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Abstract

Symbolic trajectory evaluation (STE) — a model checking technique based on partial order
representations of state spaces — has been shown to be an effective model checking technique
for largecircuit models. However, thetemporal logicthat it supportsisrestricted, and aswith all
verification techniques has significant performancelimitations. The demandfor verifying larger
circuits, and the need for greater expressiveness requiresthat both these problems be examined.

The thesis develops a suitable logical framework for model checking partially ordered state
spaces: the temporal logic TL and its associated satisfaction relations, based on the quaternary
logic Q. TL isappropriatefor expressing the truth of propositions about partially ordered state
spaces, and has suitable technical propertiesthat allow STE to support aricher temporal logic.
Using this framework, verification conditions called assertionsare defined, a generalised ver-
sion of STE is developed, and three STE-based algorithms are proposed for investigation. Ad-
vantages of this style of proof include: models of time are incorporated; circuits can be de-
scribed at alow level; and correctness properties are expressed at arelatively high level.

A primary contribution of the thesis is the development of a compositional theory for TL
assertions. This compositional theory is supported by the partial order representation of state
gpace. To show the practical use of the compositional theory, two prototype verification sys-
tems were constructed, integrating theorem proving and STE. Datais manipulated efficiently
by using binary decision diagrams as well as symbolic data representation methods. Simple
heuristics and aflexible interface reduce the human cost of verification.

Experiments were undertaken using these prototypes, including verifying two circuitsfrom
the IFIP WG 10.5 Benchmark suite. These experiments showed that the generalised STE al-
gorithms were effective, and that through the use of the compositional theory it is possible to

verify very large circuits completely, including detailed timing properties.
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Chapter 1

I ntroduction

1.1 Motivation

As computers become ubiquitousin our society, as more parts of our global society are affected
directly and indirectly by computers, the need to ensure their safe and correct behaviour in-
creases. The hyperbole encountered in the media tends to make peopl e blasé about the impor-
tance of computers and undervalue the revolutionary effect that computers have had. But, as
our dependency on computersincreases, so does the complexity of computer systems, making
it more difficult to design and build correct systems at the same time as it becomes more impor-
tant to do so. What we can do ‘sort of " right far exceeds what we can do properly.

As a scientific and engineering discipline computer science is intimately concerned about
making predictions about and knowing the properties of computer systems, and it is here that
mathematics and the application of methods of formal mathematicsis critical.

Traditional methods of ensuring correct operation of software and hardware are often not
ableto provide a sufficiently high degree of confidence of correctness. Methods such astesting
and simul ation of systems cannot hopeto provide anywhere near exhaustive coverage of system
behaviour, and while sophisticated test generation techniques exist, the sheer size of systems
makes testing more and more difficult and expensive.

Verification — a mathematical proof of the correctness of a design or implementation —
uses formal methods to obviate these problems. Questions of verification have been at the heart

of computer science since the work of Turing and others [124], and the fundamental limits of
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computation (questions such as computability, tractability and completeness) are of immense
consequence when discussing the theoretical and practical limitations of verification. The the-
oretical importance of verification is reflected in the practical consequences of verification, or
lack thereof, which hasbeenillustrated recently by the extremely well-publicised error inacom-
mercial microprocessor [64, 104, 110].

Thisisnot to suggest that formal methodsare apanacea, and that other approachesare unim-
portant. Indeed, in many safety critical or other important applications, there may be social and
ethical constraints on what should be built. There are many technical and non-technical factors
that will affect the quality of systems that are built. Testing at different levels will continue to
be important.

Moreover, there are limitations on what verification can offer. With respect to hardware
verification, Cohn points out that neither the actual hardware implementation nor the intentions
motivating the device can be subject to forma methods [42]. Verification isinherently limited
by the models used. And, verification is expensive computationally and requires a high level
of expertise. Although there has been some success in the use of formal methods, there are a
number of practical and organisational problemsthat must bedealt with, especially whenformal
methods are first used by an organisation [114, 119].

Over a quarter of a century ago, C.A.R. Hoare summed up his view of the use of formal

methods [82]:

The practice of supplying proofsfor nontrivial programswill not becomewidespread
until considerably more powerful proof techniquesbecomeavailable, and eventhen
will not be easy. But the practical advantages of program proving will eventually
outweigh the difficulties, in view of the increasing costs of programming error. At
present, the method which a programmer uses to convince himself of the correct-
ness of hisprogramisto try it out in particular cases and to modify it if the results
produced do not respond to his intentions. After he has found a reasonably wide
variety of example cases on which the program seems to work, he believes that it
will alwayswork. The time spent in this program testing is often morethan half the
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time spent on the entire programming project; and with a realistic costing of ma-
chine time, two thirds (or more) of the cost of the project isinvolved in removing
errors during this phase.

