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Abstract: A Boolean function f is a minor of a Boolean function g if f is obtained from

g by substituting an argument of f , the complement of an argument of f , or a Boolean

constant for each argument of g. The theory of minors has been used to study threshold

functions (also known as linearly separable functions) and their generalization to functions

of bounded order (where the degree of the separating polynomial is bounded, but may be

greater than one). We construct a Galois theory for sets of Boolean functions closed under

taking minors, as well as for a number of generalizations of this situation. In this Galois

theory we take as the dual objects certain pairs of relations that we call \constraints", and

we explicitly determine the closure conditions on sets of constraints.

* The work reported here was supported by an NSERC Research Grant.



1. Introduction

The Galois theory of which we speak falls within the general framework described by

Everett [E2] and Ore [O], whereby an arbitrary binary relation between objects of two

types gives rise to closure operations (in the sense of Ward [W3]) on the sets of objects of

each type, and to a one-to-one correspondence between the two types of closed sets. In

such a theory one commonly starts with a given closure operation on sets of given primal

objects, and seeks to discover dual objects, and a binary relation between primal and dual

objects, so that the induced closure operation on the primary objects coincides with the

given one. One also seeks an understanding of the induced closure operation on the dual

objects, since it provides another avenue to understanding of the original closure operation.

The theory most similar to that which we seek is the Galois \polytheory" for �nite

functions constructed by Geiger [G] and independently by Bodnarchuk et al.. Here the

primal objects are �nite functions (maps f : Bn

k
! Bk, where Bk = f0; : : : ; k � 1g and

n � 1), and the closure operation is that in which the closed sets are \clones": sets of

functions containing the monadic identity function and closed under adding dummy ar-

guments, diagonalizing (or \identifying" arguments, which serves also for deleting dummy

arguments), permuting arguments, and functional composition. Geiger and Bodnarchuk

et al. established as dual objects �nite relations called \invariants" (sets R � Bm

k
, where

m � 1), and gave explicit descriptions of the appropriate binary relation between functions

and invariants, and of the closure operation on invariants. This Galois polytheory can be

seen as a development (for the case of �nite functions and invariants) of the abstract Ga-

lois theory and Galois \endotheory" of Krasner (which had its inception [K1] in the 1930s,

prior to the work of Everett and Ore, and which is summarized in Krasner's posthumous

papers [K2]).

The motivating example for our work is given by sets of Boolean functions closed

under taking minors: closed under adding dummy arguments, diagonalizing, permuting

arguments, complementing arguments and substituting Boolean constants for arguments

(see Wang [W2]). The best known example of such a set of functions is that of the

\threshold" functions. The history of these is di�cult to trace, but see Winder [W4] for

many early references. Further examples are provided by the sets of Boolean functions of

bounded order in the sense of Wang and Williams [W1] (where the threshold functions

constitute the special case of order at most one), and by the restrictions of these sets to

monotone functions.

It will be natural, however, to generalize beyond the needs of these examples. Firstly,

we generalize from Boolean functions (functions over B2) to \k-ean" functions (over Bk).
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To do this we must adopt an appropriate generalization of the notion of \complement" that

appears in the de�nition of \minor". We shall �x a setQ of monadic k-ean functions (maps

� : Bk ! Bk), and consider sets of functions closed under applying functions from Q to

arguments. (This operation also subsumes that of substituting constants for arguments,

by including constant functions in Q.) Secondly, with functional composition out of the

picture, there is no need to assume that the values of the functions are drawn from the same

set as the arguments. Thus we consider \n-adic (k; l)-ean" functions (maps f : Bn

k
! Bl).

We lose no generality by assuming that Q contains the identity function and is closed

under composition, and thus that they are \monadic clones". Thus the general setting of

our work will be one in which Q is a monadic k-ean clone, and we consider sets of (k; l)-

ean functions that are closed under adding dummy arguments, diagonalization (identifying

arguments), permuting arguments, and applying a function � 2 Q to an argument xi of a

function f(x1; : : : ; xn) to yield the function f
�
x1; : : : ; xi�1; �(xi); xi+1; : : : ; xn

�
. We shall

call such a set of functions Q-minor-closed.

