
Importance Ordering for Real-Time Depth of Field

Paul Fearing

Department of Computer Science
University of British Columbia

Vancouver, B.C.
Canada

fearing@cs.ubc.ca

Abstract

Depth of �eld (DOF) is an important component of real
photography. As such, it is a valuable addition to the li-
brary of techniques used in photorealistic rendering. Several
methods have been proposed for implementing DOF e�ects.
Unfortunately, all existing methods require a great deal of
computation. This prohibitive cost has precluded DOF ef-
fects from being used with any great regularity.

This paper introduces a new way of computing DOF that
is particularly e�ective for sequences of related frames (an-
imations). It computes the most noticeable DOF e�ects
�rst, and works on areas of lesser importance only if there
is enough time. Areas that do not change between frames
are not computed.

All pixels in the image are assigned an importance value.
This importance gives priority to pixels that have recently
changed in color, depth, or degree of focus. Changes origi-
nate from object and light animation, or from variation in
the camera's position or focus.

Image pixels are then recomputed in order of importance.
At any point, the computation can be interrupted and the
results displayed. Varying the interruption point allows a
smooth tradeo� between image accuracy and result speed.
If enough time is provided, the algorithm generates the exact
solution.

Practically, this algorithm avoids the continual recom-
puting of large numbers of unchanging pixels. This can pro-
vide order-of-magnitude speedups in many common anima-
tion situations. This increase in speed brings DOF e�ects
into the realm of real-time graphics.

CR Categories and Subject Descriptors: I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism.
General Terms: Algorithms.
Additional Key Words and Phrases: Depth of �eld,
post�ltering, camera model, lens and aperture, importance
ordering

1 Introduction

DOF control is a useful and important photographic tech-
nique. It draws attention to in-focus objects and areas.

Changing the focus forces movement of the viewer's cen-
ter of attention, allowing a cinematographer to express a
change in subject importance. DOF can also be used as a
general artistic tool for fade outs, fade ins and soft focus
sequences. Many tiny details of the world can be omitted
or approximated if the cinematographer knows they will be
out of focus. This can reduce the time and e�ort required
design scene backgrounds.

DOF provides an important contribution to the general
appearance of so-called \photorealistic" images. Photoreal-
istic rendering implies being able to simulate the entire cam-
era and �lm assembly exactly, including defects and aberra-
tions. Without these e�ects and defects, it is often hard to
fool humans into believing a rendered image was captured
by a camera. Computer generated imagery usually looks
\too perfect". DOF is expected by humans in both images
and our own natural vision processes.

A realistic camera model is especially important in im-
age forgery and computed-augmented reality, where images
are a blend of the real and the computer generated. DOF
consistency plays an important part in the believability of
the image. DOF also forms a good basis for exploring other
types of focus-based lens defects, such as spherical [Cox 71]
and chromatic [Boult 92] aberrations.

DOF has been used experimentally for isolating areas of
3D MRI data [Wixson 90] and particle systems [vanWijk 92].
The plane of interest is rendered in focus, while other areas
are drawn out-of-focus. Current techniques are far too slow
to be interactive.

The computer simulation of DOF is also useful in vi-
sion, where attempts have been made to derive scene depth
from focus [Pentland 87] and to sharpen out-of-focus images
[Savakis 91] [Sezan 91]. Synthetic DOF images provide ex-
act ground truth values useful in algorithm error analysis.

Even with all these proven applications, DOF is rarely
used in the graphics world. The main drawback appears to
be the computational cost. A single frame can take min-
utes to compute. Even worse, easy DOF control almost
always requires a long sequence of related frames. Humans
focus real cameras by trial and error: point at a subject and
manually change focus until the desired e�ect is achieved.
Slow DOF calculations preclude this sort of focus experi-
mentation in computer generated images. The desired e�ect
must be calculated before starting the computation, using
knowledge about object depths, DOF ranges, etc. This is
feasible for simple test scenes, but it becomes annoyingly
time-consuming for complex scenes containing many mov-
ing objects. Often, the rendered result does not contain the
exact e�ect desired. Try after try is required to get the
precise amount of DOF. This makes it too bothersome to
include DOF except in the most ambitious projects.

