
Spirale Reversi: Reverse decoding of the Edgebreaker encoding

Martin Isenburg Jack Snoeyink

Department of Computer Science
University of British Columbia
fisenburg j snoeyinkg@cs.ubc.ca

October 4, 1999

Technical Report: TR-99-08

Abstract
We present a simple linear time algorithm for decoding

Edgebreaker encoded triangle meshes in a single traver-
sal. The Edgebreaker compression technique, introduced
in [7], encodes the topology of meshes homeomorphic to
a sphere with a guaranteed 2 bits per triangle or less. The
encoding algorithm visits every triangle of the mesh in
a depth-first order. The original decoding algorithm [7]
recreates the triangles in the same order they have been
visited by the encoding algorithm and exhibits a worst
case time complexity of O(n2). More recent work [8]
uses the same traversal order and improves the worst case
to O(n). However, for meshes with handles multiple
traversals are needed during both encoding and decod-
ing. We introduce here a simpler decompression tech-
nique that performs a single traversal and recreates the tri-
angles in reverse order.

Key words: Triangle mesh compression, Edgebreaker,
topology encoding, linear decoding.

1 Introduction

Efficiently encoding the topology of triangular meshes
has recently been the subject of intense study [5, 7, 9, 10,
2, 1, 3] and many representations have been proposed.
The sudden interest in this area is fueled by the emerg-
ing demand for transmitting 3D data sets over the Internet
(e.g. VRML). Since transmission bandwidth is a scarce
resource, compact encodings for 3D models are of great
advantage.

The Edgebreaker compression technique, introduced in
[7], encodes the topology of meshes homeomorphic to a
sphere with a guaranteed 2 bits per triangle or less. The
encoding algorithm visits each triangle of the mesh in a
depth-first order by using five different operations called
C, L, E, R, and S. Each triangle is labeled according to the
operation that processes it. The traversal order induces
the same vertex-spanning tree as in [9, 10, 2, 4]. The re-
sulting CLERS string describes the shape of this vertex-

spanning tree and the arrangement of edges that complete
the mesh. This captures the connectivity of the mesh.

The decoding algorithm recreates the triangles in the
same order as they have been visited by the encoding
algorithm. The original decoding algorithm [7] has an
asymptotic worst case complexity of O(n2). These costs
are a result of the look-ahead procedure that is neces-
sary for decoding subsequences in the CLERS sequence.
These subsequences, which are encapsulated by a S op-
eration and a corresponding E operation, reflect recur-
sions in the Edgebreaker encoding scheme. More recent
work [8] eliminates the need for this look-ahead proce-
dure and improves the worst case to O(n). However,
for meshes with handles this algorithm requires multiple
traversals of the mesh triangles.

We introduce here a simple decompression technique
which recreates the triangles in reverse order. The
CLERS sequence is processed backwards starting at the
last label. This completely eliminates the look-ahead pro-
cedure of [7] or the zipping procedure of [8]. Following
a suggestion by Jarek Rossignac we call this decompres-
sion scheme Spirale Reversi.

In the next section we briefly summarize the Edge-
breaker encoding scheme. A detailed description of the
algorithm can be found in [7]. The Edgebreaker decod-
ing scheme is covered in Section 3 and the Wrap&zip de-
coding scheme is covered in Section 4. We introduce our
Spirale Reversi decoding scheme in Section 5. In these
sections we assume that the input mesh has no boundary,
no holes, and no handles. Later we explain how encod-
ing and decoding generalizes to meshes with boundary in
Section 6, with holes in Section 7 and with handles in Sec-
tion 8.

2 Edgebreaker encoding

Before we describe the Edgebreaker encoding scheme, we
want to define what properties the input mesh is expected
to have:

1 UBC TR-99-08, Spirale Reversi, october 1999



Figure 1: The Edgebreaker encoding operations C, L, E,
R, and S.