The plan of our work is as follows. In Section 2 we shall start by \turning o�" the

minor-closure operations insofar as possible. Thus we shall construct the Galois theory for

I-minor-closed sets, where I is the monadic clone that contains only the identity function

on k elements. Such a theory of \identi�cation minors" for Boolean functions has been

constructed by Ekin et al. [E1], taking \Boolean equations" as the dual objects. The paper

of Ekin et al. also gives many examples of sets of Boolean functions closed under taking

identi�cation minors, together with their characterizations by Boolean equations. Instead

of equations, we shall use pairs of relations that we call \constraints" as the dual objects.

This choice will facilitate the coming generalization to other minor closure operations, and

reveals the Galois polytheory as the special case in which the two relations of a constraint

coincide to form an invariant. Of course in the Boolean case our theory is equivalent to

that of Ekin et al. (as we shall show explicitly in Appendix A), but even in this case we

go further and determine the closed sets of dual objects.

In Section 3 consider the general case of Q-minor-closed sets of (k; l)-ean functions.

Since we are now considering sets closed under more operations than in Section 2, the

constraints that we introduced there will still be su�cient as dual objects, but some of them

will no longer be necessary, and the closure operation on the sets of surviving constraints

will be stronger. We conclude Section 3 with some miscellaneous observations on Q-minor-

closed sets of functions.
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2. Identi�cation Minors

An n-adic (k; l)-ean function is a map f : Bn

k
! Bl. A (k; k)-ean function will be

called simply a k-ean function. We shall consider sets closed under taking identi�cation

minors, that is, closed under adding dummy arguments, diagonalization (identifying argu-

ments) and permuting arguments, and in this section the term \minor-closed", applied to

a set of functions, will always refer to such a set.

An m-ary k-ean relation is a set R � Bm

k
, which we shall regard as a set of columns

comprising m elements from Bk. An m-ary (k; l)-ean constraint is a pair (R;S), where R

is an m-ary k-ean relation called the antecedent, and S is an m-ary l-ean relation called

the consequent.

IfM 2 Bm�n

K
is anm�nmatrix of elements fromBk and R is anm-ary k-ean relation,

we shall write M � R to mean that every column of M belongs to R. If furthermore f

is an n-adic (k; l)-ean function, we shall write f(M) for the column of elements from Bl

obtained by applying f to each row of M .

If f is an n-adic (k; l)-ean function and (R;S) is an m-ary (k; l)-ean constraint, we

shall say that f satis�es (R;S) (written f � (R;S)) if, for every m � n matrix M such

that M � R, we have f(M) 2 S. This notion of a function satisfying a constraint is the

cornerstone of this paper, and will give rise to the Galois correspondence that we seek.

If (R;S) is a constraint, then the set of functions satisfying (R;S) is minor-closed.

Furthermore, if T is any set of constraints, the set of functions satisfying all the constraints

in T is an intersection of minor-closed sets, and is therefore itself a minor-closed set. Thus

the sets of functions that are characterized by the constraints that they satisfy are all

minor-closed. The following theorem shows that every minor-closed set of functions is

characterized by the constraints that are satis�ed by its functions.

Theorem 2.1: Let F be a minor-closed set of functions and let g be any function not

belonging to F . Then there is a constraint (R;S) that is satis�ed by every function in F

but that is not satis�ed by g.

Proof: Suppose that g is n-adic. Let Fn be the set of n-adic functions in F . Let M be a

kn � n matrix whose rows are all the n-tuples of elements from Bk, let R be the kn-ary

relation comprising the columns of M , and let S be the kn-ary relation comprising the

columns f(M), where f runs through Fn.

Firstly, we claim that every function in F satis�es the constraint (R;S). To see this,

suppose that f 0 is an n0-adic function from F , and that M 0 is a kn�n0 matrix of elements

from Bk such that M 0 � R. We must show that f 0(M 0) belongs to S. Since M 0 � R,
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each of the n0 columns of M 0 must equal one of the n columns of M . De�ne the map

h : f1; : : : ; n0g ! f1; : : : ; ng so that column i of M 0 equals column h(i) of M . The n-adic

function f de�ned by f(x1; : : : ; xn) = f 0(xh(1); : : : ; xh(n0)) is a minor of f 0, and therefore

belongs to Fn. We have f 0(M 0) = f(M). Since f(M) belongs to S, the proof of the claim

is complete.

