
Analyzing Exception Flow in JavaTM Programs?

Martin P. Robillard and Gail C. Murphy

Department of Computer Science

University of British Columbia,
Vancouver, B.C., Canada V6T 1Z4

fmrobilla,murphyg@cs.ubc.ca

Technical Report Number TR-99-02

University of British Columbia

March 2, 1999

Abstract. Exception handling mechanisms provided by programming
languages are intended to ease the di�culty of developing robust soft-

ware systems. Using these mechanisms, a software developer can describe

the exceptional conditions a module might raise, and the response of the

module to exceptional conditions that may occur as it is executing. Cre-

ating a robust system from such a localized view requires a developer to

reason about the ow of exceptions across modules. The use of unchecked

exceptions, and in object-oriented languages, subsumption, makes it dif-

�cult for a software developer to perform this reasoning manually. In

this paper, we describe a tool called Jex that analyzes the ow of ex-

ceptions in Java code to produce views of the exception structure. We

demonstrate how Jex can help a developer identify program points where

exceptions are caught accidentally, where there is an opportunity to add
�ner-grained recovery code, and where error-handling policies are not

being followed.

Keywords: Exception Handling, Software Analysis, Object-Oriented Program-

ming Languages, Software Engineering Tools.

1 Introduction

To ease the di�culty of developing robust software systems, most modern pro-

gramming languages incorporate explicit mechanisms for exception handling.

Syntactically, these mechanisms consist of a means to explicitly raise an excep-

tional condition at a program point, and a means of expressing a block of code to

handle one or more exceptional conditions. In essence, these mechanisms provide

a way for software developers to separate code that deals with unusual situations

? This research project is supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

from code that supports normal processing. This separation helps a developer

structure and reason about the code within a module.

Unfortunately, local reasoning about the code is not generally su�cient to

develop a module that will react appropriately to all unexpected situations. In

some applications, such as games, it may be su�cient to trap an unexpected

condition, write a generic error message, and terminate. In many other applica-

tions, it is preferable to either recover silently, or at least provide a meaningful

error message. For instance, a user of a word processing application trying to

open a �le may want to know that a �le sharing violation has occurred and be

allowed to correct the problem, rather than just being told there was a �le prob-

lem. Finer-grained reactions to exceptions require a software engineer to reason

about code on which the module being constructed depends.

The exception handling mechanisms provided in some programming lan-

guages help a software developer perform this reasoning. Java [GJS96] and

CLU [LS79], for instance, both support the declaration of exceptions in module

interfaces; the compiler can then check that appropriate handlers are provided

in a client module. However, this support is only partial because each of these

languages also provides a form of unchecked exceptions. The developer of a client

module is not warned of the possibility of these exceptions by a compiler. Fur-

thermore, object-oriented languages typically support the classi�cation of excep-

tions into exception type hierarchies. These hierarchies introduce the possibility

of writing general handlers that may implicitly catch a subset of more speci�c

exceptions. This implicit catching of exceptions can complicate the development

and evolution of robust classes [MT97].

To investigate whether information about the ow of exceptions might help a

developer �ll in these gaps, we have built a tool, called Jex, to analyze exception

ow in Java source code. When applied to a Java class, Jex determines the precise

types of exceptions that may be raised at each program point, and then presents

this information in the context of exception-handling constructs in the source.

Using this abstracted view, a developer can reason about unhandled exceptions,

and can identify and reason about exceptions handled through subsumption.

In this paper, we describe the Jex tool and present the results of applying the

tool to both Java library code and several sample Java applications. The analysis

of this code with Jex indicated a number of occurrences of unhandled exceptions

and a number of occurrences of exceptions handled implicitly. A qualitative

investigation of these occurrences suggested places where �ner-grained recovery

code could be usefully added, and identi�ed program points at which exception

policies intended by a developer were not being followed. The ease by which these

code locations could be found using Jex suggests that a ow-oriented view of

exceptions could help developers improve the quality of their code economically.

