The M easured Access Char acteristics of
World-Wide-Web Client Proxy Caches

Bradley M. Duska, David Marwood, and Michael J. Feeley
Department of Computer Science
University of British Columbia
{bduska,marwood,feele@cs.ubc.ca

First published in “Proceedings of the USENIX Symposium on Internet Technologies and Systems”, December 1997.
Also available as Technical Report TR-97-16.

Abstract 1 Introduction

The growing popularity of the World Wide Web is placing
tremendous demands on the Internet and isincreasing the

The growing popularity of the World Wide Web is pla%_mgortancethat the Internet function effectively:

ing tremendous demands on the Internet. A key strateg)
for scaling the Internet to meet these increasing demands! N Scéle problems facing the Web can be addressed on

is to cache data near clients and thus improve access {gr€e fronts. The first is to scale Web servers to handle
tency and reduce network and server load. Unfortunatelye increasing demands being placed on them. The sec-
research in this area has been hampered by a poor ({fid IS to ensure that the Internet itself will scale by con-
derstanding of the locality and sharing characteristics dfnuingto increase its capacity and by deploying new net-
Web-client accesses. The recent popularity of Web prd¥grk technologies. The third is to focus on the clients.
servers provides a unique opportunity to improve this uif/€o browsers and a hierarchy of proxy serverso which
derstanding, because a small number of proxy servers 5 May be connected.
accesses from thousands of clients. Client-side solutions such as caching and prefetching
are attractive because they improve the performance of
This paper presents an analysis of access traces dfith client and server. Caching, in particular, aids scaling
lected from seven proxy servers deployed in various Ry-reducing theamount of datarequested from serversand
cations throughout the Internet. The traces record a tfansferred through the network.
tal of 47.4 million requests made by 23,700 clients over The potential benefit of client-side caching has drawn
a twenty-one day period. We use a combination of stationsiderable research and practical attention. A general
analysis and trace-driven cache simulation to characteiramework is emerging that organizes client-side caches
ize the locality and sharing properties of these accessess a hierarchy. At the bottom are Web browser caches.
Browsers can be configured to direct requests to a nearby
Our analysis shows that a 2- to 10-GB second-levioXy server, which then provides the second level of
cache yields hit rates between 24% and 45% with 85%@iching; some proxy caches are themselves connected to
these hits due to sharing among different clients. Cach#ird-level cache. The highest-level cache istypically a
with more clients exhibit more sharing and thus higher haooperative cache that connects|ower-level cachesto each
rates. Between 2% and 7% of accesses are consiste{Bgr so that a miss in one cache can be satisfied by one
misses to unmodified objects, using the Squid and CERNts siblings. This cooperation can be achieved either by
proxy cache coherence protocols. Sharingis bimodal. Raulticasting misses to siblings[7, 5, 17] or by maintain-
quests for shared objects are divided evenly between lg-a shared directory of cache contents [9, 18]. Caching
jects thatare narrowly shared and those that are shared B§n a'so be provided by geographically distributed caches
many clients; widely shared objects also tend to be shar@vhich servers push popular data [12].
by clients from unrelated traces. The promise of client-side caching has been demon-

strated by several research prototypes and by some large-
scale experiments in higher-level Web caching [5]. To
date, however, researchers have had little data about client
access patterns on which to base their designs and with
which to assess them. There are two main reasons for
this lack of workload information. First, the nature of
Web clients continuesto change rapidly and thusworkload
characterizationisamovingtarget. Second, until recently,
there has been little machinery in place for collecting data
from a significant sample of Web clients.

Workload characterization isimportant because caching
and prefetching are techniques that expl oit specific access
propertiesto improve performance: temporal locality and
sharing in the case of caching, and spatia locality in the
case of prefetching. Filesystem research, for example, has
relied heavily on studiesof Unix filesystem workl oadsthat
show that filestendto be small, accessed sequentially from
beginningto end, read morethan written, and rarely shared
concurrently [3, 1, 19].

1.1 KeylIssuesfor CacheDesign

The lack of Web-client workload information has left a
number of crucial cache-design issues poorly understood.
The analysis presented in this paper addresses the follow-
ing four sets of design issues.

Cache Size and Hit Rate First, what hit rate can we
expect for a given cache configuration; that is, how does
hit rate depend on the number of clients connected to the
cache and how does the number of clients affect cache
size?

Configuration of Cache Hierarchy Does a cache hi-
erarchy make sense and if so, how many clients should
be connected to each level, how many levels should there
be, and how should higher-levels of the hierarchy be con-
nected to each other?

Cache Coherence Is the coherence protocol currently
used by most proxy caches (i.e., Squid[5] and CERN [14])
causing unnecessary cache misses?

Sharing How much sharing is there; are al Web ob-
jects shared equally; does sharing increase with the num-
ber of clients; and how does sharing within a group of
clients (e.g., a company or a university) compare to shar-
ing among unrelated clients?

1.2 Summary of Our Results

This paper presents our analysis of the client request
stream collected from a sample of second- and third-level
proxy caches located throughout the Internet. We col-
lected twenty-one days of access traces from each proxy,
totaling 23,700 clientsand 47.4 million accesses. Thefol-
lowing list summarizes our findings, discussed in detail in
Section 3.

¢ Second-level cache hit rates vary from 24% to 45%;
a higher request rate yields a higher hit rate. The
NLANR third-level cache has alower hit rate of 19%
due to the expected filtering of locality and sharing
from the request stream by lower-level caches.

¢ ldeal cache sizes ranged from 2 to 10 GBs, depend-
ing on client populationsize. Roughly 1-GB of cache
is needed for each 70,000 to 100,000 requests/day
(35,000 requests/day for small populations). A trace
whose client population is artificially reduced, how-
ever, requires a somewhat larger cache.

¢ Using the Squid and CERN cache coherence proto-
col, 2% to 7% of regquests are consistency misses to
up-to-date cached objects, requests that would other-
wise be hits.

¢ 85% of cache hitsare due to sharing between clients.
Sharing hit rates range from 20%to 38%; ahigher re-
guest rate yields more sharing.

