Spirale Reversi: Rever se decoding of the Edgebreaker encoding

Martin Isenburg

Jack Snoeyink

Department of Computer Science
University of British Columbia
{isenburg | snoeyink } @cs.ubc.ca

October 4, 1999
Technical Report: TR-99-08

Abstract

We present a simple linear time algorithm for decoding
Edgebreaker encoded triangle meshes in a single traver-
sal. The Edgebreaker compression technique, introduced
in [7], encodes the topology of meshes homeomorphic to
asphere with aguaranteed 2 bits per triangle or less. The
encoding agorithm visits every triangle of the mesh in
a depth-first order. The origina decoding agorithm [7]
recrestes the triangles in the same order they have been
visited by the encoding agorithm and exhibits a worst
case time complexity of O(n?). More recent work [8]
usesthe sametraversal order and improvestheworst case
to O(n). However, for meshes with handles multiple
traversals are needed during both encoding and decod-
ing. We introduce here a simpler decompression tech-
niquethat performsasingletraversa and recreates thetri-
anglesin reverse order.

Key words. Triangle mesh compression, Edgebreaker,
topol ogy encoding, linear decoding.

1 Introduction

Efficiently encoding the topology of triangular meshes
has recently been the subject of intense study [5, 7, 9, 10,
2, 1, 3] and many representations have been proposed.
The sudden interest in this area is fueled by the emerg-
ing demand for transmitting 3D datasets over the Internet
(e.g. VRML). Since transmission bandwidth is a scarce
resource, compact encodings for 3D models are of great
advantage.

The Edgebreaker compressiontechnique, introducedin
[7], encodes the topology of meshes homeomorphic to a
sphere with a guaranteed 2 bits per triangle or less. The
encoding algorithm visits each triangle of the mesh in a
depth-first order by using five different operations called
C,L,E R,and S. Each triangleislabeled according to the
operation that processes it. The traversal order induces
the same vertex-spanning tree asin [9, 10, 2, 4]. There-
sulting CLERS string describes the shape of this vertex-

spanning tree and the arrangement of edges that complete
the mesh. This captures the connectivity of the mesh.

The decoding agorithm recreates the triangles in the
same order as they have been visited by the encoding
algorithm. The origina decoding algorithm [7] has an
asymptotic worst case complexity of O(n?). These costs
are a result of the look-ahead procedure that is neces
sary for decoding subsequences in the CLERS sequence.
These subsequences, which are encapsulated by a S op-
eration and a corresponding E operation, reflect recur-
sionsin the Edgebreaker encoding scheme. More recent
work [8] eliminates the need for this look-ahead proce-
dure and improves the worst case to O(n). However,
for meshes with handles this agorithm requires multiple
traversals of the mesh triangles.

We introduce here a simple decompression technique
which recrestes the triangles in reverse order. The
CLERS sequence is processed backwards starting at the
last label. Thiscompletely eliminatesthelook-ahead pro-
cedure of [7] or the zipping procedure of [8]. Following
a suggestion by Jarek Rossignac we call this decompres-
sion scheme Spirale Reversi.

In the next section we briefly summarize the Edge-
breaker encoding scheme. A detailed description of the
algorithm can be found in [7]. The Edgebreaker decod-
ing schemeis covered in Section 3 and the Wrap& zip de-
coding scheme is covered in Section 4. We introduce our
Spirale Reversi decoding scheme in Section 5. In these
sections we assume that the input mesh has no boundary,
no holes, and no handles. Later we explain how encod-
ing and decoding generalizes to meshes with boundary in
Section 6, with holesin Section 7 and with handlesin Sec-
tion 8.

2 Edgebreaker encoding

Beforewe describethe Edgebreaker encoding scheme, we
want to define what propertiesthe input mesh is expected
to have:

UBC TR-99-08, Spirale Reversi, october 1999

a)

case C

achive imangle

case B

case L

imaihe

arside

N\

pushian
stk

case 5

case B
active gae

Figure 1. The Edgebreaker encoding operations C, L, E,
R, and S.