We begin, in Section 2, with an overview of the terminology of exception

handling and of previous work involving the analysis of exceptions. In Section 3,

we detail the basic exception handling mechanism in Java. Section 4 describes

the view of the exception structure extracted by Jex, and the means by which the

view is produced. We describe the use of Jex on sample Java code in Section 5,

Techical Report TR-99-02 2 March 2, 1999

and discuss issues related to the use and generality of our approach in Section 6.

Section 7 summarizes the paper.

2 Previous Work

Goodenough [Goo75] introduced the exception-handling concepts in common

use today. To provide a common basis for discussion, we begin with a brief

review of these concepts and the related terminology as de�ned by Miller and

Tripathi [MT97].

An exception is an abnormal computation state. An exception occur-

rence is an instance of an exception. . . .

An exception is raised when the corresponding abnormal state is

detected. Signaling an exception by an operation (or a syntactic entity

such as a statement or block) is the communication of an exception

occurrence to its invoker. The recipient of the originator of an exception

is a syntactic entity, called the exception target (or target); the originator

of an exception is the signaler. The target is determined either by static

scope rules or by dynamic invocation chain.

An exception handler (or handler) is the code invoked in response to

an exception occurrence. It is assumed that the handler's code is sepa-

rate from the non-exception (or normal) control path in the program.

Searching for eligible handlers begins with the target (i.e. the search

starts with the handlers associated with the target). An exception is con-

sidered handled when the handler's execution has completed and control

ow resumes in the normal path. An exception handled by the target

masks the exception from the target's invokers.

[MT97, pp. 86{87]

Variants of Goodenough's basic models have since been realized in many

programming languages.

In ML [HMT89], a functional language, exceptions are values that can be

declared anywhere in a program. These values can be signaled at any point fol-

lowing their declaration. Because it is di�cult for programmers to ensure that all

exceptions are caught, several static analyzers have been developed to track down

unhandled exceptions in ML, including one by K. Yi [Yi94, YR97, Yi98], and a

second, EAT1, developed at the University of California at Berkeley [FFCA98].

These tools di�er in the precision of the uncaught exceptions reported and in

the form in which the information is reported. Yi's tool is more precise than

EAT, but EAT, which uses a more conservative approach, is more scalable. The

EAT tool also provides support for visualizing the declaration and handling of

exceptions at di�erent points in the program.

Other, primarily imperative, languages support the declaration of exception

types that may arise through execution of a module. In these languages it is

1 Exception Analysis Tool

Techical Report TR-99-02 3 March 2, 1999

possible to specify, in the signature of a method, a list of exception types that

can be signaled by that method. Languages di�er in the kinds of checking that

are provided concerning declared exceptions.

In C++ [Str91], the language speci�cation ensures that a method can only

raise exceptions it declares. If a method signature does not include a declara-

tion of exception, it is assumed that all types of exceptions may be raised. Any

exception raised within the method that is not declared is re-mapped to a spe-

cial unexpected exception. The developer of a client is not informed of missing

handlers.

In contrast, in Java [GJS96] and CLU [LS79], the compiler ensures that

clients of a function either handle the exceptions declared by that function, or

explicitly declare to signal them. In addition to these checked exceptions, Java

and CLU also support unchecked exceptions which do not place such constraints

on a client. We describe the exception handling mechanism of Java and the

problems it raises in further detail in the next section.

3 Exception Handling in Java

In Java, exceptions are �rst-class objects. These objects can be instantiated, as-

signed to variables, passed as parameters, etc. An exception is signaled using a

throw statement. Code can be guarded for exceptions within a try block. Excep-

tions signaled through execution of code within a try block may be caught in

one or more catch clauses declared immediately following the try block. Option-

ally, a programmer can provide a finally block that is executed independently

of what happens in the try block. Exceptions not caught in any catch block

are propagated back to the next level of try block scope, possibly in the caller

module.