¢ Requestsfor shared objects account for up to 71% of
all requests; but, only 15% to 24% of requested ob-
jects are shared (only half of these requests are hits
due to first-time requests and consistency misses).

e Sharing is bimodal. Requests for shared objects are
divided evenly between objects that are narrowly
shared and those that are shared by many clients;
widely shared objectsalsotend to be shared by clients
from unrelated traces.

2 Methodology

This section details the methodol ogy of our study. We be-
gin with a discussion of client-side Web caching and is-
sues for collecting access traces. We then provide a de-
tailed description of the trace data we collected. Finaly,
we describe the trace-driven cache simulator we built to
evaluate this data and we discuss its validation.

Trace Collection Period Number of | ClientID | Requests | Maximum Simulated
Clients Preserved | (Millions) Cache Size (GBs)
HAN Jun 17 —Jul 7, 1997 1858 full period 5.28 14
KOR | Apr20—-May 10, 1997 2247 full period 3.19 8
DEC Aug 29 — Sep 18, 1996 16,663 full period 21.47 unlimited
GMCC Jun 4 —Jun 26, 1997 953 full period 1.36 4
AU Jun 4 —Jun 24, 1997 310 one day 1.86 6
uu May 1 —May 21, 1997 990 full period 1.59 4
NLANR Jun 3 —Jun 27, 1997 711 one day 12.65 8

Table 1. Summary of proxy-server access traces.

2.1 Collecting Access Traces from Proxy
Servers

The main reason that little is known about Web client ac-
cess patternsisthat collecting information about these ac-
cesses is difficult. While it is easy to collect access data
from aWeb server, the accesses to aparticular server shed
littlelight on overall client access patterns. Web browsers,
ontheother hand, are not apractical source of databecause
of thelogistical complexitiesof collecting datafrom a suf-
ficiently large number of users. A feasible aternative is
to collect data from Web proxy serversto which browsers
can optionally be connected. Itisonly very recently, how-
ever, that Web proxies have been deployed widely enough
to provide a sufficiently large and diverse sample of client
accesses.

Web proxies are found in most corporate organizations
that use afirewallto protect their internal network from the
vagaries of the Internet. To access the Web from within
such a protected domain, Web browsers are configured
to direct all outgoing Web-data requests to a designated
proxy machine. The proxy forwards requests between the
protected corporate network and the outside Internet.

A proxy can also act as a second-leveWeb cache (the
Web browser being the first-level). In this configura-
tion, proxies are becoming popular in unprotected en-
vironments such as universities due to caching benefits
alone.

It is typically a simple matter to configure a proxy
to record all object requests it receives from its client
browsers. Access traces can also be collected from third-
levelproxies, whoseclientsare collectionsof second-level
proxy servers. Third-level proxieswere first suggested by
the Harvest project [7].

Finally, we must ensure that any use of Web client ac-
cess traces does not compromise user privacy. A client
request includes the requesting host’s IP address, which
may identify the user, and the requested object’sURL. Pri-
vacy concerns prohibit exposing information that identi-

fies users with the objects they access. Our solution was
to pre-process all traces used in our study to disguise the
requesting host's | P address using a one-way function that
permits us to compare two disguised addresses for equal-
ity while protecting user privacy.

2.2 Web Data Access Traces

We have collected access traces from the following seven
proxy servers distributed throughout the Internet. Some
of thesetraces are publicly available and others have been
provided to us directly.

e The University of Hannover, Germany (HAN)
¢ The Nation Wide Caching Project of Korea (KOR)
¢ Digital Equipment Corporation (DEC)

e Grant MacEwan Community College, Alberta,
Canada (GMCC)

e A major American University that has chosen to re-
main anonymous (AU)

o Utrecht University, the Netherlands (UU)

e The National Laboratory for Applied Network Re-
search (NLANR)

Table 1 summarizes the traces, listing: the data collec-
tion period, the number of client hosts making requests,
whether a client’s disguise was preserved across days,
the total number of requests, and the maximum simulated
cache size. Every trace contains twenty-one days of Web
access, some traces, however, have dlightly longer collec-
tion periods because data was not available for all daysin
the period.

All of these organizations are using the Squid proxy
server (and cache) [5], aderivative of the Harvest research
system [7]. The DEC trace was collected by Digital using

a specialy instrumented cacheless version of Squid; the
trace isavailable viaanonymousftp [21]. NLANR makes
several traces available [8]; we selected the Silicon Val-
ley trace, which includes caches from the San Francisco
Bay area and from overseas. The KOR traces are from the
gateway that connects Korea to the Internet. We used a
modified version of this trace that excludes a large third-

level cache, because second-level cache characteristicsare
more interesting to our study. The remaining traces are
from proxiesserving thegeneral computing community of

various colleges and universities.

The traces capture all Web user requests except those
satisfied by browser caches or directed to the interal net-
work thus bypassing the proxy. Each trace entry includes
the request time, the disguised client IP address, and the
requested object’s URL and size. All traces but DEC also
includethe cache actiorniaken by the cache (e.g., hit, miss,
etc). DEC, instead, includes the object’s last-modified
timeas reported by the Web server that holds the object.

Unfortunately, the technique used to disguise client
identity inthe AU and NLANR traces does not preserve a
uniquedisguisefor aclient for the entire collection period.
Instead, in these two traces clients are assigned a new dis-
guiseevery day. Asaresult, aclient that makesrequestson
two different daysappearsto our simulator asif it weretwo
different clients. We have taken a conservative approach
todealing withthislimitation. The client count for AU and
NLANR in Table 1 lists the maximum number of clients
making requests on any given day, an underestimate of the
actual number for the entiretrace. Inaddition, we exclude
AU and NLANR from our analysis of sharing presented in
Section 3.4.

2.3 Simulator

To conduct our analysis, we built a trace-driven proxy
cache simulator, called SPA. SPA faithfully simulates the
collected traces at a cache size and request rate different
from the original proxy.

To simulate a different request rate, a trace is first
reduced by extracting all of the requests made by a
randomly-chosen subset of clients, such that the remain-
ing clients produce the desired request rate.

To simulate a different cache size from the origina
proxy, SPA follows a simplified version of the replace-
ment and coherence policies used by the Squid proxy-
cache version 1.1 [5] and appropriately configured ver-
sions of CERN [14]. The replacement policy is a variant
of LRU.