The cost of removing errors discovered after a program has gone into use is often

greater, particularly in the case of items of computer manufacturer’s software for

which alarge part of the expense is borne by the user. And finally the cost of er-

ror in certain types of program may be amost incalculable — alost spacecraft, a

collapsed building, a crashed aeroplane, or aworld war. Thus, the practice of pro-

gram proving isnot only atheoretical pursuit, followed in theinterests of academic

respectability, but a serious recommendation for the reduction of costs associated

with programming error.

As amanifesto for verification, with minor changes it might well have been written today.
On the surface, re-reading this may seem to be cause for pessimism — what has changed in 25
years? However, thisis misleading. Verification isvery difficult and can be extremely expen-
sivel; this complexity, lack of expertise, and conservatism are problemsin the greater adoption
of formal methods. But, the cost of not performing verification can be much higher?, and as
will be seen in Chapter 2, there have been significant theoretical and practical advances show-
ing that the promise of advantages from formal methods has been realised. The progress that
has been made, the increased needs for the use of verification, and the challenges which these
needs create, make the comments expressed in this extract more relevant today than it was in
1969: we need more powerful proof techniques, and techniques that are easier to use.
Therest of thischapter isstructured asfollows. Section 1.2 introducesthe use of verification

and formal methods. Section 1.3 motivates and describes the underlying approach to verifica-
tion adopted in this thesis. Section 1.4 describes the research contribution of the thesis, and

Section 1.5 outlines the rest of thisthesis.

1Owre et al. estimate that the cost of a partial formal specification and verification of a commercial, 500 000
transistor microprocessor as ‘three man-years' of work [105].
ZIntel estimate the cost of the flaw in the Pentium microprocessor at US$475-million [65].
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1.2 Veification and the Use of For mal M ethods

Consider an example of achip which dividestwo 64-bit numbers. There are 2!?® possible com-
binations of input. Exhaustive testing of all these combinations is an impossible feat — even
if we wereto test 10 combinations a nano-second for a million millenia we would be able to
test fewer than one per cent of cases. Moreover, thistesting would ignore the possibl e effects of
internal state of the chip (it could be that the chip works correctly when initialised, but that the
effect of computing some answers updates internal registers so that subsequent computations
areincorrect).

This exampleillustrates the underlying problem in checking for correctness. The number of
behaviours of a system, particularly if it is reactive or concurrent, is very large. Not only does
this make exhaustive testing impractical, it makes reasoning about computer systems, whether
software or hardware, difficult.

Since testing often cannot be comprehensive, verification is appealing in giving a higher
confidence in the correctness of systems. The use of formal methods allows a mathematical
proof to be given of correctness. Of course, we can only verify what can be modelled mathe-
matically. The verification of the correctness of a chip is the verification of its logical design.
We have some mathematical model of the behaviour of the components (gates or transistors)
and use thisto infer properties of the system. Such a verification is only as good as the model
of the components. Models like this must make simplifications about the physical world. While
often the simplifications made do not affect our ability to make predictions about the behaviour
of theworld, it isimportant to realise the potential problem.

The question of how good the model of theworld is, and the problem of realising alogical
design as a physical artifact are critical problems. However, they are beyond the scope of this
thesis. Focussing on the problem of verifyingalogical designisdifficult enough, and thiswill be

thefocus of thisresearch: thissection introduces verification and some of the research problems
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associated with verification, and Chapter 2 will give afuller survey of verification.

Verification requires that both the specification and the implementation be described using
some mathematical notation with a well-defined formal semantics. There are many choices
opentotheverifier. Common choicesfor describing an implementation arefinite state machines
or labelled transition systems— often these are extracted directly from higher level descriptions
such as programs. A common choice for the specification is atemporal logic, which allowsthe
description of the intended behaviour of a system over time. If theimplementation is described
as afinite state machine and the specification as a set of temporal formulas, verification consists
of showing that the finite state machine satisfies these formulas.

The fundamental problem with verification is that the number of statesin amodel of asys-
tem is exponentially related to the number of system components; this is known as the state
explosion problemFinding automatic verification techniquesis difficult; the general versions
of the problem are undecidable [124] and restricted versions remain undecidable, while others
are NP-hard [55].

Many verification approaches have been suggested — these will be surveyed in the next
chapter. The problems caused by large state spaces manifest themselves in different ways, as
can be seen withtwo of the most popul ar methods, theorem proving and automatic model check-
ing. A large state space imposes significant computational costs on the verificationtask. Thisis
aparticular problem for automatic model checking techniques, which are based on state explo-
ration methods. Although theorem provers may be less sensitive to the size of the state space
in terms of their computational cost, the cost of human intervention is high, often requiring a
high degree of expertise and making the verification more difficult and much more lengthy.

