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1. Introduction

The goal of this paper is to show how Shannon's notion of the entropy of a discrete

random variable (see Shannon [S]) can be used to solve some problems of combinatorial

enumeration. All of the results we obtain (and in fact stronger ones) have previously been

established by direct combinatorial arguments. The proofs given here are simpler, however,

and we believe they show the relevance of information-theoretic methods for enumerative

problems. Information-theoretic methods have been used in the past to prove a number

of combinatorial results (see for example Lindstr�om [L], Pippenger [P], Chung, Graham,

Frankl and Shearer [C] and Newman and Wigderson [N]), but we know of only one previous

result, due to Massey [M], that has a natural enumerative interpretation. Since we shall

need Massey's result later, we shall give the argument here.

Proposition 1.1: Let B denote the set of subsets of an n-element set [n] = f1; : : : ; ng having
cardinality at most m, and let B = #B denote the number of such subsets. Then we have

B � 2nh1(m=n)
;

where

h1(q) =

8<
:
�q log2 q � (1� q) log2(1� q); if 0 � q � 1=2;

1; if 1=2 � q � 1.

Proof: Let X be a random set uniformly distributed in B. We have

log2B = H(X): (1:1)

We may encode X as a sequence x = (x1; : : : ; xn) of random variables, where xi assumes

the value 1 if i 2 X and 0 if i 62 X. Let p = Pr(xi = 1). (This probability is independent

of i by symmetry.) Then p � m=n, since the sum of the cardinalities of the sets in B is

pnB, but also at most mB. The entropy of a binary random variable that assumes the

value 1 with probability r is

h(r) = �r log2 r � (1 � r) log2(1� r):

Thus the entropy of a binary random variable that assumes the value 1 with probability

at most q is max0�r�q h(r) = h1(q). Thus we have

H(X) = H(x) �
X

1�i�n

H(xi) � nh1(m=n):
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Combining this estimate with (1.1) completes the proof. 4
This result is of course well known by other arguments, such as the Cherno� bound

(see Jelinek [J], Section 5.2, for example). The argument given above, however, presents

in embryonic form the method we shall use below.

It is worthwhile to consider carefully what is involved in Massey's argument. The

main ingredient of course is Shannon's notion of the entropy H(X) of a random variable

X that assumes values v1; v2; : : : ; vB with probabilities p1; p2; : : : ; pB , respectively:

H(X) = �
X

1�k�B

pk log2 pk:

It is a straightforward result that H(X) assumes its maximum value log2B when X has

the uniform distribution p1 = p2 = � � � = pB = 1=B (Jelinek [J], Lemma 4.9). Another

ingredient is the inequality

H(X1; : : : ;Xn) � H(X1) + � � �+H(Xn);

which follows by induction from the two-component version

H(X;Y ) � H(X) +H(Y )

(Jelinek [J], Lemma 4.14). A �nal ingredient, which is not needed in Massey's proof but

will be needed in ours, is the inequality

H(X;Y ) � H(X) (1:2)

(Jelinek [J], Lemmas 4.12 and 4.13). We shall use (1.2) in the following form: if X is a

deterministic function of Y , then H(Y ) = H(X;Y ) � H(X).

2. Monotone Boolean Functions

The objects that we enumerate can be regarded as either Boolean functions or families

of sets. A Boolean function of n arguments is a map f : f0; 1gn ! f0; 1g. A Boolean n-

tuple x = (x1; : : : ; xn) of arguments for such a function will be called a point. A family

of sets over n elements is a family F � P([n]), where [n] = f1; : : : ; ng and P([n]) denotes
the power set (set of all subsets) of [n]. Given a Boolean function f of n arguments,

we can associate with it a family Ff of sets over n elements by associating with each x =

(x1; : : : ; xn) 2 f0; 1gn a setXx = fk : xk = 1g � [n] and then taking Ff = fXx : f(x) = 1g.
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This association is clearly a one-to-one correspondence, and we shall use function-theoretic

and set-theoretic terminology interchangeably. If f is a function, we de�ne its complement

f by f (x) = f(x), and we de�ne its reection f
0 by f 0(x) = f(x) (where x = (x1; : : : ; xn)

denotes the component-wise complement of x).

