18], hard-
ware storage [11, 19], and high-end file systems actively
replicate data as it is modified. This approach can be
used to both protect data from failure and to increase its

1



availability. Replication is complicated, however, by the
requirement of keeping replicated files consistent. Fur-
thermore, to protect data from node and network failures
increases complexity substantially, because data is repli-
cated among multiple network nodes and thus consistency
becomes a distributed problem. In such systems, replica
nodes are typically tightly coupled so that they can im-
pose a global order on updates seen by clients and so that
they can recover from failures in an orderly fashion. This
tight coupling and high complexity limit scalability and
increase the difficulty of building, maintaining, and ad-
ministering highly available file systems.

Dealing with network partitions is particularly chal-
lenging, because systems must either prohibit updates to
partitioned replicas or deal with the possibility of conflict-
ing updates to replicas in different partitions. The later ap-
proach, called optimistic replication, is the only choice if
users are to be guaranteed access to their files in a system
that is large enough and distributed enough that partitions
are common.

In systems that support optimistic replication, a com-
plex, tightly-coupled algorithm is typically required to
reconcile partitioned replica nodes when communication
between them is re-established. In addition, algorithms
commonly assume that full-connectivity is the normal
state of the system. This assumption is useful, because
it allows the algorithms to rely on global communication
to arbitrate the reconciliation process and to, for exam-
ple, know when update logs can be trimmed. In a suffi-
ciently large collection of server nodes, however, failures
will be common, particularly if the servers are geograph-
ically distributed. Supporting optimistic replication thus
tends to limit scalability in these systems.

In fact, scalability and geographic distribution are
particularly important goals for meeting user expecta-
tions for completely reliable, always available storage
[4], because of the role that storage utilities can play
in this arena. The idea of a storage utility is to of-
fload storage-management responsibilities from users to
logically-centralized, network-connected servers operated
by trusted third parties. The key advantages of this ap-
proach are that data protection does not depend on the
actions of users themselves, to backup their data for ex-
ample, and that their files can be easily accessible from
any network-connected device. The success of this idea,
however, likely requires that servers scale to many thou-
sands of users and petabytes of storage.

The advancement of file system reliability and scalabil-
ity thus appears to face a dilemma. The techniques re-
quired to provide the protection and availability seman-
tics that users are likely to demand are difficult to im-
plement, administer, and scale, because they require that
nodes cooperate in a tightly-coupled fashion to replicate

data, maintain its consistency, and reconcile partitioned
replicas. This paper examines an alternative approach
that replicates data in a simple, flexible, automatic, and
loosely-coupled way.

Mammoth

This paper describes the design and initial prototype im-
plementation of a novel file system called Mammoth. Our
goal is to develop a reliable, highly-available file system
that utilizes simple mechanisms, requires minimal human
administration, and scales to utility-class levels.

The key features of Mammoth are that it stores files
and directories as collections of immutable versions and
that server nodes operate in a loosely connected fashion.
Immutable versions simplify replication and consistency
management and increase replication flexibility. Loose
connectivity simplifies scalability and fault tolerance, by
allowing nodes to have partial, weakly-consistent knowl-
edge of the system and to operate with whatever file ver-
sions are currently available, without requiring coordina-
tion with unavailable nodes.

Mammoth users control when files are replicated by as-
signing files availability policies. These policies allow
users to indicate the types of failure they want protection
from, and the amount of work they are willing to loose
should such a failure occur. For example, a user might be
willing to lose an hour’s work in the event of a disk failure
and a day’s work in the event their building burns down.
Giving this control to users simplifies system administra-
tion, because it leaves policy decisions in the hands of
users, not administrators. We believe that this transfer of
responsibility is safe as long as policies closely reflect the
high-level model that users already have regarding protec-
tion. The system translates these high-level descriptions
into the actions necessary to guarantee the protection and
availability specified by the policies.

Mammoth’s use of immutable versions gives the sys-
tem flexibility to delay replication of newly created ver-
sions, taking replication overhead off the critical path of
updates and allowing multiple updates to be absorbed into
a single replication. Unlike other systems that ensure the
availability of the current version of the file system, Mam-
moth has the flexibility to ensure availability of any ver-
sion. The version that is available is determined by user
policies, allowing users to tradeoff increased availability
and protection for increased cost of replication. Utili-
ties could use this flexibility, for example, to charge users
more money to get higher degrees of protection.

Mammoth’s version-history approach also simplifies
replication consistency management. The immutability
of versions means that no consistency action is needed
for replicated file data; the creation of a new version, log-

2



ically invalidates older replicated versions. File versions
can be freely replicated, anywhere at any time, without in-
creasing consistency overhead. Of course, for users to see
a consistent view of the file system, the version-history
meta-data of a file or directory must be kept consistent.

Mammoth simplifies meta-data consistency mainte-
nance by storing this information as append-only logs. A
node can update a remote copy of a modified file’s meta-
data, for example, simply by transmitting a history entry
for the newly created version that consists mainly of its
creation timestamp and a list of nodes that store the data
associated with that version. The receiving node incorpo-
rates this and other meta-data updates in a straightforward
way, by appending them to the history it already stores.
In particular, the order in which updates are applied to
replicated meta-data — a key issue for tightly-coupled ap-
proaches — is unimportant for its eventual consistency in
Mammoth.