If DOF computations were fast enough to allow near real-



o

fp

image plane

pinhole

object

pinhole lens

p

Figure 1: Pinhole Camera Model

time computation of sequences of related frames, rendering
systems could allow trial-and- error adjusting of DOF ef-
fects. This would open up DOF to many new types of ap-
plications.

2 Depth of Field

DOF has been explained in Potmesil and Chakravarty
[Potmesil 81], Kingslake [Kingslake 92], and others. We will
provide a brief review for clarity.

2.1 Pinhole Camera Model

Many graphics systems use the pinhole camera model as the
basis for object appearance.

Light rays are scattered o� objects in world space. Some
of the scattered rays are bounced towards the camera. Rays
originating from the same object point po (but travelling in
di�erent directions) hit an in�nitely small pinhole lens. This
lens allows only a single ray to pass through the pinhole.
Rays going in other directions are ignored. Thus, when the
single ray hits the imaging plane, it is always in focus.

Figure 1 shows the pinhole camera model.

2.2 Thin Lens Model

Obviously, real lenses have a �nite dimension, and let in
light coming from several di�erent directions. This can be
approximated using a thin lens model, as shown in Figure
2.

As before, rays are scattered from objects in world space.
Rays originating from the same object point po hit the lens
from a number of di�erent directions. The incoming rays
are focused by the thin lens into a point pf . If the imaging
plane is located at pf , the image of the object will be in
focus. If the imaging plane is not at pf , the incoming cone
of rays intersect the image plane to form a conic, usually ap-
proximated as a circle. This circle is called a point's \circle
of confusion" (CoC).

Potmesil [Potmesil 81] calculates CoC diameter for an
out-of-focus point uo as

C = jVu � Vpj
�
F

nVu

�
(1)

where F is the focal length, n is the aperture number, and

Vu =
FU

U�F
U > F (2)

Vp =
FP

P�F
P > F (3)

o

pf

circle of
confusion

p

object

image planethin lens

Figure 2: Thin Lens Camera Model

where Vp forms a point on the image plane. Figure 3 dia-
grams the various distances. The CoC is used to compute
how points are imaged over an area.

Humans can only resolve angles larger than a certain
amount. This implies that (viewed from a certain dis-
tance) CoCs smaller than a certain limit are resolved as
points, while larger circles are resolved as areas. Viewed
from a distance F , the common limit of human resolution
[Kingslake 92] is a CoC with diameter F

1000
. Thus, CoC

diameters can be thresholded at F

1000
when viewed from a

distance F .

3 Previous Work

Existing DOF computation methods are described briey
below.

3.1 Linear Post�ltering

Potmesil and Chakravarty [Potmesil 81] were the �rst to in-
troduce a DOF model to the computer graphics community.
They based their approach on a two-pass post�ltering pro-
cess. The �rst (image rendering) pass computes an RGB
image and a corresponding Z depth map. The second (DOF
�ltering) pass computes DOF e�ects. The CoC of each pixel
is computed using Eq.1. A pixel P 's intensity is then the
summation of the weighted intensities of all other pixels
with CoCs that overlap P . Potmesil and Chakravarty used
di�raction properties to come up with a function that mod-
eled intensity distribution within an individual CoC. The
authors made heavy use of lookup tables to improve pro-
cessing speed. The di�raction-based intensity distribution
pro�le was approximated in Chen [Chen 87], with no no-
ticeable e�ect on image appearance. The vision community
[Lee 90] also has a number of intensity distribution models,
primarily for depth retrieval and image restoration.