Secondly, we claim that g does not satisfy (R;S). Suppose, to obtain a contrdiction,

that g does satisfy (R;S), so that in particular g(M) belongs to S. Then there is a

function f in Fn such that f(M) = g(M). But this implies that f = g, since every n-tuple

of elements from Bk appears as a row of M . This contradicts the hypothesis that g does

not belong to F , and completes the proof of the second claim. 4

At this point we have an analogue, in terms of constraints, of the main result that

Ekin et al. obtain in terms of Boolean equations. That these results are in fact equivalent

is established in Appendix A, where we show that for every Boolean constraint, there is a

Boolean equation that is satis�ed by exactly the same functions, and vice versa.

Our next goal is to determine the closure operation on the constraints that is induced

by this Galois correspondence. Thus we seek to answer the question: when can a set of

constraints be characterized by the functions that satisfy them? To do this we need to

consider various operations on constraints.

We shall refer to a constraint (R;S) in which a column belongs to R or S if and only

if all its arguments are equal as an equality constraint. We shall refer to a constraint of the

form (Bm

k
;Bm

l
), with all possible columns in both antecedent and consequent, as a trival

constraint.

We shall refer to the row positions of a relation or constraint as \arguments" (in the

same way that we refer to the column positions of functions as arguments). We shall say

that a constraint (R;S) is a simple minor of a constraint (R0; S0) if (R;S) is obtained

from (R0; S0) by adding dummy arguments, projection (or \existentially quantifying" ar-

guments), diagonalization (or \identifying" arguments) and permuting arguments.

We shall say that a constraint (R;S) is obtained from a constraint (R0; S) by restricting

the antecedent if R � R0. We shall say that a constraint (R;S) is obtained from a constraint

R;S0) by extending the consequent if S � S0. We shall say that the constraint (R;S \ S0)

is obtained from the constraints (R;S) and R;S0) by intersecting consequents.

We shall say that a set of constraints is minor-closed if it contains the binary equality

constraint and is closed under taking simple minors, restricting antecedents, extending

consequents and intersecting consequents. We shall show that the minor-closed sets of
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constraints are exactly the sets of constraints that are characterized by the functions that

satisfy them.

If f is a function, then the set of constraints satis�ed by f is minor-closed. Further-

more, if F is any set of functions, the set of constraints satis�ed by all the functions in F

is an intersection of minor-closed sets, and is therefore itself minor-closed. Thus the sets of

constraints that are characterized by the functions that satisfy them are all minor closed.

The following theorem shows that every minor-closed set of constraints is characterized by

the set of functions that satis�es all of its constraints.

Theorem 2.2: Let T be a minor-closed set of constraints, and let (R;S) be a constraint

not belonging to T . Then there exists a function f that satis�es every constraint in T but

that does not satisfy (R;S).

To prove Theorem 2.2, we shall follow the strategy used by Geiger [G]. First we shall

introduce the usual notion of a partial function, and de�ne what it means for a partial

function to satisfy a constraint in a way that yields the following restriction principle: if

a function f satis�es a constraint, then any restriction of f also satis�es that constraint.

We then prove an analogue of Theorem 2.2 in which \function" is weakened to \partial

function". Finally, we show that if a partial function g satis�es all the constraints in some

minor-closed set T of constraints, then there exists some extension of g to a total function

f that also satis�es all the constraints in T .

Before proceding, we observe that minor-closed sets of constraints are also closed

under two other operations.

Lemma 2.3: A minor-closed set of constraints is also closed under taking intersections

(that is, obtaining (R\R0; S \S0) from (R;S) and (R0; S0)), and taking products (that is,

obtaining (R �R0; S � S0) from (R;S) and (R0; S0)).

Proof: From (R;S) we can obtain (R \ R0; S) by restricting the antecedent, and from

(R0S0) we can obtain (R \ R0; S0) in the same way. Then we can obtain (R \ R0; S \ S0)

from (R \R0; S) and (R \ R0; S0) by intersecting consequents. Thus a minor-closed set of

constraints is also closed under taking intersections.

