
Regaining Control of Exception Handling

Martin P. Robillard and Gail C. Murphy

fmrobilla,murphyg@cs.ubc.ca

Technical Report Number TR-99-14

Department of Computer Science

University of British Columbia

201-2366 Main Mall

Vancouver, BC

Canada V6T 1Z4

December 1st, 1999

ABSTRACT

Just as the structure of the normal operations of a sys-

tem tends to degrade as the system evolves, the struc-

ture of exception handling also degrades. In this paper,

we draw on our experience building and analyzing the

exception structure of Java programs to describe why

and how exception structure degrades. Fortunately, we

need not let our exception structure languish. We also

relate our experience at regaining control of exception

structure in several existing programs using a technique

based on software containment.

Keywords

Exception Handling, Program Structure, Software

Structure, Error Handling, Design.

1 INTRODUCTION

To help manage complexity, software developers use var-

ious types of structure to organize the source code for a

system. Programming language constructs, such as pro-

cedures and procedure calls, provide a means of express-

ing �ne-grained structure. Architectural styles [14],

such as layers or pipes and �lters, provide a means of de-

scribing coarse-grained structure. Selecting and imple-

menting appropriate structures for a system can provide

many bene�ts; for example, the source may be more

modi�able or reusable as a result.

Despite the best intentions of software developers, the

structures desired for a system tend to degrade over

time. The addition of a new feature into the system

may introduce additional calls between procedures that

increase the coupling in the system. The need for im-

proved performance may lead to violations of a desired

architectural style.

The degradation of structure in software systems as they

evolve has been studied for several years [3]. Over-

whelmingly, the work on structure and structural degra-

dation has focused on those parts of the source code

that represent the normal
ow of control in the system.

Source code written in modern programming languages

(e.g.,Ada [1], C++ [16], Java [9]) also includes exception

handling code dedicated to representing actions to take

in unanticipated or undesired cases. Not surprisingly, it

has been our experience that the structure of exception

handling code in a system also tends to degrade as the

system evolves. Although the structure of both kinds of

code degrade, the kind of degradation is quite di�erent.

In this paper, we draw upon our experience at building

and analyzing the exception structure of Java programs

to describe why and how exception structure degrades.

We then describe an approach that we have found help-

ful to regain control of the exception structure in an

existing system. This approach is based on a proposed

method for designing fault-tolerant Ada systems [10].

We discuss the outcome of applying this approach to

three di�erent existing Java systems.

We begin by describing problems we encountered when

evolving the exception structure of a program analysis

tool (Section 2). These problems occurred despite the

care that was taken during design to make the excep-

tion structure of the program evolvable. Next, we draw

on our experience at analyzing the exception structure

of existing programs to propose a description of why

and how the problems occur. Then, we describe the

technique we have used to improve exception structure

(Section 4), and describe the application of this tech-

nique to three systems (Section 5). Finally, we survey

related work on exception structure design (Section 6),

and summarize the paper (Section 7).

2 AN EXAMPLE OF EXCEPTION

STRUCTURE DEGRADATION

To illustrate how the exception structure of a program

can degrade, we describe the evolution of the Jex excep-

Table 1: Component-level exception speci�cation

Component Name Exceptions Raised

Controller None

TypeSystem TypeException

ParseException
JexLoader

IOException

AnalysisException
AST

ExceptionGenerationException

Parser ParseException

tion analysis tool [13]. The Jex tool is a static analyzer

that extracts exception
ow information from Java pro-

grams. Speci�cally, Jex determines the list of exceptions

that can be raised at every program point and presents

this information in the context of the exception handling

structure in the program.

Jex consists of �ve components (Figure 1). Each com-

ponent consists of a set of highly related classes that are

accessed through a restricted interface. The arrows in

the �gure represent calls between the components.

Type System

Controller

ASTParser

Jex Loader

Figure 1: The Architecture of Jex

The tool was designed with exception handling in mind.

Care was taken to design a meaningful and restricted set

of exceptions for each component. Components were to

signal their failures using mostly user-de�ned exceptions

(e.g., TypeException for the Type System component).

Table 1 shows the initial speci�cation for the exceptions

raised at the component level.

As the Jex tool evolved, we realized that the simplistic

model above did not correspond to the actual behaviour

of exceptions in the application. As one example of the

actual behaviour, Figure 2 represents the propagation

paths, at the class-level, leading to the entry point of

Jex for a single exception, ClassCastException. Obvi-

ously, reasoning about the behaviour of the system with

respect to this exception is di�cult! Figure 3 presents

a stylized representation of the
ow of all exceptions in

Jex at the component level. The width of each arrow is

roughly proportional to the number of di�erent excep-

tions
owing on the path; the numbers are also indicated

on the �gure. Clearly, there are more exceptions
owing

in the system beyond component boundaries than were

anticipated or desired.