Potmesil and Chakravarty's method has the advantages
of post�ltering, including simplicity and speed proportional
to image size. The main disadvantage is that the CoC is
computed from a single object point. This means that �lter-
ing does not recognize objects partially blocking the CoC's
e�ect. This partial occlusion can cause blurry backgrounds
to \leak" onto sharp foreground objects, as shown in Figure
5. The foreground black band appears partially transparent,
especially in front of the bright �ling cabinet.

3.2 Distributed Ray Tracing

Cook, Porter, and Carpenter [Cook 84] implemented DOF
using distributed ray tracing. Each image point Po is traced
through the center of the lens to an in-focus point pf on the



Vp

Vu

focal plane

P

F/n C

image plane

lens

U

Figure 3: Calculation of the Circle of Confusion

focal plane. Subsequent rays from Po are sent to positions
on the lens, and then aimed at point pf . If no object is
located at pf , the rays diverge into the environment and
are averaged to compute a result. With enough samples,
and su�cient variation over the lens area, distributed ray
tracing can compute DOF.

Because rays are actually traced into the environment,
distributed raytracing solves the partial CoC occlusion prob-
lems of linear post�ltering. It also computes a better esti-
mation of object color, as di�erent parts of the lens see the
object from di�erent angles (which implies potentially dif-
ferent colors). Distributed ray tracing is also attractive be-
cause the DOF problem is solved at the same time as several
other problems, including shadow penumbras, motion blur,
and translucency.

The main disadvantage of distributed raytracing is that
object space renderers can be potentially very slow - cer-
tainly much slower than real time. As well, combining DOF
with object rendering makes it very expensive to change the
DOF without changing the objects.

3.3 Accumulation Bu�er

Haeberli and Akeley's [Haeberli 90] accumulation bu�er was
introduced to provide hardware support for antialiasing. It
can also be used for DOF e�ects. The accumulation bu�er
integrates the results of multiple rendering passes of the
same image. On each pass, the image is drawn from a
slightly di�erent eyepoint. Eyepoints are sampled across
the lens aperture.

The accumulation bu�er avoids partial CoC occlusion
problems, allows a smooth improvement in image quality
with time, and can be used to simultaneously implement
antialiasing, soft shadows and motion blur. The accumula-
tion bu�er resembles a frame-bu�er implementation of dis-
tributed ray-tracing. As such, cost is proportional to the
complexity of the world scene, and the number of viewpoint
samples.

3.4 Ray Distribution Bu�er

Shinya [Shinya 94] adapted the distributed ray tracing idea
and converted it into a post�ltering process. It requires an
initial RGB image and Z-bu�er. Each pixel in the image is
assigned a small personal Z-bu�er, called a ray distribution
bu�er (RDB). Each element in a pixel's RDB is associated
with an incoming ray direction.

For each pixel U within pixel P 's CoC, the algorithm
computes an associated object point and incoming ray di-
rection. This direction is used to assign U 's object point
color and Z value to some of P 's RDB elements. Incoming

RDB elements are Z-bu�ered, leading to an averaged result
that takes into account the partial occlusion of CoC areas.

Algorithm complexity depends upon image size and RDB
size, o�ering an improvement over distributed ray tracing
and the accumulation bu�er. However, it does not account
for color changes due to variations in ray direction.

3.5 Clustering Methods

DOF can be simulated without using a model of the syn-
thetic camera. Sco�eld [Sco�eld 92] groups scene objects
into foreground and background planes. Each plane is ren-
dered separately, blurred using a low-pass �lter, and then
composited together. The �lter sizes are unrelated to the
camera model, and are chosen ad hoc. The arti�cial group-
ing of objects, segregated scene rendering, and trial-and-
error �lter sizing make this method hard to use.

4 Importance Ordering Depth of Field

All DOF methods were originally discussed as they applied
to single images. This implies that all pixels must be recom-
puted on each and every frame, even if there is little or no
change between frames.

