
A Network-Enhanced Volume Renderer

Je� LaPorte

University of British Columbia

Vancouver, British Columbia

Canada

August, 1997

1

Abstract

Volume rendering is superior in many respects to conventional meth-

ods of medical visualization. Extending this ability into the realm of tele-

medicine provides the opportunity for health professionals to o�er expertise

not normally available to smaller communities, via computer networking of

health centers. This report describes such a software system for collabo-

ration, a network-enhanced version of an existing program called Volren.

The methods used to provide network functionality in Volren can serve as a

prototype for future networked multiuser applications.

2

Contents

1 Introduction 4

2 New Usage 4

3 Event-Based Networking 5

3.1 Message Transfer . 6

3.2 Event Postprocessing . 7

4 Menu Networking Di�culties 8

4.1 Problems with ViewKit's OOPness, and Motif's Pointer Grabs 9

4.2 Why not use the ViewKit API? 9

4.3 A Not-So-Elegant Solution . 10

5 Future Work 10

6 Conclusions 11

7 Acknowledgments 11

8 References 11

List of Figures

1 Volren in server mode (in control) 13

2 Volren in client mode (not in control) 14

3

1 Introduction

The emerging availability of inexpensive high-speed networks is creating

interest in a number of new types of software applications, particularly in the

areas of science and medicine. Volume rendering, the visualization of blocks

of 3D data on screen, is one type of application �nding use in a number of

�elds. In particular, volume rendering has been adapted successfully for use

in the visualization of abdominal aortic aneurisms[1]. Given the usefulness of

this visualization technique, and new widespread networking capability, the

next logical step is to provide a volume rendering application with network

capabilities.

Volren is a volume rendering application that takes advantage of the

hardware texture-memory capabilities of certain Silicon Graphics computers,

allowing it to render 3D volumes in real-time at several frames per second.

Volren was modi�ed to implement full networking of all features in the

non-networked version. This report describes the new features of Volren,

the methods used to network it, and the problems encountered during the

development of this new version of Volren.

2 New Usage

New command-line parameters were introduced for control of network fea-

tures:

-nets // startup as server

-netc <server hostname> // startup as client

-port <port number> // Override default port

-dofilter // Override disabling of

mouse motion filter

Here are some example usages:

correct:

host1% volren -nets (server)

host2% volren -netc host1 (client)

incorrect:

host1% volren -nets -port 1500 (server)

host2% volren -netc host1 -port 2500 (client)

4

The dofilter option is a leftover from the debugging process. Its sig-

ni�cance will be explained later.

When Volren is loaded with networking enabled, the \`" key is used for

control switching between users. Users may either give control with this key,

or take control for themselves. The user not in control may not manipulate

the volume or select menu items until a control switch occurs. Permission

is not required to take control.

The current control status is indicated in the lower right-hand corner

of the Volren window, using pixmaps. On startup, the software looks for

two �les: incontrolpm.xpm and notincontrolpm.xpm. If these �les are

not present in the path, Volren will use a text message fallback to indicate

control.

The �les named above may be replaced with alternate pixmaps, but the

colors will still be green (in control) and red (not in control). Most impor-

tantly, they must both have the same size! If two pixmaps with di�erent

sizes are used, the window may resize during each control switch. This causes

the windows on either end of the connection to have di�erent sizes, and vol-

ume manipulations will be transferred incorrectly. Loss of synchronization

between terminals results.

It is important that the windows have identical sizes on either end of the

connection for this reason. If both windows are resized by the user to the

same dimensions, no problems will occur. However, resizing of the windows

is strongly discouraged until a feature to force identical resizing is introduced

(not currently implemented). Position of the windows does not matter, they

may be moved around on the screen safely.

3 Event-Based Networking

Networking of a windowed application can be divided into two general meth-

ods:

Event-based networking

� Install an event handler to capture mouse and keyboard events from

the transmitting host's application

� Transfer the events across the network, possibly with some supplemen-

tary information

� Reproduce the events within the receiving host's application

5

Action-based networking

� Code retro�tted to window callbacks prepares a message containing

information about user actions

� Transfer message across the network using a compact, custom message

code

� Interpret message, and call the appropriate function(s) to produce user

action in receiving host's application

The route taken in the design of this project evolved out of issues speci�c

to X that arose throughout the development period, borrowing from both

methods. However, the overall implementation is based mostly on the event-

based networking method.

The event-based networking method has several advantages over the

action-based networking method. Most importantly, much less code is mod-

i�ed under the �rst method. An action-based implementation would entail

the modi�cation of nearly every user interface callback in the application.