Dealing with the state explosion problem motivates much research in verification, and a
number of methods to limit the problem have been suggested. Some of the methods examined

inthisresearch are:
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¢ The use of good data structures to represent model behaviour is critical. The develop-
ment and use of Ordered Binary Decision Diagrams in the 1980s was very important in

extending the power of automatic verification methods.

e Abstraction. By constructing an abstraction of the model, and proving properties of the
abstraction rather than the model, significant performance benefits may be gained. Of
course the problem of finding the abstraction, and showing that the properties proved of

the abstraction are meaningful of the model are non-trivial.

e Compositionality. Divide and conguer is one of the most common strategies in computer
science, and one which can be very helpful with verification. Property decomposition is
useful when the cost of verification is highly sensitive to the complexity of the properties
to be proved; it provides a way of combining ‘smaller’ resultsinto ‘larger’ ones. Struc-
tural decomposition allows different parts of the system to be reasoned about separately;

these separate results are then used to deduce properties of the entire system.

¢ Hybrid approaches. Different verification techniques have different advantages and dis-
advantages, so by combining different approaches it might be possible to overcome the

individual disadvantages.

The choice of model of the system is critical. This choice affects the way in which properties
are proved, what satisfaction means, and how abstraction and compositionality can be used.
The next section motivates and describes the method of representing state space and model be-

haviour adopted by thisthesis.

1.3 Partially-ordered State Spaces

One of the starting points of this thesis is that partially-ordered sets are effective representa-

tions of state spaces of systems. This section introducesthe necessary mathematical definitions,



Chapter 1. Introduction 7

motivates why partial orders are useful representations, describes how they are used, and then

introduces an appropriate verification method.

1.3.1 Mathematical Definitions

A partial order, R, onaset S isareflexive, anti-symmetricand transitiverelationon S, i.e. R C
S x S and
Vs €S,(s,8) €ER
(81,82), (82,81) € R = 51 = 82
(s1,82),(82,83) € R = (s1,83) € R

Typically, an infix notation is used for partial orders. Thus, if C is a partial order, then
x Cyisusedfor (x,y) € C. A preorderon S isareflexive and transitive relation.

If C isapartia order on S, then it can be extended to cross-products of S and sequences
of S. If (s1,...,8.),(t1,...,tn) € S™, then (s1,...,8,) T (ty,... ,t,) if s, C¢;, fori =
1,...,n. Similarly for sequences (elements of S“), s18283... E tytats... if s, C ¢, fore =
1,2,...

If S isaset with partial order C , and s,t € S, then v istheleast upper bouncor join, of
sandtif s,t C u (i.e itisan upper bound) and if s, C v, then u C v (i.e. it isno larger than
any other upper bound). In thisthesis, the join of s and ¢ will be denoted s LI ¢. In generdl, itis
not the case that every pair of elementsin apartialy ordered set hasajoin— apair of elements
could have many least upper bounds, each of which isincommensurable with the others, or no
least upper bound at all. Similarly, the greatest lower boundf s and ¢, or the meetof s and ¢,
isdenoted s M ¢, and in general not all pairs of elements will have a meet.

A partially ordered set S is alattice if every pair of elements has a meet and join. By in-
duction, in any lattice any finite subset has a least upper bound and a greatest lower bound. S

isacomplete latticaf every set of elements— finite or infinite— has aleast upper bound and
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greatest lower bound. In particular, complete lattices have unique universal upper and lower
bounds. Note that all finite lattices are complete — this is a result that is used extensively in
thisthesis.

If S isacomplete lattice over the partial order C , then, under the natural extensionsof C :

e afinitecross-product of S, S™ isacomplete lattice; and

e S¥, the set of all sequences of S isacomplete lattice.

If S; and S, are two lattices with partial orders <; and <,, and ¢g: S; — S, isafunction,
then ¢ is monotoniowith respect to <, and <, if s <, t impliesthat g(s) <, g(t).

If Sisalatticeand A C S, then A isupward closedfa € A, x € S and a« C = impliesthat
x € A. Similarly, A isdownward closedf « € A, z € S and z C a impliesthat = € A.

Partial orders are used in two important ways in thisthesis. First, given a state space, par-
tial orders are used to compare the information content of states. s C ¢ implies that s has less
information than ¢; if s C ¢ and s C «, then informally we can think of s as representing both ¢
and u, it is an abstraction of these two states. It isfairly easy to generate partial order models
of systems like circuits from gate level descriptions of circuits, and good partial-order models
from switch-level can automatically be extracted in many cases. The second way partial orders

are used is to differentiate between levels of truth, a central themein thisthesis.

1.3.2 Using Partial Orders

Formally, a model can be described by ((S, C),Y), where S is a complete lattice under the
partial order = and the behaviour of the model is represented by the next-state function Y :
S — S which is monotonic with respect to the partial order. The partial order can be extended
to sequences of S.