0

41

1

42

2

43

3

44

4

45

5

46

6

47

7

48

8

49

9

50

10

51

11

52

12

53

13

54

14

5515

56

16

57

17

58

18 59

19

60

20

61

21

62

22

63

23

64

24

65

25

66

26

67

27 28

29

30

31

32

33

34

35

36 37

38

39

40

Figure 2: Propagation graph of ClassCastException

18
14

10

1

3

17

7

ASTParser Type System

Controller

Jex Loader

Figure 3: Exception Propagation in Jex

Problems with the exception structure

To gain insight into the degradation of the exception

structure in Jex, we studied those potential exceptions

that did not conform to our initial design. This study

suggests several categories of problems that lead to the

degradation.

Our exception design was too general. Our initial excep-

tion design was based on a component raising a small

number of exceptions. The practical consequence of this

design is that other exceptions that might arise in a com-

ponent are re-mapped to the small set of exceptions de-

�ned for the component. For example, the implementa-

tion of the Type System component re-mapped the ex-

ceptions that could occur in classes contributing to the

Type system to a generic TypeException.1 As it turned

out, this re-mapping was too general because it could

1The re-mapping did not include unchecked exceptions.

2

represent both some IO problems related to initializing

the type system component, as well as lookup problems

related to using the component. Since this distinction

was necessary to write handlers that would provide users

with useful feedback, the component was modi�ed to

propagate the IOExceptions raised during its operations.

However, during the initialization of the component, it

turns out that the TypeExceptions explicitly raised by

the Type System and the IOExceptions that could prop-

agate through carried the same semantic. As a result,

the handling of both types of exceptions was identical.

Clearly, there existed some confusion with determining

when the semantics of the exceptions were the same and

when they di�ered.

Conformance to the exception design caused a loss of

information. In the case described above, we increased

the set of exceptions designed to be raised by a compo-

nent to help clients distinguish between di�erent kinds

of conditions. All too often, as the implementation is

modi�ed and new conditions under which exceptions

may be generated emerge, it is easier to map the con-

dition to the existing set of designed exceptions, rather

than to re�ne the design. In the long term, this led, in

the case of Jex, to exceptions that were very di�cult to

interpret. As an example, the Jex Loader component

is a parser for �les containing information about excep-

tion
ow for all the methods of a class. As described

in Table 1, the only two exceptions that were to escape

the Jex Loader were an IOException, if the �le could

not be opened and a ParseException if it could not be

parsed correctly. During the implementation of the sys-

tem, it was determined that the situation in which a �le

does not contain information requested should be sig-

naled as a ParseException. However, after the system

had been in operation, it was realized that the di�er-

ence between a parsing error and a method not being

found (i.e., information was missing) should be distinct.

To di�erentiate between the two situations, the value

of the exceptions|information stored in the exception

object|was used. However, this was a short-term so-

lution because we found that the use of the exception

value to distinguish between exceptions complicates the

writing of handlers, and complicates maintenance of the

exception structure.

Propagating system-de�ned exceptions made handlers

di�cult to write. The Jex Loader raised a system-

de�ned IOException under some conditions, such as

when a documentation �le could not be found. It turns

out that IOException could also be raised by the meth-

ods of the Java API classes when some low-level IO

problem occurred. The result was that it was di�cult

for the client of the Jex Loader, the AST, to handle the

exception because the cause of the exception could be

so varied.

We could not easily bound unchecked exceptions. An-

other di�culty we had in establishing the structure of

exceptions in Jex was related to the cost of some im-

plementation decisions. In Java, exceptions can be ei-

ther checked or unchecked (or runtime). Checked ex-

ceptions must be declared in the header of all methods

which propagate them; unchecked exceptions need not

be declared. User-de�ned exceptions are often checked

exceptions because they correspond to conditions that

developers �nd useful to signal as a speci�c potential

cause of exiting a method. Enabling the compiler to

check such exceptions makes clients aware of these spe-

ci�c exit conditions.

It would have been desirable to declare the

AnalysisException and ExceptionGenerationException

for the AST component as checked exceptions. How-

ever, the AST component is implemented as a tree of

specialized nodes where the nodes are implemented

as roughly 100 di�erent classes. Since the problems

corresponding to the two exceptions mentioned above

could arise anywhere in the AST, the exceptions could

potentially propagate through most of the methods of

the node classes. Had we declared the exceptions as

checked, we would have had to declare the exceptions

in many places; speci�cally in approximately two to ten

methods in 100 classes. This strategy was not deemed

cost-e�ective and the two exception were de�ned to be

unchecked. This decision had two main consequences.

First, because they are unchecked, extra care and in-

spection was needed to identify the propagation paths

of the exceptions so that the exceptions could be han-

dled e�ectively. Second, to limit the number of di�erent

unchecked exceptions
owing in the AST, some other

exceptions were recast either as an AnalysisException

or an ExceptionGenerationException. As before, this

led to a reliance on the value of the exception to provide

useful information, creating a fragile situation.