1. The meshisasurface composed of topological trian-
gles (eg. every faceis bound by three edges).

2. The mesh has no boundary and no holes (e.g. every
edge is bound by two faces).

3. The mesh has no handles (e.g. the mesh istopol ogi-
caly equivalent to a sphere).

Later we will describe how the Edgebreaker encoding
scheme deals with meshes that have a boundary, have
holes, or have handles.

The Edgebreaker encoding process starts with a trian-
gulated mesh and producesaCLERSstring. It visitsevery
triangle of the mesh by including it into an active bound-
ary. Initialy the active boundary is an arbitrary triangle
of the mesh. The encoding uses five different operations
cadledC, L, E, R, and Stoincludeatriangleinto theactive
boundary. Which operation is chosen depends on how
the respective triangle is attached to the active boundary.
This expands (operation C), shrinks (operation R and L),
splits (operation S), or terminates (operation E) the active
boundary. The sequence of C, L, E, R, and S operations

Spirale Reversi, Martin Isenburg and Jack Snoeyink

describes the traversa of the triangles of the mesh. The
corresponding CLERS string isacompact encoding of the
topology of the mesh. Now the details:

The encoding process starts off with defining an arbi-
trary triangle in the mesh to be initia active boundary.
The three vertices of the triangle become boundary ver-
tices and the three edges of thetriangle become boundary
edges. Theboundary edgesare directed clockwise around
thetriangle. Thetriangleitsalf is declared to be inside of
the boundary; the remaining mesh is declared to be out-
side of the boundary. Initialy this boundary is the only
element in a stack of boundaries. The active boundary is
always the top element of this stack.

One of thethreeinitial boundary edgesis defined to be
the gate of the boundary. The gateisdirected inthe same
way as the boundary edges. The adjacent triangle right
of the gateis inside, the adjacent triangle lft of the gate
isoutside of the boundary. The active gate is the gate of
the active boundary. The active triangle is the adjacent
triangleleft of the active gate.

The essential element of the Edgebresker encoding
schemeis: With every operationthe activetrianglemoves
from outside to inside of the active boundary. The in-
variant of the Edgebreaker encoding scheme is: A trian-
glethat lies outside of some boundary is not yet encoded.
A trianglethat liesinside of all boundariesis already en-
coded. The Edgebresker encoding terminates after ex-
actly ¢ — 1 operations, with ¢ being the number of trian-
gles of the mesh. Every triangleis processed by one op-
eration with exception of the one that defines the initial
active boundary.

The active triangleisincluded into the active boundary
with one of the five operations C, L, E, R, or S. Which
operation is chosen depends on how the active triangleis
attached to the active boundary. If itsthird vertex isnot on
the active boundary then operation C is used. If itsthird
vertex is the next boundary vertex on the active bound-
ary then operation R is used. (Remember that the bound-
ary edges are directed clockwise around the inside.) |If
itsthird vertex is the previous boundary vertex on the ac-
tive boundary then operation L is used. If itsthird ver-
tex is some other boundary vertex on the active boundary
then operation Sisused. If itsthird vertex is the previ-
ousand the next boundary vertex on the active boundary
then operation E is used. This can only happen for an ac-
tive boundary of length three. See dso theillustrationin
Figure la

Each operation requires an update of the active bound-
ary, sincethe activetriangle movesfrom the outsideto the
inside of the boundary. The active boundary is expanded
(operation C), isshrunk (operation R and L), is split (op-
eration S), or isterminated (operation E). Each operation
also requires an update of the active gate, since it moves

acnve hl-lllil.l.lr:n

Tarare of of fest

I radaay
Tem

SRS i

Thalhge

E
K

g +1 *
C +1 1
R -1 o
R -1 -1
LI
fn -1 -3
g5 +1 -3 =
L =1 =3 =1
E -3 =8 ~d
C +1 -8 =
R =1 =8
R =1 =%
E =3 =10

COQELAL AT hOn

Figure 2: Computing the offsets of the S operation for the Edgebreaker decoding.

with the activetriangleto theinside of the boundary. Fig-
ure 1b illustrates the necessary updates. They are as fol-
lows:

e The C operation inserts one new boundary vertex,
inserts two new boundary edges, and removes one
boundary edge. The old gate isthe removed bound-
ary edge, the new gate is one of the inserted bound-
ary edges. It ison theleft as seen from the old gate.

