
Computing Contour Trees in All Dimensions

Hamish Carr

Dept. of Computer Science

Univ. of British Columbia

Jack Snoeyink

Dept. of Computer Science

Univ. of British Columbia

& UNC Chapel Hill

Ulrike Axen

School of EECS

Washington State Univ.

Abstract

We show that contour trees can be computed in

all dimensions by a simple algorithm that merges

two trees. Our algorithm extends, simpli�es, and

improves work of Tarasov and Vyalyi and of van

Kreveld et al.

1 Introduction

Many imaging technologies and scienti�c simula-

tions produce data in the form of sample points

with intensity values. This data may be con-

verted into geometric models by segmentation,

often involving thresholding or taking level sets,

or the data may be studied in situ using similar

tools. In this paper, we focus on one tool that

can help in choosing threshold values or in in-

teractive exploration of such data: the contour

tree.

Contour trees were proposed by van Kreveld

et al. [8] for computing isolines on terrain maps

in geographic information systems. With terrain

maps, a surface model is computed from eleva-

tion values at sample points in the plane. Iso-

lines, often called contours, are the curves con-

sisting of points at a given height that can be

seen on any topographic map. Contours can

be traced from a surface model relatively easily,

given a starting point, or \seed" on each. van

Kreveld et al. use the contour tree to generate

\seed sets" for any query height value.

We are particularly interested in data from

X-ray crystallography for studying protein

molecules. Our data arrives as points in IR3,

either on a lattice or irregularly sampled, with

intensity values. These values are extended to

IR3 by using the data points in a decomposition

of IR3 into simplices and interpolating linearly.

The contour tree allows us not only to com-

pute seed sets for tracing isosurfaces, but also

gives important values of the parameter where

topological changes occur in the level sets; these

changes may correspond to important phenom-

ena such as chemical bonds. While van Kreveld

et al. do discuss the extension of their approach

to IR3, their algorithm runs in quadratic time,

which is prohibitive.

Tarasov and Vyalyi [6] gave an O(N logN)

algorithm for computing contour trees in IR3,

whereN is the number of simplices in the decom-

position of the data. They resolve all multiple

singularities and replace them by simple singu-

larities, then perform three sweeps through the

data. We later describe their algorithm and the

handling of singularities in more detail, but their

approach multiplies the number of simplices by

a factor of 360, which is again prohibitive.

Our algorithm for contour trees begins with

Tarasov and Vyalyi's idea of three passes

through the data, but makes the following sim-

pli�cations and improvements. The �rst two

sweeps can be replaced by linear-time recursive

procedures that produce two trees containing the

1



nodes of the contour tree. By sorting only these

nodes, we can form the contour tree by a sim-

ple merge procedure. The resulting algorithm

handles multiple singularities and extends to all

dimensions. Because there are some applica-

tions in which multiple singularities must be re-

placed by simple singularities, we also observe

that Tarasov and Vyalyi's approach to resolving

singularities can be extended to all dimensions.

After preliminary de�nitions in Section 2, we

de�ne contour trees and look at their properties

in Section 3. We give our algorithm to construct

contour trees in Section 4. Our observation on

resolving singularities is in Section 5.

2 De�nitions and Preliminaries

Suppose that we are given a set of n points

fp1; p2; : : : ; png in a �xed-dimensional space

IRd, with corresponding scalar measurements

fh1; h2; : : : ; hng. We assume that the hi are

unique, perhaps by perturbation of our data.

To extend the data to the entire space,

we choose a simplicial mesh with vertex set

fp1; p2; : : : ; png, and a piecewise-linear function

f to interpolate values from the data points

given, such that

1. f is a linear function within each simplex,

and

2. f(pi) = hi for all i = 1; : : : ; n.

A level set of f for some value x is the set fp 2

IRdjf(p) = xg. Topologically, a level set may

consist of 0, 1, or more connected components.

Under our assumptions of uniqueness and linear

interpolation, these connected components will

be of dimension � (d� 1).

In 2-D, a connected component is called an

isoline, and in 3-D an isosurface. We will some-

times use contour as a general term for a con-

nected component of a level set in a space of

arbitrary dimension.

The �eld of Morse theory [1, 2, 4] studies the

changes in topology of level sets of f as the pa-

rameter x changes. Points at which the topology

of the level sets change are called critical points.