Uncaught exceptions caused our system to crash.

Many of the low-level exceptions in Java, such as

ArrayIndexOutOfBounds, are unchecked exceptions. Be-

cause they are unchecked, these low-level exceptions,

which typically represent a problem with the implemen-

tation of a component, tend to propagate out of the

component through most of the call chain to the entry

point of the application. Apart from indicating that the

application is not operating correctly anymore, these ex-

ceptions were useless because they did not provide su�-

ciently precise or contextual information to perform any

recovery or to provide any useful error message to users.

The practical consequence of this situation is that our

program would exit and dump a stack trace whenever

a component would fail in an unanticipated way. This

behaviour was not desirable.

We did not design the value of the exceptions. Although

3

we had initially speci�ed which exceptions would be

thrown by a component, we did not specify what the

value of the exceptions would be. As a result, using this

value required signi�cant inspection in modules that

raised the exception.

3 WHY DOES EXCEPTION STRUCTURE

DEGRADE?

The analysis of the exception structure of Jex and of

numerous other Java programs has allowed us to iden-

tify a number of potential causes of complex or di�cult

to maintain exception structure.

Unpredictable Exception Sources

The full set of exceptions that may arise in a system

cannot be determined until the implementation is com-

plete, since the concrete implementation choices made

in building the system a�ect the exceptions that are

raised. The late determination of exceptions in the sys-

tem makes it challenging to design and implement a

well-structured set of handlers and propagation policies

for the various kinds of exceptions.

Unanticipated Exceptions

As described earlier, Java supports both checked and

runtime (unchecked) exceptions. The use of unchecked

exceptions leads to two problems. First, pervasive ex-

ception types, such as NullPointerException, can circu-

late freely in a program, sometimes reaching the entry

point of the application thereby causing the program

to crash.2 Second, since unchecked exceptions may be

subsumed by the more general type, Exception, han-

dlers can become overloaded. Problems associated with

handler overload are considered separately below.

Handler Overload

An exception handler in Java states the type of excep-

tion that it handles. Since Java exceptions are related

by a hierarchical type system, a handler, through sub-

sumption, may end up handling more than one kind

of exception. Subsumption can enable a programmer

to succinctly describe the handling of a set of related

exceptions. However, sometimes a handler may end

up unknowingly subsuming exceptions. One instance

in which this happens is when a handler subsumes

unanticipated exceptions. This situation may also arise

when a program evolves: a module may be changed to

emit additional subtypes of a previously used exception

type. Unknowing subsumption can cause the actions

of a handler to become incoherent.3 Handler overload

is also inevitable when a developer chooses to explic-

itly raise an exception of a type that is commonly de-

�ned as the supertype of many other exceptions (e.g.,

2The problem of uncaught exceptions has been identi�ed pre-
viously, and many speci�c approaches have been proposed to ad-
dress it (e.g. [8, 12, 13, 18, 19, 20]).

3For a more detailed discussion of this problem, see [13].

RuntimeException). In these case, it is impossible for

clients to handle the exception speci�cally.

Propagation

Every time an exception is propagated, it loses context.

Consider the following case in point. A method reads

from some stream object received as an argument. If

an IOException occurs, the method typically cannot re-

cover since it did not create the stream object and thus

likely does not know the name of the source �le used to

create the stream. In such a case, the method is likely to

propagate the exception. However, a client is not often

any better positioned to handle the problem. A client,

for instance, may not be able to determine from the

IOExceptionwhether the problem was raised because an

IO stream could not be created, opened, closed, written,

read, queried, reset,
ushed, or whether it su�ered from

some other problem. Lack of su�cient context makes

it di�cult for clients to design good recovery or useful

noti�cation upon catching propagated exceptions.

Exception Overload

The exceptions that may be potentially raised by a com-

ponent can be considered as part of the interface to the

component. When a client is aware that a component

C may raise an exception E, the client may introduce a

handler for exception type E. Over time, component C

may be extended in ways that can fail di�erently from

the cases that exception type E was meant to capture.

To ensure compatibility with clients, the developer of C

may choose not to introduce a new potential exception,

but rather may choose to re-map new exceptions to the

exception type E. In this way, exceptions can become

semantically overloaded. This overloading may eventu-

ally degenerate the meaning of a particular exception

type for a component, making it impossible for a client

to write recovery code. Another kind of exception over-

load occurs when developers choose to explicitly raise

a system-de�ned exception to signal a condition other

than the one that is speci�ed as the rightful cause for

the exception. An example often encountered is when

application code raises an InternalError, even though

the Java API speci�es that this errors correspond to a

problem in the Java virtual machine.

Systematic Ignoring of Exceptions

We have also observed many cases where developers re-

solved the problem of where to handle an exception by

simply catching the exception and doing nothing, some-

times commenting the catch clause with a message to

the e�ect that \this should not happen". In the case

where such an assumption turns out to be false, the

program can end up in an inconsistent state.