Mammoth supports optimistic replication with similar
simplicity. When nodes that share a file or directory are
connected, Mammoth uses a simple locking mechanism
coordinated by one of the sharing nodes to ensure that
nodes see consistent versions of the meta-data in ques-
tion. If a partition or other failure makes it impossible for
a node to acquire a lock, however, Mammoth allows the
requesting node to become a lock manager and proceed
with its update.

This optimistic approach can result in conflicting up-
dates when the same object is modified in multiple parti-
tions. These conflicts are detected when partitioned nodes
re-establish communication with each other. The nodes
then reconcile their shared file and directory histories to
bring each other up to date with the changes that occurred
while they were out of touch. Unlike tightly-coupled ap-
proaches, conflicting updates are recorded in the file sys-
tem without requiring that they be further reconciled. In-
stead, conflicts are stored as branches in the object’s his-
tory.

Our approach has the advantage that complete rec-
onciliation, which can be complicated and can require
application-level involvement, is moved from the critical
path of partition recovery. Our goal is to divide recon-
ciliation cleanly between two layers of the system. The
underlying storage system layer is responsible for avoid-
ing conflicts when possible and storing complete infor-
mation about conflicts when they are unavoidable. Like
a traditional file system, however, the storage layer has
no knowledge of the data semantics typically required to
resolve true conflicts. This task is handled by a higher
layer: either the user, an application, or middleware. We
expect that strategies used by systems such as Bayou [12],
OceanStore [6], and Coda [5] can be built on top of the ba-
sic storage facilities provided by Mammoth and we plan

to pursue this idea in future work.

2 Mammoth Design

This section describes the design of Mammoth. We begin
with an overview and follow that with a detailed descrip-
tion of key elements of the design and the issues it raises.

2.1 Overview

A Mammoth system consists of a set of loosely-connected
server nodes that replicate portions of a shared file system.
Users access files directly on server nodes or on unmodi-
fied client nodes running a standard protocol such as NFS.

Directory and file meta-data are stored as append-only
version histories and file data is stored as a sequence
of immutable versions. Mammoth replicates both file
data and meta-data among server nodes to protect it from
failure, to ensure its availability, and to improve perfor-
mance. The system controls replication according to user-
assigned availability policies, pushing information to re-
mote nodes as necessary. In addition, data is pulled on
demand from remote servers when accessed by clients.

Mammoth’s use of immutable versions means that con-
sistency issues are confined to replicated meta-data; ver-
sions themselves can be replicated without concern for
consistency. Nodes that replicate an object’s meta-data
are responsible for keeping the object consistent. Each
node registers with the others and requests either inval-
idation or update-based consistency, depending on how
frequently the node expects to access the object. When a
node changes an object’s meta-data it performs the nec-
essary invalidations and updates the other nodes. Sharing
is coordinated in a similar way using advisory locks asso-
ciated with each object. These locks prevent conflicting
updates when possible, but allow them when necessary
due to network partitions.

To maximize availability, Mammoth adopts an opti-
mistic replication policy for directories and files. As a
result, network partitions can cause an object’s meta-data
to become inconsistent when it is updated concurrently
by partitioned nodes. When partitioned nodes re-establish
communication with each other, inconsistent meta-data
they store must be reconciled.

In Mammoth inconsistent versions of an object’s meta-
data differ only by missing some history entries stored by
other versions on other nodes. The consistent view of the
object can thus be formed by taking the union of all repli-
cas. In the merged meta-data, conflicting updates appear
as branches in its history.

3



2.2 Version History Meta-data

Mammoth adopts the basic versioning model of the Ele-
phant file system [15], extending it to deal with distribu-
tion and replication. In both systems, files and directories
are stored as histories of immutable versions created each
time a file or directory is created, deleted, or renamed,
or when a file is updated (i.e., when a modified file is
closed). Users access older versions of files and directo-
ries by adding a timestamp to their names. The system re-
sponds with the versions that existed at the specified time,
essentially providing the user with a continuous consis-
tent checkpoint of the system. Unimportant old versions
are deleted by a background cleaner thread that is guided
by retention policies that users assign to files to indicate
which versions are important.

In Mammoth, the history of a file or directory is rep-
resented logically as a tree that links each version to its
predecessor. It is a tree because Mammoth allows mul-
tiple new versions to be created from a single ancestor.
Branches are created explicitly by users and implicitly by
the system to handle network partitions. A branch is im-
plicitly created whenever a replicated object is modified
on two sides of a network partition. Users can examine the
history of a object and can combine the tails of of multiple
branches into a single new version.

Branches introduce ambiguity in version naming, be-
cause they allow multiple versions of an object to be
current at the same time. To avoid this ambiguity, ver-
sions are named internally by combining the node number
on which the are created with their creation timestamp.
When selecting versions, users can use these combined
names or they can specify a default history branch to be
used to resolve the timestamps they provide. When a node
experiences a network partition and is involved in the cre-
ation of a branch, that branch remains its default history
branch after the network partition is healed and the con-
flict discovered. In this way, users don’t experience sur-
prising discontinuities in the files that they access.

Directory and file meta-data also contain a list of his-
tory entries and some additional information. In addition
to the history, the meta-data stores the object’s lock state,
replication set, and interest set. The use of these fields is
described later in this section.

A directory’s history records an entry for every change
made to the directory. There are two types of entries, one
for name creation and the other for name deletion. Each
entry stores its type, timestamp, and name. Creation en-
tries also store a copy of the file’s interest set, for rea-
sons that are explained below. For simplicity we prohibit
hard links across directories; a similar restriction exists in
Coda [7].