This can be especially expensive for scenes where sharp
objects are moving in front of large and blurry (hence costly
to compute) backgrounds. The DOF changes in only a small
portion of the total number of pixels, yet the expensive back-
ground must be recomputed for each frame. There are many
other examples of minimal (yet noticeable) scene changes re-
quiring a complete image recompute.

Recomputing the entire image also proves tiresome for
the human viewer. Results are not available until all work
has been completed. This prevents a human from preview-
ing (and potentially interrupting) the image in-progress.

In this section we describe a fast post�ltering DOF
method using importance ordering. The main contribution
of this algorithm is to recognize that there is a great deal
of consistency between sequential frames of an animation.
We can use this continuity to avoid recomputing areas of
the scene that do not change between frames. Pixels that
do require recomputation are processed in the approximate
order of their noticeable visual e�ect.

Importance ordering DOF rendering allows substantial
speedups when generating multiple frame animations. It
also allows the most obvious DOF e�ects to be previewed
at an early stage in the computation.

We have chosen a post�ltering approach for several rea-
sons. Post�ltering requires no knowledge of world space,
thus allowing a complexity dependent on image size. Post-
�ltering techniques can also be meshed with existing frame
and Z-bu�er hardware. This provides hope that fast DOF
can be added to polygonal based graphics rendering engines.
Adding DOF e�ects in after rendering allows a user to mod-
ify camera parameters without having to re-render the orig-
inal image.

We use Potmesil and Chakravarty's post�ltering method,
for reasons explained Section 5.

4.1 Algorithm

Each frame begins with the current picture, consisting of an
RGB image Ic(x; y), a Z-bu�er Zc(x; y), and CoC values,
Cc(x; y). Each pixel also contains Il(x; y) and Cl(x; y) ele-
ments that contain the pixel's status at the time of its last
update. Individual pixels have R, G and B numerators and
a single denominator to keep track of the current summation
of all overlapping CoC e�ects, including its own.



The �rst pass computes Cc(x;y) for every pixel P . After
Cc(P ) is computed, a pixel P 's update importance is calcu-
lated using an importance function (detailed below). This
function returns an importance measure h within the range
[0::hmax]. Depending on h, pixel P is placed into one of
hmax hash buckets. Hash bucket 0 represents pixels that do
not need to be recomputed this frame.

The second pass computes DOF e�ects for the image. A
pixel P is taken from the highest non-empty hash bucket.
The previous CoC e�ect of pixel P on its neighbors is com-
puted using Il(P ), and Cl(P ). The current CoC e�ect on
P 's neighbors is determined with Ic(P ), and Cc(P ). The
di�erence of the two e�ects is added to all a�ected neigh-
boring pixels. Once pixel P has been processed, Il(P ) and
Cl(P ) values are updated.

The algorithm continues to take pixels from hash buckets
until all but hash bucket 0 are empty, the user interrupts,
or some preset number of pixels have been processed.

After interruption, the average intensity value of all pix-
els is computed. Pixels that were not updated on this pass
must be included, in order to count changes due to up-
dated neighbors. If a new frame is required, it is loaded
into Ic(x; y) and Zc(x; y).

4.2 Intensity Distribution Function

CoC e�ects take the form of an intensity distribution D cen-
tered around pixel P . A neighboring pixel U is a�ected by
the area under the intensity distribution curve D, multi-
plied by pixel P 's color values. Intensity curves can be at,
gaussian, or as complicated as Potmesil and Chakravarty's
di�raction model.

The intensity distribution function can be computed a
priori, and stored as a number of tables of various sizes. Ta-
bles can be computed and interpolated between with varying
degrees of precision.

In order for this method to work, the intensity distri-
bution function must be individually retrievable. That is,
a pixel P must be able to determine its last contribution
to its neighbors based solely on its own current and past
information.

4.3 Importance Function

Every pixel is ranked in update priority by an importance
function. This function attempts to link a pixel's update
order to the amount of change in its appearance.