Unspeci�ed Exception Values

A Java exception object carries a value. One use of

the value is to store an explanatory string that can be

4

used to describe to a user the exceptional condition that

occurred. Since this value is set when the exception is

created, its use depends on the developer who wrote

the line of code creating the exception. If consistently

set, this value can be helpful in simplifying handlers;

for instance, several kinds of exception can be caught

through subsumption in a single handler and the value

of the exception simply output. Inconsistent use of the

value means that multiple handlers might need to be

used.

Inconsistent Use of Exception Handling

In some Java programs, exception handling is combined

with other error handling strategies, such as setting ter-

mination codes. Use of other strategies for dealing with

exceptional conditions makes the exception structure

more di�cult to understand and manipulate.

4 ADDING STRUCTURE TO EXCEPTIONS

Given that the exception structure of a program can

degrade in many ways, the question becomes how to

regain control of a program's exception structure. For

the Java programs we have been studying, we have had

success applying a technique described by Litke for de-

signing fault-tolerant systems in Ada [10]. This tech-

nique consists of a strategy for determining software

compartments and for de�ning exception interfaces for

each compartment. To account for the di�erences be-

tween Ada and Java, we have had to make some small

adaptations to the technique. In this section, we de-

scribe the technique and discuss how we applied it to

simplify and regularize the exception structure in Jex.

We believe the Jex system is more maintainable as a

result. We describe additional experiences applying the

technique in Section 5.

Compartments

The idea behind software compartmenting is that

\compartmented programs have identi�able boundaries

within them that contain the propagation of speci�c er-

ror classes" [10, p.405]. Once a compartment has been

chosen, we want to de�ne an interface to that com-

partment that includes an exhaustive description of the

exceptions that may propagate from it. The intent of

compartmenting a program is to improve its robustness.

Robustness is enhanced because we end up specifying a

constraint on the system that all the exit points out

of a compartment, including exit points due to excep-

tions [6], are known. Enhanced robustness does not

come without a cost: enforcing and verifying the con-

straints requires additional implementation e�ort.

There is no real restriction on what compartments can

be. In theory, a compartment could be any set of enti-

ties that can raise exceptions, such as a set of methods.

Practically, aligning compartments with the program

structure provides a basis for reasoning about the excep-

tion structure. We have also found it helpful to choose

compartments such that the interface to a compartment

is minimal. This choice reduces the e�ort necessary to

enforce and verify the compartments.

In Jex, the compartments we chose mostly aligned with

the architectural decomposition of the system: the Con-

troller, the Type System, the Parser and the Jex Loader.

We did not specify the AST component to be a compart-

ment for two reasons. First, the interface to the com-

ponent was complex, including a high number of pub-

lic methods with intensive use of polymorphism. Sec-

ond, the AST component was accessed only through the

Parser; the compartment speci�ed for the parser could

include the AST. In addition to these coarse-grained

compartments, we found it useful to specify one sub-

component compartment around a class responsible for

resolving simple names to fully-quali�ed Java names,

(the Resolver class). We added this compartment be-

cause the precise error semantics of the Resolver class

were necessary to perform some specialized recovery in

our program.

Abstract Exceptions

The next step involves determining which exceptions

will be allowed to propagate from a compartment. We

refer to exceptions designed to propagate from a com-

partment as abstract exceptions. Determining the ex-

ceptions that should propagate from a component is the

most di�cult step in regaining control of exception han-

dling. The di�culty stems from trying to determine a

list of semantically coherent exceptions that describe

the complete set of problems that can happen in a com-

partment.

The exceptions that are allowed to propagate from a

compartment should describe a problem in the context

of the compartment for which it is de�ned, and should

not reveal any of the compartment's internal workings.

When determining a propagation policy for a compart-

ment, it is useful to consider two categories of excep-

tions: system exceptions and internal failures.

System exceptions typically correspond to a broken as-

sumption about the system. Such exceptions often

result when assumptions or constraints about the se-

quences of operations on a component, the parame-

ters to an operation, or the environment, are not re-

spected. Examples of system exceptions include pop-

ping an empty stack (sequence of operations), access-

ing an non-existent element (parameters to an opera-

tion), or writing to a protected �le (environment). In

many cases, it is useful to report such conditions, but

only if the problems are represented at the compartment

boundary in a meaningful way. For Jex, we found that

the most e�ective way to report such faults was to asso-

ciate them with a high-level concept pertaining to the

5

functionality of the component. Three examples of such

exceptions are NoSuchElementException when a request

is made for an element that does not appear in a collec-

tion; LookupException when a lookup table is accessed

with an invalid key; and ParseException when a parser

is unable to parse input.