The �rst problem to which we apply our method is the enumeration of monotone

Boolean functions. A Boolean function f is monotone (or \positive") if the inequalities

x1 � y1; : : : ; xn � yn together imply f(x1; : : : ; xn) � f(y1; : : : ; yn). A function is the com-

plement of a monotone function if and only if it is the reection of a monotone function;

the resulting functions are called antitone (or \negative") and they are in one-to-one corre-

spondence (in two ways) with the monotone functions. Monotone functions correspond to

families of sets that are saturated upward (or closed under taking supersets). The minimal

sets in such a family form an inclusion-free family (or \antichain", or \clutter"). Antitone

functions correspond to families of sets that are saturated downward (or closed under tak-

ing subsets). The maximal sets in such families also form inclusion-free families. Let  (n)

denote the number of monotone functions of n arguments. (Some authors exclude the

constant functions, and thus de�ne  (n) to be smaller by 2.) In estimating  (n), we shall

also be enumerating antitone functions, upward-saturated families, downward-saturated

families and inclusion-free families.

The problem of determining  (n) was posed by Dedekind [D], but apart from results

for speci�c small values of n, all exact results amount to paraphrases of one of the de�ni-

tions. There is a long sequence of works aimed at estimating the behavior of  (n) for large

n, and we shall not recount it here. The particular result we propose to derive is due to

Kleitman [K1], who was the �rst to give an asymptotic formula for the logarithm of  (n),

log2  (n) �
�
n

bn
2 c

�
: (2:1)

The best result currently known is due to Korshunov [K2], who gives an asymptotic formula

for  (n) itself,

 (n) � 2
(nn
2

)
exp

��
n

n�2
2

��
2�n=2 + n

2 2�n�5 � n 2�n�4
��

for n even and

 (n) � 2 � 2(
n

n�1

2

)
exp

��
n

n�3
2

��
2�(n+3)=2 � n

2 2�n�6 � n 2�n�3
�

+

�
n

n�1
2

��
2�(n+1)=2 + n

2 2�n�4
��
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for n odd. This last result lies far beyond the reach of our information-theoretic method.

Indeed, Kleitman's proof yields

log2  (n) =

�
n

bn
2
c

��
1 +O

�
logn

n1=2

��
;

whereas we establish (2.1) only in the following weaker form.

Theorem 2.1: As n!1, we have

log2  (n) =

�
n

bn2 c

��
1 +O

�
(logn)3=2

n1=4

��
:

Proof: Set N =
�

n

bn
2
c

�
. The lower bound

log2  (n) � N

is immediate, since there are 2N monotone Boolean functions f for which f(x) = 0 for

kxk < bn=2c and f(x) = 1 for kxk > bn=2c, where kxk =P1�i�n xi. Thus our task is to

obtain an asymptotically matching upper bound.

Let C = fC1; : : : ; CNg be a partition of f0; 1gn into N disjoint chains. (The existence

of such partitions is well known; one explicit construction is described in the Appendix.)

Say a point x is low if kxk < n=4, and say that a chain Cj is low if it contains a low point.

Let Mn denote the set of all monotone Boolean functions of n arguments, and let f

be a random function uniformly distributed on Mn. We have

log2  (n) = H(f):

We shall obtain an upper bound for H(f).

Given f , we shall construct a random variable � = (~�; �̂) as follows. For any function

g 2 Mn, let

j(g) = #fx 2 Cj : g(x) = 1g:

Set p = (logn)1=2=n1=4 and let �1; : : : ; �N be independent random variables de�ned as

follows. If Cj is low, then �j = 1. Otherwise, �j assumes the value 1 with probability

p and the value 0 with probability 1 � p. Take ~� = (~�1; : : : ; ~�N ), where ~�j = �j j(f).

Let ~f be the smallest monotone function (the conjunction of all monotone functions) such

that j( ~f ) � ~�j for all 1 � j � N . Clearly we have j(f) � j( ~f ) for all 1 � j � N .
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Take �̂ = (�̂1; : : : ; �̂N ), where �̂j = j(f) � j( ~f ). Clearly f is determined by �, so that

H(f) � H(�) and

log2  (n) � H(�):

We shall obtain an upper bound for H(�).