1. The mesh is a surface composed of topological trian-
gles (e.g. every face is bound by three edges).

2. The mesh has no boundary and no holes (e.g. every
edge is bound by two faces).

3. The mesh has no handles (e.g. the mesh is topologi-
cally equivalent to a sphere).

Later we will describe how the Edgebreaker encoding
scheme deals with meshes that have a boundary, have
holes, or have handles.

The Edgebreaker encoding process starts with a trian-
gulated mesh and produces a CLERS string. It visits every
triangle of the mesh by including it into an active bound-
ary. Initially the active boundary is an arbitrary triangle
of the mesh. The encoding uses five different operations
called C, L, E, R, and S to include a triangle into the active
boundary. Which operation is chosen depends on how
the respective triangle is attached to the active boundary.
This expands (operation C), shrinks (operation R and L),
splits (operation S), or terminates (operation E) the active
boundary. The sequence of C, L, E, R, and S operations

describes the traversal of the triangles of the mesh. The
corresponding CLERS string is a compact encoding of the
topology of the mesh. Now the details:

The encoding process starts off with defining an arbi-
trary triangle in the mesh to be initial active boundary.
The three vertices of the triangle become boundary ver-
tices and the three edges of the triangle become boundary
edges. The boundary edges are directed clockwise around
the triangle. The triangle itself is declared to be inside of
the boundary; the remaining mesh is declared to be out-
side of the boundary. Initially this boundary is the only
element in a stack of boundaries. The active boundary is
always the top element of this stack.

One of the three initial boundary edges is defined to be
the gate of the boundary. The gate is directed in the same
way as the boundary edges. The adjacent triangle right
of the gate is inside, the adjacent triangle left of the gate
is outside of the boundary. The active gate is the gate of
the active boundary. The active triangle is the adjacent
triangle left of the active gate.

The essential element of the Edgebreaker encoding
scheme is: With every operation the active triangle moves
from outside to inside of the active boundary. The in-
variant of the Edgebreaker encoding scheme is: A trian-
gle that lies outside of some boundary is not yet encoded.
A triangle that lies inside of all boundaries is already en-
coded. The Edgebreaker encoding terminates after ex-
actly t � 1 operations, with t being the number of trian-
gles of the mesh. Every triangle is processed by one op-
eration with exception of the one that defines the initial
active boundary.

The active triangle is included into the active boundary
with one of the five operations C, L, E, R, or S. Which
operation is chosen depends on how the active triangle is
attached to the active boundary. If its third vertex is not on
the active boundary then operation C is used. If its third
vertex is the next boundary vertex on the active bound-
ary then operation R is used. (Remember that the bound-
ary edges are directed clockwise around the inside.) If
its third vertex is the previous boundary vertex on the ac-
tive boundary then operation L is used. If its third ver-
tex is some other boundary vertex on the active boundary
then operation S is used. If its third vertex is the previ-
ous and the next boundary vertex on the active boundary
then operation E is used. This can only happen for an ac-
tive boundary of length three. See also the illustration in
Figure 1a.

Each operation requires an update of the active bound-
ary, since the active triangle moves from the outside to the
inside of the boundary. The active boundary is expanded
(operation C), is shrunk (operation R and L), is split (op-
eration S), or is terminated (operation E). Each operation
also requires an update of the active gate, since it moves

Spirale Reversi, Martin Isenburg and Jack Snoeyink 2



Figure 2: Computing the offsets of the S operation for the Edgebreaker decoding.

with the active triangle to the inside of the boundary. Fig-
ure 1b illustrates the necessary updates. They are as fol-
lows:

� The C operation inserts one new boundary vertex,
inserts two new boundary edges, and removes one
boundary edge. The old gate is the removed bound-
ary edge, the new gate is one of the inserted bound-
ary edges. It is on the left as seen from the old gate.