What about the internal failures? These exceptions re-

late to an internal inconsistency, independent from the

sequence of operations on a component, the parameters

of the operations, or the environment. These exceptions

typically correspond to an implementation problem and

generally do not indicate anything useful to a client, ex-

cept a failure of the component. Example of internal

failures can include dynamically casting an object to an

invalid type, or accessing an array beyond its bounds.

For Jex and the other programs we have analyzed, we

have not found it necessary to distinguish between the

di�erent classes of failures. We have used a single excep-

tion, AlgorithmicException, to model internal failures.4

The design of the abstract exceptions should be com-

plete and precise. By complete, we mean that every

possible exception, runtime or checked, must be speci-

�ed. By precise, we mean that, if the exceptions that

can be propagated are organized in a hierarchy, all ex-

ceptions should be documented, not only the supertype.

This way, all exit points out of the compartment are ex-

plicit.

General Guidelines

In addition to choosing compartments and abstract ex-

ceptions, we have found the following general guidelines

helpful to follow.

First, we have found it useful to limit the error han-

dling structure to the use of exceptions. Global er-

ror code variables and local exit instructions should be

avoided. Adherence to this guideline will not only en-

sure a simpler structure, but will facilitate reuse by al-

lowing clients of various components to decide how they

should fail. In Jex, no component was allowed to ter-

minate the program except the Controller, which is the

entry point to the application.

Second, to make it easier to implement and verify

whether compartmenting was successful, we have found

it helpful to restrict the functional interface of the com-

partment as much as possible. In our work with Java

programs, this means that any method that is not part

of the functional interface should be declared private.

Finally, if, for a particular component, di�erent excep-

tions can be raised by the same access point, it is typ-

4Some languages directly support the uni�ed signaling of in-
ternal errors. For example, CLU has a single unchecked failure
exception. C++ re-maps all undeclared exceptions to a single
unexpected type.

Table 2: New Abstract Exception Speci�cation for Jex

Component Name Exceptions Raised

Controller None

TypeSystemSetupException

TypeSystem TypeSystemLookupException

AlgorithmicException

NameException
Resolver

AlgorithmicException

JexFileLoadingException

JexLoader JexFileInterpretationException

AlgorithmicException

ParseException

AnalysisException
Parser

ExceptionGenerationException

AlgorithmicException

ically useful to organize them into a hierarchy so that

the client has the option of either recovering from a

general component exception or from a particular one.

However, if such a strategy is chosen, care has to be

taken to ensure that the general exception type chosen

as a supertype for the hierarchy is general enough to

semantically represent all sub-exceptions.

Redesigning Exceptions for Jex

Table 2 shows the complete list of abstract excep-

tions for each compartment selected in Jex. The Con-

troller, being the entry point of the application, can-

not raise any exception. With the compartmenting

in place, this speci�cation is meant to include unan-

ticipated exceptions, so the application cannot ter-

minate in an unexpected way. For the Type Sys-

tem, we chose two exceptions corresponding to the

two orthogonal modes of operations on the compo-

nent: initialization and lookup. Since these excep-

tions can never be raised by the same operation, they

are not speci�ed as a hierarchy other than the basic

Java exception hierarchy. The AlgorithmicException

is the abstract exception representing internal failures

in every compartment. The other abstract excep-

tions all represent system exceptions. The Resolver

propagates a NameException if a name cannot be re-

solved. The Jex Loader can raise two abstract ex-

ceptions (other than AlgorithmicException) that are

subtypes of JexFileException since they both can be

raised by the same operation. Finally, the Parser can

raise three abstract system exceptions, ParseException,

and two exceptions that can propagate from the AST:

AnalysisException and ExceptionGenerationException.

Implementing Abstract Exceptions in Java

Since there is no direct support for compartmenting in

Java, it was necessary for us to implement a mechanism

to enforce compartment boundaries. The mechanism

6

we de�ned was an exception guard. An exception guard

enforces the speci�cation of abstract exceptions by pre-

venting any unanticipated exception from propagating

out of a compartment.

In our system, we have implemented abstract excep-

tions and exception guards using exception re-mapping,

and exception subsumption, respectively. Conditions

resulting in an abstract exceptions can either be raised

explicitly using the throw keyword, or be raised implic-

itly by a method call or a language operation, such as

a division by zero. In the latter case, we map the ac-

tual exceptions raised in the component to our declared

abstract exceptions by identifying their origin, catching

them, and re-throwing them as a type conforming to an

abstract exception.

To guard against various types of internal failures prop-

agating past components, we wrap the interface op-

erations of each compartment in a try block with a

catch clause for every abstract exception, followed by

a catch clause declaring the type Throwable. The

catch clauses for the abstract exception simply re-throw

the exception, while the catch clause for the general

type maps all exceptions to a new exception of type

AlgorithmicException. As speci�ed in Table 2, an

AlgorithmicException is raised whenever an unantici-

pated exception was detected in the compartment, and

thus this type of exception corresponds to the concept

of internal failure. Figure 4 gives an example of the im-

plementation of an exception guard for the constructor

of the Type System.