e The R and L operation both remove one bound-
ary vertex, remove two boundary edges, and insert
one new boundary edge. The new gate is the in-
serted boundary edge, the old gate is one of the
deleted boundary edges. The two operations differ
by whether the old gate is on the right (R) or on the
left (L) as seen from the new gate.

e The S operation splitsthe active boundary into two
boundariesthat share one boundary vertex. Itinserts
two new boundary edges and removes one bound-
ary edge. The tota count of boundary vertices in-
creases by one because the shared boundary vertex
is counted twice. Both inserted boundary edges be-
come agatefor therespective boundary. The current
top element of the boundary stack is popped and the
two boundaries are pushed onto the stack. The new
top element becomes the active boundary.

e The E operation removes the last three boundary
vertices and the last three boundary edges. The cur-
rent top element of the boundary stack is popped. If
the stack is empty the encoding ends. Otherwisethe
new top element becomes the active boundary.

The Edgebreaker encoding scheme as presented so far
captures the topology of an unlabeled mesh. Together

withtheright permutation of thevertex datait capturesthe
topol ogy of alabeled mesh. The vertex data, such as coor-
dinates, textureinformation, or surface normal, are stored
in the order in which the vertices are encountered during
the encoding process. Vertices are encountered in the mo-
ment they are inserted into the active boundary. For the
first three vertices this happens at the start of the Edge-
breaker encoding when the initia boundary is defined.
For all other verticesthis happens during a C operation.

For triangle meshes with v vertices and ¢ triangles that
are homeomorphicto aspheret equals2v—4. Thetraver-
sal of the mesh triangles reaches new vertices only with
the C operation. Since there are two times more triangles
than vertices, half of all operations will be of type C. A
straight-forward encoding that encodes aC operationwith
one bit and the remaining four operations with three bits
is guaranteed to use no more than 2¢ or 4v bits. A more
elaborate encoding of the CLERS sequence guarantees an
even lower bound of 3.67v bits[6].

The detailed example in Figure 11 leads step by step
throughthefinal twelve operationsof Edgebreaker encod-
ing amesh.

3 Edgebreaker decoding

The Edgebreaker decoding process starts with a CLERS
string and produces atriangulated mesh. Two traversals
of the CLERS string are needed: A preprocessing phase
that computes an offset value for every S operation. A
generation phase that creates the triangles in the order in
which they were encoded by the Edgebreaker encoding
process.

The preprocessing phase computes an offset value for
every Soperation. The Edgebreaker encoding usesthe S
operation whenever the third vertex of the activetriangle
isavertex on the active boundary other than the previous

UBC TR-99-08, Spirale Reversi, october 1999

or the next. In this case, the active boundary is split into
two boundaries with this third vertex appearing in both.
When the Edgebreaker decoding creates this triangle, it
needs to know which vertex on the active boundary to
use as the triangl€' sthird vertex. The offset valuethat is
computed during the preprocessing phase is the distance
between the active gate and this vertex along the active
boundary.

= ahong
houandary

case &

aclive gbe

Figure 3: Using the offset of the S operation during the
Edgebresker decoding.

The computation of these offset valuesisvery smple.
The resulting change in boundary length is added up for
all operations following an S operation until and includ-
ing its corresponding E operation. Since pairs of S and
E operations are always nested, the offset valuesfor al S
operations can be computedinasingletraversal. Seealso
theillustrationin Figure 2.

The generation phase starts with creating the initia tri-
angle. Theactiveboundary and the gate areidentified and
the CLERS stringisprocessed. What followsisan almost
exact replay of the encoding algorithm. With every oper-
ation anew triangleiscreated and included into the active
boundary. Thetriangleisalways attached to theleft of the
active gate. Which vertex is used as the triangl€e's third
vertex depends on the current operation. Only for the C
operation anew vertex iscrested. For all other operations
avertex from theactive boundary isused. For the R oper-
ationthisisthenext and for theL operationthisisthe pre-
vious vertex on the active boundary. For the S operation
it is some other boundary vertex. The precomputed offset
value specifies its distance from the active gate along the
boundary. When the E operation occurs, theactive bound-
ary consists of only three boundary vertices. Thisleaves
no choice for the third vertex.