� The R and L operation both remove one bound-
ary vertex, remove two boundary edges, and insert
one new boundary edge. The new gate is the in-
serted boundary edge, the old gate is one of the
deleted boundary edges. The two operations differ
by whether the old gate is on the right (R) or on the
left (L) as seen from the new gate.

� The S operation splits the active boundary into two
boundaries that share one boundary vertex. It inserts
two new boundary edges and removes one bound-
ary edge. The total count of boundary vertices in-
creases by one because the shared boundary vertex
is counted twice. Both inserted boundary edges be-
come a gate for the respective boundary. The current
top element of the boundary stack is popped and the
two boundaries are pushed onto the stack. The new
top element becomes the active boundary.

� The E operation removes the last three boundary
vertices and the last three boundary edges. The cur-
rent top element of the boundary stack is popped. If
the stack is empty the encoding ends. Otherwise the
new top element becomes the active boundary.

The Edgebreaker encoding scheme as presented so far
captures the topology of an unlabeled mesh. Together

with the right permutation of the vertex data it captures the
topologyof a labeled mesh. The vertex data, such as coor-
dinates, texture information, or surface normal, are stored
in the order in which the vertices are encountered during
the encoding process. Vertices are encountered in the mo-
ment they are inserted into the active boundary. For the
first three vertices this happens at the start of the Edge-
breaker encoding when the initial boundary is defined.
For all other vertices this happens during a C operation.

For triangle meshes with v vertices and t triangles that
are homeomorphic to a sphere t equals 2v�4. The traver-
sal of the mesh triangles reaches new vertices only with
the C operation. Since there are two times more triangles
than vertices, half of all operations will be of type C. A
straight-forwardencoding that encodes a C operation with
one bit and the remaining four operations with three bits
is guaranteed to use no more than 2t or 4v bits. A more
elaborate encoding of the CLERS sequence guarantees an
even lower bound of 3:67v bits [6].

The detailed example in Figure 11 leads step by step
through the final twelve operations of Edgebreaker encod-
ing a mesh.

3 Edgebreaker decoding

The Edgebreaker decoding process starts with a CLERS
string and produces a triangulated mesh. Two traversals
of the CLERS string are needed: A preprocessing phase
that computes an offset value for every S operation. A
generation phase that creates the triangles in the order in
which they were encoded by the Edgebreaker encoding
process.

The preprocessing phase computes an offset value for
every S operation. The Edgebreaker encoding uses the S
operation whenever the third vertex of the active triangle
is a vertex on the active boundary other than the previous

3 UBC TR-99-08, Spirale Reversi, october 1999



or the next. In this case, the active boundary is split into
two boundaries with this third vertex appearing in both.
When the Edgebreaker decoding creates this triangle, it
needs to know which vertex on the active boundary to
use as the triangle’s third vertex. The offset value that is
computed during the preprocessing phase is the distance
between the active gate and this vertex along the active
boundary.

Figure 3: Using the offset of the S operation during the
Edgebreaker decoding.

The computation of these offset values is very simple.
The resulting change in boundary length is added up for
all operations following an S operation until and includ-
ing its corresponding E operation. Since pairs of S and
E operations are always nested, the offset values for all S
operations can be computed in a single traversal. See also
the illustration in Figure 2.

The generation phase starts with creating the initial tri-
angle. The active boundary and the gate are identified and
the CLERS string is processed. What follows is an almost
exact replay of the encoding algorithm. With every oper-
ation a new triangle is created and included into the active
boundary. The triangle is always attached to the left of the
active gate. Which vertex is used as the triangle’s third
vertex depends on the current operation. Only for the C
operation a new vertex is created. For all other operations
a vertex from the active boundary is used. For the R oper-
ation this is the next and for the L operation this is the pre-
vious vertex on the active boundary. For the S operation
it is some other boundary vertex. The precomputed offset
value specifies its distance from the active gate along the
boundary. When the E operationoccurs, the active bound-
ary consists of only three boundary vertices. This leaves
no choice for the third vertex.