Exception guards do not prevent the presence of other

internal exception handlers. For example, the try block

in Figure 4 could contain an internal handler to perform

any necessary re-mappings.

public TypeSystem()

{

try

{

// Initializing the Type System

}

catch(TypeSystemSetupException e)

{ throw e; }

catch(Throwable e)

{ throw new AlgorithmicException(e); }

}

Figure 4: An example of exception guard implementa-

tion

To verify the conformance of the implementation of

compartments to their exception guard contracts, we

use the Jex tool itself. For each method, Jex returns the

list of exceptions that can propagate out of the method.

Using Jex, it has been relatively easy to establish con-

formance.

With the exception guards in place and the conformance

to our speci�cation of abstract exceptions veri�ed, the

propagation interactions between the components of our

systems are now simpler (Figure 5).

4

1

2

1

1

3

2

ASTParser Type System

Controller

Jex Loader

Figure 5: Exception Propagation in the Revised version

of Jex

5 ADDITIONAL EXPERIENCE

We have applied the technique described in the previ-

ous section to two other software packages: GNU JTar

version 1.1 and IBM's Bobby class library, version 7. In

both cases, we were able to improve speci�c aspects of

the error handling structure without reengineering the

structure of the program handling normal operations.

JTar

JTar is a Java command-line program to create and ex-

tract tape archive (tar) �les. It consists of 48 classes in

6 packages. Based on a manual inspection of the source

code, we determined that JTar has a simple, 3-level lay-

ered architecture. This architecture is represented in

Figure 6.

Controller

Actions

Buffered IO

Figure 6: Layered Architecture in JTar

The Controller layer is the entry point to JTar and con-

trols the application. It parses the command-line argu-

ments and calls the Actions layer to perform actions re-

quested by users through the command-line arguments,

such as create, read, and extract tar �les. The classes

of the Actions layer use the Bu�ered IO layer to carry

7

out specialized IO tasks.

Our inspection of the source code indicated that er-

ror handling was not uniform in JTar. In the classes

of the Bu�ered IO layer, internal failures, such as

NullPointerException, were propagated; other excep-

tions, such as IOException, resulted in termination of

the program. In the Actions layer, exceptions were typ-

ically caught and an error code was set before the call re-

turned normally, perhaps without having completed the

action. As we have pointed out in section 3, we believe

that these choices were not optimal. First, handling ex-

ceptions using a combination of exception handling and

normal code makes it very di�cult to reason about and

alter the
ow of the program under exceptional condi-

tions. Second, exiting the application at various points

in the program scatters the program termination code,

making reuse of the components di�cult.

We thus set about to improve the JTar code in two

ways. One improvement was to ensure that the ap-

plication exits only at the Controller layer. The second

improvement was to report every fault using exceptions,

rather than using error codes. This improvement is con-

sistent with the idea that a point where it does not make

sense to continue the execution of a program should be

reported by an exception [6].

To make these improvements, we applied the approach

described in the previous section. We decided to make

each layer a compartment.

We began with the Bu�ered IO compartment.

First, we determined the entry points to the com-

partment. For Bu�ered IO, the entry points con-

sisted of the 17 public methods of the two classes,

BufferRead and BufferWrite.5 At each entry point,

we implemented exception guards for the follow-

ing exceptions types JTarCorruptedInputException,

JTarFileIOException, JTarNoPermissionException,

JTarNoArchiveNameException, and AlgorithmicException.

This list was determined by inspecting the conditions

under which a termination occurred, and the mes-

sage that was output at the termination point. The

�rst four exception types correspond to conditions

related to the parameters or the object of the various

operations (typically, a tar �le). To allow the possi-

bility of handling all of these exceptions at once in a

client, we have de�ned them as subtypes of a general

JTarException type. Internal failures were represented

using AlgorithmicException, just like they were in Jex.

We also have identi�ed the points in Bu�ered IO where

an exit was present and replaced the exit instruction

5Originally, none of the methods were scoped private. How-
ever, we could easily determine a set of methods that was only
accessed within the class. To make the interface to the Bu�ered

IO layer more explicit, we have quali�ed these methods as private.

with a suitable throw statement. This redesign of

the exception structure of the Bu�ered IO layer leads

to a simpler failure mode because all exceptional

conditions are reported to the Actions layer in the form

of anticipated exceptions, and because the Bu�ered IO

layer is unable to terminate the application.

We proceeded in a similar way for the Actions compart-

ment, identifying faulty points in the program that set

an error code and replacing them with the raising of

abstract exceptions newly de�ned for the Actions com-

partment. In doing so, we had to assume that no other

useful computation occurred after the detection of the

faulty point.

When implementing the guards, we have found that the

main di�culty is in mapping existing exceptions and

exit instructions to the abstract exceptions de�ned in

the guard speci�cation. This requires reasoning about

the semantics of a program. We have found the Jex

tool useful in determining the source of exception oc-

currences and in helping us to link those occurrences

with corresponding catch clauses.