Finally, a file’s history records an entry for every
change made to the file. The most common type of change

is the creation of a new version. New-version entries store
the internal name of the version, the name of the version
it was derived from, and the version’s storage set. The
storage set is the list of nodes that are known to store the
version. Additional entries are added anytime a version’s
storage set changes, which occurs when it is replicated or
when the cleaner thread at a replica node deletes the ver-
sion.

2.3 Accessing Meta-data

To access a file or directory, a server node requires the ob-
ject’s meta-data. As mentioned previously, meta-data is
cached at servers on demand and its consistency is based
on either an invalidation or update protocol. The default
protocol in Mammoth is invalidation; registering interest
in a file is the mechanism by which a node selects an up-
date protocol. A node can register, or unregister, inter-
est in any directory or file. Once registered, the node’s
locally-stored meta-data will be kept up-to-date by other
nodes whenever any of them generates a new history en-
try.

A node can also cache meta-data without registering
interest if it instead requests a call-back read lock for the
meta-data. In this case, lock revocation acts as an invalida-
tion for the cached meta-data. Locks are discussed below.

To register interest in a directory or file (or to lock it)
a node sends a registration request to the object’s owner
node. The owner sends an updated copy of the object’s
meta-data to the requesting node and it adds the node to
the object’s interest set by sending a message to all nodes
in either its or its parent directory’s interest set. If the ob-
ject’s owner node is unreachable, a new owner is selected
from among the object’s interest set and that new owner
completes the protocol. If none of the nodes in an object’s
interest set is reachable then access to the object is denied.

If the requesting node is currently interested in the tar-
get object’s parent directory, it can easily locate the ob-
ject’s owner using the interest set stored in the object’s
directory entry. In this case, the node selects one of the
object’s interested nodes and sends its registration request
to that node. This node will know the file’s owner and
will thus forward the request there. If the requesting node
is not interested in this directory, however, a sequence of
messages are needed to track down a node that does store
this information.

If necessary, the search for an object’s owner begins
with the object’s closest ancestor directory that the re-
questing node has registered interest in. This directory
stores the interest set for the next directory on the path
to the target, and so the node picks one of these nodes
and forwards the registration request to it. This process is
repeated at that node and each subsequent node until the

4



object’s owner node, or one of the nodes in its interest set,
is located.

If a node has not registered interest in any directory
on the path to the target object, a different process is re-
quired to locate a node interested in the root directory.
This process is required, for example, when a new Mam-
moth server is accessed for the first time. Mammoth en-
sures that enough nodes cache the root directory so that
it is highly available. The identity of these nodes is pro-
vided to Mammoth servers as a set of first contact nodes
when they are initialized.

2.4 File Locks

To access the current version of a file, a node must hold
either a shared-read or an exclusive-write lock for the file,
depending on the type of access. The acquisition of this
lock is implicit in all open calls that do not name a par-
ticular version of the file by appending a timestamp to its
name. This use of locks allows the system to ensure that
the open call returns the globally current version of the file
at the time of the open. Our prototype implements NFS
sharing semantics and thus does not synchronize concur-
rent updates to a file, though this could easily be added.

If a node does not already hold a lock, it acquires it by
sending a request to the file’s owner node. The owner adds
the node to the file’s lock state and sends the timestamp
of the file’s current version back to the requesting node.
When the requesting node has received both the owner’s
response and the history entry named by this timestamp,
it holds the lock and its access can proceed.

For write-lock requests, the owner also sends invalida-
tion messages to all nodes in the locks reader set and trans-
fers lock ownership to the requesting node. The other
nodes are informed of this ownership transfer the next
time they receive a new history entry, usually when the
new owner closes the file. In the meantime, the old owner
forwards requests it receives to the new owner.

If a node is unable to contact a file’s owner to acquire
a lock, it becomes the files owner and grants itself the ap-
propriate access. If the failure is due to a network parti-
tion, the file will now have multiple owners, potentially
one in each partition. When partitions heal, these incon-
sistency are resolved and a single owner re-established.

2.5 Replication

Users assign one or more availability policies to files and
optionally group files together into an availability group
for each policy. The system uses this information to
decide when to replicate versions of files and to which
nodes. If the policy calls for every version of a file to be
replicated, then replication occurs each time a new version

is produced. Otherwise, a background replication thread
triggers replication of the current version of a file when
necessary. Most policies, for example, place a bound on
the maximum amount of time between the creation of a
new version of a file and its replication.

Files in an availability group are replicated together to
ensure that every replica contains a consistent snapshot of
all files in the group. For example if a replication policy
calls for the version of a file created at time t to be repli-
cated, the system ensures that the version of all files in
the group that were current at t are also replicated. This
constraint may require the replication of additional ver-
sions, but only for files that have changed since their last
replication.

The replication thread is driven by a course-grain prior-
ity queue of scheduled replications stored at each node.
The system inserts entries into this queue as necessary
when files are modified. When a new version is created,
the system examines each of its availability policies in
turn. For each policy, it first checks the file’s meta-data to
determine whether the node has already scheduled the file
for replication, when an earlier version was created; if so,
no further action is needed. Otherwise, a new scheduled-
replication time is computed, an entry is inserted into the
node’s schedule queue, and the file’s meta-data is updated.

The replication thread periodically examines the head
of the schedule queue to determine which files should be
replicated. To replicate a file, it selects one or more repli-
cation nodes, sends the current version of the file there,
updates the version’s storage set, and sends this update to
all nodes that are interested in the file.