The five operations of the Edgebreaker decoding per-
form the same updates on boundary and gate as those of
the Edgebreaker encoding (see Figure 1). Only the S op-
eration is more complex. It uses the precomputed offset
to locate the third vertex for the newly created triangle as
illustrated in Figure 3.

The Edgebreaker decoding scheme as presented so far
reconstructs the topology of the unlabeled mesh. Us-
ing the vertex permutation that is produced by the Edge-

breaker encoding, the mesh labeling is reconstructed. The
vertex data is assigned to unlabeled vertices in the order
in which they are encountered. Vertices are encountered
in the moment they are inserted into the active boundary.
For the first three vertices this happens at the start of the
Edgebreaker decoding when the initial boundary is de-
fined. For all other vertices this happens during a C op-
eration.

Although in practice only a small fraction of opera-
tions are of type S, they imply an asymptotic worst case
time complexity of O(n2) for the Edgebreaker decoding,
if the active boundary is maintained in a linear data struc-
ture. Each S operation requires a linear search for the
vertex specified by the offset. This cost may be reduced
to O(n logn) if the active boundary is maintained in a
data structure with a logarithmic instead of a linear search
time. However, the more complex update operations of a
data structure with logarithmic search time (such as a bal-
anced binary tree) would increase the expected complex-
ity from O(n) to O(n logn).

The detailed example in Figure 12 leads step by step
through the final twelve operations of Edgebreaker decod-
ing a mesh.

Figure 4: The Wrap&zip decoding operations C, L, E, R,
and S.

Spirale Reversi, Martin Isenburg and Jack Snoeyink 4



Figure 5: Single zipping after an L operation (top) and recursive zipping after an E operation (bottom).

4 Wrap&zip decoding

The Wrap&zip decoding process starts with a CLERS
string and produces a triangulated mesh. Only one traver-
sal of the CLERS string is needed. It starts with creating
the initial triangle. The active boundary and the gate are
identified and the CLERS string is processed. What fol-
lows is a modified replay of the encoding algorithm. With
every operation a new triangle is created. The triangle
is always attached to the left of the active gate. The de-
cision which vertex is the triangle’s third vertex is post-
poned for all operations but the C operation. Instead of
some boundary vertex from the active boundary a dummy
vertex is used for operations of type L, E, R, and S. This is
the wrapping part of the Wrap&zip decoding. For the C
operation nothing changes. Like before a newly created
vertex is used.

All boundary edges except for the gate have an addi-
tional direction assigned that depends on the operation
that created them. This zip direction is used for the zip-
ping part of the Wrap&zip decoding. Which operation as-
signs which zip direction is shown in Figure 4.

Each time the zip directions of two adjacent boundary
edges point to a common vertex, they are zipped together
by identifying their other ends. This zipping continues re-
cursively if the resulting vertex exhibits the same prop-
erty. Whether a zip is necessary needs only to be checked
after L and E operations. No immediate zipping is possi-
ble after C, R, and S operations. A zip after an L opera-
tion never starts recursive zipping, whereas a zip after an

E operation always starts recursive zipping. A small ex-
ample in Figure 5 illustrates single zipping after an L and
recursive zipping after an E operation.

The Wrap&zip decoding scheme as presented so far re-
constructs the topology of the unlabeled mesh. The mesh
labeling is reconstructed in the same way as in the Edge-
breaker decoding.

The wrapping and zipping technique of this decoding
scheme improves on the asymptotic worst case time com-
plexity O(n2) of the original Edgebreaker decoding. It
can be shown that the number of zip operations equals the
number of edges in the vertex-spanning tree. Therefore
the decoding algorithm has linear time complexity.

The detailed example in Figure 13 leads step by step
through the final twelve operations of Wrap&zip decod-
ing a mesh.