The five operations of the Edgebreaker decoding per-
form the same updates on boundary and gate as those of
the Edgebreaker encoding (see Figure 1). Only the S op-
eration is more complex. It uses the precomputed offset
to locate the third vertex for the newly created triangle as
illustrated in Figure 3.

The Edgebreaker decoding scheme as presented so far
reconstructs the topology of the unlabeled mesh. Us
ing the vertex permutation that is produced by the Edge-

Spirale Reversi, Martin Isenburg and Jack Snoeyink

breaker encoding, the mesh labelingisreconstructed. The
vertex datais assigned to unlabeled vertices in the order
in which they are encountered. Vertices are encountered
in the moment they are inserted into the active boundary.
For the first three vertices this happens at the start of the
Edgebreaker decoding when the initial boundary is de-
fined. For al other vertices this happens during a C op-
eration.

Although in practice only a small fraction of opera-
tions are of type S, they imply an asymptotic worst case
time complexity of O(n?) for the Edgebreaker decoding,
if the active boundary ismaintained in alinear data struc-
ture. Each S operation requires a linear search for the
vertex specified by the offset. This cost may be reduced
to O(nlogn) if the active boundary is maintained in a
data structurewith alogarithmicinstead of alinear search
time. However, the more complex update operations of a
data structure with logarithmic search time (such asa bal -
anced binary tree) would increase the expected complex-
ity from O(n) to O(n logn).

The detailed example in Figure 12 leads step by step
throughthefina twelve operationsof Edgebreaker decod-
ing amesh.

e
==
e

panisicle

p

case

case M

case L

case S

case E u

Active gae

Figure 4: The Wrap& zip decoding operationsC, L, E, R,
and S.

@
w0

0
B

Figure5: Single zipping after an L operation (top) and recursive zipping after an E operation (bottom).

4 Wrapé& zip decoding

The Wrap& zip decoding process starts with a CLERS
string and produces atriangul ated mesh. Only onetraver-
sal of the CLERS string is needed. It starts with creating
theinitia triangle. The active boundary and the gate are
identified and the CLERS string is processed. What fol-
lowsisamodified replay of the encoding al gorithm. With
every operation a new triangle is created. The triangle
is always attached to the left of the active gate. The de-
cision which vertex is the triangl€e's third vertex is post-
poned for al operations but the C operation. Instead of
some boundary vertex from the active boundary adummy
vertex isused for operationsof typelL, E, R,and S. Thisis
the wrapping part of the Wrap&zip decoding. For the C
operation nothing changes. Like before a newly created
vertex isused.

All boundary edges except for the gate have an addi-
tiona direction assigned that depends on the operation
that created them. This zip direction is used for the zip-
ping part of the Wrap& zip decoding. Which operation as-
signswhich zip direction is shown in Figure 4.

Each time the zip directions of two adjacent boundary
edges point to acommon vertex, they are zipped together
by identifyingtheir other ends. Thiszipping continuesre-
cursively if the resulting vertex exhibits the same prop-
erty. Whether azipisnecessary needsonly to be checked
after L and E operations. No immediate zipping is possi-
ble after C, R, and S operations. A zip after an L opera
tion never starts recursive zipping, whereas a zip after an

E operation always starts recursive zipping. A small ex-
ampleinFigure5illustrates single zipping after an L and
recursive zipping after an E operation.

The Wrap& zip decoding scheme as presented so far re-
congtructs the topol ogy of the unlabel ed mesh. The mesh
labeling isreconstructed in the same way as in the Edge-
breaker decoding.

The wrapping and zipping technique of this decoding
scheme improves on the asymptotic worst case time com-
plexity O(n?) of the original Edgebreaker decoding. It
can be shown that the number of zip operationsequalsthe
number of edges in the vertex-spanning tree. Therefore
the decoding a gorithm has linear time complexity.

The detailed example in Figure 13 leads step by step
through the fina twelve operations of Wrap& zip decod-
ing amesh.

5 Spirale Revers decoding

The Spirale Reversi decoding process starts with a
CLERS string and produces a triangulated mesh. Only
one reverse traversa of the CLERS string is needed.
This completely eiminates the overhead for the S and E
operation pairs that is necessary for the Edgebreaker and
the Wrap& zip decoding. It can be seen as a step by step
reversa of the Edgebreaker encoding.