Suppose that (R;S) and (R0; S0) are m-ary and m0-ary constraints, respectively. By

addingm0 dummy arguments to (R;S), we can obtain a constraint (R�; S�) in which them

arguments of (R;S) are followed bym0 dummy arguments. Similarly, by addingm dummy

arguments to (R0; S0), we can obtain a constraint (R0�; S0�) in which the m0 arguments of

(R0; S0) follow m dummy arguments. Then we can obtain (R�R0; S �S0) by intersecting
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(R�; S�) and (R0�; S0�). Thus a minor-closed set of constraints is also closed under taking

products. 4

An n-adic (k; l)-ean partial function g consists of a subset D � Bn

k
called the domain

of g and a map g : D ! Bl. Thus a function, which for emphasis we may refer to as a

total function, is simply a partial function whose domain is all of Bn

k
. If the domain D of

a partial function g is a subset of the domain of the partial function f , and if g(x) = f(x)

for every n-tuple in D, we shall say that g is a restriction of f , and that f is an extension

of g.

If g is an n-adic (k; l)-ean partial function and (R;S) is an m-ary (k; l)-ean constraint,

we shall say that g satis�es (R;S) if, for every m � n matrix M such that M � R, and

such that every row of M belongs to the domain of g, we have g(M) 2 S. This de�nition

yields the restriction principle state above: if a function f satis�es a constraint, so does

every restriction of f .

Lemma 2.4: A minor-closed set of constraints contains all trivial constraints and all equal-

ity constraints.

Proof: By projecting one of the arguments of the binary equality constraint, we obtain

the unary trivial constraint, and by then adding m� 1 dummy arguments, we obtain the

m-ary trivial constraint.

By adding m � 1 dummy arguments to the binary equality constraint, we obtain an

m-ary constraint (R;S) in which a column belongs to R or S if and only if a particular

pair of consecutive arguments arguments are equal. By intersectingm�1 such constraints

(for the m� 1 pairs of consecutive arguments), we obtain the m-ary equality constraint.

4

Proposition 2.5: Let T be a minor-closed set of constraints, and let (R;S) be a constraint

not belonging to T . Then there exists a partial function g that satis�es every constraint

in T but that does not satisfy (R;S).

Proof: Suppose that (R;S) is m-ary. The relation S cannot contain all lm m-tuples of

elements from Bl, for if it did, then (R;S) could be obtained from a trivial constraint by

restricting the antecedent, and thus would belong to the minor-closed set T . The minor-

closed set T cannot contain (R;Bm

l
n fsg) for every s that does not belong to S, for if it

did, then by Lemma 2.3 it would also contain their intersection (R;S). Fix some m-tuple

s that does not belong to S and for which (R;Bm

l
n fsg) does not belong to T .
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Suppose that the relation R contains n m-tuples. De�ne an m � n matrix M whose

columns are the columns of R in some �xed order. De�ne a partial function g by taking

the domain of g to be the set of rows of M , with the values of g given by g(M) = s.

Firstly, we claim that g satis�es every constraint in T . Suppose, to obtain a con-

tradiction, that (R0; S0) is an m0-ary constraint in T that is not satis�ed by g. Let M 0

be an m0 � n matrix such that M 0 � R0 and g(M 0) = s0 62 S0. Every row of M 0 must

belong to the domain of g, and must therefore also be a row of M . De�ne the map

h : f1; : : : m0g ! f1; : : : ;mg such that row i of M 0 equals row h(i) of M . We shall also use

h to denote the maps h : Bm

k
! Bm

0

k
and h : Bm

l
! Bm

0

l
de�ned by

h

0
@
0
@

x1
...

xm

1
A
1
A =

0
B@

xh(1)
...

xh(m0)

1
CA :

Finally, we shall de�ne the relation h�1(R0) by x 2 h�1(R0) if and only if h(x) 2 R0, the

relation h�1(S0) by x 2 h�1(S0) if and only if h(x) 2 S0, and the constraint h�1
�
(R0; S0)

�
=�

h�1(R0); h�1(S0)
�
. The constraint h�1

�
(R0; S0)

�
is a minor of (R0; S0), and thus belongs

to T .