Replication nodes are chosen by consulting two data
structures. First, each node is provided with a database of
replication candidates at startup that lists a subset of the
nodes in the system, annotated with information needed
by the replication policies. For example, a policy designed
to protect data from a building fire must know in which
building each node resides. Second, a replication set is
maintained as part of the meta-data of each file and is used
as an heuristic to achieve locality for replicas of all files
in its availability group.

If multiple nodes modify a file, each of them indepen-
dently schedules replication of the file. This redundancy
is necessary to ensure that the file is replicated even if
one of the nodes fails before completing the replication.
Note, however, that if all such nodes fail and thus the file
isn’t replicated on schedule, there are no versions avail-
able for replication anyway. The replication thread can
often avoid actually performing redundant replications by
checking the file’s meta-data before it replicates the file
to see if replication by another node has already occurred.
It will know about these replications if it is interested in
the file, which it usually will be, because it will receive a

5



meta-data update each time a replica node is added to the
storage set of any file version.

2.6 Cleaning

A background cleaner thread runs on every node to delete
unimportant file versions as necessary to economize local
disk storage. The cleaner determines which versions can
be deleted, by examining each file’s meta-data and their
retention and availability policies. For example, replicat-
ing a new version of a file typically makes an older replica
of the file obsolete. In addition, old versions of files are
reclaimed in the same way as in Elephant. Finally, meta-
data can be deleted from a node when the node is not in its
interest set, does not hold a lock on it, and does not store
any file versions associated with it.

The cleaner can also compress file meta-data histories
to remove entries for versions that no longer exists. As
in Elephant, however, the system retains sufficient infor-
mation in the meta-data of a file to determine where ver-
sions are missing from the file’s history. Mammoth does
this by replacing the entries for deleted versions that span
an interval of time with a single entry that indicates that
now-deleted versions existed in that interval. Consistency
of compressed meta-data is handled by retaining an epoch
number for the file that is incremented whenever its meta-
data is compressed. Finally, when the cleaner removes the
last version of a file from the system, it can also remove
the file’s meta data and remove it from its parent directory.

2.7 Meta-data Consistency and Failure

A key issue for any optimistic replication scheme is rec-
onciling updates made to an object in different network
partitions. The goal of our design is to handle this recon-
ciliation as simply and with as little distributed coordina-
tion as possible. We believe that this idea is interesting
and promising, but one important issue remains to be ad-
dressed.

When a node updates a file or directory, it attempts to
update all nodes in the object’s interest set. It enqueues
any updates it is unable to send until communication with
unreachable nodes is re-established. This procedure even-
tually reconciles partition inconsistencies as long as (1) a
node does not permanently fail while holding enqueued
updates and (2) a node has an accurate interest set for each
object at the time it modifies it. The interest set may be
incomplete, however, if a node was added to the interest
set in another partition prior to the update.

The first problem — failure of a node while it holds in-
completely propagated updates — is solved by requiring
that nodes track updates they receive from other nodes.
To do this, each node maintains a log of updates it re-
ceives that are not known to have been fully propagated.

A log entry stores the object’s name and a list of sus-
pect nodes; the details of the update itself, however, are
stored naturally in the object’s meta-data. When updating
an object, two messages are now required to each inter-
ested node: one that contains the update and a second that
lists the nodes that successfully received it; this process
can be optimized by delaying the second set of messages
and batching them with other messages. Nodes monitor
the accessibility of suspect nodes stored in their log and
forward unpropagated updates to them when they become
reachable.

The second problem — updating with an incomplete in-
terest set — is more challenging. The problem is caused
by our decision to allow a node to become the owner of
a file or directory whenever its current owner is unreach-
able. If this does not happen, then an object’s owner can
easily ensure that interest-set changes and other meta-data
updates are properly ordered. In the case of files, the
owner ensures that a node’s interest set is up-to-date be-
fore granting a write lock to it. In the case of directo-
ries, which are modified without locking, the owner adds
a timestamp to its interest-set-change message so that re-
ceiving nodes can determine if they have made any up-
dates ordered after the change, and if so forward them to
the newly interested node.

If an object does have multiple partitioned owners, we
have a problem only if one of them adds a new node to the
object’s interest set. If this happens, nodes in each parti-
tion will have different interest sets for the object, and
thus meta-data updates may not fully propagate to all in-
terested nodes. This inconsistency will be easily detected,
however, as soon one of the nodes in the intersection of
the divergent interest sets becomes available in both par-
titions. When this happens that node will receive meta-
data updates from both owners and thus know to initiate
reconciliation of the object. A problem remains, how-
ever, should partitioned interest sets diverge to the point
that none of the nodes they have in common ever become
available in both partitions. We expect this situation to
be rare, but we do not at this point have a complete solu-
tion to handle it when it does happen. We believe that the
solution will require maintaining extra information about
ownership transfer and we continue to explore possible
solutions.

3 The Prototype

3.1 Overview

At the present time we are building a prototype to eval-
uate our design. The current Mammoth prototype is im-
plemented as an extension to the Linux user-level NFS
server. All Mammoth file data and meta-data are stored

6



in files in the unmodified Linux EXT2 file systems on the
nodes that run the Mammoth server.

Mammoth clients can be unmodified NFS clients, but
we have also implemented a modified NFS client for
Linux 2.4.6 and FreeBSD 4.3 that augments the standard
NFS protocol with a close operation. Mammoth needs to
be able to track file open and close in order to determine
when to create a new version of the file. Mammoth is
able to determine a file open by tracking the setattr, write,
and read RPC calls to the NFS server. When unmodified
clients access a Mammoth server, the server uses a heuris-
tic to attempt to guess when closes may have occurred.