The Spiradle Reversi decoding scheme uses the same
boundary definitions as the Edgebreaker encoding
scheme. It starts with creating an unlabeled triangle
as the initial boundary. It is unlabeled in the sense

UBC TR-99-08, Spirale Reversi, october 1999

case

case B

case L

a8
v
&l

o fnom
sl

case 5

Figure 6: The Spirale Reversi decoding operations C, L,
E,R,and S.

mash on
sk

nclive ke

that no physical vertex is yet associated with the three
boundary vertices. The triangle itself is declared to be
outside of the boundary. The boundary edges are directed
counterclockwise around thistriangle.

Oneof thethreeboundary edgesisdefined astheinitia
activegate. Insideof theboundary isright of thegate, out-
side of the boundary isleft of the gate. The Edgebreaker
encoding was growing theinside until therewas no trian-
gle left outside. The Spirale Reversi decoding however
isgrowing the outsideuntil thereisno triangleleft inside.
Thisreflects the rever seness of the Spirale Reversi decod-
ing.

The essential element of the Spirale Reversi decoding
scheme is. After every operation the triangle | eft of the
active gate has moved frominside to outside of the active
boundary. The invariant of the Spirale Revers decoding
schemeis: A trianglethat liesoutside of someboundaryis
already decoded. A trianglethat liesinside of al bound-
aries is not yet decoded. The CLERS sequence is pro-
cessed in the reverse order. Depending on the processed
operation the active boundary is shrunk (operation C), is
expanded (operation R and L), is merged with the next

Spirale Reversi, Martin Isenburg and Jack Snoeyink

boundary onthestack (operation S), or iscreated new (op-
eration E).

Reversing the encoding algorithm works as follows:
With every operation a new triangleis created. Thistri-
angle is dways attached to the right of the active gate.
Which vertex isthe triangl €' sthird vertex depends on the
typeof theoperation. For the C operationitistheprevious
boundary vertex onthe activeboundary. For theR andthe
L operation anew but unlabeled vertex is created. For the
S operation it isa vertex from the boundary that isin the
boundary stack directly bel ow the active boundary. More
exactly itisthevertex at theoriginof thisboundary’sgate.
The vertex at the destination of this boundary’s gate and
thevertex at the origin of the active gate need to beidenti-
fied. For the E operation three new unlabeled verticesare
created that form a new active boundary in the same way
as during initialization.

The required updates of the boundary and of the gate
are asfollows:

e The C operation removes one boundary vertex, re-
moves two boundary edges, and inserts one new
boundary edge. The new gate is the inserted bound-
ary edge, theold gateisoneof theremoved boundary
edges. It ison theleft as seen from the new gate.

e TheR and L operation each insert one new bound-
ary vertex, insert two new boundary edges, and re-
move one boundary edge. The old gate is the re-
moved boundary edge, the new gateisone of thein-
serted boundary edges. Thetwo operationsdiffer by
whether the new gateison theright (R) or ontheleft
(L) as seen from the old gate.

e The S operation merges the active boundary with
the boundary that is directly below in the bound-
ary stack. Thereby one boundary vertex from each
boundary are identified into one boundary vertex. It
removes two boundary edges and inserts one bound-
ary edge. The tota count of boundary vertices de-
creases by one because the two identified boundary
vertices are only one count. Both removed boundary
edges are old gates of the respective boundary. The
new gateistheinserted boundary edge. Thetwo top
elements of the boundary stack are popped and the
merged boundariesis pushed onto the stack.

e The E operation creates a new active boundary. It
inserts three new boundary vertices and three new
boundary edges. The new gate is any of the three
boundary edges. The new active boundary is pushed
on the boundary stack.

The Spirade Reversi decoding scheme as presented so
far reconstructs the topology of the unlabeled mesh. Us-

ing the reverse of the vertex permutation that is produced
by the Edgebreaker encoding, the mesh labeling is recon-
structed. The vertex dataisassigned to unlabel ed vertices
in the order in which they are abandoned. Vertices are
abandoned in the moment they are removed from the ac-
tive boundary. For the last three vertices this happens at
the end of the Spirale Reversi decoding. For all other ver-
tices this happens during a C operation.