The cache coherence protocol assigns a time to live
based on either a configurable portion of the last-modified

time or a default if no value is supplied. Expired objects
remain cached. When an expired object is requested, the
proxy sends an if-modified-sinceequest to the server and
receives a new copy from the server only if the object was
actually modified. The results of certain requests such as
dynamic scripts (e.g., cgi) and Web query forms are never
cached.

For al but the DEC trace, SPA infers the time to
live from the cache consistency operations of the original
proxy. Thisinference isaccurate only up to the cache size
of the original proxy, because a larger SPA cache would
hold objects not cached by the orginal proxy and thus the
trace would contain no consistency information for these
objects. The Maximum Simulated Cache Sizein Table 1
shows the maximum size we simulated, a size not larger
than the original proxy cache size.

Unlike the other traces, DEC includes the expiry and
last-modified times returned by the server, which can be
used directly to calculatetimetolive (i.e, no inferenceis
necessary). Where thesetimesare not suppliedinthe DEC
trace, SPA sets the last-modified time and time to live ac-
cording to the default Squid cache coherence protocol.

We validated SPA by simulating each trace with acache
size equal to the proxy’s actua size. We then compared
the simulated and actual hit rates and byte hit rates. DEC
wasexcluded, becauseitsproxy did notincludeacache. In
every case, the simulated hit rates were slightly lower than
theactual hit rates; theaverage error was 3% (i.e., ahit rate
difference of around 1.5%) and all errors were less than
4.5%. We believe the reason for the slight discrepancy is
that the actual proxy cacheswere dlightly larger than what
we simulated.

We validated our trace-reduction scheme in two ways.
First, we compared each reduction’s per-client request
rate to confirm that reducing a trace did not significantly
change per-client request rate; average variance was 5%
and maximum was 16%. Second, we measured the hit-
rate variance among different versions of the same reduc-
tion, by computing 30 versions of the 5% GMCC reduc-
tion (i.e., each had arequest rate that was 5% of the orig-
inal). We simulated the 30 reduced traces and measured
standard deviations of 1.9% hit rate and of 3.6% byte hit
rate, even though each of the 30 reductionsincluded a dif-
ferent randomly-chosen subset of the original client pop-
ulation.

3 Analysis

This section summarizes our anaysis in five parts. First,
we examine the relationship between cache size and hit

a
o

40 4
30t —O—HAN
P 5 ——KOR
& ——DEC
=201 ——GMCC
I —x—=AU

10 4+ ——NLANR

0

0 2 4 6 8
Cache Size (GB)

10

Figure 1: Cache hit rate for each trace as a function of
cache size.

rate. Second, we explain how increasing request rate in-
creases hit rate. Third, we examine the impact of cache
coherence on hit rate. Fourth, we provide a detailed anal-
ysis of Web-client sharing. Finally, we discuss how these
workload characterizations impact cache design.

3.1 CacheSizeandHit Rate

The first question we address is: what is the hit rate and
how does cache size impact hit rate?

Figure 1 shows each trace's simulated hit rate as cache
sizeisvaried; hit rate isthe ratio of cache hitsto total re-
guests. A trace's line on the graph stops at its maximum
simulated cache size.

Figure 2 shows the byte hit rate for the same simula-
tions; byte hit rate isthe ratio of the total number of bytes
supplied by the cache to the total number of bytes re-
quested. Thetwo graphs have the same shape but hit rates
are roughly one third larger than byte hit rates, because
smaller objects tend to have a dightly higher hit rate than
larger objects.

Figure 1 shows that the hit rate of the NLANR third-
level cache is considerably lower than that of the second-
level caches. Thislower hit rate is expected and isa com-
mon feature of higher-level disk caches [23]. The lower-
levels of a cache hierarchy act as a filter, removing tem-
poral locality and lower-level sharing from the reference
stream. The resulting references received by the higher-
level cache consist only of the lower-level caches' capac-
ity missesconsistency missgand first-timerequests (i.e.,
references to objectsthat have been evicted, have expired,
or have never been requested). Nevertheless, the NLANR
third-level cache achieves a non-trivial 19% hit rate.

The two figures al so show that most of the second-level

50
40 |
5 —
Q + >
T 30 = . o> >
| / . —o—HAN
I s F—% ——KOR
o 20 [pe==d 5 8 ——DEC
EN —*=GMCC
o
o =
1 ——NLANR
0 —t
0 2 4 6 8 10

Cache Size (GB)

Figure 2: Cache byte hit rate for each trace as a function
of cache size.

cache hitrateslevel off at cache sizes smaller than 10 GBs.
Hit rates for DEC and HAN continue beyond the largest
cache size shown in Figure 1. DEC hit rates reach 41.1%
for a20 GB cache and increase very slowly to 42.1%for a
100 GB cache. HAN hit rates increase dightly to 44.7%
for a 14 GB cache. These graphs seem to indicate that
thelargest cache needed to eliminate most capacity misses
is dictated by a cache's request rate. For smaller traces,
a cache size of 1-GB per 35,000 requests/day is adequate
and for the larger traces, 1-GB per 70,000 to 100,000 re-
guests/day isneeded. Wewill seein the next section, how-
ever, that the relationship between request rate and cache
size is not quite this straightforward.

3.2 Request Rateand Hit Rate

Figure 1 showsthat, for the second-level traces, hitratein-
creases with request rate. The reason for this correlation
is that a higher request rate causes more sharing and in-
creases the number of hits an object receives before it ex-
pires.

The correlation between request rate and hit rate, how-
ever, isnot perfect. There are two exceptions. First, DEC
has the highest request rate but itshit rate is lightly lower
than HAN and KOR. Second, GMCC's request rate is
lower than UU and AU, but its hit rate is higher. Further-
more, the relationship between request rate and hit rate
is not linear, as is seen by KOR, AU, and HAN. KOR's
request rate is 1.7 times higher than AU and 1.7 times
lower than HAN, but KOR's hit rate is twice AU’s and
only dlightly smaller than HAN’s. We examine thisrela-
tionship in greater detail throughout the remainder of this
section.