To seewhy partia orders might be useful, consider as an example of a system which can be

in one of five states. A next state function Y describes the behaviour of the system. The state
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space could be represented by a set containing five el ements. However, thereisan advantagein
representing the state space with a more sophisticated mathematical structure. In this example,
werepresent the state space with thelattice shownin Figure1.1 (notethat thisisjust one possible
lattice). States s,—ss are the ‘real’ states of the system, and the other states are mathematical
abstractions (Y can be extended to operate on all states of the lattice). The partial ordering of
the lattice is an information ordering: the higher up in the ordering we are, the more we know
about which state the system isin. For example, the model being in state s; correspondsto the

system being in state s, or s5. State sq represents a state that has contradictory information.

Figure 1.1: Example Lattice State Space

Stateslike s; areuseful because if one can provethat aproperty holdsof state s, then (given
the right logical framework) that property also holds of s, and s5. There can be a great perfor-
mance advantage in proving properties of states low in the lattice.

Furthermore, state sq plays an important role, since it represents states about which incon-
sistent informationis known. Although such states do not occur in ‘reality’, they are sometimes
artifacts of a verification process.

A human verifier may introduce conditionswhich areinconsistent with each other or the op-
eration of thereal system. These conditions could lead to worthless verification results— ones

that while mathematically valid tell us nothing about the behaviour of the system and may give
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verifiers a false sense of security.® Since it may not be possible to detect these inconsistencies
directly, itisuseful to have states in which inconsistent properties can hold at the sametime. In
such states, a property and its negation may both hold, and we should have away of expressing
this.

In this example, the potential savings are not large, but for circuit models extremely signif-
icant savings can be made. The state space for a circuit model represents the values that the
nodes in the circuit take on, and the next state function can be represented implicitly by sym-
bolic smulation of the circuit.

The nodes in acircuit take on high (H) and low (L) voltage values; there is a natural lattice
in which these voltage values can be embedded. It is useful, both computationally and mathe-
matically, to alow nodes to take on unknown (U) and inconsistent or over-defined (Z) values.

ThesetC = {U,L,H, Z} formsalattice, the partial order given in Figure 1.2.
VA
L H
C
C \U/

Figure 1.2: The Partia Order for C

The state space for acircuit then is naturally represented by C", which is acomplete lattice.
Consider a circuit with » components and a state, s, of the circuit:
s=(v1,...,0p,U,... U),
N— —

n—m

wherethe v;sare boolean values. With theright logical framework, if we can provethat aprop-
erty ¢ holds of the state s, then we can infer directly that the property holdsfor all states above

it in the information ordering.

3¢ A truth that’stold with bad intent,/ Beats all the lies you can invent.’ — William Blake
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If we only consider the subset of states, {L, H}" (those states with known, consistent volt-
ages on each component), there are 2"~ states above s, of theform ( vy, ... , v, ), wherethe
v;S are boolean variables. So, in one step 2"~ ‘interesting’ proofs are done (this step would
also prove properties about states with partial or inconsistent information). Through the judi-
cious use of U values, the number of boolean variables needed to describe the behaviour of the
circuit can be minimised, increasing the size of the circuits that can be dealt with directly.

The purpose of model checking isto determine whether amodel has a certain property —
ideally, a verification method should answer this‘yes or ‘no’. Unfortunately, the performance
benefit gained by using only partial information compromisesthis goal. In the example above,
whileevery property of thecircuit will betrueor false of states s,—ss, therewill be some proper-
tieswhich are neither true nor false of states sy—s3, Since there is insufficient information about
those states.

The converse problem exists with a state like sq. Assigning the same level of credibility
and meaningfulnessto the truth of property ¢ in state sy asthetruth of ¢ in s5 violates common
sense understanding of truth.

Both thesefactorsindicatethat atwo valued | ogic hasinsufficient expressiveness when deal -
ing with a partially-ordered state space. To say that something istrue or false in states like s
and sy may bevery misleading. And, we shall seelater that atwo valued logic also hasaserious

technical defect in this situation.

1.3.3 Symbolic Trajectory Evaluation

Symbolic trgjectory evaluation (STE) isamodel checking approachbased on partially ordered
state spaces. STE computes the next state relation using symbolic simulation. Not only does
thisallow the partially-ordered state space structure to be exploited effectively, it supports accu-

rate, low-level models of circuit structures. (‘ Approach’ isemphasised above because a number
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of different possible STE-based algorithms and implementations exist. Moreover, STE-based
algorithms can be used in different logical frameworks.)

Previous work with STE has shown that it is an effective method for many circuits (e.g.,
see [8, 47]) and it is recognised as one of the few methods with good asymptotic performance
on alarge class of non-trivial circuits[26].

STE is particularly useful in dealing with large circuits, where the circuit is modelled at a
low level (gate or switch level), and where timing is important. Higher-level verifications are
important too, but, as Cohn points out, realistic and detailed models of circuits areimportant to
ensure that the mathematical results proved are meaningful [42].