If r belongs to R, then r appear as a column of M , and the corresponding column r0

of M 0 belongs to R0. Since h(r) = r0 2 R0, we have r 2 h�1(R0). Thus R � h�1(R0). and

therefore r belongs to R00. Since every entry of s or s0 is obtained by applying g to the

corresponding row of M orM 0, we have h(s) = s0. Since h(s) = s0 does not belong to S0, s

does not belong to h�1(S0). Thus Bm

l
n fsg � h�1(S0). Since T contains h�1

�
(R0; S0)

�
, it

also contains the the constraint (R;Bm

l
nfsg) obtained from it by restricting the antecedent

and extending the consequent. This contradicts the choice of s, and completes the proof

of the �rst claim.

Secondly, we claim that g does not satisfy (R;S). For if it did, then since M � R,

we would have that s = g(M) belongs to S, again contradicting the choice of s. This

completes the proof of the second claim. 4

Proposition 2.6: Let T be a minor-closed set of constraints. If g is a partial function

satisfying all the constraints in T , then there is an extension of g to a total function that

also satis�es all the constraints in T .

Proof: Suppose that g is n-adic. If g is not itself a total function, let y be some n-tuple of

elements from Bk that does not belong to the domain D of g. We claim that there exists
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a value c 2 Bl such that the extension gc with domain D [ fyg and values given by

gc(x) =

�
c; if x = y

g(x); otherwise

also satis�es all the constraints in T . Repetition of this process yields a total extension of

g that satis�es all the constraints in T .

Suppose, to obtain a contradiction, that for every value c 2 Bl, there is a constraint

(Rc; Sc) in T such that gc does not satisfy (Rc; Sc), and thus that there is an Mc � Rc

such that every row of Mc belongs to D [ fyg and gc(Mc) 62 Sc. We may assume that

(Rc; Sc) and Mc each have the smallest possible number of rows. The n-tuple y must

appear at least once as a row in every Mc, for if not we would have gc(Mc) = g(Mc),

and the assumption that g satis�es (Rc; Sc) 2 T would imply that gc satis�es (Rc; Sc), a

contradiction. Furthermore, y must appear exactly once as a row inMc, for if not we could,

by deleting such a row from Mc and projecting the corresponding argument of (Rc; Sc),

obtain a constraint in T with fewer rows and still not satis�ed by gc. We shall call the row

in which y appears as a row of Mc the critical row of Mc.

Since the minor-closed set T contains each (Rc; Sc), it also contains their product

(R;S), where R = R0 � � � � � Rl�1 and S = S0 � � � � � Sl�1. We then have M � (R;S),

where the matrix M is obtained by vertically concatenating the matrices M0; : : : ;Ml�1.

In (R;S) and M , we shall refer to the rows arising from (Rc; Sc) andMc as c-rows, and to

the row corresponding to the critical row in (Rc; Sc) andMc as the c-critical row in (R;S)

and M .

By adding dummy arguments to an l-ary equality constraint, we can obtain a con-

straint (R0; S0) in T in which a column belongs to R0 or S0 if and only if all l critical

arguments are equal. Since T contains both (R;S) and (R0; S0), it also contains their

intersection (R̂; Ŝ) = (R \R0; S \ S0).

Say a column of Sc is c-consistent if its non-critical entries agree with the correspond-

ing entry of gc(Mc). A c-consistent column cannot contain the value c in its critical row,

else we would have gc(Mc) 2 S0, a contradiction.

Say a column of S is consistent if its c-rows are c-consistent. A consistent column of

S cannot have the value c in its c-critical row, and thus cannot have any single value in all

l of its critical rows. We therefore have Ŝ = S \ S0 = ;.

Since T contains (R̂; Ŝ), it also contains the constraint ( ~R; ~S) obtained from (R̂; Ŝ)

by projecting the l critical arguments. Since Ŝ = ;, we also have ~S = ;. Let ~M denote

the matrix obtained from M by deleting the l critical rows (which are the rows equal to
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y). Then ~M � ~R. Furthermore, all rows of ~M belong to D. Since g( ~M ) 62 ~S = ;, g

does not satisfy the constraint ( ~R; ~S) in T . This contradiction completes the proof of the

proposition. 4

Proof of Theorem 2.2: Given a minor-closed set T of constraints and a constraint (R;S),

Proposition 2.5 yields a partial function g that satis�es every constraint in T but that does

not satisfy (R;S). By Proposition 2.6, there is an extension of g to a total function f that

also satis�es every constraint in T . By the restriction principle, f does not satisfy (R;S),

since its restriction g does not satisfy (R;S). 4

3. General Minors

Let Q be a set of monadic k-ean functions that contains the identity function and

is closed under composition. We shall let I denote the set containing just the identity

function, and U the set containing all monadic k-ean functions.