Noticeable di�erences in a pixel occur in three cases:
CoC diameter changes, Z value changes, and color changes.
CoC diameters change with the camera model parameters
and Z values of the target. Di�ering CoC diameters cause
changes in the D �lter size, resulting in new intensity dis-
tributions among a pixel's neighbors. Di�erences also occur
when a pixel changes color. All of these e�ects will be usu-
ally be present in an animation sequence.

The importance of a change in CoC for a point P is mea-
sured by hcoc = jCc(P )�Cl(P )j. The color change e�ect
hrgb is based on a simple Euclidean color distance. The CIE
LUV uniform color space can also be used to calculate color
distances that are perceptually equal.

P's total importance h is a linear weighting of the CoC
and color e�ects:

h = Wcochcoc +Wrgbhrgb (4)

The relative weighting between the e�ects can be chosen
to suit a speci�c part of an animation. Pure color changes
are most likely to occur when scene lighting moves around.
Pure CoC changes are most likely to occur when changing

camera parameters. Without a priori knowledge of the ani-
mation, equal weights can be used. Of course, the weighting
functions need to be scaled to spread values out across hmax

hash buckets.
Note that pixels that do not change in color or CoC are

given an importance of 0, and not updated on this frame.
We can also threshold very small hcoc or hrgb to 0, if color
or CoC changes are small enough not to be detectable or
important. For example, CoC changes can be thresholded
at F

1000
, at the limit of human resolution.

Skipping a pixel P in the importance ordering algorithm
means the last change to P 's e�ect has not yet been reected
in the image. Skipping a pixel in the linear algorithm implies
that pixel P 's entire e�ect has been neglected.

4.4 DOF Interruptions

Importance ordering allows the user to interrupt the algo-
rithm to see the most important results completed so far.
The program can also interrupt the algorithm after a set
percentage M < 100% of hashed pixels. This allows a grad-
ual increase in speed with a gradual decrease in accuracy
(with respect to a linear DOF method). Pixels not updated
on one pass grow in importance the next pass.

If M is too small, pixels can be starved out. This can
cause objectionable artifacts if starved points are part of
a moving object. Reducing M is most useful for gradual
zooms on static scenery, where it is harder to detect focus
changes for points that lag on the update.

Unchanged pixels are not hashed, allowing large speedups
even whenM = 100% of the hashed pixels. In this case, each
frame produces the same result as the linear DOF method.

5 Partial CoC Occlusion

We use Potmesil and Chakravarty's post�ltering method be-
cause the DOF of pixel P on neighbor U can be computed
solely by looking at pixel P . This allows past DOF to be
computed and removed from neighboring pixels. This pre-
cludes using the RDB post�ltering method, because RDB
bu�ers do not allow DOF reversal. Consider a pixel P that is
updated so that Cc(P ) < Cl(P ). This information is prop-
agated to neighbor U 's RDB. Pixel P 's previously larger
e�ect cannot be removed from U 's RDB Z-bu�er because
there is no record of what P previously occluded.

Using Potmesil and Chakravarty's method introduces
some problems, mainly the intensity leakage due to partial
CoC occlusion. In some cases, the e�ect is not noticeable
and can be ignored. However, we would like to minimize the
e�ect while still maintaining reversibility.

One possible solution is to Z-bu�er pixel P 's contribution
to its neighbors. Pixel P 's e�ect is added to neighbor U
only if Zc(P ) < Zc(U). This prevents a blurry background
P from contributing to a sharp foreground U . This helps
reduce intensity leakage, but destroys reversibility. In order
to recover past DOF e�ects, pixel P must keep track of
which Us were occluded.

We can add an L�L bitmap centered around each pixel
P . Bit position U is 1 if P did not contribute to neighbor U .
When P is next updated, this bitmap allows the recovery
of previous contributions, even if neighboring Z values have
changed.