Lemma 2.2: Suppose that the random variable K takes values in f0; : : : ng, and that for

some k � 1 and 0 � q � 1,

Pr(K � k) � q:

Then

H(K) � h1(q) + log2 k + q log2 n:

Proof: For any event E, we have

H(K) � H(E) + Pr(E)H(K j E) + Pr(E)H(K j E):

The lemma follows by taking E to be the event \K � k", so that H(E) � h1(q). 4
We have

H(~�) �
X

1�j�N

H(~�j ):

Since ~�j � 1 only if �j = 1, we can apply Lemma 2.2 with k = 1 and q = Pr(�j = 1) to

each term of this sum. If Cj is low, we have q = 1. Otherwise, we have q = p. Letting M

denote the number of low chains, we have

H(~�) �M(1 + log2 n) + (N �M)
�
h1(p) + p log2 n

�
:

The number of low chains is at most the number of low points, which can be bounded by

applying Proposition 1.1 with m = n=4 to yield

M � 2nh1(1=4) � 2n

n

(for n is su�ciently large). Since N � (2=�n)1=2 2n < 2n=n1=2 (for n su�ciently large)

and h1(p) � �2 log2 p (for p � 1=2), we obtain

H(~�) � 2n log2 n

n
+

3 � 2n(log2 n)3=2
n3=4

� 4 � 2n(log2 n)3=2
n3=4

(2:2)

(for n su�ciently large).
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Next we have

H(�̂) �
X

1�j�N

H(�̂j ):

This time we shall apply Lemma 2.1 with k = 2. Set qj = Pr(�̂j � 2) and Q =
P

1�j�N qj .

Then we have

H(�̂) �
X

1�j�N

h1(qj ) + 1 + qj log2 n

� Nh1(Q=N) +N +Q log2 n; (2:3)

since h1(q) is concave in q.

Say that a chain Cj is bad if �̂j � 2. The quantity Q is the expected number of bad

chains. Say that a point x 2 f0; 1gn is bad if (1) x is not low, (2) the chain Cj that contains

x also contains some point y with kyk = kxk � 1 and f(y) = 1, and (3) ~f(x) = 0. Let rx

denote the probability that x is bad, and let R =
P

x2f0;1gn rx. A chain Cj is bad only if

some x 2 Cj is bad, so we have Q � R.

We shall now estimate rx. If x is low, then x cannot be bad. Thus we may suppose

that x is not low. Set s = 2n1=4(logn)1=2. Say x is heavy if there are at least s values of

y 2 f0; 1gn such that kyk = kxk � 1 and f(y) = 1. If x is heavy, then ~f (x) = 0 only if

�j = 0 for each of the s or more chains Cj that contain some y with kyk = kxk � 1 and

f(y) = 1. Thus the probability that a heavy x is bad is at most (1� p)s � e
�ps � 1=n.

The group Sym(n) of permutations of the set [n] acts on points by �(x) =

(x��1(1); : : : ; x��1(n)), and on functions by �(f) = f
�
�
�1(x)

�
. The subgroup Stab(x)

of Sym(x) that �xes x acts transitively on the points y such that kyk = kxk � 1.

Whether x is heavy depends on f only through the orbit of f under the group

Stab(x). If x is not heavy, the probability (averaging over this orbit) that the chain

Cj that contains x also contains some y with kyk = kxk � 1 and f(y) = 1 is at

most s=(n=4) = 8(log2 n)
1=2
=n

3=4. Thus the probability that x is bad is at most

maxf1=n; 8(log2 n)1=2=n3=4g = 8(log2 n)
1=2
=n

3=4 (for n su�ciently large). Thus the ex-

pected number of bad x that are not heavy is at most 8(log2 n)
1=22n=n3=4 Thus we obtain

Q � R � 8 � 2n(log2 n)1=2
n3=4

:

Since h1(q) is non-decreasing in q, substituting this bound in (2.3) yields

H(�̂) � N +
16 � 2n(log2 n)3=2

n3=4
:
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Combining this bound with (2.2) yields

H(�) � N +
20 � 2n(log2 n)3=2

n3=4
:

Since N � (2=�n)1=2 2n > 2n=2n1=2 (for n su�ciently large), the proof of Theorem 2.1 is

complete.