Morse theory requires that the critical points are

isolated { i.e. that they occur at distinct points

and values. A function that satis�es this condi-

tion is called a Morse function. All points other

than critical points are called regular points and

do not a�ect the number or genus of the compo-

nents of the level sets. Our de�nition of f { as

a linear interpolant over a simplicial mesh with

unique data values at vertices { ensures that f

is a Morse function, and that the critical points

occur at vertices of the mesh [1].

If we think of the parameter x as time and

watch the evolution of the level sets of f over

time, then we will see components of level sets

appear, split, change genus, join, and disappear.

The contour tree, which we de�ne next, is a

graph that tracks components of the level set as

they split and appear or join and disappear.

3 De�nition and properties of the

contour tree

Here we de�ne the contour tree and augmented

contour tree, and consider their properties.

3.1 The contour tree

The contour tree for a Morse function is de�ned

as a graph in which:

1. each leaf vertex represents the creation or

deletion of a component at a local extremum

of the parameter

2. each interior vertex represents the joining

and/or splitting of two or more components

at a critical point

3. each edge represents a component in the

level sets for all values of the parameter be-

tween the values of the data points at each

end of the edge.

2



Figure 1: Level sets of f(x) as x increases

We refer to the vertices and edges of the contour

tree as supernodes and superarcs, respectively.

This graph has been shown to be a tree [8], hence

the name contour tree.

1

2

3

4

5

6

7

8
9

10

Figure 2: Contour tree for Fig 1

Figure 1 illustrates the level sets of a function

that, as the parameter x increases, evolve from a

solid, to a hollow ball, to a single component, to

two \cushions," to two rings, to four sticks. Fig-

ure 2 illustrates the corresponding contour tree.

Starting from the top and decreasing the pa-

rameter, we see four leaves corresponding to the

sticks. These merge in pairs (5,6) forming rings

and cushions. (Note that the changes in genus

from disk to torus to disk are not reected in the

contour tree | even though the connected com-

ponents change topology, each can still be traced

from a single seed point.) The cushions join at

(4). Then there is one component of the level set

until at (3) it encloses a hollow, at which point

the level set splits into an inner boundary and

an outer boundary. The inner boundary then

contracts and disappears at (2).

3.2 The contour tree as recording

topological events

We can describe the contour tree as recording

what happens to components of the level set in

response to certain events that correspond to the

critical points, if we continue to think of the pa-

rameter values as time. First, we need some no-

tation to describe the components.

A component is created either by appearing,

separated from all existing components, or by

an existing component splitting to become two

or more new components. Similarly, a compo-

nent is destroyed either by collapsing down to

a single point and disappearing, or by joining

with another component to make a new, com-

bined component. Each component is assigned a

name, C�
� , based on the time � when it is created

and the time � when it is destroyed. If we know

only the creation time, �, then we say that the

name C� is partially assigned.

Thus, when the parameter h becomes equal to

the value of a critical point, the set of possible

changes is strictly limited to:

i) A new component Ch is created at a local

minimum.

ii) An existing component, Ck is destroyed at

a local maximum: we will rename the com-

ponent Ch

k
.

3



iii) Two or more existing components,

Ck1
; Ck2

; : : : Ckm , are joined into a new

component at a saddle point. These com-

ponents are destroyed { their names are

completed to Ch

k1
; Ch

k2
; : : : Ch

km
{ and a new

component Ch is created.

iv) The topological genus of an existing compo-

nent is changed at a saddle point.

v) An existing component Ck is split into two

or more new components at a saddle point.

This involves destroying Ck, renaming it C
h

k
,

and creating several new components Ch.

vi) Any combination of iii) { v). Both splits and

joins can occuring at a highly-degenerate

multi-saddle.

We treat vi) saddle points with splits, joins, and

changes of genus as consisting of changes of genus

to zero or more of the components involved, fol-

lowed by an optional join, an optional split, and

optional changes of genus for all components in-

volved. This simpli�es processing of such points.

As we will note later, changes of genus do not af-

fect the contour tree.

If we could determine types of events, then

we could construct the contour tree by a sweep

through the parameter values. Each component

of the level set is created at a critical point of

type i), iii), or v), and is destroyed at a critical

point of type ii), iii) or v). We call such a crit-

ical point a supernode. For each component, we

connect the supernode where it is created and

the one where it is deleted by an edge called a

superarc. The components then have a 1-1 rela-

tionship with the superarcs.

One important observation can be made based

on the treatment of these events:

Lemma 3.1 The completed names for contour

components are unique.

Proof: The join events create names Ch

k1
and

Ch

k2
only when partial components Ck1

and

Ck2
are di�erent. By the uniqueness of event

values, we know that k1 6= k2.