Although successfully applied, these STE-based approaches are not without their problems.
First, the underlying problem of the state explosion problem still exists, and as with all verifi-
cation methods, better and more powerful techniques must be developed as the computation
bottle-necks are still there. Second, in existing STE-based approaches, the logic used to ex-
press propertiesis limited; for example, disunction and negation is not fully supported. While
thelogic is expressive enough for many problems and the restricted form of the logic leads to
very efficient model checking algorithms, there are problems which need aricher logic. Third,
previous approaches have used a two valued logic, which, in the context of partially ordered
state spaces, is confusing. For arestricted logic, the complication caused by insufficient and
contradictory information can be dealt with adequately in an extra-logical way; thisis inade-

quate for aricher logic.

1.4 Research Contributions

No one verification method is suitable for all verification problems. The choice of model (how
completeand what level), how correctnessisexpressed, and the choice of underlying theoretical

framework and practical tool depends on many factors. the problem domain; what properties
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the verifier wishes to prove; the expertise of those involved; what level of confidence in the
verification has to be obtained; and very importantly the computational and human resources
available.

Theresearchwork presented inthisthesisismotivated by the promisethat trajectory evalua-
tion offersin dealing with large circuits, especially where adetailed model of timingisrequired.
The strength of thisis that not only can the high-level agorithmic descriptions of functional-
ity be verified, but the low-level implementation details can be checked too; verification can
be done on switch-level or detailed gate level circuit descriptions. This is particularly impor-
tant when the transformation from high-level description to low-level implementationis error-
prone. Timing properties can be verified at the micro-level (e.g. checking that circuit values
stabilise by the end of a clock cycle) or at the macro-level (e.g. checking which clock cycle
something happens). Since many other verification methodol ogies have difficulty with detailed
verification of large circuits, thisis an important line of research to develop. This thesis starts
from the premiss that extending the power of STE-based methods by increasing the range and
size of systems that can be verified, and the types of properties that can be expressed in a veri-
fication is asignificant contribution.

The goal of this research is to show that the applicability of symbolic trajectory evalua-
tion can be significantly extended though the devel opment of an appropriate temporal logic for
model checking partially-ordered state spaces, and the use of acompositional theory for trajec-

tory evaluation. The specific contributions of this thesis are listed below.

e Proposing a suitable temporal logic suitable for partially ordered state spaces.

Traditional two-valued logicsare unsuitablefor expressing propertiesof partially-ordered
state spaces, my first thesisisthat afour-valuedlogic issuitable. Thislogic distinguishes
the following four cases: true, false, under-determined, and over-determined. Not only

does the four-valued logic provide a framework for representing our knowledge of the



Chapter 1. Introduction 14

degree of truth of a proposition, it is a suitable technical framework. This framework is
useful not only for STE-based model checking algorithms, but other verification methods
based on partially-ordered state spaces developed in the future.

A quadlification is in order — the use of uncertainty to model both state information and
degrees of truth is epistemological rather than ontological in nature. The question of un-
certainty inthe ‘real world’ iswell outside of the scope of thisthesis. Uncertainty is used
in system models because this offers significant computational advantages. This uncer-
tainty in the model induces an uncertainty in our knowledge of the model. Thus the four-
valued logicis useful to reason about our knowledge of the model, and the use of the four
valued logic is proposed for its utilitarian value, not as an excursion into general philos-
ophy.

¢ Generalisation of symbolic trajectory evaluation based algorithms

My second thesisis that using the four-valued framework, STE-based algorithms can be
generalised to support aricher logic. Providingaricher logicisimportant because it sup-
portsthe verification of agreater range of applications. Moreover, it often makesthe spec-
ification of propertiesclearer, which makes the verification more meaningful for the user;

and more elegant specifications can aso lead to more efficient model checking.

e A Compositional Theory

My third thesis is that a compositional theory for model checking partially-ordered state
spaces can be devel oped, and providesafoundation for overcoming the performancelim-
itations of model checking. The compositional theory allows verification results to be
combined in different waysinto larger results. The structure of the state space lendsitself
to the compositional theory, and together with the compositional theory allows very large
state spaces to be model checked. The key part of the development of the compositional
theory is to show that it is sound; that all results inferred could, at least in principle, be
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directly obtained through trajectory evaluation or some other model checking algorithm.

e Development of a practical tool

While the proposed four-valued logic and compositional theory have theoretical interest,
amajor part of the significance of the contribution of the work comes from my fourth
thesis: that generalised STE and the compositional theory for model checking partially
ordered state spaces using afour-valued logic can be used effectively, making asignificant

contribution to the size and complexity of circuits that can be verified.

This is demonstrated by the development of prototype verification tools. These proto-
typesshow that it iseffectiveto combinetheorem proving and STE-based model-checking
as these approaches complement each other. While the prototypes are not of interest in
themselves, they demonstrate that very large circuits can be formally verified using the
approaches advocated here. The prototypesare al so of interest because of thelessonsthey
provide about tool-making.