The detailed example in Figure 14 leads step by step
through the first twelve operations of Spirale Reversi de-
coding amesh.

6 Handling boundaries

The Edgebreaker approach is capable of encoding the
connectivity of any simple triangle mesh without holes.
The scheme can easily be made capable of handlingasin-
glehole. A trianglemeshwith boundary isatrianglemesh
withasinglehole.

Instead of selecting the loop of edges oriented clock-
wise around an arbitrary mesh triangle as the initid ac-
tive boundary, we sel ect the loop of edges oriented clock-
wise around the hole. Like before an arbitrary edge from
thisboundary isdeclared to be theinitia active gate. The
vertex data of all boundary verticesis stored in counter-
clockwise order around the hole starting at the active gate.
From there Edgebreaker encoding proceeds like before.

Both the Edgebreaker decoding and the Wrap& zip de-
coding need additiona information to decode the bound-
ary case. They need to know the length of the initial
boundary loop (e.g. the length of the hol€). This can
be precomputed during an initial traversal of the CLERS
string. The Spirale Reversi decoding nesds no additional
information. After decoding the last Iabel of the reversed
CLERS string, the active boundary loopsaround the hole.
Then the boundary verticesare simply assigned their data
in the opposite order as it was stored during encoding.

7 Handling holes

For every additional hole the Edgebreaker encoding runs
intoasituationinwhichthethird vertex of theactivetrian-
gleliesonthe boundary of ahole. For thisscenario theM
operation is introduced. The active boundary is merged
with the boundary of the hole by opening both at their
common vertex and reconnecting them as depicted in Fig-
ure 7. The vertex data of al boundary vertices is stored
in counterclockwise order around the hole starting at the
common vertex. In addition to the label M of the opera-
tion the following information needs to be recorded:

¢ A length that specifies the number of vertices onthe
boundary of the hole.

The decoding of ahole is straightforward for all three
decoding algorithms. When alabel M isprocessed theas-

[_"ll-
"hﬁl-.--ll'*-:.I

- 0
“ wgET

Figure 7: The Edgebreaker encoding operation M.

sociated length value is used to update the boundary ac-
cordingly. Thisinvolvesassigning the datato all vertices
around thehole. In Figure 7 the Spirale Reversi decoding
of aholeisillustrated.

- -

case M

L :

i"h-'ri""

Figure8: The Spirale Revers decoding operation M.

8 Handling handles

For every handlethe Edgebresker encoding runsintoasit-
uationinwhichthethirdvertex of theactivetriangleisnot
on the active boundary, but on some other boundary inthe
stack. For this scenario the M’ operation is introduced.
This operation merges these two boundaries into one by
opening both at their common vertex and reconnecting
them as depicted in Figure 9. The respective boundary is
then removed from the stack.

In addition to the label M’ of the operation three inte-
gers are recorded. We modified the original Edgebresker
encoding by the last integer. Thiswill allow to decode a
mesh with handles using just asinglereverse traversal of
the CLERS string. The threeintegers are as follows:

e An index that specifies the respective boundary
within the stack of boundaries.

e An offsetl that specifies the counterclockwise dis-
tance between the common vertex and the gate of the

UBC TR-99-08, Spirale Reversi, october 1999

boundary from the stack.

e An offset2 that specifies the counterclockwise dis-
tance between the gate of the boundary from the
stack and the common vertex.

The original Edgebreaker decoding usesthe threeinte-
gersit associateswiththeM’ operationtoreplay thesitua-
tion encountered during the encoding. The decoding cost
per M’ operationisO(n). However, the number of M op-
erationsis bound by the genus of the mesh and generaly
very small. Neither Wrap& zip nor Spiral e Reversi decod-
ing aim at improving the worst case time complexity for
the M’ operation.

For the Wrap& zip decoding of meshes with handlesthe
authors had to modify the Edgebresker encoding. The
modified approach ismore complicated and requiresthree
instead of one traversal of the mesh triangles. For details
we refer to the origina reference [§].