We shall say that a set F of (k; l)-ean functions is Q-minor-closed if it is minor-closed

(in the sense of the preceding section) and also closed under the operation of applying a

function from Q to an argument of a function from F . Thus the I-minor-closed sets of

functions are just the sets that are minor-closed in the sense of the preceding section.

If x is a column of elements from Bk and � is a function from Q, we shall write �(x)

for the column obtained from x by applying � to each entry of x. If R is a k-ean relation,

we shall write satQ(R) for the relation comprising all the columns obtained by applying

a function from Q to a column from R. The operation satQ is a closure operation: it is

in
ationary (satQ(R) � R), increasing (satQ(R) � satQ(R
0) if R � R0) and idempotent

(satQ
�
satQ(R)

�
= satQ(R)). We shall say that a relation R is Q-saturated if satQ(R) = R,

and that a constraint (R;S) is Q-saturated if its antecedent R is Q-saturated.

If (R;S) is a Q-saturated constraint, then the set of functions satisfying (R;S) is Q-

minor-closed. Furthermore, if T is any set of Q-saturated constraints, the set of functions

satisfying all the constraints in T is an intersection of Q-minor-closed sets, and is therefore

itself a Q-minor-closed set. Thus the sets of functions that are characterized by the Q-

saturated constraints that they satisfy are all Q-minor-closed. Our next goal is a theorem

that shows that every Q-minor-closed set of functions is characterized by the Q-saturated

constraints that are satis�ed by its functions.

Proposition 3.1: Let F be a Q-minor-closed set of functions. If every function in F satis�es

the constraint (R;S), then every function in F also satis�es the Q-saturated constraint�
satQ(R); S

�
.
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Proof: Suppose that (R;S) and
�
sat

Q
(R); S

�
are m-ary. Let f be an n-adic function in F

and let M be an m�n matrix such that M � sat
Q
(R). We must show that f(M) belongs

to S.

Since M � satQ(R), there is an m� n matrix M 0 such that M 0 � R and, for every i

in f1; : : : ; ng, column i of M is obtained by applying some function �i in Q to column i of

M 0. The n-adic function f 0 de�ned by

f 0(x1; : : : ; xn) = f
�
�1(x1); : : : ; �n(xn)

�

is a Q-minor of f , and therefore also belongs to F . Thus f 0 satis�es (R;S), so that f 0(M 0)

belongs to S. But f(M) = f 0(M 0), so that f(M) also belongs to S. 4

Theorem 3.2: Let F be a Q-minor-closed set of functions and let g be any function not

belonging to F . Then there is a Q-saturated constraint that is satis�ed by every function

in F , but that is not satis�ed by g.

Proof: Since I � Q, F is I-minor-closed, and thus by Theorem 2.1 there exists a constraint

(R;S) that is satis�ed by every function in F , but that is not satis�ed by g. By Proposition

3.1 the Q-saturated constraint
�
sat

Q
(R); S

�
is also satis�ed by every function in F , but

(since (R;S) is obtained from it by restricting the antecedent) it is not satis�ed by g. 4

This theorem show that, when considering Q-minor closed sets of functions, we may

restrict attention to Q-saturated constraints as the dual objects. Our next goal is to

determine the closure operation induced on these dual objects.

Say that a set of constraints (not necessarily all Q-saturated) is Q-minor saturated if

it is minor-closed (in the sense of the preceding section) and if it contains the constraint

(R0; S) whenever it contains the constraint (R;S) and satQ(R
0) = satQ(R). The set of

constraints satis�ed by every function in a Q-minor-closed set of functions is Q-minor

saturated, for by the remarks preceding Theorem 2.2 it is minor-closed (in the sense of

the preceding section), and if it contains a constraint (R;S), then by Proposition 3.1 it

also contains the constraint
�
satQ(R); S

�
, and thus (being minor-closed) it also contains

all the constraints (R0; S) such that satQ(R
0) = satQ(R), since these are obtained from�

satQ(R); S
�
by restricting the antecedent.