I
N

20 | /X’J
38

36 1

< 34

()

§ 32 A =¥=152,000 reg/day (100%)

i =0—120,000 req/day (80%)

= 30

£ — ——90,000 reg/day (60%)
28 1 —0—59,000 req/day (40%)
26 —>—30,000 reqg/day (20%)

—+=14,000 req/day (10%)

24 1 —x—7,000 reg/day (5%)
22 —

4 6 8
Cache Size (GB)

o
N

Figure 3: Cache hit rate for KOR as a function of cache
size for arange of request rates.

Reduced Traces

To gain abetter understanding of theimpact of request rate
on hitrate, we examined thehit rate of each trace at various
artificially reduced request rates.

To conduct thisexperiment, we produced a set of seven
reduced traces for each of the original traces at 5%, 10%,
20%, 40%, 60%, 80%, and 100% of the original request
rate, as described in Section 2.3. We then simulated the
behavior of each of the 49 reduced traces.

Figure 3 shows the hit rate for the seven KOR reduc-
tions as cache size is varied. The request rate of each re-
ductionis shown in thelegend. The top line of the graph,
152,000 requests/day, represents the full trace and is the
same as the KOR linein Figure 1. The linesfor lower re-
guest rates stop when the cache isbig enough to hold every
object referenced; increasing cache size beyond this point
would have no impact on hit rate so we do not show the
line.

For each KOR reduction in Figure 3, hit rate increases
with request rate, just as we saw in Section 3.1 when com-
paring the request rates of different traces. The details of
the two relationships, however, are somewhat different.
Figure 3 showsthat reducing KOR'srequest rate does not
significantly reduce desired cache size. For example, the
hit rates for the 60%, 80%, and 100% reductions all ap-
pear to level off at the same cache size, around 6 GBs.
We believe that the reason cache size does not decrease as
rapidly as hit rate is that clients in the same cache share
common interests. Asaresult, a 40%-reduced client pop-
ulation requests virtually the same set of shared objectsas
the full population. This characteristics of Web sharing is
discussed in detail in Section 3.4.

Figure 4 shows the relationship between hit rate and re-

40 4 /ﬂ’n’n 4
35 {4
o 25 - —0~HAN
et ——KOR
@ 20 | ——DEC
= =x=GMCC
T 15+ =x=AU
-—O0—UJU
10 + ——NLANR
5 4
0 ‘ ‘ ‘ ‘ ‘
0 200 400 600 800 1000

Request Rate (Thousand of Requests per Day)

Figure4: Cache hit rate for each trace (and selected cache
sizes) as afunction of request rate; generated by reducing
thenumber of clients. Light coloredlinesare 4 GB caches.
Dark colored lines are 8 GB caches.

=
o
o
o

900 { 847

800 -
700 H
600 -
500 A
400
300 A
200 H
100 H

285

I

[y

5

=2
<
I

~

6

T
2
D

Requests per Day per Client Host

o

2
<

cvcc [8
KorR [8
pec [&

NLANR

Figure5: Average number of requests a client host makes
per day.

quest rate for al traces. For each trace we show hit rates
for two size caches: 4-GB caches are shown using light-
colored lines and 8-GB caches are shown with dark lines.
Some traces do not have an 8-GB line, because their max-
imum simulated cache sizeislessthan 8-GBs. Thisgraph
confirms that, like KOR, hit rate increases with request
rate for all traces. Notice that in the 4-GB DEC run, hit
rate decreases dightly with request rate due to thrashing.

Requests per Client

We now extend our analysis to determine how a cache's
hit rate is affected by the number of clients hoststhat are
connected to it.

Figure 5 shows the average number of requests/day per
client for each trace. These averages were computed by

N
a1

40 + /_j’/FD:D’*
35 | //
< 30 +
S e
© 251 S
IS
x 20 +
= ——HAN
T 15+ A/A/A_H ——KOR
= GMEC
10 + oy
5+ =o—=Uu
=—NLANR
0 f f f f
0 500 1000 1500 2000 2500
Clients

Figure 6: Cache hit rate for each trace as a function of
the number of client hosts. Light colored lines are 4 GB
caches. Dark colored lines are 8 GB caches.

dividing each trace's request count by its total number of
clientsand then dividing by twenty one. The client counts
for NLANR and AU shownin Table 1 are underestimated,
because client disguises change from day to day, as dis-
cussed in Section 2.2. Asaresult, the values presented in
Figure 5 for these two traces are upper bounds.

From Figure 5 we see that, for most of the second-level
caches, clients made an average of 70 requests/day. AU
and HAN have higher request rates, possibly because they
have more multi-user hosts than the other traces. As ex-
pected, clients of the NLANR third-level cache have a
much higher request rate than the second level caches(i.e.,
847 request/day), because these clients are other caches
and not browsers.

Figure 6 restates Figure 4, changing the x-axis from re-
quest rateto client count; the DEC lineon thisgraphwould
extend to 16,700 clients. Notice that the shape of some of
the lines has changed from Figure 4 to 6 due to the variety
in the per-client request rates from different traces. The
differences between these two graphs suggest that while
client-count information is interesting, request rate is a
better metric of cache performance.

3.3 Web Cache Coherence Protocols

We now examine how hit rate is impacted by the cache
coherence protocol used by the Squid and CERN proxy
caches; this protocol was described in Section 2.3.
Figure7 shows each trace’smaximum hit rate from Fig-
ure 1 with two additional bars, one labeled Unchanged
Misses and the other Changed Misses. The total of these
two bars is the consistency miss rate (i.e., the percentage
of requests that found expired objects in the cache). An

()]
o

[OChanged Misses
HUnchanged Misses
@ Hits

a1
o
I
T

D
o
I
T

N
o
I
T

[y
o
I
T

Percent of Total Requests
w
o
Il
T

o

HAN
KOR
DEC
AU
uu

GMCC -

NLANR

Figure 7: Portion of reguests resulting in consistency
misses to changed and unchanged objects in each trace.

unchanged miss is a request for an expired but unmodi-
fied cached object. In thiscase, the coherence protocol re-
quiresan if-modified-sinceequest to the object’ s server to
verify that the object is still valid and to update its expiry
time. In contrast, achanged missis arequest for a cached
object that had changed at the Web server.