Also, in the case of Volren, the software has very complex internal state. As

such, any action-based implementation would need to know how to modify

this state. . . a very di�cult thing to do.

3.1 Message Transfer

Data is transferred inside a struct which is written and read from the port.

This simpli�es the packet transfer because each packet is a standard size.

The struct has the following de�nition:

struct NetMessage {

int mesgType; // 4 bytes

int widgetnum; // 4 bytes

XEvent event; // 32 bytes

};

Peak event transfer has been measured to be approximately 50 events

per second, during constant, and unrealistically rapid, mouse movement.

The NetMessage struct contains two ints (8 bytes) and one 32 byte XEvent

member[2]. This implies a peak bandwidth usage of approximately 2KByte/s,

corresponding to under half the available bandwidth of a single-ISDN line

running at 56Kbit/s. This low bandwidth usage provides the software with

6

zero network latency on Ethernet or faster networking hardware. All test-

ing of the software was carried out on 10Mbit/s Ethernet connections. It is

useful to note that this leaves the bulk of a mid to high-bandwidth system

available for simultaneous video conferencing between users of the software.

When a packet is read from the input socket, it is cast as a NetMessage

struct. The client examines the mesgType member, which has the following

possible de�ned values.

MESG_NONE

MESG_CONTROL

MESG_EVENT

The possible values for the mesgType member have gone through several

revisions during development, mostly because of the multiple methods at-

tempted to network the menuing system. The MESG NONE value is used only

for error handling and has no function in practice. The mesg Type member

was left as an int for ease of addition of future abilities. The MESG CONTROL

value denotes a control switch message, and the MESG EVENT value denotes

a mouse or keyboard event message.

Upon receival of a MESG NONE message, the client will perform no action.

Receival of a MESG CONTROL will cause the client to perform a control switch,

and trade roles with the server. When receiving a MESG EVENTmessage, more

processing is involved.

3.2 Event Postprocessing

First, the client will examine the type member of the XEvent. After �nding

the true identity of the XEvent (ie: XKeyPressEvent, XKeyReleaseEvent,

XButtonPressEvent, etc.), the XEvent is cast as the appropriate variety and

certain details of the event are modi�ed. The details of the modi�cations

are almost the same for di�erent XEvent varieties, so I will present only an

XMotionEvent as an example. Here is the de�nition of the XMotionEvent

struct[3]:

typedef struct {

int type; /* type of event (MotionNotify) */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* True if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* ``event'' window reported relative to */

Window root; /* root window that the event occurred on */

7

Window subwindow; /* child window */

Time time; /* milliseconds */

int x, y; /* pointer x, y coordinates in event window */

int x_root, y_root; /* coordinates relative to root */

unsigned int state; /* key or button mask */

char is_hint; /* detail */

Bool same_screen; /* same screen flag */

} XMotionEvent;

Since the event was captured directly from the server, many of the mem-

bers in the struct refer to locations in memory that are valid for the server,

but not valid for the client. Before the event can be used by the client, these

members must be changed to re
ect the new environment in which the event

will be used.

In this example, the display and root members would be changed to

the display and root window corresponding to the X server1 on the client

machine.

At this point the role of the widgetnummember of the NetMessage struct

becomes apparent. In order to properly modify the window member of the

event to the window on the client corresponding to the window on the server,

both the client and the server must have a common way to refer to widget

windows. To accomplish this, each machine creates an array of widget ad-

dresses at startup. When sending an event, the server sets the widgetnum

member of the NetMessage struct to the array index corresponding to the

widget that produced the event. The client is now able to replace the window

member of the XMotionEvent with the correct widget window by retriev-

ing the widget from the array and calling XtWindow() with the appropriate

widget as an argument.

The client can now send the modi�ed event to the correct window, using

the XSendEvent() function. The widget recieving the event then responds

as if the event had been generated by a real device attached to the client

machine.

4 Menu Networking Di�culties

The most problematic portion of the Volren software to network was the

menuing system. Volren is very much a mixed-model software application, a

1Note that \X server" does not refer to the instance of Volren acting as a network

server; it refers to the portion of the X Window System that manages access to screen

hardware, keyboards, and mice.

8

situation arising more often as the X Windowing system continues to evolve.

Volren makes use of the X Toolkit and Xlib, OSF/Motif, and ViewKit. This

presents problems because Motif and ViewKit are each intended in their

own way to be object oriented systems for encapsulation of menu constructs.

Motif exists in part to encapsulate X Toolkit menuing in a pre-C++, loosely

object oriented API. ViewKit makes this class encapsulation stronger by

moving to C++ (although there is a C interface available), and encapsulating

code constructs at a higher level than Motif.