Attaching a bitmap to each pixel can be expensive, espe-
cially with large CoC sizes. Space can be reduced by setting
L to be less than the maximal cuto� CoC �lter size. Neigh-
bors within L

2
may be omitted or included. Neighbors out-

side L

2
are always added. This means that pixels can only



get intensity leakage e�ects from pixels L

2
positions away.

With a gaussian or di�usion intensity distribution, L does
not need to be very large before bleeding e�ects are small.

In practice, a straight Z comparison works well for dif-
ferent foreground/background objects. It can cause artifacts
on intersections and single surfaces, where adjacent points
are only slightly in front or behind each other. We can
improve results by occluding only if P is behind U , and
jCc(P )� Cc(U)j is greater than some user-variable cuto�
K. This has the e�ect of not occluding surfaces that are at
about the same level of blurriness, within some tolerance.

Figure 6 compares the e�ect of intensity leakage preven-
tion with L = 32, and K equal to the equivalent of 3 pixels.
The darkness of the foreground band has been improved.

6 Experiments and Discussion

Both linear and importance ordering DOF methods were im-
plemented as a set of library functions. These libraries read
and write values directly to the framebu�er and z-bu�er,
allowing the addition of DOF to any framebu�er based pro-
gram. Adding DOF to an existing program requires approx-
imately 3-4 lines of new code.

For simplicity, both methods used a gaussian intensity
distribution function, without intensity z-scaling, or table
interpolation. The distribution tables were computed to
half-pixel boundaries. Filter vignetting was ignored. Be-
cause both methods use the same tables, the intensity dis-
tribution function does not a�ect the relative comparisons.

Several experiments were carried out to test the speed of
the importance ordering DOF method.

6.1 Experimental Results

Five di�erent animations were generated, each consisting
of 100 frames of size 256h by 256w. The background was
raytraced o�ine, and was loaded into the framebu�er/z-
bu�er on each frame. The raytraced background allowed
extremely complex scenery without a corresponding increase
in rendering time. The star was rendered directly into the
framebu�er/z-bu�er, and thus can occlude and be occluded
by the background. Figure 7 shows the scene without DOF.

In the �rst four experiments, the importance order-
ing DOF method was directly compared with the linear
Potmesil DOF. The importance ordering method used M =
100, wcoc = 0:5, and wrgb = 0:5. Both methods used the
same code where possible, including the intensity distribu-
tion function. No particular code optimizations were imple-
mented. Experiments were performed on a 100 mHz SGI
Indy.

Results are shown in Table 1. Times are in elapsed sec-
onds, and not CPU seconds. Note that to compute the
�rst frame, the importance ordering method must spend as
least as much time as the linear method. Table 2 shows the
update speed with the cost of the �rst frame omitted. The
longer the animation sequence, the faster the �rst-frame cost
is amortized across all frames.

The �rst experiment consisted of the focused star mov-
ing left-to- right in between an unfocussed foreground and
background (Figure 8). The camera was focused at 40 mm,
with F = 8 mm, and n = 3.5. The importance ordering
DOF method was able to perform over 22:1� faster than
the linear method, mainly because the majority of the out-
of-focus area was not recomputed. The greater the cost of
the unchanging area, the larger the speedup.

The second experiment involved the star zooming away
from the camera. The object started in focus, and moved
out-of-focus as it approached the background. The camera

Table 1: Importance Ordering DOF vs. Linear DOF

Exp . # 1 2 3 4

No DOF

Speed-up

Importance

Linear

Times are for 100 frames. 

116 s

3 s

2572 s

22.1 x 13.4 x

3 s

87 s

1165 s 500 s

209 s

3 s

2.4 x 2.4 x

3 s

213 s 

522 s 

Table 2: Update Rate Without First Frame

Exp . # 1 2 3 4

25.7 s

Times are seconds/frame averaged over frames [2..100].