Say that a set of Q-saturated constraints is Q-minor-closed if is is the set of the

Q-saturated constraints belonging to some Q-minor-saturated set of constraints. The Q-

minor-closed sets of Q-saturated constraints are the closed sets of dual objects, when the

latter are taken to be the Q-saturated constraints.

10



Theorem 3.3: A set of Q-saturated constraints is Q-minor closed if and only if it con-

tains the binary equality constraint and is closed under taking simple minors, restricting

antecedents to Q-saturated relations, extending consequents and intersecting consequents.

Proof: (if) Let T be a set of Q-saturated constraints that contains the binary equality

constraint and is closed under taking simple minors, restricting antecedents to Q-saturated

relations, extending consequents and intersecting consequents. Let T 0 be the smallest Q-

minor-saturated set of constraints that includes T . The only constraints in T 0 that are

not also in T are those obtained from constraints in T by restricting the antecedent to a

relation that is not Q-saturated. Thus T is the set of the Q-saturated constraints in the

Q-minor-saturated set T 0 of constraints.

(only if) The binary equality constraint is Q-saturated, and the operations of taking

simple minors, restricting antecedents to Q-saturated relations, extending consequents and

intersecting consequents all yield Q-saturated constraints when applied to Q-saturated

constraints. Since a Q-minor-saturated set of constraints contains the binary equality

constraint and is closed under these operations, so is the set of the Q-saturated constraints

that it contains. 4

The classi�cation of �nite functions into Q-minor-closed sets is in general much �ner

that that into clones (even in the case Q = U , which gives the coarsest classi�cation). One

manifestation of this phenomenon is that, while there are only countably many Boolean

clones (see Post [P]), there are uncountably many Boolean U-minor-closed sets, as will be

shown with the aid of the following proposition.

Proposition 3.4: For n � 4, de�ne the n-adic Boolean function fn by

fn(x1; : : : ; xn) =

�
1; if #fi : xi = 1g 2 f1; n� 1g;

0; otherwise.

Then if m 6= n, fm is not a U-minor of fn.

Proof: If m > n, the conclusion is immediate, since a U-minor of any function f depends

essentially on at most as many arguments as f . So suppose that m < n.

The proof depends on two observations. First, if we �x at most three arguments of

fm to constant values, the resulting function of the remaining arguments is not a constant

function. Secondly, if we �x at least two arguments of fn to 0s, and at least two arguments

to 1s, the resulting function of the remaining arguments is a constant function (always

assuming the value 0).

Suppose, to obtain a contradiction, that fm is a U-minor of fn, so that every argu-

ment of fn is an argument of fm, the complement of an argument of fm, or a constant.

11



Furthermore, every argument of fm must appear at least once as an argument of fn, since

fm depends on all its arguments.

Suppose �rst that every argument of fm appears, either directly or complemented,

exactly once as an argument of fn. Then, since m < n, at least one argument of fn

must be a constant, say c. Set one argument of fm if direct to c, and if complemented

to the complementary value c, and set two other arguments of fn if direct to c and if

complemented to c. Since we have set set just three arguments of fm to constants, the

resulting function of the remaining arguments of fm is not a constant function. But since

we have thereby set two arguments of fn to 0s and two to 1s, the resulting function is the

constant function with value 0, a contradiction.

Suppose then that some argument of fm appears, either directly or complemented or

both, at least twice as an argument of fn. Set some such argument of fm to 0. This will

result in setting at least two arguments of fn to constants, either two to 0s, two to 1s, or

one to each of 0 and 1. In any case, by setting two other arguments of fm to appropriately

chosen constants, we can set two further arguments of fn so that at least two are set to 0s

and at least two are set to 1. Since we have done this by setting at just three arguments

of fm to constants, we again obtain a contradiction. This completes the proof that fm is

not a U-minor of fn for m < n. 4

From Proposition 3.4, we see that every subset of ff4; f5; : : : ; fn; : : :g generates a

di�erent U-minor-closed set of functions, and thus that there are uncountably many U-

minor-closed sets of functions. It also follows that not every U-minor-closed set of functions

is �nitely generated, since if every U-minor-closed set were generated by a �nite set of

generators drawn from the countably in�nite set of Boolean functions, there would be only

countably many U-minor-closed sets. A corresponding construction for I-minor-closed sets

of functions is given by Ekin et al. [E1].