Similar to other Java objects, exceptions are instances of a type, and types

are organized into a hierarchy. What distinguishes exceptions from other objects

is that all exceptions inherit from the type java.lang.Throwable. The excep-

tion type hierarchy de�nes three di�erent groups of exception types: errors,

runtime exceptions, and checked exceptions. Errors and runtime exceptions are

unchecked. Unchecked exceptions can be thrown at any point in a program and,

if uncaught, may propagate back to the program entry point, causing the Java

Virtual Machine to terminate. By convention, errors represent unrecoverable

conditions, such as virtual machine problems.

Java requires that checked exceptions which may be thrown from the body

of a method be declared as a part of the method signature. The language also

requires exception conformance [MT97], so a methodM 0 overriding the method

M of a supertype must not declare any exception type that is not the same type

or a subtype of the exception types declared by M .

The ability to declare exceptions within a hierarchy also means that an ex-

ception may be cast back implicitly to one of its supertypes when a widening

conversion requires it. For example, this conversion occurs when an assignment

of an object of a subtype is made to a variable declared to be of its supertype.

Techical Report TR-99-02 4 March 2, 1999

This property is called subsumption [AC96]; a subtype is said to be subsumed

in the parent type. When looking for a target, exceptions can be subsumed into

the type of the target catch clause if the type associated with the catch clause

is a supertype of the exception type. Similarly, a method declaring an exception

type E can throw any of the subtypes of E without having to explicitly declare

them.

Java's support for unchecked exceptions and subsumption means that it is

impossible for a software developer to know the actual set of exceptions that may

cross a method's boundaries. The following section describes the information

that is necessary to gain this knowledge.

4 Jex: A Tool for Producing a View of the

Exception Flow

Understanding and evaluating how exceptions are handled within a method re-

quires reasoning about which exceptions might arise as a method is executing,

which exceptions are handled and where, and which exceptions are passed on.

Manually extracting this information from source code would be a tedious

task for all but the simplest programs. In the case of an object-oriented program,

a developer would have to consider how variables bind to di�erent parts of the

type hierarchy, the methods that might be invoked as a result of the binding, and

so on. For this reason, we have built the Jex tool, that automates this task for

Java programs. In Sect. 4.1, we describe the view of exception ow and structure

produced by Jex. In Sect. 4.2, we describe the implementation of the Jex tool.

4.1 Extracting Exception Structure

To retain meaning for a developer, we wanted to present a view of the exception

owwithin the context of the structure of the existing program.Our Jex tool thus

extracts, synthesizes, and formats only the information that is pertinent to the

task. In the case of Java, our tool extracts, for each method, the nested try block

structures, including the guarded block, the catch clauses, and the finally block.

Within each of these structures, Jex displays the precise type of exceptions that

might arise from operations, along with the possible origins of each exception

type. If an exception originates from a method, the class name and method

signature raising that exception is identi�ed. If an exception originates from

the run-time environment, the quali�er environment is used. This information is

placed within a Jex �le corresponding to the analyzed class.

We illustrate this exception structure using code from one of the constructors

of the class java.io.FileOutputStream from the JDK 1.1.3 API. Figure 1 shows

the code for the constructor; Fig. 2 shows the exception structure extracted ac-

cording to our technique.2 The extracted structure shows that the code preceding

2 Figure 2 is a simpli�ed view of the information generated by Jex. Speci�cally, for

clarity in presentation, we removed the full quali�cation of Java names that is usually
shown.