The height of the Unchanged Misses bar is a measure
of the inefficiency of the coherence protocol. This pro-
tocol uses the time since an object was last modified to
predict its next modification time and thus set an expiry
time for the object. If an object expires before it actu-
ally changes, an unchanged miss results. Figure 7 shows
that unchanged misses account for between 2% and 7% of
all references. This percentage represents the hit rate im-
provement possiblefor coherence protocolsthat do a bet-
ter job of predicting object expiry (e.g., [13] proposesone
such protocol).

Figure 8 showsthe same informationas Figure 7 for the
KORtraceand avariety of cache sizes. We now seethat as
cache sizeincreases, the consistency missrate growsmuch
more quickly than hit rate. Thisfaster growthisexplained
by the fact that a larger cache holds more expired objects
and thus some capacity misses of a smaller cache become
consistency missesin the larger cache.

3.4 Sharing

We begin our discussion of sharing by dissecting the hit
rates we have already presented to show how many hits
are due to sharing. We then examine how requests are
distributed to shared objects and what portion of these re-
quests are actually hits. Finally, we examine the sharing
among clients from unrelated traces.

O Changed Misses

HUnchanged Misses
@ Hits

0.2

0.5 1 2 4 6 8
Cache Size (GB)

Figure 8: Portion of requests resulting in consistency
misses to changed and unchanged objects in the KOR

trace.
[ad O
o w

N4 o

@ Locality Hits
W Sharing Hits

[

2
D

HAN
GMCC

Figure 9: Hit rate divided into hits due to sharing and due
to locality of asingle client.

All simulation results presented in this section use the
maximum cache size for each trace as shown in Table 1,
or 8 GB for DEC.

A fundamental limitation of the available trace data is
that requests are identified with client hosts and not with
users. Our analysis thusincludes some false sharindi.e.,
dueto userswho move from host to host) and missed shar-
ing (i.e., due to hosts that serve multiple users).

The Sharing Hit Rate

To determine how may hits result from sharing, we mod-
ified our simulator to count locality and sharing hits sep-
arately. Any hit that could have been satisfied by a suffi-
ciently large browser cacheisclassified asalocality hit; all
other hits are shared hits. The modified simulator detects

B URLS
B Requests

40 +

w
o
!

T

N
o
!

T

Shared URLs and Requests (%)

=
o
!
T

DEC

GMcC HAN KOR uu
Figure 10: The percent of atotal URLsinatrace requested
by two or more clients and the percent of total requests to

these shared objects.

shared hits using a post-processing phase that conceptu-
ally examines every hit, checking backward in the input
trace for previous references to the same object. A hitis
shared if and only if a previous reference was made by a
different client and all intervening references to the object
are aso hits by other clients.

Figure 9 shows the hit rates from Figure 1 divided into
Locality Hitsand Sharing Hits. The figure includes data
for only five of the seven traces. NLANR and AU are
excluded because the daily changing of client disguise
in these traces makes it impossible to distinguish sharing
from locality, as discussed in Section 2.2.

The most important feature of Figure 9 is that sharing
is high and increases with client population and request
rate. In every trace, sharing accounts for at least 85% of
all hits. Furthermore, traces with higher request rates also
have more sharing. For example, DEC, the trace with the
highest request rate, also has the highest sharing hit rate at
38%. Notice that sharing rate is more closely correlated
with request rate than hit rate was; DEC's hit rate, for ex-
ample, was not the highest of the traces.

In contrast, locality hits do not increase with reguest
rate. All traces have roughly the same locality hit rate of
5% (theexceptionisDEC at 1.5%). Inother words, clients
from both small and large populationsrequest roughly the
same proportion of non-shared objects, even though there
ismore sharing in a large population. It thus appears that
adding a new client to a cache turns some of the misses of
other clientsinto hitsbut does not change locality hitsinto
shared hits.

[e]
o

B Misses

I mHits
KOR

uu

N w Iy al (2] ~
o o o o o o
! ! ! ! ! !

T

Shared Requests (%)

10 +

GMCC HAN

DEC

Figure 11: Accesses to shared objects divided into those
that hitin cache (shared hits) and those that miss(i.e., first-
time access or consistency or capacity misses).

Distribution of Requests to Shared Objects

We now examine how shared requests are distributed to
Web objects. Figure 10 shows two bars for each of the
five traces that preserve client identity. The first bar indi-
cates the percentage of objects that are requested by mul-
tiple clients and the second bar indicates the percentage of
requests that ask for one these shared objects. Notice that
the shared request rate is much higher than the shared hit
rate shown in Figure 9, because not al requests to shared
objects are hits.

Figure 11 provides additional detail for the Shared Re-
quests bar in Figure 10. The total height of each trace's
request bar is the same in both figures. Figure 11, how-
ever, indicates the number of shared requests that hit in
the simulated cache. The remainder of these requests are
misses due to first-time accesses, consistency misses, and
some capacity misses. In most cases, roughly half of the
requests are hits, though HAN has slightly more hits than
misses and UU has dightly less.

The key feature of Figure 10 is that while avery large
portion of accesses are to shared objects (71% for DEC),
only asmall portion of objects are shared (23% for DEC).
Notice further that the ratio between object count and re-
guest count is roughly the same for all traces, thought the
actua sharingislower for the smaller client populations.

Figures 12 and 13 provide additional detail about how
requests are distributed among shared objects. Figure 12
is a histogram of Web-object popularity. The y-axis indi-
cates the number of objects (usinglog scale) and the x-axis
indicates the number of hoststhat share an object (using a
bin size of 25). Thereisaline for each of the five traces.
A point on a line indicates the number of objects that are

000000 f
i -~ DEC

0 200

Figure 12: Histogram showing the distribution of Web ob-
ject popularity (represented with lines in order to show
multiple traces on the same graph). The y-axisis alog-
scale of the number of objects and the x-axisisthe number
of hoststhat request each object.

requested by the specified number of hosts. For example,
the graph shows that, in the UU trace, roughly 10 objects
were requested by between 126 and 150 hosts.