In addition, we have also implemented a currently-
single-node version of Mammoth as a stackable file sys-
tem in the FreeBSD 4.3 kernel. This version stores file
data and meta-data in the same way as the user-level
server. Our eventual goal is to provide an in-kernel so-
lution that allows nodes to act as both a client and server
to Mammoth and an NFS version that allows unmodified
clients to access the system.

3.2 Status

Our current prototype implements a subset of the design
described in Section 2. Features that have been fully im-
plemented include: basic file system operations, propa-
gation of meta-data updates, interest registration and un-
registration, and file locking. Background replication
has been mostly implemented, but only for a simple
set of policies; replication groups have not been imple-
mented. Of the reconciliation mechanisms described in
Section 2.7, only update enqueue and re-transmission has
been implemented. Finally, there is currently no cleaner.

3.3 Meta-data

Mammoth meta-data is stored as files in a shadow direc-
tory similar to that of AFS [10]. This structure is designed
to optimize access to the current version of a file. This ver-
sion can be read without reading any on-disk Mammoth
meta-data, as long as the server has registered interest in
the file and currently holds either a read or write lock.
Figure 1 presents an example of a directory tree rooted at
alice and its associated meta-data. Current versions are
kept in the RE subtree. Meta-data and previous versions
are stored in the SH subtree.

When Alice opens ..Pubs..fast.tex the
server returns ..RE/Pubs..fast.tex. On a
write the file ..RE/Pubs..fast.tex is moved to
..SH/Pubs..fast.tex/fast.tex.nd1-v3 and a new
..RE/Pubs..fast.tex is created. On a close the meta-
data is updated by appending the new version record to
..SH..fast.tex.md.

alice

SH

Pubs

root.dir.md
root.dir.pol

pubs.dir.md
pubs.dir.pol
FAST

fast.tex.file.md
fast.tex.pol
fast.tex.ver

fast.fig.file.md
fast.fig.pol
fast.fig.ver

fast.tex.nd1−v1
fast.tex.nd1−v2

fast.fig.nd1−v1
fast.fig.nd2−v2
fast.fig.nd1−v3

fast.dvi.file.md
fast.dvi.pol

RE
Pubs

FAST
fast.tex
fast.fig
fast.dvi

Figure 1: The file’s meta-data.

A directory’s meta-data consists of two files. The file
dirname.dir.md stores (1) directory state information
and (2) a list of name entries annotated with the time they
were created or removed. The file dirname.dir.pol
contains (1) a list of nodes that are interested in the di-
rectory and (2) a list of replica nodes.

A file’s meta-data consists of two files and a directory.
The file filename.file.md stores (1) the file’s current
state, whether it is present or deleted, (2) the file’s current
and previous owner and lock status, (3) whether the file is
up to date, and (4) a list of file version information as de-
scribed below. The file filename.file.pol stores (1) a
list of interested nodes, (2) a list of replication nodes, and
(3) the file’s availability policies and groupings. The repli-
cation server list is used by the system replication thread
as a heuristic to provide a degree of locality when select-
ing nodes to store replicas of this file. There is also a
filename.ver directory that is associated with every file
that stores file versions.

7



Finally, each node also stores a queue of pending meta-
data updates for each node that is currently unavailable.

3.4 File History

A file’s history chronicles its existence from its creation to
its deletion (and beyond); it is stored as a linear list. Each
entry corresponds to a version of the file and contains in-
formation to determine where and when the version was
created and where the previous and the next version is
located. An entry is created and written in append-only
fashion when the server receives a close for that file.

File versions are uniquely named by the pair consist-
ing of the name of the node that created it and its creation
time on that node. Each history entry stores the name of a
version and the name of the history branch on which that
version resides. Branches are named by a pair consisting
of the name of the version that created the branch and its
parent. This approach to branch naming is taken to sim-
plify history maintenance.

A snippet of a file’s history is shown in Figure 2. In
this case, Node A has modified the file twice and node
B once, before a branch occurs. At this point, both
nodes B and node C produce new versions that are based
on version � B � Tb0 � and the two branches they create are
named ��� B � Tb1 � � B � Tb0 ��� and ��� C � Tc0 � ��� B � Tb0 ��� , respec-
tively. This naming scheme is used to enable us to rebuild

�
A � Ta0 � � ��� A � Tao � � nil ��
A � Ta1 � � ��� A � Ta0 � � nil ��
B � Tb0 � � ��� A � Ta0 � � nil �

...
...�

B � Tb1 � � ��� B � Tb1 � � � B � Tb0 �	� �
C � Tc0 � � ��� C � Tc0 � � � B � Tb0 �	��

B � Tb2 � � ��� B � Tb1 � � � B � Tb0 �	� �
C � Tc1 � � ��� C � Tc0 � � � B � Tb0 �	�

Figure 2: Branching file history.

a file’s history when parts of it are unavailable due to node
failures.

4 Performance

4.1 Experimental Setup

Unless otherwise noted, all numbers reported in this
section are the median of 1000 trials on otherwise un-
loaded machines and network. Pentium II PCs running
at 266MHZ with 128MB of ram were used for both the
client and the server machines. They were connected by a
100Mb ethernet network.