5 Spirale Reversi decoding

The Spirale Reversi decoding process starts with a
CLERS string and produces a triangulated mesh. Only
one reverse traversal of the CLERS string is needed.
This completely eliminates the overhead for the S and E
operation pairs that is necessary for the Edgebreaker and
the Wrap&zip decoding. It can be seen as a step by step
reversal of the Edgebreaker encoding.

The Spirale Reversi decoding scheme uses the same
boundary definitions as the Edgebreaker encoding
scheme. It starts with creating an unlabeled triangle
as the initial boundary. It is unlabeled in the sense

5 UBC TR-99-08, Spirale Reversi, october 1999



Figure 6: The Spirale Reversi decoding operations C, L,
E, R, and S.

that no physical vertex is yet associated with the three
boundary vertices. The triangle itself is declared to be
outside of the boundary. The boundary edges are directed
counterclockwise around this triangle.

One of the three boundary edges is defined as the initial
active gate. Inside of the boundary is right of the gate, out-
side of the boundary is left of the gate. The Edgebreaker
encoding was growing the inside until there was no trian-
gle left outside. The Spirale Reversi decoding however
is growing the outside until there is no triangle left inside.
This reflects the reverseness of the Spirale Reversi decod-
ing.

The essential element of the Spirale Reversi decoding
scheme is: After every operation the triangle left of the
active gate has moved from inside to outside of the active
boundary. The invariant of the Spirale Reversi decoding
scheme is: A triangle that lies outside of some boundary is
already decoded. A triangle that lies inside of all bound-
aries is not yet decoded. The CLERS sequence is pro-
cessed in the reverse order. Depending on the processed
operation the active boundary is shrunk (operation C), is
expanded (operation R and L), is merged with the next

boundary on the stack (operation S), or is created new (op-
eration E).

Reversing the encoding algorithm works as follows:
With every operation a new triangle is created. This tri-
angle is always attached to the right of the active gate.
Which vertex is the triangle’s third vertex depends on the
type of the operation. For the C operation it is the previous
boundary vertex on the active boundary. For the R and the
L operation a new but unlabeled vertex is created. For the
S operation it is a vertex from the boundary that is in the
boundary stack directly below the active boundary. More
exactly it is the vertex at the originof this boundary’s gate.
The vertex at the destination of this boundary’s gate and
the vertex at the origin of the active gate need to be identi-
fied. For the E operation three new unlabeled vertices are
created that form a new active boundary in the same way
as during initialization.

The required updates of the boundary and of the gate
are as follows:

� The C operation removes one boundary vertex, re-
moves two boundary edges, and inserts one new
boundary edge. The new gate is the inserted bound-
ary edge, the old gate is one of the removed boundary
edges. It is on the left as seen from the new gate.

� The R and L operation each insert one new bound-
ary vertex, insert two new boundary edges, and re-
move one boundary edge. The old gate is the re-
moved boundary edge, the new gate is one of the in-
serted boundary edges. The two operations differ by
whether the new gate is on the right (R) or on the left
(L) as seen from the old gate.

� The S operation merges the active boundary with
the boundary that is directly below in the bound-
ary stack. Thereby one boundary vertex from each
boundary are identified into one boundary vertex. It
removes two boundary edges and inserts one bound-
ary edge. The total count of boundary vertices de-
creases by one because the two identified boundary
vertices are only one count. Both removed boundary
edges are old gates of the respective boundary. The
new gate is the inserted boundary edge. The two top
elements of the boundary stack are popped and the
merged boundaries is pushed onto the stack.

� The E operation creates a new active boundary. It
inserts three new boundary vertices and three new
boundary edges. The new gate is any of the three
boundary edges. The new active boundary is pushed
on the boundary stack.

The Spirale Reversi decoding scheme as presented so
far reconstructs the topology of the unlabeled mesh. Us-

Spirale Reversi, Martin Isenburg and Jack Snoeyink 6



ing the reverse of the vertex permutation that is produced
by the Edgebreaker encoding, the mesh labeling is recon-
structed. The vertex data is assigned to unlabeled vertices
in the order in which they are abandoned. Vertices are
abandoned in the moment they are removed from the ac-
tive boundary. For the last three vertices this happens at
the end of the Spirale Reversi decoding. For all other ver-
tices this happens during a C operation.