Figure 12 shows three important features. First, most
objects are accessed by a small number of hosts; the log
scale of the y-axis somewhat hides this feature. Second,
the distributions appear tail heavy, as has been observed
by Cunha et al. [4]. For example, at around 150 to 200
hosts, the number of shared objects has dropped consider-
ably; after that, however, the declinefrom 200 to 800 hosts
is much more gradual. In fact, the line for DEC contin-
ues out to 4000 hosts and varies between zero and ten ob-
jects all the way out. Third, the object-popularity pattern
for all tracesissimilar, thoughtraceswith higher reference
counts have more widely shared objects, as expected.

Figure 13 graphsthe normalized request rate for objects
as afunction of the number of hosts that share them. No-
tice that every object is summarized at the same x-axis
point in both Figure 12 and 13. In Figure 13, however,
they-axisindicatesthe average per-host per-object request
rate for objects with the specified degree of sharing. The
important thing to notice about this graph is that a host’s
per-object request rateismostly independent of an object’s
popularity, though very popular objects are requested at a
higher rate; thisisalso true for DEC, which starts to trend
upward toward six at around 2200 hosts (not shownin Fig-
ure 13).

=
o
.
f

—=-DEC
——=GMCC

[ee]
.

(o]
.

Req/URL/Host
N

0 200 400 600

Hosts

800

Figure 13: Graph showing the per-URL per-host request
rate for objects based on popularity of URL (from Fig-
ure 12).

Sharing Between Clientsfrom Different Traces

To further understand the distribution of requeststo shared
objects, we conducted a series of experimentsinwhichwe
looked for sharing patterns among clients from different
traces. These comparisons are interesting because each
trace represents a totally distinct collection of users. An
object shared by users from multiple traces might be con-
sidered to be of globalinterest to Internet usersin general.
In contrast, objects shared only within a given trace are of
only localinterest to the particular user community. Inad-
dition, we mentioned above that some degree of false shar-
ing occurs withinatrace, because some users use multiple
client hosts. False sharing, however, is eliminated when
considering sharing among multiple traces.

Figure 14 compares six traces: HAN, KOR, GMCC,
AU, UU, and NLANR; DEC isexcluded because itstrace
stores URL s using a hash code that can not be compared
with the URL stringsin other traces. There are five pairs
of bars on the x-axis; of each pair, one bar shows shared
objects and the other shows shared requests. Each pair of
bars shows the amount of sharing that exists among the
specified number of traces. For example, 18% of the total
objectsrequested by the six traces are requested in at least
two of the traces and 56% of total requests ask for one of
these objects.

From Figure 14 we see that, as in Figure 10, the por-
tion of requests that ask for shared objects is much larger
than the portion of objects that are shared. Furthermore,
we see that this gap widens as we look at sharing across
more of the traces. For example, we see that only 0.2% of
objects are shared by all six traces, but 16% of all of the
requests ask for one of these objects. A second important

EURLs
B Requests

Percent of 6-Trace Total
(URLs/Requestes)

2 3 4 5 6
Number of Traces that Share URL

Figure14: Inter-trace sharingamong HAN, KOR, GMCC,
AU, UU, and NLANR. Shows percent of shared URLsand
requestsfor those URL s for sharing between a given num-
ber of six traces.

observation isthat a surprisingly large number of requests
(16%) ask for objects that are globally shared among all
six traces; recall, however, that not al of these requests
will be cache hits.

Finally, we examine the nature of narrow and wide shar-
ing. Figure 15 compares theinter-trace sharing for objects
that are narrowly shared in one of thetraces(i.e., requested
by two to nine client hosts in that trace) and those that
are widelyshared in one of the traces (i.e., requested by at
least ten clients); we aso show objects that are only nar-
rowly shared (i.e., narrowly shared in every trace in which
they appear). Thisfigurecomparesonly four traces: HAN,
KOR, GMCC, and UU; AU and NLANR are excluded be-
cause we can not distinguish sharing from locality, as de-
scribed above. There are four sets of bars, each set with
two bars for narrowly-shared objects, two bars for only-
narrowly-shared objects, and two bars for widely-shared
objects. As before, abjects are counted only if they are
requested from the number of traces specified under the
bar on the x-axis (notice that this graph starts with one,
while Figure 14 starts with two). An object that is nar-
rowly shared in one trace and widely-shared in another
trace countsas being both narrowly and widely shared, but
not as only-narrowly shared.

Figure 15 shows that Web sharing tends to be bi-
modal. First, notice that the one-trace bars on the far
left of the figure show that sharing requests are divided
almost evenly between narrowly- and widely-shared ob-
jects, while there are many more narrowly-shared objects
than widely-shared objects. Furthermore, the other sets of
bars show that a significant portion of widely-shared ob-
jects are aso globally shared, while narrowly shared ob-

40

] EURLSs (Narrowly Shared)

— 35¢] B URLSs (Only Narrowly Shared)
8 W URLs (Widely Shared
2 ~30 ORequests Narrowly hared)
o 2 — ORequests (Only Narrowly Shared)
g §25 1 ORequests (Widely Shared)
E o
< 8:’ 20
° 9154
g5
o H—H
[

0 1

Number of Traces that Share URL

Figurel5: Inter-trace sharingamong HAN, KOR, GMCC,
and UU. Divides sharing into Narrow sharing, objects
shared by less than ten distinct hosts, and Wide sharing,
objects shared by at least ten hosts.

jects are almost exclusively locally shared. For example,
for sharing among all four traces, only-narrow-sharing re-
quests drop to 0.2% while wide-sharing requests remain
relatively high at 9%; note that 4% of reguests asked
for objects that were both narrowly and widely shared
(i.e, narrowly shared). We thus conclude that Web shar-
ing tends to be divided roughly evenly between objects
that are shared narrowly and locally and those that are
shared widely, and that many widely-shared objects are
also shared globally.

Summary

Our analysis presented in this section shows severa key
characteristics of Web client sharing petterns.

¢ Sharing is high (20% to 38%) and dominates single-
client locality as the primary factor that determines
hit rate.

¢ Sharing increases as the number of clients, and thus
request rate, increases, while single-client locality
does not increase.