3.3 The augmented contour tree

For some purposes, such as the generation of iso-

surfaces, information about regular points is also

required. We augment the contour tree with the

regular points to produce an augmented contour

tree.

For each component, we sweep through the

space from the value at which it appears to the

value at which it disappears. Each data point

swept through by this component is then as-

signed to the superarc to which the component

corresponds. These points become nodes in the

contour tree. Clearly, the supernodes will also be

nodes: thus, all points in the dataset are nodes.

Along each superarc, we sort the associated

nodes, and connect them in sorted order by arcs.

This constructs a single path from the supernode

at one end of the superarc to the other.

3.4 Previous work

van Kreveld et al. [8] reported the �rst e�cient

algorithm for constructing contour trees. This

algorithm performs the extraction in O(N logN)

time in 2-D data �elds, and O(N2) time in higher

dimensions, where N is the number of simplices

(triangles) in the mesh of the n data points.

The algorithm performs a sweep from low to

high value, maintaining each component of the

level set, and examines the data set locally to

determine when saddle points are encountered

and how to deal with them. Runtime is kept to

O(N logN) in the plane by a clever method of

merging the contours. Multi-saddle points are

treated as a set of ordinary saddle points.

Tarasov and Vyalyi [6] presented a O(N logN)

algorithm for 3-D data �elds. Their algorithm

performs three sweeps: one sweep to identify

joins, a second to identify splits, and a third to

4



combine the results of the two sweeps. Again,

the level set is maintained at all times during

the sweep. Multi-saddle points are dealt with by

a complicated preprocessing step (see Section 5).

Runtime is again kept to O(N logN) by the same

method of merging the contours. Finally, bound-

ary e�ects at the edge of the dataset are handled

by special cases inside the algorithm.

In both algorithms, two factors contribute to

the runtime: the initial sort takes O(n log n)

time, and maintaining the level sets takes

O(N logN) time. Bounds on number of sim-

plices, N , in terms of the number of vertices,

n, in �xed dimensions are N = 
(n) and N =

O
�
ndd=2e

�
. In any �xed dimension, it is possible

to construct a mesh such that n = �(n).

4 A new contour tree algorithm

We propose a new algorithm for constructing

augmented contour trees and augmented contour

trees with the following characteristics:

1. Input is assumed to be a simplicial mesh of

n vertices and N simplices, with data values

measured at each vertex,

2. Time requirements of O(n logn + N�(N))

for constructing augmented contour trees,

in any number of dimensions,

3. Time requirements of O(n+N�(N)+t log t)

for constructing a contour tree of t nodes, in

any number of dimensions,

4. Space requirements of O(N) for the mesh

and O(n) additional working storage,

5. Simple treatment of multi-saddle points.

We will describe the algorithm in three sub-

sections. We follow Tarasov and Vyalyi [6] by

�rst identifying contour joins and splits, but we

build a join tree and a split tree, as described in

Section 4.1. By merging these two trees, in Sec-

tion 4.2, we obtain the contour tree. We discuss

some implementation issues in Section 4.3.

4.1 Join and split trees

De�ne a join component to be a connected com-

ponent of the set fp 2 IRd j f(p) � xg. We

will label a join component J�� if it is created at

� and destroyed at � { where we think of the

parameter as time in the same way as when we

name level set components. By this de�nition,

if two points belong to the same component of

the level set, then they must belong to the same

join component. Thus, each join component cor-

responds to at least one component of the level

set, and possibly more.

De�ne the join tree as a graph whose edges

represent join components. One vertex, the root

of the tree, represents the entire space. Other

leaf vertices represent the creation of a join com-

ponent at a local minimum, and internal vertices

represent the merge of two or more join compo-

nents. Since components can only merge, it is

clear that this graph is a tree.

Join:

1

2

3

4

10

Split:

1

10

3

4

5

6

7

8
9

Figure 3: Join and split trees for the example of

Figure 1

We also de�ne the split tree, which is what

we obtain when we construct the join tree using

components of the sets fp 2 IRd j f(p) � xg in

order of decreasing parameter x. Together, the

join and split trees contain all the supernodes

of the contour tree. Figure 3 illustrates the join

and split trees for our example from Figure 1.

Lemma 4.1 The join and split trees for a

Morse function f have the following properties:

5



1. Each node in the join or split tree is a su-

pernode in the contour tree.

2. Each edge in the join or split tree repre-

sents a union of components from the con-

tour tree.