The detailed example in Figure 14 leads step by step
through the first twelve operations of Spirale Reversi de-
coding a mesh.

6 Handling boundaries

The Edgebreaker approach is capable of encoding the
connectivity of any simple triangle mesh without holes.
The scheme can easily be made capable of handling a sin-
gle hole. A triangle mesh with boundary is a triangle mesh
with a single hole.

Instead of selecting the loop of edges oriented clock-
wise around an arbitrary mesh triangle as the initial ac-
tive boundary, we select the loop of edges oriented clock-
wise around the hole. Like before an arbitrary edge from
this boundary is declared to be the initial active gate. The
vertex data of all boundary vertices is stored in counter-
clockwise order around the hole starting at the active gate.
From there Edgebreaker encoding proceeds like before.

Both the Edgebreaker decoding and the Wrap&zip de-
coding need additional information to decode the bound-
ary case. They need to know the length of the initial
boundary loop (e.g. the length of the hole). This can
be precomputed during an initial traversal of the CLERS
string. The Spirale Reversi decoding nesds no additional
information. After decoding the last label of the reversed
CLERS string, the active boundary loops around the hole.
Then the boundary vertices are simply assigned their data
in the opposite order as it was stored during encoding.

7 Handling holes

For every additional hole the Edgebreaker encoding runs
into a situation in which the third vertex of the active trian-
gle lies on the boundary of a hole. For this scenario the M
operation is introduced. The active boundary is merged
with the boundary of the hole by opening both at their
common vertex and reconnecting them as depicted in Fig-
ure 7. The vertex data of all boundary vertices is stored
in counterclockwise order around the hole starting at the
common vertex. In addition to the label M of the opera-
tion the following information needs to be recorded:

� A length that specifies the number of vertices on the
boundary of the hole.

The decoding of a hole is straightforward for all three
decoding algorithms. When a label M is processed the as-

Figure 7: The Edgebreaker encoding operation M.

sociated length value is used to update the boundary ac-
cordingly. This involves assigning the data to all vertices
around the hole. In Figure 7 the Spirale Reversi decoding
of a hole is illustrated.

Figure 8: The Spirale Reversi decoding operation M.

8 Handling handles

For every handle the Edgebreaker encoding runs intoa sit-
uation in which the third vertex of the active triangle is not
on the active boundary, but on some other boundary in the
stack. For this scenario the M’ operation is introduced.
This operation merges these two boundaries into one by
opening both at their common vertex and reconnecting
them as depicted in Figure 9. The respective boundary is
then removed from the stack.

In addition to the label M’ of the operation three inte-
gers are recorded. We modified the original Edgebreaker
encoding by the last integer. This will allow to decode a
mesh with handles using just a single reverse traversal of
the CLERS string. The three integers are as follows:

� An index that specifies the respective boundary
within the stack of boundaries.

� An offset1 that specifies the counterclockwise dis-
tance between the common vertex and the gate of the

7 UBC TR-99-08, Spirale Reversi, october 1999



boundary from the stack.

� An offset2 that specifies the counterclockwise dis-
tance between the gate of the boundary from the
stack and the common vertex.

The original Edgebreaker decoding uses the three inte-
gers it associates with the M’ operation to replay the situa-
tion encountered during the encoding. The decoding cost
per M’ operation isO(n). However, the number of M op-
erations is bound by the genus of the mesh and generally
very small. Neither Wrap&zip nor Spirale Reversi decod-
ing aim at improving the worst case time complexity for
the M’ operation.

For the Wrap&zip decoding of meshes with handles the
authors had to modify the Edgebreaker encoding. The
modified approach is more complicated and requires three
instead of one traversal of the mesh triangles. For details
we refer to the original reference [8].