11.6 s 4.8 sLinear

Importance

Speed-up

1.9 s 1.9 s0.8 s0.9 s

5.0 s

28.5 x 14.5 x 2.5 x 2.6 x

was focused at 24 mm, with F = 8 mm and n = 17. The im-
portance ordering DOF gained a 13:4� speedup. Speedups
were less than experiment one because the target object cov-
ered more of the total picture area over the duration of the
animation.

The third experiment involved a foreground to back-
ground focus change on a stationary scene. The camera
focussed from the knot to the computer over 100 frames,
with F = 8mm, and n = 12. The importance ordering
DOF ran 2:4� faster, mainly because hcoc values less than
the minimum table division were hashed to h = 0. There
was no noticeable visual di�erence between the two meth-
ods. Figure 9 shows the start of the animation.

The fourth experiment consisted of a combination of ex-
periments one, two, and three. The star moved from left-to-
right, zooming away from the camera. The camera focussed
on the star as it moved away from the camera, using F =
8 mm and n = 12. The importance ordering algorithm ran
2:4� faster than the linear method.

The �nal experiment approximated experiment three,
except thatM was varied to truncate the computation. The
zoom direction was reversed to maximize blur inconsisten-
cies. The �rst frame always usedM = 100%. Corresponding
times are shown in Figure 4. Faster times mean less accu-
racy. In this particular experiment, a few pixels require most
of the e�ort. Thus, large numbers of pixels can be removed
without much a�ect on speed or visual accuracy. Figure 10
shows importance ordering with M = 15, on the �nal frame
of the animation. Figure 9 shows M = 100 for comparison.
Note the similarity of the images, even though only 15% of
all changing pixels were updated each frame.

6.2 Discussion

The importance ordering DOF algorithm works extremely
well for scenes with a constant focus and moving objects.
This type of scene setup is very common in �lms and video.
In experiment one, we were able to achieve a sub-second
average time, even with a very blurry foreground and back-
ground. This is within our de�nition of achievable real-time



0

50

100

150

200

0 20 40 60 80 100

S
e
c
o
n
d
s
 
p
e
r
 
9
9
 
f
r
a
m
e
s

% Cutoff

 sec vs. M

Figure 4: Experimental Results - Running Time vs. M Cut-
o�

DOF response. The main speedup comes from not having to
update a large section of the image on each frame. The more
expensive this unchanging area is to compute, the greater
the improvement over the linear method. When objects are
moving, M should be set to 100 to ensure all moving pixels
are updated.

This algorithm uses frame coherence to gain consider-
able speedups over previous methods. Obviously, we can-
not gain improvements in situations where there is little or
no frame coherence, such as a scene with a moving view-
point. If a scene changes totally, all pixels must be up-
dated on each pass. The importance ordering method must
both remove and add DOF e�ects, making it slower than
the linear method. This is not as much of constraint as it
might �rst seem. First, static camera shots account for a
very large number of cinematographic situations. The vir-
tual reality-like \roaming viewpoint" is not as common as
the static \talking-heads" shot. In the vast majority of 30
frame/second animations with a static camera, both object
motion and focus motion are slow enough to leave substan-
tial portions of the image unchanged between frames. Sec-
ondly, we can still use importance ordering to help us set
up the correct focus parameters for a moving-camera shoot,
even if the algorithm does not help us during actual camera
motion. Finally, we can impose frame coherence on a scene
by \morphing" a few sequential frames of a moving camera
sequence to a common reference frame. By imposing frame
coherence, even only for limited sequences of two or three
frames, we can still gain substantial speedups at the cost of
a small loss in accuracy.

7 Summary

This paper describes a new method for calculating DOF
based upon the notion of importance of change. Our impor-
tance ordering DOF algorithm is based upon Potmesil and
Chakravarty's post�ltering process. The importance order-
ing DOF method avoids recomputation of large areas of un-
changed pixels, concentrating only on areas of importance.
In multi- frame animations, this results in large speedups
over linear DOF methods without loss in accuracy. We
were able to animate an in-focus object moving between
an extremely blurry foreground and background with sub-
second frame update rates. In addition, DOF computation
can be truncated early by skipping over less important ar-
eas. This gives even faster results, and allows the user to
preview progress.