3. Suppose that a v is a non-root leaf in the join

or split tree that is not an internal node of

the other tree. The join or split edge inci-

dent on v represents a single component of

the contour tree.

Proof: We can establish these properties by

observing the Morse events. Details omitted

for this abstract.

The join tree can be constructed in nearly-

linear time.

Lemma 4.2 The join tree can be constructed

using union-�nd in O(N�(N)) operations.

Proof: We must identify the critical points in

the mesh and their parameter values, and de-

cide which are nodes of the join tree. Since

critical points occur only at mesh vertices, it

su�ces to check, at each vertex pi, whether pi

is a local minimum, or whether there are two

or more components that join when the pa-

rameter reaches the parameter value hi. By

our interpolation, it su�ces to know if two

or more vertex neighbors of pi are in di�erent

components for hi��. This can be tracked us-

ing the set union-�nd structure of Tarjan [7].

We could perform a sweep to determine our

unions and �nds, but that would require sort-

ing all parameter values. To avoid this, we

use the following recursive algorithm. Start by

placing on a stack all vertices whose param-

eter values are greater than their neighbors.

Then, to determine the component for a ver-

tex v, recursively determine the components

for all neighboring vertices of lower parame-

ter values. The components for some of these

vertices may have already been computed, in

which case the stored value is used and that

branch of the recursion returns immediately.

If there are no neighbors with lower param-

eter values, then v is a local minimum that

begins a new component. If all neighbors with

lower parameter values are in the same com-

ponent, then v is not a join node. On the other

hand, if these neighbors belong to two or more

components, then v is a join node and we per-

form a union operation on the neighbors.

This recursion terminates, because it al-

ways progresses to vertices of lower param-

eter values. Moreover, recursion starts once

from each vertex. This implies that it takes

O(N) union-�nd operations. These operations

take O(N�(N)) time in total, where � is the

slowly-growing inverse Ackermann function.

Actually, one can re�ne the analysis of running

time to O(N�(t;N)), where t is the number of

local minima, which is one greater than the num-

ber of unions performed. In dimension two, spe-

cial union-�nd algorithms can eliminate the su-

perlinear factor. (In practice, however, these

would probably require more operations than

standard union-�nd.)

We may wish to augment the join tree with

extra internal nodes corresponding to some or

all of the vertices in the mesh. By doing so we

form an augmented join tree.

Lemma 4.3 The augmented join tree with t

nodes can be constructed in O(N�(N) + t log t)

operations.

Proof: As we construct the join tree, we may

make the association between vertices and the

join components that �rst contain them. To

augment the join tree with the nodes corre-

sponding to these vertices, we simply need to

re�ne the associated edges in the join tree. We

sort the new nodes by parameter value and in-

sert them as degree two vertices in their asso-

ciated edges.

6



JT:

1

2

3

4

5

6

7

8
9

10

+ST:

1

2

3

4

5

6

7

8
9

10

=)CT:

1

2

3

4

5

6

7

8
9

10

Figure 4: Augmented join and split trees merge to form the contour tree

The augmented split tree is de�ned and con-

structed in a similar manner. In the next sec-

tion, we show how to form the contour tree from

the augmented join and split trees.

4.2 Merging to form the contour tree

Use the algorithm of the previous section to com-

pute a join tree and a split tree, and augment

each with the nodes of the other to form the

augmented join tree JT and augmented split tree

ST. Figure 4 illustrates the results on our exam-

ple from Figure 1. In this section we show how to

merge JT and ST in linear time to form the con-

tour tree, CT. If one augments JT and ST with

all vertices of the mesh, then the same merge al-

gorithm computes the augmented contour tree.

We identify a leaf in JT or ST that we can add

as a supernode to CT, and remove from both JT

and ST. We proceed inductively, generating one

additional contour tree superarc at each step.

Lemma 4.4 The join and split trees, JT and

ST, can be merged to form the contour tree in

time proportional to their size.

Proof: We assume that we have augmented

join and split trees, JT and ST, which contain

all nodes for the portions of the contour tree

CT that have not yet been constructed. At

the leaves of JT and ST, we may have some

portions of CT constructed.

We also assume that if a non-root leaf node

v of JT (or ST) is incident on more than one

unconstructed contour component, then v is

a split (or join) node in the other tree. This

holds initially by Lemma 4.1(3).

Choose a non-root leaf of JT or ST that is

not a split/join node of the other tree. Since

there are more leaves than split/join nodes,

this can always be done. Because the the cases

are symmetric, we may assume that a leaf v of

JT is chosen, and not the root.