Techical Report TR-99-02 5 March 2, 1999

the explicit try block may raise a SecurityException, and that the code inside the

try block may result in an IOException being raised by the call to openAppend or

open on an object of type FileOutputStream. The catch clause indicates that any

IOException raised during the execution of the code in the try block may result

in a FileNotFoundException being raised. FileNotFoundException is a subtype of

IOException, the exception declared in the constructor's signature.

public FileOutputStream(String name, boolean append)

throws IOException

{

SecurityManager security = System.getSecurityManager();

if (security != null) {

security.checkWrite(name);

}

try {

fd = new FileDescriptor();

if(append)

openAppend(name);

else

open(name);

} catch (IOException e) {

throw new FileNotFoundException(name);

}

}

Fig. 1. The source code for the constructor of class FileOutputStream

FileOutputStream(String,boolean) throws IOException

{

SecurityException:SecurityManager.checkWrite(String);

try

{

IOException:FileOutputStream.openAppend(String);

IOException:FileOutputStream.open(String);

}

catch (IOException)

{

throws FileNotFoundException;

}

}

Fig. 2. The structure of exceptions for a constructor of class FileOutputStream

This analysis provides two useful kinds of information to a software devel-

oper implementing or maintaining this constructor. First, the developer can see

that the constructor may signal an unchecked SecurityException that originates

from a checkWrite operation; a comment to this e�ect may be added to the con-

Techical Report TR-99-02 6 March 2, 1999

structor's header for the use of clients. Second, the developer can determine that

the exceptions that may be raised within the scope of the try block are actually

of type IOException and not some more specialized subtype; thus, �ner-grained

handling of the exception is not possible and should not be attempted. Neither

of these cases would be detectable based on an inspection of the constructor's

source code alone.

The analysis can also bene�t a client of the constructor. Consider the code

in Fig. 3: This code will pass the checking of the Java compiler as there is

public void doSomething(String pFile)

{

try {

FileOutputStream lOutput = new FileOutputStream(pFile, true);

}

catch(IOException e) {

System.out.println(``Unexpected exception.'');

}

}

Fig. 3. An example of code not using Jex information

public void doSomething(String pFile)

{

try{

FileOutputStream lOutput = new FileOutputStream(pFile, true);

// Various stream operations

} catch(SecurityException e) {

System.out.println("No permission to write to file " + pFile);

} catch(FileNotFoundException e) {

System.out.println("File " + pFile " not found");

} catch(IOException e) {

System.out.println("Unexpected exception");

}

}

Fig. 4. An example of code making use of Jex information

a handler for the declared exception, IOException. Applying our technique to

this code returns the information that the invocation of the FileOutputStream

constructor might actually result in the more specialized FileNotFoundException

or an unchecked SecurityException.

Knowing the details about the exceptions owing out of the constructor al-

lows the developer of the client code to introduce additional handling. Figure 4

shows an enhanced version of the doSomething client code. A handler has been

introduced to catch SecurityException. This handler warns the user that per-

mission to modify the �le is missing. A handler is also introduced to provide a

specialized error message for the case when a FileNotFoundException occurs.

Techical Report TR-99-02 7 March 2, 1999

To conform to the constructor's interface, it is also necessary to provide a

handler for IOException: the presence of this handler serves to protect the client

from future modi�cations of the constructor, which may result in the throwing

of an IO exception di�erent from FileNotfoundException.

4.2 The Architecture of Jex

Jex, which comprises roughly 20300 lines of commented Java source code spread

over 131 classes, consists of four components: the parser, the Abstract Syntax

Tree (AST), the type system, and the Jex loader. We constructed the parser

using version 0.8pre1 of the the Java Compiler CompilerTM (JavaCC) [Sun]. The

current implementation of the tool supports the Java 1.0 language speci�cation.

We built the AST using the JJTree preprocessor distributed with JavaCC. We

use the AST to identify the structure of a class, to identify the structure of excep-

tions within a method or constructor, and to evaluate the operation invocations

and expressions that may cause exceptions to be thrown.3

The AST relies on the type system to return a list of all types that override

a particular method. Ensuring all possible types are considered in such an op-

eration would require global analysis of all Java classes reachable through the

Java class path. This approach has the disadvantage of being overly conservative

because unrelated classes are considered. For example, the method toString of

class Object is often rede�ned by application classes. Two classes, both in the

class path but from two unrelated applications, might each rede�ne toString. If

a method in a class of the �rst application makes a call to Object.toString(), it

is reasonable to assume that the method toString implemented by the second

class will not be invoked. To prevent this, we restrict the analysis to a set of

packages de�ned by the user. The normal Java method conformance rules are

taken into account in establishing the potential overriding relationships between

methods.