4.2 Opening the Current Version of a File

To open the current version of a file, a Mammoth node
must first acquire a read or write lock. The overhead for
this operation breaks down as follows: (1) locate lock
owner, (2) request lock, (3) invalidate other locks, and (4)
grant lock. If the request results in a change of lock own-
ership (i.e., a write request to a remote owner), the identity
of the new owner is propagated as part of the meta-data
update sent when the modified file is closed. This over-
head is described in Section 4.6.

A requesting node will typically either be the lock
owner or will know what node holds the lock, because
lock ownership changes are eagerly propagated to inter-
ested nodes. Locating the owner thus either requires 71µs
or 4740µs. In the rare instance where the ownership for-
warding chain is longer, a 4670µs overhead is incurred for
every additional node visited.

Requesting and granting the read lock requires 71µs if
the owner is local and 120µs if it is remote.

Finally, if the request is for a write lock, then zero or
more read locks held by other nodes may need to be in-
validated. We measured this case for zero and one reader
nodes at 0µs and 426µs respectively. The actual invali-
dation is asynchronous to the lock request and adds an
additional overhead of 1860µs to each lock-holder node.
This overhead has no effect on open time, but can impact
overall system throughput.

4.3 Reading

Reading the current version of a file should have roughly
the same performance as NFS. Open in Mammoth is
690µs, in NFS is 589µs and in EXT2 is 162µs. Mam-
moth’s open is slightly more expensive than NFS’s due to
the initialization of several extra data structures during the
lookup procedure. Sequentially reading a 65536 byte file
in Mammoth is 33500µs, compared to 19800µs for NFS
and 14500µs for EXT2.

To read a random 4-KB block from the server takes
8550µs for Mammoth, 8490µs for NFS, and 8400µs for
EXT2.

We notice that in Mammoth reading a random 4-KB
block is approximately the same as reading the block in
NFS and from the local file system. Yet reading a 64-
KB file sequentially is considerably more expensive. The
reason for this discrepancy is that the first read request is
taken as a cue that a file open has occurred and thus extra
work, such as opening meta-data, is performed. Subse-
quent reads are comparable to those in NFS and the local
file system.

8



Operation Mammoth NFS EXT2
(µs) (µs) (µs)

create 245 1270 307
open 690 589 162
read - random 4KB 8550 8490 8410
read - sequential 64KB 33500 19800 14500
write with trunc - 1KB 3400 1260 2060
write with trunc - 64KB 10000 8040 20300
write - 1KB 2560 1210 8500
write - 64KB 10800 7980 26400

Table 1: Timings for create, open, read, and write operations.

Operation Local Node Remote Node
(µs) (µs)

Lock acquisition 71 120
Lock invalidation 426 1860
Versioning - rename 1990 N/A
Versioning - copy 1330 + 92 per 4-KB N/A
Meta-data updates - file create 123 + 69 per interested node 9660
Meta-data updates - file update 10 + 69 per interested node 3010
Replication 145 + 102 per 4-KB 417 + 203 per 4-KB

Table 2: Microbenchmarks and overhead for a set of common operations such as lock acquisition and invalidation,
versioning, propagating meta-data, and replication. The timings presented are for the sending and the receiving node.

4.4 Writing

Writing to a Mammoth file has extra overhead compared
to NFS and EXT2 because it requires the creation of a new
version of the file.

In this experiment we wrote to two different files, one
small and one large. In each experiment, we show the
elapsed time for creating the new version, performing the
described write operation, closing the file, and perform-
ing sync, to synchronously write the modified data to the
server.

To begin, we measured 3400µs to truncate the small
file, 1024 bytes, and 10000µs to trunc the large file,
65536 bytes, compared to 1260µs and 8040µs for NFS and
2060µs and 20300µs for EXT2. Since truncate completely
erases the contents of a file we are able to use rename to
version the file. The overhead for doing so is 1990µs.

We then computed the time for writing various num-
bers of bytes to each file. Writing 1024 bytes requires
2560µs for Mammoth, 1210µs for NFS, and 8500µs for
EXT2, while a larger write of 65536 bytes takes 10800µs
in Mammoth, 7980µs in NFS and 26400µs in EXT2. Since
we are updating the file we are forced to copy it to create
the new version. This versioning technique gives us a con-

stant overhead of 1330µs with an additional overhead of
92µs per-4KB write. From this we conclude that Mam-
moth is 10 % slower than NFS.

4.5 Andrew File System Benchmark

We ran the Andrew file system benchmark to (1) deter-
mine Mammoth’s performance with respect to standard
NFS and a local file system and (2) to determine the im-
pact of eagerly propagating updates and of replication on
the system.

We ran Mammoth with no interested nodes or replica-
tion nodes to compare its performance with NFS and a lo-
cal file system. The total elapsed time for Mammoth was
18.6s, compared to 15.3s for NFS and 12.6s for EXT2.

To determine the performance penalty of propagating
meta-data we ran a Mammoth server node with 0, 1, 2,
and 3 interested nodes and 0 replication nodes, see Figure
3. We ran a Mammoth server node with 0 interested nodes
and 0, 1, 2, and 3 replication nodes to determine the cost
of replication, see Figure 4.

9



0

5

10

15

20

25

0 1 2 3

T
im

e 
In

 S
ec

on
ds

Number of Mammoth Servers

18.6s 18.7s 18.8s 18.8s

Figure 3: The cost of propagating meta-data. The graph
shows the cost of propagating meta-data for 0, 1, 2, and 3
interested nodes using the Andrew Benchmark.