Finally, we observe that the classi�cation of the k-ean clones that are Q-minor-closed

has, for several choices of Q, already been investigated. For a clone F is Q-minor-closed

if and only if Q � F . Thus the U-minor-closed k-ean clones form a chain of length k + 1,

as has been shown by Burle [B2]. Similar results for the cases in which Q comprises

all permutations of Bk, and where Q comprises all non-permutations (together with the

identitty function), are given by Haddad and Rosenberg [H1] and Denham [D]. In all these

cases, there are only �nitely many clones that are Q-minor-closed. In the case where Q

comprises just the constant functions (together with the identity function), there are 7 such

clones if k = 2 (see Post [P]), but uncountably many if k � 3 (see �Agoston, Demetrovics

and Hann�ak [�A]).

12



5. Conclusion

We have constructed a Galois theory applicable to sets of �nite functions that are

closed under taking minors, in a broad sense of that term. This theory is not applicable,

however, to sets that are not closed under diagonalization. Thus it cannot deal with

sets of functions, such as the \unate functions" (see McNaughton [M] and Feigelson and

Hellerstein [F]) or the monotone Boolean functions corresponding to \binary clutters" (see

Seymour [S]), that are closed under substituting constants for arguments, but not under

identifying arguments. This appears to be a promising direction for further development

of the theory.
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Appendix A. The Equivalence of Constraints and Equations

For the purposes of this appendix, an Boolean equation has the form

P
�
f(E1(x

1; : : : ; xq)
�
; : : : ; f

�
Ep(x

1; : : : ; xq)
�
;

where P is a p-place Boolean predicate and E1; : : : ; Ep are q-place Boolean expressions. If

f is an n-adic Boolean function, the arguments x1 = (x11; : : : ; x
1
n
); : : : ; xq = (x

q

1; : : : ; x
q

n
) are

interpreted as n-tuples of Boolean values, and all the Boolean operations in the expressions

E1; : : : ; Ep are interpreted as being applied componentwise to n-tuples of Boolean values

to yield the p n-tuples of Boolean values to which the p occurrences of f are applied. The

equation as a whole is satis�ed by a function f if, whatever values are assigned to the

arguments x1; : : : ; xq , the resulting p values of the function f satisfy the predicate P .

Proposition A.1: For every Boolean equation, there is a Boolean constraint that is satis�ed

by exactly the same set of functions.
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Proof: Let the p-ary relation R comprise the columns0
B@
E1(x

1; : : : ; xq)
...

Ep(x
1; : : : ; xq)

1
CA ;

where x1; : : : ; xq range over all Boolean values. Let the p-ary relation S comprise the

columns 0
B@
y1
...

yp

1
CA

for which the Boolean values y1; : : : ; yp satisfy the predicate P . Then the constraint (R;S)

ful�lls the the conclusion of the proposition. 4

Proposition A.2: For every Boolean constraint, there is a Boolean equation that is satis�ed

by exactly the same set of functions.

Proof: Let (R;S) be a p-ary constraint. If R = ;, then (R;S) is satis�ed by every Boolean

function, and we may take the Boolean equation f(x) = f(x), for example, to ful�ll the

conclusion of the proposition. Suppose, then that the column0
@
c1
...

cp

1
A

belongs to R. Let Q be a p-place Boolean expression that is satis�ed by the Boolean values

y1; : : : ; yp if and only if the column 0
B@
y1
...

yp

1
CA

belongs to R. Let P be a p-place Boolean expression that is satis�ed by the Boolean values

y1; : : : ; yp if and only if the column 0
B@
y1
...

yp

1
CA

belongs to S. Then, taking q = p, the equation

P
�
f(E1(x

1; : : : ; xp)
�
; : : : ; f

�
Ep(x

1; : : : ; xp)
�
;

where the expression Ei(x
1; : : : ; xp) is given by

�
xi ^ Q(x1; : : : ; xp)

�
_
�
ci ^Q(x1; : : : ; xp)

�
;

ful�lls the conclusion of the proposition. 4
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