3. Horn Functions

The second problem to which we apply our method is the enumeration of families of

sets closed under taking unions. These are of course in one-to-one correspondence under

reection with families of sets closed under taking intersections. They also correspond to

functions f that satisfy the condition that f(x)^ f(y) � f(x_ y) (where x_ y denotes the
component-wise disjunction (x1_y1; : : : ; xn_yn) of x = (x1; : : : ; xn) and y = (y1; : : : ; yn)),

or the condition f(x)^f(y) � f(x^y) (where x^y denotes the component-wise conjunction

(x1 ^ y1; : : : ; xn ^ yn) of x = (x1; : : : ; xn) and y = (y1; : : : ; yn)). Functions satisfying the

latter condition (or sometimes their complements) are called Horn functions (see Horn

[H]). Let �(n) denote the number of Horn functions of n arguments.

The sets in a union-closed (respectively, intersection-closed) family of sets that cannot

be expressed as the union (respectively, intersection) of two other sets in the family form

a union-free (respectively, intersection-free) family of sets. If one adjoins to a union-free

(respectively, intersection-free) family of sets all sets that can be obtained by taking unions

(respectively, intersections) one recovers the original union-closed (respectively, intersection

closed) family. Thus union-free and intersection-free families will be enumerated in this

section as well.

A map C : P([n])! P([n]) is a closure operation on n elements if it is (1) inationary

(C(X) � X), (2) non-decreasing (X � Y implies C(X) � C(Y )), and (3) idempotent

(C
�
C(X)

�
= C(X)). If C is a closure operation on n elements, the closed sets (the sets

X such that C(X) = X) form a family of sets closed under intersections and containing

[n]. Conversely, if F is a family of sets closed under intersections and containing [n], one

recovers the original closure operation by taking C(X) to be the intersection of all sets Y

in F that such that X � Y . Since [n] can be added to or deleted from an intersection-

closed family over n elements without a�ecting the property of being intersection-closed,

the number of closure operations on n elements is just �(n)=2. This factor of 2 will be

negligible compared with the error terms in our estimates, so closure operations will be

enumerated in this section as well.
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We shall say that a closure operation C on n elements is proper if C(;) = ;. Let �(n)
denote the number of proper closure operations on n elements. The closure operations

C on n elements with C(;) = fk + 1; : : : ; ng are in one-to-one correspondence with the

proper closure operations C 0 on k elements via the correspondence C(X) = C
0(X \ [k]) [

fk+1; : : : ; ng, C 0(X) = C(X)\ [k]. This implies �(n)=2 =
P

0�k�n

�
n

k

�
�(k), which by the

principle of inclusion-exclusion implies �(n) =
P

0�k�n

�
n

k

�
(�1)n�k�(k)=2. It will follow

from our estimates that all the terms in this sum except for the one in which k = n are

negligible, so that �(n) � �(n)=2. Thus proper closure operations will be asymptotically

enumerated in this section as well.

We shall take as the objects to be enumerated the functions satisfying f(x) ^ f(y) �
f(x _ y), since they are the most similar to monotone functions, and will thus require the

least modi�cation of the proof in Section 2. We shall call such functions Horn functions

(though it is their reections, or the complements of their reections, that are usually so

called).

Borosch et al. [B2] have shown that

�
n

bn
2
c

�
� log2 �(n) � 2

p
2

�
n

bn
2
c

��
1 +O

�
logn

n

��
;

which was improved by Alekseyev [A1] to

log2 �(n) =

�
n

bn
2
c

��
1 +O

�
logn

n1=4

��
:

We shall the following, slightly weaker, result.

Theorem 3.1: As n!1, we have

log2 �(n) =

�
n

bn2 c

��
1 +O

�
(log n)3=2

n1=4

��
:

Proof: Set N =
�

n

bn
2
c

�
. The lower bound

log2 �(n) � N

is immediate, since every monotone function is a Horn function, so log2 �(n) � log2  (n) �
N . Thus our task is to obtain an asymptotically matching upper bound.

Let Nn denote the set of all Horn functions of n arguments, and let f be a random

function uniformly distributed on Nn. We have

log2 �(n) = H(f):
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We shall obtain an upper bound for H(f).