To determine the actual exceptions thrown by a Java statement, the AST

component relies on the Jex loader. Given a fully quali�ed Java type name, the

Jex loader locates the Jex �le describing that type. The AST component can then

query the Jex loader to return the exceptions that might arise from a method

conforming to a particular method signature for that type. The Jex �les for a

Java type are stored in a directory structure that parallels the directory structure

of the Java source �les. It is necessary to have a di�erent directory structure for

Jex �les because some class �les might not be in writable directories. The Jex

�les serve both to provide a view of the exception structure for the user, and as

an intermediate representation for the Jex system.

To use Jex, a user must specify a list of packages, a path to search for Jex

�les, and a Java source code �le. Currently, the Jex system requires that all

necessary Jex �les to analyze that source code �le are available. We plan to

eliminate this restriction in a future version.

3 The exception to this statement is that exceptions potentially thrown as a conse-

quence of the initialization of static variables are not considered because it is di�cult
to identify the program points where a class is �rst loaded.

Techical Report TR-99-02 8 March 2, 1999

5 Evaluating Jex

Our original hypotheses about the usefulness of the Jex tool were based on obser-

vations made while programming in Java. Particularly in the initial construction

of a method, it is often tempting, for expediency, to insert a catch clause that

will simply handle all exception types. A developer might choose this course of

action not as the result of negligence, but rather because of a lack of access to

information that allows an appropriate decision to be made. As an example, a

developer may not have suitable information about the recovery possible for a

particular kind of exception in the absence of knowledge about the application as

a whole. Introducing these generalized handlers causes exceptions to be caught

through subsumption. Although such short-cuts should be re�ned as develop-

ment proceeds, some occurrences may evade detection. We were interested in

determining how often cases of exception subsumption and uncaught exceptions

occur in released code, as well as whether the detection of these cases could

suggest ways in which the code could be made more robust.

To investigate these two factors, we analyzed a variety of source code using

Jex:

{ JTar, a command-line utility for the extraction of tar �les,4

{ the java.util.Vector and java.io.FileOutputStream classes from the SunTM

Java Development Kit version JDK 1.1.3,

{ the SunTM javax.servlet and javax.servlet.http packages, version 1.23,

{ a command-line rule parser, 5 and

{ four database and networking packages from the Atlas web course server

project6: userDatabase, userData, userManager, and userInfoContainers.

Together, these packages comprise roughly 6500 commented lines of code, in-

cluding input/output, networking, and parsing operations.

In applying Jex to these packages, we made several choices. First, we decided

not to generate exceptions signaled by the environment, such as ArithmeticException

and ArrayIndexOutOfBoundsException, to avoid unnecessarily cluttering of the re-

sults with highly redundant exception types. Second, we did not perform the Jex

analysis on the classes comprising the JDK API. Instead, we generated a Jex

�le for each of the relevant API classes using a script that extracts the infor-

mation from corresponding HTML �les produced by Javadoc. Javadoc is a tool

that automatically converts Java source code �les containing special markup

comments into HTML documentation. The Jex �les produced from these scripts

simply consist of a list of exception types potentially thrown by each method

of the class. The list consists of a union of the exception types declared in the

method's signature with the exception types annotated in the special markup

4 Package net.vtic.tar, developed by J. Marconi and available from the Giant Java
Tree, http://www.gjt.org.

5 Available from a compiler course web page of the School of Computing, National

University of Singapore (http://dkiong.comp.nus.edu.sg/compilers/a/).
6 Under development by M. Kersten at the University of British Columbia.