¢ Up to 71% of requests are to shared objects, though
roughly half are misses due to first-time accesses,
consistency, and capacity misses. Only 15% to 28%
of objects are shared.

e Most shared objects are accessed by only a few
clients, though the distribution of object popularity
appears to betail heavy.

e Sharing is bimodal. Half of a trace's sharing is lo-
cal tothetrace and involvesonly afew hosts, the rest
ismore global, overlapping with other traces, and in-
volves many hosts.

3.5

Our analysis shows that high hit rates depend on caches
having sufficient clients to generate a high request rate.
For example, a one-thousand client cache with 70,000
requests/day had a hit rate no higher than 28%, while
a two-thousand client cache with 250,000 requests/day
achieved a 45% hit rate. Furthermore, the NLANR third-
level cache, whose requests are lower-level cache misses,
had a hit rate of 19%. These two observations suggest
that a client connected to a three-level hierarchy such as
NLANR might see hitsrates as high as 55% (i.e., the best
hit rate of the second-level caches plusan additional 19%
of that cache’'s misses).

The fact that sharing and hit rate increase with request
rate might seem to argue for a monolithic cache structure
consisting of asingle-level cache designed to handle thou-
sandsor tens of thousandsof clients. Latency and scalabil-
ity concerns, however, arguefor amore hierarchical struc-
ture.

A hierarchical structure alows caches to be placed
closer to clientsthan does a monalithic structure, because
the monolithiccache must befar enough away fromclients
toincludetheentireclient pool. We have shown, however,
that arelatively small group of one-thousand clientsgener-
ates substantial sharing, with hit ratesin the range of 25%.
A more distant monolithic cache would increase request
latency for the quarter of requeststhat could have been sat-
isfied more locally.

A hierarchical structure also aids cache scalability. A
substantial request rate is needed to achieve the 55% hit
ratethat our analysisindicates may be possible. For exam-
ple, Table 1 showsthat DEC has an average request rate of
12 requests/s. We have also computed the request rate as
a function of time for every trace. This data shows that
DEC has a peak request rate of 78 request/s and a peak
missrate of 55 misses/s; missrates isimportant because it
determinestheimpact acache hasonitsparent in thecache
hierarchy. For comparison, the proxy-cache performance
study by Maltzahn and Richardson shows that peak per-
processor throughput of the Squid v1.1 proxy is less than
35 reguest/s (when running on a Digital AlphaStation 250
4/266). 1

Implicationsfor Cache Design

1Thestudy showsper-request CPU utilization of the CERN and Squid
v1.1 serversat 15-million cycles and 7.5 million cyclesrespectively.

We thus conclude that a hierarchical structure is the
best solution for providing low-latency hitsfor local shar-
ing, while achieving the substantial hit rates that are only
achievable when thousands of clients share a cache.

4 Limitationsof Trace Data

During the course of our study, we identified four limita-
tions of the trace data we analyzed. We outlinethese lim-
itations here in the hope of influencing proxy providers
to remove these limitations from future versions of their
servers.

1. Including the last-modified and expiry time returned
by servers would have allowed us to simulate larger
caches. The lack of thisinformation in all but the
DEC trace limited ssimulated cache size to be no
greater than actual cache size.

2. Preserving asingle uniqueclient name over time (ap-
propriately disguised to protect user privacy) is nec-
essary for any analysis of sharing. If aclient'sdis-
guised name changes from day to day, sharing cannot
be distinguished from multi-day client locality.

3. ldentifying users (again appropriately disguised) in
addition to their host IP address would eliminate
the fal se-sharing problemsthat occur with multi-user
hosts and with users that use multiple hosts.

4. The ability to compare URLs from different tracesis
needed in order to measure inter-trace sharing. If a
hash function is used to store URLs in a more com-
press form, the same function should be used by all
proxies.

5. Including response codes returned by serversisim-
portant for distinguishingerror responses (e.g., object
not found). Most traces do include response codes,
but some do not (e.g., the traces used by Gribble
et al. [11]). Fortunately, experiments we conducted
show that the lack of response codes causes less than
a 1% hit rate difference.

5 Related Work

Since the Web became the primary consumer of Internet
bandwidth, studies of Web traffic have become common.
Some early studies include analysis of Web access traces
from the perspective of browsers [6, 4], proxies [10, 20,
22], and servers [16]. Arlitt et a. conducted a recent

study of Web serverworkloads[2]. Our work isuniquein
two ways. First, we examine many more requests, much
larger caches, and much higher request rates; we also in-
clude datafrom many more sites. Second, unlike the ear-
lier studies, we use a cache simulator to examine dynamic
workload characteristics such as request rates and sharing.

More recent research has used simulators to vary
individual parameters on large traces. Gribble and
Brewer [11] simulate a trace with 20 million requests.
They show a hit rate of 56% for a 6 GB cache. By
comparison, our DEC and HAN traces see a 37% and
42% hit rate, respectively, for a 6 GB cache. Gadde
et a. [9, 18] evauate their proposed directory-based
cooperative proxy cache using simulation of twenty-five
days of the DEC trace. They see sharing hit rates of 45%
for an 8 GB cache compared to our 38%, because their
simulator does not model cache coherence.

Others have analyzed Web proxy traces for different
purposes. In [15], Malzahn et ad. compared the per-
formance of the two most popular Web proxy servers
(CERN [14] and Squid [5]). They show how the CPU,
memory, and disk utilization of the proxy servers scales
with increasing request rate.

6 Conclusions

Client-side caching is a key solution for improving Web
client performance and for scaling the Internet and Web
servers to meet ever increasing demands. The design and
assessment of cache designs can benefit greatly from ade-
tailed understanding of Web client access characteristics.
This paper characterizes Web-client access, based on an
analysis of proxy cache traces containingatotal of 47 mil-
lion requests from 23,700 clients at seven different loca-
tions (including one third-level cache).

Our analysis showsthat cache hit rates for second-level
caches vary from 24% to 45%. Sharing accounts for 85%
of these hits and sharing increases with request rate. The
hit rate of the third-level cache we examined was lower at
19%, because lower-level caches filter locality and lower-
level sharing from its request stream.

Desired cache size varies between 2 and 10 GB. Small
client populations need 1-GB of cache per 35,000 re-
quests/day and larger populations 1-GB per 70,000 to
100,000 requests/day, though artificially removing clients
from a population does not cause a proportional reduction
in cache size.