Given f , we shall construct a random variable � = (F ;G; ~�; �̂) as follows. Say that a

point x 2 f0; 1gn is a fall for f if (1) f(x) = 0 and (2) the chain Cj that contains x also

contains a point y with kyk = kxk � 1 and f(y) = 1. We shall let F � f0; 1gn be the set

of falls for f . Say that a point x 2 f0; 1gn is a rise for f if (1) f(x) = 1 and (2) if the

chain Cj that contains x also contains a point y with kyk = kxk � 1, then f(y) = 0. We

shall let G � f0; 1gn be the set of rises for f that appear in chains that also contain falls.

Since rises and falls alternate in a chain (proceeding from bottom to top), the random

variables F and G specify f at all points that appear in chains that contain falls. Thus

f is monotone on any chain that does not contain a fall. We can therefore complete the

encoding of f by de�ning ~� and �̂ as in Section 2, with the following changes: (1) we take

~�j = 0 and �̂j = 0 for all j for which the chain Cj contains a fall, and (2) we de�ne f̂ to

be the smallest Horn function f̂ that agrees with f on the chains that contain falls and for

which j(f̂ ) � ~�j for all j such that Cj contains no fall.

To obtain an upper bound for H(F ;G; ~�; �̂), we shall need a lemma.

Lemma 3.2: Suppose that the random variable K takes values in P([n]), has cardinality
K = #K < 2n and expected cardinality E = Ex(K). Then

H(K) � n+E log2

�
e2n

E

�
:

Proof: If pk = Pr(K = k), then

E =
X

0�k<2n

pk k

and
H(K) = H(K) +H(K j K)

� n+
X

0�k<2n

pk log2

�
2n

k

�

� n+
X

0�k<2n

pk k log2

�
e2n

k

�
:

Since k log2(e2
n
=k) is convex in k, the inequality of the lemma follows. 4

To bound H(F) we apply Lemma 3.2 with K = F . We observe that the point

x = (0; : : : ; 0) with kxk = 0 cannot be a fall, so that #F < 2n. To estimate E = Ex(#F),
we shall estimate the probability that a point x with kxk � 1 is a fall. If x is a fall, then we

must have f(x) = 0, and there must be exactly one point y with kyk = kxk � 1 for which

f(y) = 1. (If there were more than one such point, say y and z, then f(x) = f(y _ z) = 1
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would follow from f(y) = 1 and f(z) = 1 for the Horn function f .) The probability that

this unique point y is in the same chain as x is (averaging over the orbit of f under Stab(x))

just 1=kxk. Thus we have
E =

X
1�k�n

1

k

�
n

k

�

�
X

1�k�n

2

k + 1

�
n

k

�

=
2

n+ 1

X
1�k�n

�
n+ 1

k + 1

�

� 4 � 2n
n+ 1

:

Since E log2(e2
n
=E) is increasing in E for E � 2n, we obtain

H(F) � n+
4 � 2n
n+ 1

log2
e(n+ 1)

4

� 4 � 2n log2 n
n

(3:1)

(for n su�ciently large). Since rises and falls alternate in a chain that contains a fall, we

have #G � 2#F , and thus

H(G) � 8 � 2n log2 n
n

: (3:2)

To complete the proof, we estimate H(~�) and H(�̂) as in Section 2. The only mod-

i�cation needed is in the estimate for the probability that a point x that is heavy is also

bad. In the present case this can occur only if �j = 0 for all but at most one of the s or

more chains that contain points y with kyk = kxk � 1 and for which f(y) = 1 (else we

would have ~f(x) = 1, and x would not be bad). If there are t � s chains that contain

points y with kyk = kxk � 1 and for which f(y) = 1, then the probability of this event

is (1 � p)t + tp(1 � p)t�1 � (1 � p)s + sp(1 � p)s�1 � 1=n, as before. We can therefore

continue as in Section 2 to obtain the estimate

H(~�; �̂) � N +
20 � 2n(log2 n)3=2

n3=4
:

Combining this with the estimates (3.1) and (3.2) yields

H(�) � N +
32 � 2n(log2 n)3=2

n3=4
:
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Since N � (2=�n)1=2 2n > 2n=2n1=2 (for n su�ciently large), the proof of Theorem 3.1 is

complete.