4.6 Propagating Meta-data to Other Nodes

A key feature of Mammoth is that the meta-data cached at
interested nodes is updated eagerly whenever it changes.
We measured the overhead of this update propagation for
two operations that create new meta data: (1) creating a
file and (2) modifying a file. These two operations are
good representatives for other operations such as creating
or removing directories and renaming a file. We measured
the overhead on both the updating node and on the receiv-
ing node.

If there is no interested node, there is no overhead.
A file creation consists of creating the update message,
123µs, and sending the message to an interested node,
69µs. The overhead for creating the message is incurred
only once for each update. The overhead for sending it
is incurred for each interested node. The overhead on the
receiving node for a file create is 9660µs. The cost is sub-
stantial due to the need to create several meta-data files
and directories. For a file update, the cost of creating the
update message is 10µs. Creating a file update message is
less expensive than a file create message because we need
to pack additional information such as the interest list, the
replication list, and replication policies into the file create
message, which involves additional memory copies. On
the receiving end the cost of a file update is 3000µs.

Ideally the cost of propagating meta-data should lin-
early increase as more nodes register interest in a file.
Figure 3 shows the total time it takes for the Andrew
Benchmark to run with 0, 1, 2, and 3 interested nodes. We
notice that the time increases as the number of interested
nodes increases in a linear fashion. The runtime differ-
ence between 0 interested nodes and 3 interested nodes is
0.18 seconds.

0

5

10

15

20

25

0 1 2 3

T
im

e 
In

 S
ec

on
ds

Number of Mammoth Servers

18.6s 19.2s 19.8s
19.0s

Figure 4: The cost of replicating data. The graph shows
the cost of replicating data for 0, 1, 2, and 3 replication
nodes using the Andrew Benchmark.

4.7 Other Operations

There is no associated overhead with registering interest
in a file. The request is implicitly piggy-backed on top
of a remote read or a remote write request. As explained
earlier interest is registered automatically for a file if the
access frequency is above a certain threshold. To register
interest a single in-memory data structure is accessed thus
no measurable overhead is present.

4.8 Replication

There are two different types of replication: replication
that occurs when a modified file is closed, and replication
that occurs as the result of the background task that runs
periodically. In both cases the performance cost is the
roughly same. Delayed replication, however, has higher
space cost, because updates are not sent immediately but
stored and propagated at a later time.

When a version is replicated the overhead for the sender
consists of the time it takes to instantiate a file create up-
date message, 123µs, plus an additional 22µs for a total of
145µ. There is also a 102µs of overhead for each 4-KB
of file data sent. On the receiving side the overhead to re-
ceive a replication message is 417µs plus 203µs for each
4-KB of file data received.

The cost of replicating data should also linearly in-
crease as the number of nodes in the replication group
increases. Figure 4 shows the total time it takes for the
Andrew Benchmark to run with 0, 1, 2, and 3 replica-
tion nodes. For 0, 1, and 2 replication nodes we see a
linear increase in replication overhead. For 3 replication
nodes we notice that the overhead is less than for 1 and 2
nodes. We believe the replication thread takes more time
to execute and thus the system thrashes less although the

10



replication process takes longer to complete. The Andrew
Benchmark exercises the main thread while the replica-
tion thread runs when there is replication to be done. In
the case of 3 replication nodes the replication thread is
still running after the Andrew Benchmark finishes.

5 Related Work

Mammoth’s use of versions to simplify replication was
inspired by the Cedar[1] file system, which used version-
ing to simplify cache consistency. In Cedar, each version
was named by a unique serial number assigned when it
was created. In Mammoth, on the other hand, versions
are named by any timestamp contained in the interval be-
tween its creation and either the creation of the next ver-
sion or deletion of the file.

Locus [17], Coda [5, 7], and Ficus [14] all use tightly-
coupled forms of optimistic replication. In Coda, for ex-
ample, a tightly-coupled collection of server nodes repli-
cate a portion of the file system. Connected to this
are clients that actively cache file data and depend on
the servers for synchronization and consistency. Discon-
nected clients can modify locally cached objects; these
changes are reconciled with the servers when clients re-
connect. Mammoth differs in that it avoids tight coupling
and that it uses version histories to simplify consistency
and conflict reconciliation. In contrast, Coda resolves par-
titioned updates as part of the partition reconciliation pro-
cess, marking files with conflicts as unusable until fully
reconciled by a user or application.

Mammoth’s division of reconciliation responsibilities
between the low-level storage system — Mammoth —
and higher-level reconciliation, contrasts with Bayou [12]
and OceanStore [6]. Bayou supports full application-
aware reconciliation integrated with a relational database.
It uses operation logging to resolve conflicting updates by
merging the logs from conflicting nodes, rolling back the
database, and replaying the merged log. OceanStore ex-
tends this basic idea for very wide-scale storage.

6 Conclusions

This paper has described the design and implementation
of Mammoth, a novel distributed file system that protects
valuable file system data from human, software, hard-
ware, and site failures by replicating file versions among
a set of loosely-connected nodes.

The key idea of Mammoth is that file and directory
meta-data are stored in append-only fashion and that file
data itself is immutable; writing to a file creates a new
version. Immutable versions simplify replication and con-
sistency management and increase replication flexibility.

Loose connectivity simplifies scalability and fault toler-
ance, by allowing nodes to have partial, weakly-consistent
knowledge of the system and to operate with whatever file
versions are currently available, without requiring coordi-
nation with unavailable nodes. We believe that this loose
connectivity and the simplicity it implies will make the
system scalable and easy to administer.