Bobby

Bobby is a Java class library for manipulating Java class

�les. It consists of 118 classes representing, among other

things, the class �le itself and various entities present

in a class �le, such as the constant pool, �elds, and

instructions.

As opposed to Jex and JTar, Bobby does not have an

obvious architectural decomposition. All the Bobby

classes are public and most of them are intended for

inter-package use. There are numerous dependencies

between classes. For these reasons, it was not possi-

ble to identify clean compartments within the Bobby

package. However, since Bobby is a class library, it is

meant to be used by client code. From the perspective

of potential client code, two issues regarding exception

handling arose:

1. Most problems internal to Bobby (as opposed to

the class being manipulated) were reported ei-

ther as RuntimeExceptions or as InternalErrors.

These two conditions cause di�culties for a client

wishing to recover from a problem in Bobby. A

RuntimeException cannot be caught without catch-

ing all other RuntimeExceptions, restricting the

granularity of the potential recovery. According to

the Java API speci�cation, an InternalError corre-

sponds to a problem with the Java virtual machine

(JVM). When Bobby uses an InternalError, it is

only possible to distinguish if an InternalError was

raised by Bobby or the JVM by inspecting the call

stack.

2. Bobby also reports some system exceptions result-

8

ing from a sequence of operations on the class li-

brary as InternalErrors.

To give more
exibility to the clients of Bobby, we were

interested in a version that would report system excep-

tions as such (as opposed to internal failures), and that

would report actual internal failures in a way that was

more easily usable by clients.

Applying the technique described earlier to restructure

the exception structure was more di�cult in the case

of Bobby than the other two systems. Since almost

every method in Bobby is public, implementing guards

implied adding a try block in every method of the 118

classes. To manage the cost of this change, we decided

to implement the guards only on a subset of frequently-

used classes.

The guards consisted of the two existing user-

de�ned exceptions, BB ClassFileException and

BB DuplicateClassException. We also added

BB IllegalOperationException to signal illegal op-

erations and BB InternalFailureException to represent

internal failures. The �rst two exceptions were checked

exceptions. We decided to implement the two new

exceptions as unchecked, runtime exceptions, because

of their pervasiveness inside the Bobby package.

Applying the approach to Bobby, even in this partial

way, allowed us to simplify the
ow of exceptions within

the Bobby classes. The revised Bobby is also easier to

use because the exit points, both normal and excep-

tional, are explicit, and the exceptions are more mean-

ingful.

6 RELATED WORK

Existing work on exception structure focuses on the ini-

tial design of exceptions for a system.

Seminal work on the design of robust and fault-

tolerant programs using exception handling was done

by F. Christian. His contributions include a study of

how the failure occurrences related to speci�c classes of

design faults can be addressed using default exception

handling based on automatic backward recovery [5]. In

a later paper, Christian also proposed \a programming

language suitable for writing well-structured robust pro-

grams" [6, p.163]. The work, mostly theoretical, in-

cludes a deductive system for proving total correctness

and robustness properties of programs with exceptions.

Work on designing programs with exceptions also spans

the areas of application-domain speci�c approaches,

methodologies, and design tools. As described ear-

lier, Litke [10] proposed an approach to designing fault-

tolerant systems in Ada. Similarly, de Lemos and Ro-

manovsky have suggested a framework for integrating

exception handling into the early phases of the software

life-cycle [7].

Tools and modeling techniques integrating exceptions

have also been suggested. An example of a tool is

OODREX [2], which helps take exceptions into account

when designing C++ classes. An example of a nota-

tion that integrates exceptions is the Uni�ed Modeling

Language (UML) [4]. An extension to UML to model

exceptions as pre- and post-condition constraints using

the Object Constraint Language [17] has also been pro-

posed recently by Soundarajan and Fridella [15].

The work described in this paper di�ers from these ef-

forts as it focuses on our experiences reengineering ex-

ception structure into existing programs. Many of the

problems we have identi�ed with exception structure

degradation, such as exceptions that arise because of

the implementation path chosen, are not discussed in

the literature.

More closely related to the problems discussed in this

paper is an analysis by Miller and Tripathi [11] of why

it is di�cult to design exceptions in object-oriented sys-

tems. However, their analysis is focused on conceptual

clashes between object-orientation and exception han-

dling, such as abstraction, encapsulation, modularity

and inheritance, rather than on the realities of program-

ming with exceptions.

7 SUMMARY

Just as the structure of the normal operations of a sys-

tem tends to degrade as the system evolves, the struc-

ture of exception handling also degrades. This degrada-

tion can result from many factors. We have identi�ed

and described a number of factors in this paper, in-

cluding unpredictable exception sources, unanticipated

exceptions, and handler overload.