4. Conclusion

The results of Sections 2 and 3 show how the notion of entropy can be used to sim-

plify the proofs of some results in combinatorial enumeration. Our proofs have departed

from the pattern given by Massey in one important respect: whereas in Massey's proof,

the \encoding" of an object to be enumerated is a deterministic function of the object,

in our proofs the encoding is constructed by means of \auxiliary randomization". This

randomization occurs through the random variables �1; : : : ; �N , and it is responsible for

the need to use the inequality (1.2). It would be possible to eliminate this auxiliary ran-

domization in the following way. We could choose a �xed partition of the chains into two

classes: a class P of chains Cj for which the \absolute" parameters j(f) are speci�ed, and

a class Q for which the \relative" parameters j(f) � j( ~f ) are speci�ed. This partition

must have two properties: (1) any chain that contains a low point must appear in P, and
(2) for any point x that appears in a chain in Q, there must be at least r points y with

kyk = kxk � 1 that appear in chains in P, where r = 2n3=4(log2 n)
1=2. We want P to be

as small as possible. A standard argument involving choosing chains at random, shows

that (1) and (2) can be satis�ed by some P containing O(Nr=n) = O
�
2n(log n)1=2=n3=4

�
chains. Then, to bound the probability that a heavy point x is bad, we again average f

over orbits of Stab(x) (as we did for x not heavy). The argument yields the same order

of error term as the one obtained in Sections 2 and 3, but the proof is if anything slightly

more complicated, which is why we have used auxiliary randomization.

It may also be worthwhile to compare our proofs with the original proofs given by

Kleitman [K1] and Alekseyev [A1]. Their proofs encode an arbitrary function of the rele-

vant type, but choose the encoding from a set of alternative encodings so as to minimize

the length of the encoding. The argument bounds the minimum by the average over the

set of alternative encodings, and this averaging plays a role similar to our auxiliary ran-

domization. The averaging occurs in two parts of the proof. First, the function encoded

is not necessarily the arbitrarily given function f , but rather a version �(f) of f with its

arguments permuted. In the original proofs, this requires � to be encoded as well as �(f),

which increases the bound in a negligible way. In our proofs, the averaging over orbits of

f under the groups Stab(x) plays the same role, and does not occasion any increase in

the bound. Second, in the original proofs, the chains are partitioned into \blocks", and

averaging is done over permutations of the blocks. This requires that a permutation of the
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blocks be encoded, and gives rise to another negligible increase in the bound. This averag-

ing is eliminated entirely in our proofs, being replaced by the \sampling" e�ected by the

random variables �1; : : : ; �N (in the form we have given, with auxiliary randomization), or

by the �xed partition C = P[Q described in the preceding paragraph. A precursor of this

sampling appears in the proof of Alekseyev [A1], as well as in an earlier proof of Andreyev

[A2] of a result concerning the computational complexity of monotone Boolean functions

(which implicitly gives another proof of (2.1)).
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A. Appendix

The following description of a partition of f0; 1gn into N =
�

n

bn
2
c

�
chains is due to

Greene and Kleitman [G], who attribute the underlying partition to de Bruijn, van Ebben-

horst Tengbergen and Kruyswijk [B1]. Imagine that in each Boolean n-tuple (x1; : : : ; xn),

0s are replaced by left parentheses and 1s by right parentheses. In any such sequence of

parentheses, regard a left parenthesis as matched with a following right parentheses if they

are adjacent, or if any intervening parentheses are matched (by recursive application of

this rule). There may then be some unmatched parentheses, but any unmatched right

parentheses must appear before any unmatched left parentheses, else some additional pair

would match. Partition the n-tuples into classes by putting into the same class all n-tuples

that have the same matching parentheses in the same positions. Then all n-tuples in the

same class form a chain, ordered from smallest (corresponding to all unmatched parenthe-

ses being left parentheses) to largest (corresponding to all unmatched parentheses being

right parentheses). And there are exactly N such chains, since each chain contains just

one n-tuple with bn
2
c right (and dn

2
e left) parentheses.
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