1.5 Outlineof Thesis

Therest of the thesis is structured as follows. Chapter 2 gives a brief overview of verification,
andthenreviewsrelated literature. Thisraisestheimportant issuesand problemsof verification,
motivates choices made in this research, and places the research into context.

Chapter 3 presents the four-valued logic @, and the temporal logic, TL, based on Q. After
defining thelogics, theissue of satisfaction — what it meansto say that a certain property holds
of a state or sequence of states— is explored and different alternatives given.

The theory of generalised symbolic trgjectory evaluation is given in Chapter 4 using the
theory presented in Chapter 3. Although the theory of trajectory evaluation is general, at this

stage its major application areais circuit verification.
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Chapter 5 develops the theory of composition for the verification of partially-ordered state
spaces. The compositional inferencerules are explained, and shown to be sound. Simpleexam-
ples are given. The compositional theory is very important in increasing the range of systems
that can be verified using trajectory evaluation.

Chapter 6 tiesthe preceding chapters together and shows how the theory can be practically
implemented. Issues of data and state representation are discussed, practical model checking
algorithms based on STE outlined, aswell as how the verification style of model checkers and
theorem provers can be combined.

Chapter 7 isdevoted to example verifications. A few simpleverification examplesaregiven
to show thestyle of verification, and then some large verification examplesare given. Thischap-
ter shows that the methodology proposed here can be effectively implemented.

Chapter 8 isaconclusion, and the appendix contains some of the more technical proofsand

example programs.

A Guidetothe Reader

This thesis contains many definitions, theorems and a significant level of mathematical nota-
tion. A reader may find theindex at the end of the thesis and the List of Important Definitions,
Theorems and Lemmas starting at page ix useful in finding cross-references.

The nature of theresearch requiresthat thethesis contain many proofs. Many of these proofs
are highly technical and uninteresting in themselves; this does not make for the easiest or most
captivating reading, for which | apologise. | havetried to make the exposition of proofs as clear
as possible, and have adopted the following convention for proofs. Each step in the proof con-
tainsthree parts, laid out in three columns; alabel, aclaim, and ajustification. Thejustification

may refer to previous steps in the proof using the labels given.
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Lemma 1.1 (Example).
If S isacomplete lattice under the partial order C , and g : S — S is monotonic with respect

to T, thenforal s,t € S, g(s)Ug(t) Cg(sUt).

Proof.
(1) sCsuUt Definition of join.
(20 tCsut Definition of join.
3) g(s)Eg(sUt) From (1) by monotonicity of g
4) g(t)Sg(sU?) From (2) by monotonicity of ¢

(B) gls)Ugt)Tg(sUt) From (3), (4) by property of join



Chapter 2

Issuesin Verification

This chapter is intended to place the thesis work in perspective and relate the research to other
work. It isnot intended as a comprehensive survey of verification, and therefore some simpli-
fications are made and important verification methods skimmed over. For fuller surveys on the

topic see[73, 97, 119].

Overview of Chapter

Section 2.1 briefly introduces a method of representing boolean functions. Since boolean ex-
pressions are used extensively in verification for a variety of purposes, efficient methods for
representing and manipulating them is essential.

The review of verification starts with Section 2.2, which introduces two of the main styles
of verification. In one style, verifying a model means checking whether the model has certain
properties. In the other method, two models are compared to see whether a certain relationship
holds between the models (for example whether they have equivalent observable behaviour).

For each of the styles of verification, there are anumber of possible verification techniques.
Section 2.3 gives a brief overview of some of the large number of verification techniques, dif-
fering in approach and detail, that have been proposed. Section 2.4 examines one of these proof
techniquesin moredetail; the method of symbolic trajectory eval uation proposed by Bryant and
Seger formsthe basis of thisthesis.

Dueto the computational complexity of verification, al these methods havelimitations, and

18
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research continuesin trying to improveupon them. Much of thisresearchinimproving verifica-
tion techniques deal s with the search for better algorithms and data structures. Althoughthisis
very important, the underlying complexity limitations indicate that something more is needed.
Two of the most promising lines of research in this regard have been the work in composition-
ality and abstraction. They are discussed in Sections 2.5 and 2.6.

Section 2.7 concludes the review with a brief discussion of theissues raised in this chapter.

2.1 Binary Decision Diagrams

Many verification techniques — including STE — represent boolean expressions with a data
structure called (ordered) Binary Decision Diagrams (BDDs). BDDs are a compact, canonical
method for manipulation of boolean expressions[22]. A BDD isadirected, acyclic graph, with
internal vertices representing the variables appearing in the expression. BDDs are ordered in
the sense that on all paths in the graph, variables appear in the same order.

Using this representation, operations such as conjunction, negation and quantification and
equivalence testing can be efficiently implemented.