We move v and its incident edge from JT

to the contour tree CT. In ST, either v is a

degree 2 node or v is the root. In the former

case, we suppress v in ST while maintaining

the connection; in the latter we delete v from

ST. We then have restored the property that

JT and ST are trees on the same set of nodes.

We must argue that any node that becomes

a leaf in one of the trees and has more than

one incident contour component must be a

split/join node in the other tree. In fact, the

only node u that can possibly become a leaf by

our changes is the parent node of v in join tree

JT. If two contour components start from u,

however, then u is a split node, and appears

as such in ST. Thus, our merge can proceed

by induction.

If we assemble the pieces, we obtain the fol-

lowing results.

7



Theorem 4.5 The augmented contour tree for

a function on n data points, interpolated over a

mesh with N simplices in IRd
, for �xed dimen-

sion d, can be computed in O(n logn+N�(N))

time. If the contour tree has t nodes, it can be

computed in O(t log t + N�(N)) time. Both al-

gorithms use O(n) working space in addition to

the O(N) for the mesh.

4.3 Implementation issues

In the full paper we report in more detail on the

implementation issues for X-ray crystallography

applications. These include implicitly decompos-

ing a 3D lattice into simplices, embedding the

data set in a �eld of zeros to avoid special bound-

ary conditions, and perturbation to make all val-

ues unique.

5 Resolving multiple singularities

The algorithm described by Tarasov and Vya-

lyi [6] requires simple singularities, so they

describe a method for breaking multi-saddle

points into multiple simple singularities in time

O(N lgN). Although our algorithm handles

multi-saddles, their method is of independent in-

terest for computation of Morse singularities in

higher dimensions; if non-simple singularities are

resolved, then a general function on a complex

K is a Morse function. We therefore briey show

that their method applies in all dimensions. We

assume familiarity with concepts of PL topol-

ogy such as barycentric subdivisions, star, and

link [3].

We �rst summarize the subdivision and per-

turbation given in [6] and extend it trivially to

general dimensions. We then considerably sim-

plify the proof that this method resolves non-

simple singularities, and we extend it to all di-

mensions. Assume that K is a m-dimensional

simplicial complex, m � 3, in IRd and f is a gen-

eral function on K, (i.e., f(v) 6= f(w) for any

pair of vertices v; w 2 K). The �rst step is to

construct the barycentric subdivision, sdK, and

extend f linearly over sdK. This yields a new

function f0 with the property that no two critical

points are adjacent, but which may not be a gen-

eral function. A small perturbation described in

[6] transforms f0 into a general function f1 over

K1 = sdK.

Now the star of each non-simple singularity

is further re�ned. Let v be a non-simple saddle

point. For each k-dimensional simplex in the link

of v, Lk(v), a new so-called k-vertex is added in

the star of v, St(v), as follows. For each vertex

w in Lk(v), a corresponding 0-vertex is added

on the edge vw, at a point which is 1

4
distance

from v to w. For each k-simplex � in Lk(v),

k � 1, a k-vertex is added in the (k+1)-simplex

formed by v and �, at 1

3
distance from v to the

barycenter of �. See Figure 5 for an illustration

in 2 dimensions.

x

v

w

0-vertex

1-vertex

0-vertex

Figure 5: The subdivision of a 2-simplex vwx at

a non-simple singularity v.

Simplices of this subdivision are de�ned as fol-

lows. Let � be a m-simplex in St(v), i.e., a

simplex of highest dimension; it contains m 0-

vertices. These together with v form a new m-

simplex. The rest of � is then a prism with two

(m � 1)-simplices as bases. Now each cell con-

taining a 1-vertex is star triangulated from the

1-vertex, then each 2-vertex de�nes a star tri-

angulation to form tetrahedra, and so on up to

the (m� 1)-vertex, where the star triangulation

results in m-simplices.

8



The neighborhoods of all non-simple singular-

ities are re�ned in this manner, yielding a new

complexK2. Now f1 is extended overK2 to yield

a new function f2. By de�nition, f1 = f2 at all

vertices common toK1 andK2. We now describe

the extension of f1 to f2, again very similar to

that described in [6].