Techical Report TR-99-02 9 March 2, 1999

comments. The exception types annotated in the comments for a class may in-

clude both declared and run-time exception types.

Fig. 5. Exception matching in catch clauses. The subsumption number indicates the

level of inheritance that was necessary to match the exception type. For example su-

pertype indicates that an exception was caught by declaring its supertype in the catch
clause.

The graph in Fig. 5 shows a breakdown of exceptions and their associated

handling in the analyzed code. It represents information from all the packages

we analyzed that contained at least one try block. In all but one case, the Rule

Parser, uncaught and undeclared exceptions might percolate from the subsump-

tion used in exception handlers. Occurrences of \same type" refer to an exception

handler that names the type of an actual exception that may occur; occurrences

of \supertype" refer to an exception handler that names a superclass of an actual

exception that may occur; and so on. All but two of the packages, namely the

the Java JDK and servlet code, contain exception handlers that catch exceptions

through subsumption.

Table 1 provides a di�erent view of the data. This view illustrates that 32% of

the di�erent exception types present in try blocks remain uncaught in a target. In

44% of the cases, exceptions are not caught with the most precise type available.

This data lends evidence to support our claims that exception subsumption

and unhandled exceptions are prevalent in Java source code. However, this quan-

titative data does not indicate whether the quality of the code could be improved

through the use of Jex-produced information. To investigate the usefulness of

the information, we performed an after-the-fact manual inspection of the source

code. We focused this inspection on cases of subsumption since the bene�ts of

identifying uncaught exceptions are straightforward and are discussed in greater

depth elsewhere [FFCA98, Yi94, YR97, Yi98].

Techical Report TR-99-02 10 March 2, 1999

Our investigation of the cases of exception subsumption found several in-

stances in which knowledge of the subsumption could be used to improve the

code. In the RuleParser application, for instance, the body of a method reading

a line from an input bu�er is guarded against all exceptions using the Exception

type. This type is a supertype to much of the exception hierarchy. Expecting

input problems, the code produces a message about a source input exception.

However, Jex analysis reveals that two other types of runtime exception may

also arise: StringIndexOutOfBoundsException and SecurityException. These two

unchecked exceptions will be caught within the Exception handler, producing an

inappropriate error message. The addition of more speci�c exception handlers

could improve the coherency of the recovery actions.

We found other uses of subsumption in the Atlas packages. For example, in a

database query, exceptions signaled by reading from a stream are all caught by

a generalized catch clause which generates a generic \read error" message and

which re-throws a user-de�ned exception. However, the exceptions thrown in the

try block include such specialized types StreamCorruptedException, InvalidClassException,

OptionalDataException, and FileNotFoundException. It may be advantageous to

catch these exceptions directly and produce a more descriptive error message.

Cases of subsumption were also useful in pointing out source points at which

exception handling code did not conform to the strategy established by the

developer. For example, in one of the Atlas classes, an exception was explicitly

thrown in a try block, caught in a catch clause corresponding to the same try

block, and re-thrown. In another case, two similar accessor methods displayed

di�erent exception handling strategies: one masked all exceptions; the other one

masked only two speci�c exceptions. A discussion with the developer of Atlas

allowed the irregular exception handling strategies to be traced to unstable or

un�nished code. The abstract view of the exception ow provided by Jex made

it easy to hone in on these suspicious cases.

Table 1. Levels of subsumption required to catch an exception

Level of Subsumption Frequency

Same type 24 %

Supertype 16 %

2 Levels 20%
3 Levels 8 %

Uncaught 32 %

Techical Report TR-99-02 11 March 2, 1999

6 Discussion

6.1 White-box Exception Information

By expressing the actual exceptions that may ow out of a method invocation,

we expose knowledge about the internals of a supplier method to a client. If

a software developer relied upon this knowledge of a supplier's implementation

rather than on the supplier's declared interface, unintended dependences could

be introduced, potentially limiting the evolution of the client.