Boolean expressions are used to represent state information and truth of propositions, so it
iscritical that they can be manipulated efficiently. BDD-based approaches have been extremely
successful. Unfortunately, although BDDs are a very compact representation, there are things
that cannot be represented efficiently. This is not surprising; the satisfaction problem [63] can
be represented and solved using BDDs so if a BDD representation polynomial in size could
be constructed in polynomial time, this would imply that P=NP. Some arithmetic problems
cannot be represented efficiently. For example, multiplication of two integers (represented as
bit-vectors) requires BDDs exponentia in size. For a discussion of the limitations of BDDs,

see[21].
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One of the critical issueswhen BDDs are used is the ordering of variablesused in the con-
struction of the graph. The size of the resulting BDD may be highly dependent on the variable
ordering, so it is vital that a good variable ordering is used. In general human intervention is
needed to determine a good ordering, but fortunately for many real problems a good variable
ordering can befound, and heuristicsfor dynamic variable ordering can be applied successfully.
So, while the need to find good variable orderingsis an issue, it is not a fundamental problem
with BDD-based methods.

Although BDD-based approaches arevery successful, there areanumber of other successful
approaches that do not use BDDs. Some of these are described below. The success of BDDs
has also motivated research on other data structures for representing data that BDDs cannot

represent efficiently (these are mentioned below t00).

2.2 Stylesof Verification

To say that a program or circuit is verified isto say that there is a proof that certain mathemat-
ical statements are true of a model of that system. This section looks at the different ways of
expressing these statements, while Section 2.3 looks at how the statements are proved to hold.

Section 2.2.1 introduces the property checking approach. The idea here is that thereis a
formal language for expressing properties of the system, and verification consists of proving
that these properties hold. Section 2.2.2 leads on from this by introducing modal and temporal
logics, these arelogicsthat are commonly used to express propertiesof interest. Thisisthestyle
of verification adopted in thisthesis.

Section 2.2.3 introducesthe other style of verification, model comparison. Here, two models
of the program or circuit are expressed formally (typically, a specification and an implementa-

tion), and verification consists of proving that the two models are equivalent.
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2.2.1 Property Checking

One major approach to verification is to determine whether a description of aprogram? has (or
does not have) a set of properties. Turing showed that this problem — one of the foundational
problems in computer science — is, in general, undecidable: for example, there is no general
method for determining whether a program halts, or whether it prints out a zero [124].

One of the landmarksin program verification was the devel opment of the Floyd-Hoarelogic
used to describe the behaviour of sequential programs (introduced in [82], and see [67] for a
good introduction). Inthislogic, verification results are written in the form { A} P{C'}, where
Aand C' arelogical formulas and P is the program segment. This Hoare triple says that if A
holds when P starts executing, then if P completes then C' will hold. There have been many
other approaches used to describe the behaviour of sequential (see[7] asagood example of this
style of proof) and concurrent programs (see [96] for an example).

This style of verification can be used for small programs, and can be appropriate for small,
complicated algorithms. However, on alarger scale it is not useful as it is just too tedious to
use, especialy for hardware systems.

There are many ways of expressing properties. For example, one approach has been to
perform reachability analysis on the program (e.g. discovering whether there are any deadlock
states). Another approach — the one adopted in this research — is to use some form of logic

to express properties. Often modal or temporal logics are used for reactive systems.

2.2.2 Modal and Temporal Logics

Modal logics are systems of logic for describing and reasoning about contingent truths. The

type of modal and temporal logics of interest here are used to describe the behaviour of systems

! Astheterm ‘system’ can be ambiguoussince it can refer to the system being verified, or the tool performing
verification, theterm ‘program’ isused in a generic sense to describe the system being verified, whether or not the
system is represented as a program, afinite state machine, a netlist etc.
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that have dynamic or evolving structure. Many of these logics have been proposed; see the
works of Galton [62], Emerson [52] and Stirling [120, 121] for overviews.

Typically, aset of formulas of the logic form the specification of the program being verified.
The verification task isto test whether the mathematical structure representing the program sat-
isfies this set of formulas.

The wide variety of modal logics reflects both the wide variety of application and complex-
ity of the topic. Modal logics and the mathematical structures over which they are interpreted
differ in expressiveness. Issues such as non-determinism and the ability to express recurring
properties greatly affect issues such as usefulness, decidability and computational compl exity.

Temporal logics are particularly useful in verification. They can be used to specify the be-
haviour of a system over time. Time can bea‘real’ time, or some abstraction thereof; and can
also be modelled as continuous or discrete. The method proposed in this thesis has the advan-
tage of being able to model time fairly accurately.

Themost powerful logic of interest hereisthefamily of modal -calculi, variously attributed
to Park and Kozen. The expressive power of the ;.-calculi, determined by the modal operators
available, have a marked effect on the decidability of logic: for example, the linear time modal
p-calculus is decidable, while the branching time modal -calculusis not [55].