Using the Squid v1.1 and CERN cache coherence pro-
tocol, between 2% and 7% of all requests are consistency
misses to unmodified objects; that is these requests were

hitson expired objects that had not actually changed at the
Web server.

Requests to shared objects account for 71% of total re-
quests, but only 24% of requested objectsare shared. Most
of these shared objects are accessed by only afew clients,
though object popularity appears to be tail heavy and a
few objects are accessed by most clients. Shared requests
exhibit bimodality based on an even division of requests
to objects shared narrowly by a few clients and objects
shared widely by many clients. Unlike narrow sharing,
wide sharing tends to be global. 6% of the total 11.7-
million requests in HAN, KOR, GMCC, and UU, for ex-
ample, ask for objects shared by al four traces.

Finally, our results argue for a cache hierarchy whose
first level is close to clients; a one-thousand client cache
should have hit rates of around 25%. One or more higher
levels of caching are needed to expose the additional shar-
ing present only in larger client populations (i.e., popula-
tionsof afew thousand clientsor more). For large popula
tions, we have observed hit rates of 45% and, for theentire
hierarchy, hit rates of 55% seem achievable.

Acknowledgments

We would like to thank everyone who provided us with
proxy traces, particularly: Christain Grimm at the Univer-
sity of Hanover, Germany; Jaeyeon Jung with the Nation
Wide Caching Project of Korea; Tom Kroeger, Jeff Mogul,
and Carlos Maltzahm for making the DEC logs available;
Tim Crisal at Grant MacEwan Community College, Al-
berta; Henny Bekker at Utrecht University, the Nether-
lands, Duane Wessels at NLANR; Macig Kozinski at
Nicolas Copernicus University, Poland; and our anony-
mous university. Thanks al soto Norm Hutchinsonand our
shepard, Richard Golding, for their comments on earlier
versions of this paper. Finally, thanks to the folks in the
UBC system’s lab for putting up with our long-running
data-intensive simulations.

References

[1] T.E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S.
Rosdlli, and R. Y. Wang. Serverless network file systems. ATM
Transactions on Computer Systerb¥1):41-79, February 1996.

M. Arlitt and C. Williamson. Web server workload characteriza-

(2

4

(5]
(6]

(8

(9

[10]

(11]

[12]

[13]

[14]

[19]

[16]

[17]

(18]

[19]

[20]

[21]

tion: The search for invariants. In Proceedings of ACM SIGMET- [22]

RICS’96 May 1996.

M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirrif, and J. K.
Ousterhout. Measurementsof adistributedfile system. In Proceed-

(3

[23]

ings of the 13th ACM Symposium on Operating Systems Pringiples

pages 198-212, October 1991.

A. Bestavros C. R. Cunhaand M. E. Crovella. Characteristics of
www client-based traces. Technical report, Boston University, Jul
1995.

Squid Internet Object Cache.

URL: http://squid.nlanr.net.

L. D. Catledge and J. E. Pitkow. Characterizing browsing strage-
giesin the World-Wide Web. In Proceedings of the Third WWW
Conferencel994.

A. Chankhunthod, P. Danzig, C. Neerdaels, M. F. Schwartz, and
K. J. Worrell. A hierarchical Internet object cache. In USENIX
1996 Annual Technical Conferendanuary 1996.

National Laboratory for Advanced Network Research (NLANR)
Proxy Traces.

URL: ftp://ircache.nlanr.net/Traced .

S. Gadde, M. Rabinovich, and J. Chase. Reduce, reuse, recycle:
An approach to building large Internet caches. In Sixth Workshop
on Hot Topics in Operating Systey996.

Steven Glassman. A cachingrelay for theworld wideweb. InPro-
ceedings of the First Interntional Conference on the W\1894.

S. D. Gribbleand E. A. Brewer. System design issues for internet
middleware services: Deductionsfrom alarge client trace. In Pro-
ceedings of the Usenix Symposium on Internet Technologies and
Systems '9,71997.

J. Gwertzman and M. Seltzer. The case for geographical push-
caching. In Fifth Workshop on Hot Topics in Operating Systems
1995.

B. Krishnamurthy and C. E. Wills. Study of piggyback cacheval-
idation for proxy cachesin the world wide web. In Proceedings of
the Usenix Symposium on Internet Technologies and Systems '97
1997.

A. Luotonen, H. Frystyk, and T. Berners-Lee. W3C httpd. URL:
http://www.w3.org/hypertext/WWW/Daemon/.

C. Madltzahn and K. J. Richardson. Performance issues of enter-
priselevel web proxies. InACM SIGMETRICS International Con-
ference on Measurement and Modeling of Computer Sysangs
1997.

J. Pitkow and M. Recker. A simple yet robust caching agorithm
based on dynamic access patterns. In Electronic Proceedings of
the Second World Wide Web Conference '94: Mosaic and the Web
1994.

J. Lorch R. Malpani and D. Berger. Making world wide web
caching servers cooperate. In Fourth International World-wide
Web Conferengg@ages 107-110, Dec 1995.

J. ChaseS. Gaddeand M. Rabinovich. Directory structuresfor scal-
ableinternet caches. Technical Report CS-1997-18, Duke Univer-
sity, 1997.

P. Sarkar and J. Hartman. Efficient cooperativecaching using hints.

In Proceedings of the USENIX Conference on Operating Systems
Design and Implementatip@ct 1996.

Jeff Sedayao. "mosaic will kill my network!” - studying network
traffic patterns of mosaicuse. In Electronic Proceedings of the Sec-
ond World Wide Web Conference '94: Mosaic and the \18®4.
Digital Equipment Corporation Proxy Traces.

URL: ftp://ftp.digital.com/pub/DEC/traces/proxy/tracelistv1.2.html.
D. Wessels. Intelligent caching for world-wide web objects. Mas-
ter's thesis, Washington State University, 1995.

D. L. Willick, D. L. Eager, and R. B. Bunt. Disk cache replace-
ment policies for network fileservers. In Proceedings of the IEEE
International Conference on Distributed Computer Sysieages
2-11, June 1993.