The Spirale Reversi decoding of the M’ operation fol-
lows the concept of reversing the encoding process. The
two offsets specify the split of the active boundary and the
position of the gate in the boundary that is inserted into
the stack. The index specifies the position at which this
boundary is inserted into the stack. This is illustrated in
Figure 10

Figure 9: The Edgebreaker encoding operation M’.

9 Conclusion and Acknowledgments

We presented a simple linear time algorithm for decod-
ing Edgebreaker encoded triangle meshes. The concept
of reversing the encoding process allows to decode a mesh
with a single traversal of the CLERS string. For meshes
without handles our scheme eliminates the need for the
look-ahead procedure used by the original Edgebreaker
decoding [7] and the need for the zipping procedure used
by the Wrap&zip decoding [8]. Furthermore for meshes
with handles our scheme eliminates the need for multiple
traversals of the CLERS string and/or the mesh triangles
during both, encoding and decoding.

Figure 10: The Spirale Reversi decoding operation M’.

The first author thanks and Davis King for explain-
ing the details of Edgebreaker during our pool session at
SCG 99, Miami Beach, Florida and Jarek Rossignac for
suggesting the name Spirale Reversi. This work has been
supported by NSERC, IRIS, and a UBC Graduate Fellow-
ship.

10 References
[1] L. de Floriani, P. Magillo, and E. Puppo. A simple and effi-

cient sequential encoding for triangle meshes. In Proceed-
ings of 15th EuropeanWorkshopon ComputationalGeom-
etry, pages 129–133, 1999.

[2] S. Gumbold and W. Strasser. Real time compression of
triangle mesh connectivity. In SIGGRAPH’98 Conference
Proceedings, pages 133–140, 1998.

[3] M. Isenburg and J. Snoeyink. Mesh collapse compression.
In Proceedings of SIBGRAPI’99 - 12th Brazilian Sympo-
sium on Computer Graphics and Image Processing, pages
27–28, 1999.

[4] M. Isenburg and J. Snoeyink. Mesh collapse compression
video. In Proceedings of SCG’99 - 15th ACM Symposium
on Computational Geometry, pages 419–420, 1999.

[5] K. Keeler and J. Westbrook. Short encodings of planar
graphs and maps. In Discrete Applied Mathematics, pages
239–252, 1995.

[6] D. King and J. Rossignac. Guaranteed 3.67v bit encoding
of planar triangle graphs. In Proceedingsof 11th Canadian
Conference on Computational Geometry, pages 146–149,
1999.

[7] J. Rossignac. Edgebreaker: Connectivity compression for
triangle meshes. IEEE Transactions on Visualization and
Computer Graphics, 5(1), 1999.

[8] J. Rossignac and A. Szymczak. Wrap-zip: Linear decod-
ing of planar triangle graphs. The Journal of Computa-
tional Geometry, Theory and Applications, 1999.

[9] G. Taubin and J. Rossignac. Geometric compression
through topological surgery. In ACM Transactions on
Graphics, pages 17(2):84–115, 1998.

[10] C. Touma and C. Gotsman. Triangle mesh compression.
In GI’98 Conference Proceedings, pages 26–24, 1998.

Spirale Reversi, Martin Isenburg and Jack Snoeyink 8



Figure 11: An example of the final twelve operations of Edgebreaker encoding a mesh.

9 UBC TR-99-08, Spirale Reversi, october 1999



Figure 12: An example of the final twelve operations of Edgebreaker decoding a mesh.

Spirale Reversi, Martin Isenburg and Jack Snoeyink 10



Figure 13: An example of the final twelve operations of Wrap&zip decoding a mesh.

11 UBC TR-99-08, Spirale Reversi, october 1999



Figure 14: An example of the first twelve operations of Spirale Reversi decoding a mesh.

Spirale Reversi, Martin Isenburg and Jack Snoeyink 12