Let h be a linear function over IRd that has

di�erent values at all vertices ofK2, and let H be

the maximum di�erence between any two values

of h on K2, i.e., H = maxv;wfh(v) � h(w)g. Let

� be the minimum gap between successive values

of f1 on K1. For each vertex u added in the star

of a non-simple singularity v, let

f2(u) = f1(v) +
�

2H
(h(u)� h(v)):

Function f2 on K2 now has the property that

all singularities are simple, i.e., that the level set

at f2(v) divides St(v) into at most three compo-

nents. Indeed, it is easy to see that all former

regular points and simple singularities are still

regular or simple (see [6]), so we will restrict our-

selves here to proving that a former non-simple

singularity v is regular, and that all points added

in K2 are either regular or simple. To see that

v is a regular point, notice that after the local

re�nement around v, St(v) consists only of the

simplices formed by 0-vertices and v. f2 is by

construction linear over St(v) and so v must be

a regular point. Now we use an inductive proof

to show that the added k-vertices are either reg-

ular or simple. We de�ne the restricted star or

restricted link to be the restriction of the star or

link of an added point u to simplices formed only

by vertices added in K2.

Lemma 5.1 All k-vertices, k � 0, added in the

subdivision around non-simple singularities are

either regular points or simple singularities of f2.

Proof: Let u be a 0-vertex. u is adjacent to

two original vertices from K1: the non-simple

singularity v, and the vertex w which was used

to construct u. Otherwise, u is only adja-

cent to other added vertices. Since f2 is linear

over the simplices formed by v and the added

vertices, the level set at f2(u) divides the re-

stricted St(u) into at most two connected com-

ponents, one with values greater than f2(u)

and the other with values less than f2(u). w

either belongs to one of those connected com-

ponents or it forms its own connected compo-

nent. Thus, u is either a regular point or a

simple singularity.

Now let u be a k-vertex, k � 1. By con-

struction, u is not adjacent to any vertices of

K1 other than the vertices of the k-simplex

which de�ne u. Again, the restricted St(u)

and Lk(u) can be broken by the level set at

f2(u) into at most 2 components. We now

make the inductive assumption that a (k� 1)-

simplex � 2 Lk(u) from K1 divides Lk(u) fur-

ther into at most three components and show

that under this assumption, a k-simplex from

K1 in Lk(u) cannot divide Lk(u) further into

more than three connected components. Let

� 2 Lk(u) be a (k � 1)-simplex from K1, and

let w 2 Lk(u) be the additional vertex from

K1 that forms a k-simplex in Lk(u). There

are three cases to consider.

1. Suppose �rst that some vertices of � have

value in f2 greater than f2(u) and oth-

ers have value less than f2(u). Then w

necessarily belongs to one of the existing

connected components.

2. Suppose � belongs to one of the connected

components of the restricted Lk(u). Then

Lk(u) without w consists of at most two

components, and w can increase this to at

most three components.

3. Finally, assume that � forms a sepa-

rate connected component. w is adjacent

to both � and vertices of the restricted

9



Lk(u), so regardless of the value at f2(w),

w will belong to an existing component.

These three cases complete the proof.

Note that in the proof we do not need to dis-

tinguish between boundary simplices and inte-

rior simplices.

Acknowledgments

This work has been supported by NSERC

through a postgraduate fellowship and a research

grant.

References

[1] T. F. Bancho�. Critical points and curva-

ture for embedded polyhedra. J. Di�. Geom.,

1:245{256, 1967.

[2] J. W. Milnor. Morse Theory. Princeton Uni-

versity Press, Princeton, NJ, 1963.

[3] C. P. Rourke and B. J. Sanderson. Introduc-

tion to Piecewise-Linear Topology. Springer-

Verlag, 1972.

[4] Y. Shinagawa, T. L. Kunii, and Y. L. Ker-

gosien. Surface coding based on Morse the-

ory. IEEE Comput. Graph. Appl., 11:66{78,

Sept. 1991.

[5] S. Tarasov and M. Vyalyi. Some pl functions

on surfaces are not height functions. In Proc.

13th Annu. ACM Sympos. Comput. Geom.,

pages 113{118, 1997.

[6] S. P. Tarasov and M. N. Vyalyi. Construction

of contour trees in 3D in O(n logn) steps. In

Proc. 14th Annu. ACM Sympos. on Comput.

Geom., pages 68{75, 1998.

[7] R. E. Tarjan. E�ciency of a good but not

linear set union algorithm. J. ACM, 22:215{

225, 1975.

[8] M. van Kreveld, R. van Oostrum, C. Bajaj,

V. Pascucci, and D. Schikore. Contour trees

and small seed sets for isosurface traversal.

In Proc. 13th Annu. ACM Sympos. Comput.

Geom., pages 212{220, 1997.

10