Importance ordering DOF brings DOF into the feasible
range of real-time applications. Real-time DOF will allow
trial-and-error camera focus adjustment, as well as more re-
alistic rendering.

References

[Boult 92] Boult, T. and Wolberg, G. \Correcting Chro-
matic Aberrations Using Image Warping". In
Image Understanding Workshop, pages 363{
377. Defence Advanced Research Projects
Agency, 1992.

[Chen 87] Chen, Y. \Lens E�ect on Synthetic Im-
age Generation Based on Light Particle The-
ory". In CG International 87, pages 347{366.
Computer Graphics, 1987.

[Cook 84] Cook, R., Porter, T., and Carpenter, L. \Dis-
tributed Ray Tracing". Computer Graph-
ics (Proc. SIGGRAPH), 18(3):137{145, July
1984.

[Cox 71] Cox, A. Photographic Optics. Focal Press,
New York, New York, 1971.

[Haeberli 90] Haeberli, P. and Kurt, A. \The Accumu-
lation Bu�er: Hardware Support for High-
Quality Rendering". Computer Graphics
(Proc. SIGGRAPH), 24(4):309{317, August
1990.

[Kingslake 92] Kingslake, R. Optics in Photography.
SPIE Optical Engineering Press, Belling-
ham, Wash., 1992.

[Lee 90] Lee, H.-C. \Review of Image-Blur Models in
a Photographic System Using the Principles
of Optics". Optical Engineering, 5(29):405{
421, May 1990.

[Pentland 87] Pentland, A. \A New Sense for Depth
of Field". IEEE Trans. Pattern Analysis
and Machine Intelligence, 9(4):523{531, July
1987.

[Potmesil 81] Potmesil, M. and Chakravarty, I. \A Lens
and Aperture Camera Model for Synthetic
Image Generation". Computer Graphics
(Proc. SIGGRAPH), 15(3):297{305, August
1981.

[Savakis 91] Savakis, A. and Trussell, H. \Restorations of
Real Defocused Images Using Blur Models
Based on Geometrical and Di�raction Op-
tics". In SOUTHEASTCON 1991, volume 2,
pages 919{922. IEEE, April 1991.

[Sco�eld 92] Sco�eld, C. 2 1
2
D Depth-of-Field Simulation

for Computer Animation. In Kirk, D., ed-
itor, Graphic Gems III, pages 36{38. Aca-
demic Press Ltd, 1992.

[Sezan 91] Sezan, I., Pavlovic, G., Tekalp, M., and Er-
dem, T. \On Modelling the Focus Blur in
Image Restoration". In ICASSP '91: Acous-
tics, Speech and Signal Processing Confer-
ence, volume 4, pages 2485{2488. IEEE,
April 1991.

[Shinya 94] Shinya, M. \Post-�ltering for Depth of Field
Simulation with Ray Distribution Bu�er". In
GI, pages 59{66. Canadian Information Pro-
cessing Society, 1994.

[vanWijk 92] vanWijk, J. \Rendering Surface Particles".
In Visualization 1992, pages 54{61. IEEE,
October 1992.



[Wixson 90] Wixson, S. \The Display of 3D MRI Data
with Non-Linear Focal Depth Cues". In
Computers in Cardiology, pages 379{380.
IEEE, September 1990.

Figure 5: Intensity Leakage from Linear DOF Filtering

Figure 6: Reduced Intensity Leakage Through Z-Bu�ering



Figure 7: Target Scene Without DOF

Figure 8: Experiment 1 - Object Moves Laterally

Figure 9: Experiment 3 - Near to Far Focus Change

Figure 10: Importance Ordering DOF, M = 15 of Changing
Pixels Recomputed