Fortunately, the situation is not hopeless. We have

shown how, in our experience, a straightforward exten-

sion of an approach to designing fault-tolerant systems

in Ada can be used to regain control of the exception

structure in an existing system. We presented the re-

sults of applying the technique to three systems, and de-

scribed the guidelines we have employed in performing

the reengineering. We believe the approach is useful be-

cause we have been able to improve the exception han-

dling code of a system with minimal e�ort, and without

changing the normal structure of the code.

The experiences described in this paper extend be-

yond Java programs. Developers working in other lan-

guages and researchers working on exception handling

design can bene�t from the elucidation of why exception

structure degrades and the ability to straightforwardly

reengineer exception structure.

ACKNOWLEDGEMENTS

We would like to thank IBM for providing us with the

9

source code of Bobby. We are also grateful to A. Lai for

useful comments on the paper. This work was funded

by a Natural Sciences and Engineering Research Council

of Canada (NSERC) graduate fellowship and research

grant.

REFERENCES

[1] Ada 95 Reference Manual: Language and Standard

Libraries, version 6.0, December 1994. Revised in-

ternational standard ISO/IEC 8652:1995.

[2] C. Bamford and B. Dollery. OODREX: An object-

oriented design tool for reuse with exceptions.

In Proceedings of the International Conference on

Object-Oriented Information Systems (OOIS'95),

pages 248{251, Berlin, Germany, 1995. Springer-

Verlag.

[3] L. A. Belady and M. M. Lehman. A model of

large program development. IBM Systems Jour-

nal, 15(3):225{252, 1976.

[4] G. Booch, J. Rumbaugh, and I. Jacobson. The

Uni�ed Modeling Language User Guide. Addison-

Wesley, 1999.

[5] F. Christian. Exception handling and software

fault tolerance. IEEE Transactions on Computers,

31(6):531{540, June 1982.

[6] F. Christian. Correct and robust programs. IEEE

Transactions on Software Engineering, 10(2):163{

174, March 1984.

[7] R. de Lemos and A. Romanovsky. Exception han-

dling in a cooperative object-oriented approach. In

Proceedings of the 2nd IEEE International Sym-

posium on Object-Oriented Real-Time Distributed

Computing (ISORC'99), pages 3{13. IEEE Com-

puter Society, May 1999.

[8] M. Fahndrich, J. Foster, J. Cu, and A. Aiken.

Tracking down exceptions in standard ML pro-

grams. Technical Report CSD-98-996, University

of California, Berkeley, February 1998.

[9] J. Gosling, B. Joy, and G. Steele. The Java

Language Speci�cation. Addison-Wesley Longman,

Inc., 1996.

[10] J. D. Litke. A systematic approach for implement-

ing fault tolerant software designs in Ada. In Pro-

ceedings of the conference on TRI-ADA '90, pages

403{408. ACM, December 1990.

[11] R. Miller and A. Tripathi. Issues with excep-

tion handling in object-oriented systems. In

Proceedings of the 11th European Conference on

Object-Oriented Programming, volume 1241 of Lec-

ture Notes in Computer Science, pages 85{103.

Springer-Verlag, June 1997.

[12] F. Pessaux and X. Leroy. Type-based analysis of

uncaught exceptions. In Proceedings of the 26th

Symposium on the Principles of Programming Lan-

guages, pages 276{290, January 1999.

[13] M. P. Robillard and G. C. Murphy. Analyzing ex-

ception
ow in JavaTM programs. In Proceedings

of the Joint 7th European Software Engineering

Conference and 7th ACM SIGSOFT International

Symposium on the Foundations of Software Engi-

neering, volume 1687 of Lecture Notes in Computer

Science, pages 322{337. Springer-Verlag, Septem-

ber 1999.

[14] M. Shaw and D. Garlan. Software Architecture.

Perspective on an Emerging Discipline. Prentice-

Hall, 1996.

[15] N. Soundarajan and S. Fridella. Modeling excep-

tional behavior. In Proceedings of the UML'99 Con-

ference, 1999.

[16] B. Stroustrup. The C++ Programming Language.

Addison-Wesley, 2nd edition, 1991.

[17] J. Warmer and A. Kleppe. The Object Constraint

Language: Precise Modelling with UML. Object

Technology Series. Addison-Wesley, Reading/MA,

1999.

[18] K. Yi. An abstract interpretation for estimating

uncaught exceptions in standard ML programs.

Science of Computer Programming, 31:147{173,

1998.

[19] K. Yi and B.-M. Chang. Exception analysis for

Java. In ECOOP'99 Workshop on Formal Tech-

niques for Java Programs, June 1999.

[20] K. Yi and S. Ryu. Towards a cost-e�ective esti-

mation of uncaught exceptions in SML programs.

In Proceedings of the 4th International Static Anal-

ysis Symposium, volume 1302 of Lecture Notes in

Computer Science, pages 98{113, September 1997.

10