For instance, consider the case previously described for Atlas in which the

developer learned that a particular method could receive a number of specialized

exception types, such as StreamCorruptedException and InvalidClassException.

Assume that the operations that can raise these exceptions declare more general

exception types as part of their interfaces. If the developer introduced handlers

only for each of the specialized types that could actually occur, the code might

break if an operation evolved to signal a di�erent specialized exception type.

In the case of Java, this situation cannot arise because the compiler forces the

presence of handlers for the exception types declared by supplier operations. In

cases in which the language environment does not provide this enforcement, our

approach would have to be extended to ensure the use of white-box information

does not complicate evolution.

6.2 Alternative Approaches

Increasing the robustness and recovery granularity of applications does not re-

quire a static analysis tool. One alternative that is currently in use is to document

the precise types of exceptions that a method may throw in comments to the

method.With this approach, a developer can retain exibility in a method inter-

face, but still provide additional information to clients wishing to perform �ner-

grained recovery. A disadvantage of this approach is that it forces the developer

to maintain consistency between the program code and the documentation, an

often arduous task. Moreover, this approach assumes that a developer knows all

of the exception types that might be raised within the body of the method being

developed; the presence of runtime exceptions makes it di�cult for a developer

to provide complete documentation.

Another course of action available is for a software developer to inspect the

exception type hierarchy, and to provide handlers for all subtypes of a declared

exception type. It is unlikely that in most situations the extra cost of producing

and debugging these handlers is warranted. Our approach provides a means

of cost-e�ectively determining which of the many possible handlers might be

warranted at any particular development point.

6.3 The Expressiveness of the Current Exception Structure

The current exception structure extracted for source �les enables a developer to

determine unambiguously the exceptions that can be signaled at any point in

Techical Report TR-99-02 12 March 2, 1999

the program, along with the origin of those exceptions. This former information

allows a developer to determine the actual exceptions which can cross a module

boundary. The latter information allows a developer to trace exceptions to their

source, enabling a more thorough inspection.

One aspect missing from the information currently produced by Jex is a link

to the particular statements which can produce an exception. As a result, when

an exception is explicitly thrown, it is not possible to determine if it is a new

exception or if an existing exception is being re-thrown. This information could

be determined by adding relationships to symbols (i.e. variable, parameter, and

�eld names) de�ned in the programs. However, it is unclear whether the addi-

tional bene�ts that could be obtained from the more speci�c origin information

outweigh the possible disadvantage of reducing the clarity and succinctness of

the exception structure.

6.4 The Precision of Jex Information

There are two cases in which our Jex tool may not return conservative informa-

tion. First, Jex uses the packages speci�ed by the user as the \world" in which

to search for all possible implementations of a particular method. If a user fails

to specify a relevant package, Jex may not report certain exceptions that might

arise at runtime. Second, Jex relies on a model of the language environment

to determine the exceptions that might arise from basic operations, such as an

add operation, and the exceptions that might arise from native methods. Al-

though the model of the environment we used when applying Jex to the code

described in Section 4 was partial, Jex still returned information useful to a de-

veloper. These two choices are however under a user's control: a Jex user who is

concerned about �nding all potential exceptions that might be raised must be

careful about them.

The usability of our approach could also be impacted if a tool such as Jex

returned information that was too conservative. With Jex, this situation can arise

when reporting all possible runtime exceptions because there are many points in

the code that can raise such exceptions as ArithmeticException. This situation

can be managed by providing a means of eliding this information when desired.

For the code we analyzed, we chose not to consider these runtime exceptions so

as to more easily focus on application-related exception-handling problems.

Another source of imprecision in Jex arises from the assumption that a call

to a method made through a variable might end up binding to any conforming

implementation on any subtype of the variable's type. In some cases, it may be

possible to use type inference to limit the subtypes that are considered. Although

our experience with Jex is limited, we have not found that this assumption

greatly increases the exception information returned.