Our design is still in its formative stages and some is-
sues remain to be resolved. To date we have implemented
two prototypes: a user-level NFS server and an in-kernel
stackable file system in FreeBSD. Our plan, yet incom-
plete, is to allow clients to access the file system either
directly on a Mammoth node or remotely via an unmodi-
fied (or mostly unmodified) NFS client; remote access via
NFS is fully implemented. Finally, our evaluation of the
user-level server presented in this paper shows that perfor-
mance is reasonable.

Our future work will be on three fronts. First, we con-
tinue to refine our design to deal with issues presented
in this paper and to develop a complete prototype imple-
mentation. Second, we plan to explore the utility of a va-
riety of availability policies and to gain experience from
real users. Third, we plan to extend the design to build
a Bayou-like middleware service on top of Mammoth to
handle application-level conflict reconciliation.

References

[1] D. K. Gifford, R. M. Needham, and M. D.
Schroeder. The Cedar file system. Communications
of the ACM, 31(3):288–298, March 1988.

[2] J. H. Hartman and J. K. Ousterhout. The Zebra
striped network file system. ACM Transactions on
Computer Systems, 13(3):274–310, August 1995.

[3] D. Hitz, J. Lau, and M. Malcolm. File system de-
sign for an NFS file server appliance. In Proceed-
ings of the Winter 1994 USENIX Conference: Jan-
uary 17–21, 1994, San Francisco, California, USA,
pages 235–246, Winter 1994.

[4] M. Ji, E. W. Felten, R. Wang, and J. Pal Singh.
Archipelago: An island-based file system for highly
available and scalable internet services. In Proceed-
ings of 4th USENIX Windows Systems Symposium,
August 2000.

[5] J. J. Kistler and M. Satyanarayanan. Disconnected
operation in the Coda file system. In Proceedings of
13th ACM Symposium on Operating Systems Princi-
ples, pages 213–25, October 1991.

[6] John Kubiatowicz, David Bindel, Yan Chen, Patrick
Eaton, Dennis Geels, Ramakrishna Gummadi,

11



Sean Rhea, Hakim Weatherspoon, Westly Weimer,
Christopher Wells, and Ben Zhao. Oceanstore: An
architecture for global-scale persistent storage. In
Proceedings of ACM ASPLOS. ACM, November
2000.

[7] Puneet Kumar and Mahadev Satyanarayanan. Log-
based directory resolution in the Coda file system. In
Proc. Second Int. Conf. on Parallel and Distributed
Informat ion Systems, pages 202–213, San Diego,
CA (USA), 1993.

[8] E. K. Lee and C. A. Thekkath. Petal: Distributed
virtual disks. In Proceedings of the Seventh Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASP-
LOS VII), Computer Architecture News, pages 84–
93, October 1996.

[9] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson,
L. Shrira, and M. Williams. Replication in the Harp
file system. In Proceedings of 13th ACM Symposium
on Operating Systems Principles, pages 226–38, Oc-
tober 1991.

[10] J. H. Morris, M. Satyanarayanan, M. H. Conner,
J. H. Howard, D. S. Rosenthal, and F. D. Smith.
Andrew: A distributed personal computing environ-
ment. Communications of the ACM, 29(3):184–201,
March 1986.

[11] D. A. Patterson, G. Gibson, and R. H. Katz. A case
for redundant arrays of inexpensive disks (RAID). In
Proceedings of Association for Computing Machin-
ery Special Interest Group on Management of Data:
1988 Annual Conference, Chicago, Illinois, June 1–
3, pages 109–116, 1988.

[12] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry,
Marv in M. Theimer, and Alan J. Demers. Flexi-
ble update propagation for weakly consistent repli-
cation. In Sixteenth ACM Symposium on Operating
Systems Principles, Saint Malo, France, 1997.

[13] D. Presotto. Plan 9. In Proceedings of the Work-
shop on Micro-kernels and Other Kernel Architec-
tures, pages 31–38, April 1992.

[14] Peter L. Reiher, John S. Heidemann, David Ratner,
Gregory Skinner, and Gerald J. Popek. Resolving
file conflicts in the ficus file system. In USENIX
Summer, pages 183–195, 1994.

[15] D. S. Santry, M. J. Feeley, N. C. H., A. C. Veitch,
R. W. Carton, and J. Ofir. Deciding when to forget in
the Elephant file system. In Proceedings of the 17th

ACM Symposium on Operating Systems Principles,
pages 110–123, December 1999.

[16] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani:
A scalable distributed file system. In Proceedings of
16th ACM Symposium on Operating Systems Princi-
ples, pages 224–237, October 1997.

[17] Bruce Walker, Gerald Popek, Robert English,
Charles Kline, and Greg Thiel. The LOCUS dis-
tributed operating system. In Proceedings of the 9th
Symposium on Operating Systems Principles, Oper-
ating Systems Review, pages 49–69, October 1983.

[18] R. Y. Wang and T. E. Anderson. xFS: A wide
area mass storage file system. In Proceedings of
the Fourth Workshop on Workstation Operating Sys-
tems, pages 71–78, October 1993.

[19] J. Wilkes, R. Golding, C. Staelin, and T. Sulli-
van. The HP AutoRAID hierarchical storage sys-
tem. ACM Transactions on Computer Systems,
14(1):108–136, February 1996.

12