The Spirale Reversi decoding of the M’ operation fol-
lows the concept of reversing the encoding process. The
two offsets specify the split of the active boundary and the
position of the gate in the boundary that is inserted into
the stack. The index specifies the position a which this
boundary isinserted into the stack. Thisisillustrated in
Figure 10

remve gale o position index (rom stack

active gale

active eriangle

case b’

Figure 9: The Edgebreaker encoding operation M’.

9 Conclusion and Acknowledgments

We presented a simple linear time algorithm for decod-
ing Edgebreaker encoded triangle meshes. The concept
of reversing theencoding processal lowsto decode amesh
with asingle traversal of the CLERS string. For meshes
without handles our scheme eiminates the need for the
look-ahead procedure used by the origina Edgebreaker
decoding [7] and the need for the zipping procedure used
by the Wrap& zip decoding [8]. Furthermore for meshes
with handles our scheme eliminatesthe need for multiple
traversals of the CLERS string and/or the mesh triangles
during both, encoding and decoding.

Spirale Reversi, Martin Isenburg and Jack Snoeyink

- inserl gate ol posiltion index
. . r
inlo slack

case "

active e

Figure 10: The Spirale Reversi decoding operation M’.

The first author thanks and Davis King for explain-
ing the details of Edgebreaker during our pool session at
SCG 99, Miami Beach, Florida and Jarek Rossignac for
suggesting the name Spirale Reversi. Thiswork has been
supported by NSERC, IRIS, and aUBC Graduate Fell ow-
ship.

10 References

[1] L.deFloriani, P.Magillo, and E. Puppo. A simple and effi-
cient sequential encoding for triangle meshes. In Proceed-
ingsof 15th EuropeanWor kshopon Computational Georm-
etry, pages 129133, 1999.

[2] S. Gumbold and W. Strasser. Real time compression of
triangle mesh connectivity. In SGGRAPH' 98 Conference
Proceedings, pages 133—-140, 1998.

[3] M. Isenburgand J. Snoeyink. Mesh collapse compression.
In Proceedings of SSBGRAPI'99 - 12th Brazilian Sympo-
siumon Computer Graphicsand Image Processing, pages
27-28,1999.

[4] M. Isenburg and J. Snoeyink. Mesh collapse compression
video. In Proceedingsof SCG'99 - 15th ACM Symposium
on Computational Geometry, pages 419-420, 1999.

[5] K. Keeler and J. Westbrook. Short encodings of planar
graphsand maps. In Discrete Applied Mathematics, pages
239-252, 1995.

[6] D.Kingand J. Rossignac. Guaranteed 3.67v bit encoding
of planar triangle graphs. In Proceedingsof 11th Canadian
Conference on Computational Geometry, pages 146-149,
1999.

[7] J. Rossignac. Edgebreaker: Connectivity compression for
triangle meshes. |EEE Transactionson Misualization and
Computer Graphics, 5(1), 1999.

[8] J. Rossignac and A. Szymczak. Wrap-zip: Linear decod-
ing of planar triangle graphs. The Journal of Computa-
tional Geometry, Theory and Applications, 1999.

[9] G. Taubin and J. Rossignac. Geometric compression
through topological surgery. In ACM Transactions on
Graphics, pages 17(2):84-115, 1998.

[10] C. Toumaand C. Gotsman. Triangle mesh compression.
In GI'98 Conference Proceedings, pages 2624, 1998.

[
-

Figure 11: An example of thefinal twelve operations of Edgebreaker encoding a mesh.

9 UBC TR-99-08, Spirale Reversi, october 1999

upsaiieg

psraLioa
C

-

Figure 12: An example of the fina twelve operations of Edgebreaker decoding a mesh.

Spirale Reversi, Martin Isenburg and Jack Snoeyink 10

apmaiim ofupralimm
c R R
- |

opralion Hijging fmaralion
L | mp ﬂ
o o -

oAt o

ol i b
Hipging
B aps

3

i

ppin

i

SDAD.
LD
LAY
LW
DD

e8000

Figure 13: An example of thefinal twelve operations of Wrap& zip decoding a mesh.

11 UBC TR-99-08, Spirale Reversi, october 1999

Figure 14: An example of thefirst twelve operations of Spirale Reversi decoding a mesh.

Spirale Reversi, Martin Isenburg and Jack Snoeyink 12