4.1 Problems with ViewKit's OOPness, and Motif's Pointer

Grabs

This mixed-model design of Volren presents several di�culties. Firstly, the

event-based networking technique used requires that events are sent to in-

dividual widgets in the program. Since ViewKit encapsulates these widgets

at a high level, it is a violation of the spirit or intent of the ViewKit package

(and OO principles in general) to communicate directly with widgets be-

longing to ViewKit classes. However, this was the route initially followed to

network the menuing system. When implementing event-level code along-

side ViewKit, there is just no alternative to bypassing the ViewKit API.

The ViewKit API does not implement the necessary functionality. The next

section comments more on this topic.

Interacting directly with ViewKit component widgets may not be nice,

but we aren't prevented from doing it. Unfortunately, certain details of Mo-

tif's menu handling appear to prevent the use of the event-based networking

method.

When a Motif pulldown menu is selected, a passive grab is automatically

initiated[4].

4.2 Why not use the ViewKit API?

Why not use the ViewKit API? Because its design does not allow the type of

interaction with menu components that is required. The key problem with

the ViewKit API is that it does not allow activation of menu items from

within the software. There are two functions that come close[5]:

void VkMenuToggle::setVisualState(Boolean state)

- selects the toggle if state is TRUE and de-selects

the toggle if state is FALSE.

void VkMenuToggle::setStateAndNotify(Boolean state)

9

- sets the visual state of a VkMenuToggle object and

activates its associated callback.

But these functions fail to su�ce on two counts. First, they both require

knowledge of the state to be set, rather than just acting as a \black box".

Unfortunately, there is no \SimulateMenuSelection()" function or some

such thing. This is important because ViewKit menuing components store

state. For example, consider a set of �ve toggle items with radio behavior

(only one may be selected at one time). All state regarding the radio behav-

ior is stored within the ViewKit VkRadioSubMenu component, not within

any of its widgets.

4.3 A Not-So-Elegant Solution

After many false starts, a solution was arrived upon. Accelerators (keyboard

shortcuts) were installed for all the menu widgets. Once again, the ViewKit

API was bypassed, and the accelerators were installed by communicating

directly with the menu widgets. Code was added to the menu callbacks to

synthesize an XKeyEvent to be sent to the client when one of the server's

menu items is selected. When the client receives a synthesized XKeyEvent, it

will send the event to its top-level window. XKeyEvents received by the top-

level window be passed on to all the lower level windows, which will check

their accelerator tables, and respond to their installed accelerator events.

Although a little bit awkward, this method provides a working method for

networking the menuing system.

5 Future Work

The implementation presented here provides networked functionality of all

features currently available in the non-networked Volren software. However,

this release allows only two sites to be linked together in one session. Re-

placement of the client/server socket code with a more comprehensive mulit-

user arbiter module would allow networking between an arbitrary number

of sites simultaneously. Arbiter code could be added to the current software

with changes only to the current socket code. The control code should work

as currently implemented.

10

6 Conclusions

The network-enabled version of Volren presented here �lls a need in the

medical and science communities for a real-time networked visualization ap-

plication. Moreover, it demonstrates the viability of networked multiuser

software packages running under X. The methods developed in the creation

of this package are applicable to the design of other networked X applica-

tions. Given the accelerating development of high-speed networks, and the

growing interest in building such networks between hospitals, universities,

and industrial sites, the development of such applications is an idea whose

time has come.

7 Acknowledgments

Thanks to Roger Tam, who helped get me acquainted with the ideas behind

X Event processing, and provided advice at several points during develop-

ment. Thanks also to Stan Jang, who wrote the socket code used in this

project, which was used in this project with few modi�cations. Many thanks

to Peter Cahoon, who gave me the opportunity to work on this project, and

guidance on design issues throughout.

8 References

[1] Volume Rendering of Abdominal Aortic Aneurisms

Roger C. Tam, Christopher G. Healey, Borys Flak, and Peter Cahoon

[2] X Protocol Reference Manual for X11 Version 4, Release 6

Edited by Adrian Nye

[3] Xlib Programming Manual for Version 11 of the X Window System

Edited by Adrian Nye

[4] X Toolkit Intrinsics Programming Manual

Edited by Adrian Nye and Tim O'reilly

[5] IRIS ViewKitTM Programmer's Guide

Silicon Graphics, Inc.

11

[6] Motif Programming Manual for OSF/Motif Release 1.2

by Dan Heller and Paula M. Ferguson

12

Figure 1: Volren in server mode (in control)

13

Figure 2: Volren in client mode (not in control)

14