7 Summary

It is not uncommon for users of software applications to become frustrated by

misleading error messages or program failures. Exception handling mechanisms

Techical Report TR-99-02 13 March 2, 1999

present in modern languages provide a means to enable software developers to

build applications that avoid these problems. Building applications with appro-

priate error-handling strategies, though, requires support above and beyond that

provided by a language's compiler or linker. To encode an appropriate strategy,

a developer requires some knowledge of how exceptions might ow through the

system.

In this paper, we have described a static analysis tool we have built to help

developers access this information. The Jex tool extracts information about the

structure of exceptions in Java programs, providing a view of the actual excep-

tions that might arise at di�erent points and the handlers that are present. Use

of this tool on a collection of Java library and application-oriented source code

demonstrates that the approach can help detect both uncaught exceptions, and

uses of subsumption to catch exceptions.

The view of exception ow synthesized and reported by Jex can provide

several bene�ts to a developer. First, a developer can introduce handlers for un-

caught exceptions to increase the robustness of code. Second, a developer can

determine cases in which unanticipated exceptions are accidentally handled; re-

�ning handlers for these cases may also increase code robustness. Third, inspec-

tion of subsumption cases may indicate points where the addition of �ner-grained

recovery code could improve the usability of a system. Finally, the abstract view

of the exception structure can help a developer detect potentially problematic

or irregular error-handling code. The approach described in the paper and the

bene�ts possible are not limited to Java, but also apply to other object-oriented

languages.

Acknowledgments

The authors are grateful to B. Speckmann for providing useful suggestions and

comments, and to the authors of the code analyzed in this paper, for providing

a basis for empirical testing of our ideas.

References

[AC96] Mart��n Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996.

[FFCA98] Manuel Fahndrich, Je�rey Foster, Jason Cu, and Alexander Aiken. Track-
ing down exceptions in standard ML programs. Technical Report CSD-98-

996, University of California, Berkeley, February 1998.
[GJS96] James Gosling, Bill Joy, and Guy Steele. The Java Language Speci�cation.

Addison-Wesley Longman, Inc., 1996.
[Goo75] John B. Goodenough. Exception handling: Issues and proposed notation.

Comunications of the ACM, 18(12), December 1975.
[HMT89] Robert Harper, Robin Milner, and Mads Tofte. The De�nition of Standard

ML: Version 3. Technical Report ECS-LFCS-89-81, Laboratory for the

Foundations of Computer Science, University of Edinburgh, May 1989.
[LS79] Barbara H. Liskov and Alan Snyder. Exception handling in CLU. IEEE

Transactions on Software Engineering, 5(6), November 1979.

Techical Report TR-99-02 14 March 2, 1999

[MT97] Robert Miller and Anand Tripathi. Issues with exception handling in

object-oriented systems. In Mehmet Aksit and Satoshi Matsuoka, edi-
tors, ECOOP'97|Object-Oriented Programming, 11th European Confer-

ence, volume 1241 of Lecture Notes in Computer Science, pages 85{103.

Springer, June 1997.
[Str91] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,

2nd edition, 1991.

[Sun] Sun Microsystems, Inc. The Java Parser Generator

. http://www.suntest.com/JavaCC/.

[Yi94] Kwangkeun Yi. Compile-time detection of uncaught exceptions in standard

ML programs. In Baudouin Le Charlier, editor, Static Analysis Symposium,
volume 864 of Lecture Notes in Computer Science, pages 238{254. Springer-

Verlag, September 1994.

[Yi98] Kwangkeun Yi. An abstract interpretation for estimating uncaught ex-

ceptions in standard ML programs. Science of Computer Programming,

31:147{173, 1998.

[YR97] Kwangkeun Yi and Sukyoung Ryu. Towards a cost-e�ective estimation of
uncaught exceptions in SML programs. In Static Analysis Symposium, vol-

ume 1302 of Lecture Notes in Computer Science, pages 98{113, September

1997.

Techical Report TR-99-02 15 March 2, 1999