Other modal and temporal logicsarerestricted versionsof they-calculus. CTL*, CTL, LTL,
and the Hennessy-Milner logic are good examples of logics which can be encoded within aver-
sion of the p-calculus. There are anumber of ways in which temporal logics can be classified
(see [52] for details). The most important question is whether the logic is branching time or

linear time (see [53] for some discussion of this).
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2.2.3 Model Comparison

In this approach, two models or descriptions are compared to see whether a given relationship
holds between them. The most important relationship is equivalence, but there are other useful
relationships. One way of using this form of checking is for one description to be a specifi-
cation of a system and the other description to be an implementation. Showing that a formal
relationship holds between the two descriptions shows that the implementation is correct.
General versions of this problem are undecidable. Turing machine equivalence is the best
example, and these decidability results apply to popular methods such as process algebras (as
CCS can encode Turing machinesthishasdirect relevanceto muchwork inthisarea). However,
there arerestricted, useful versions of the problem which are decidable (see, for example[32]).
Thereareanumber of different waysinwhich models can berepresented. What equivalence
and more general types of relationships mean and how they are checked depends very heavily

on this. Three of the main approaches are:

1. Process algebras such as CCS [102] and CSP [20]. There are many different types of
equivalence which depend on how fine-grained an equivalence is desired (see [102] for

adiscussion of this).

There are a number of other relationships which are defined as preorders on processes.
These can be used to define correct implementations of specifications. See [80] for ex-

amples.

A good example of this approach isthe LOTOS specification language which is based on
CCSand CSP[15]. Equivaence and implementation relationships can be used to show

that one LOTOS program is a correct implementation of another.

2. Language containment. If the descriptions are finite state machines, then equivalence
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may belanguage equivalence. Some verification problems can be posed aslanguage con-

tainment problems. See [73] for an overview.

3. Logic. Equivalence islogical equivalence. Other logical relationships such as implica-
tion may be suitable for showing that amodel is a correct implementation of a specifica-

tion. See [94] for an example.

Other approaches exist (e.g. [74]).

Thereisaclose relation between equival ence checking and property checking. In CCS, two
processes are bisimilar exactly when they satisfy the same set of formulas of the Hennessy-
Milner logic [81]. Grumberg and Kurshan have shown arelationship between classes of CTL*

formulas and language equivalence or containment problems[71].

2.3 Proof Techniques

Now that we have defined what we mean by program correctness, we can examine proof tech-
niques. Wefirst look at why formal proof techniques are important, and then examine some of
these techniques: Section 2.3.1 discusses theorem proving; Section 2.3.2 discusses automatic
techniques suitable for proving equivalences; and Section 2.3.3 discusses model checking, an
approach that can be used to prove that models of systems satisfy temporal logic formulas. Sec-
tion 2.4 presents the model checking that forms the basis of this thesis in more detail.

Hand proof techniques are the most ubiquitousfor a variety of reasons. They are powerful
methods which allow a variety of proof techniques, appropriate informal arguments, and ab-
stractions to be made. However, there are two important reasons why hand proofs are avoided
in the context of verification, particularly hardware verification.

First, proofs are extremely tedious to perform. Often they are not complex but have large
amountsof intricatedetail whichisdifficult and unpleasant for humansto keep track of. Second,

errors are extremely likely. These two factors are related.
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Some examplesillustratethis. In[102], Milner presentsthe ‘jobshop’ example — a specifi-
cation, implementation and a proof of weak bisimulation between the two. The proof has many
errors. Most of these errorsaretrivial; however, thereis a serious theoretical error on which the
proof relies which was only detected much later. It must be emphasised that thisis a best case
scenario for hand proofs: the models and notation are fairly abstract, the proofsfairly short and
interesting in themselves, and the person making the proof of undoubted mathematical ability.?

There are many other examples like this; they show how fallible and time-consuming hand
proofsare(see[112]). Thealternativeto hand proofsare machine checked and automated proofs.
A machine checked proof isa proof that has each step validated by a program that implements
some logical inference system. An automated proof is one which is generated without human
intervention according to some set of sound rules. Often the performance of these systems may
depend on extrainformation given by the human verifier. These approaches have been applied

to both the equivalence and property-checking types of problems.

2.3.1 Theorem Proving

A theorem provers a program that implements aformal logic. Using this program, statements
inthelogical system can be proved. Typically, thelogical system consists of aset of axiomsand
inferencerules, and the program ensuresthat all theoremsare soundin that they arederived from
the axioms by application of theinference rules. Although much work has gone into automatic
theorem proving the key aspect is mechanically checking each step rather than the automatic
derivation of the proof.

Theorem provers can be used to prove theorems about any mathematical system. Withinthe

2For hardware verification the converse istrue: the level of abstraction is low with intricate detail, the proofs
arelong and tediousand of no intrinsicinterest, and few people doing verification are Turing Award winners. This
criticism extends to other domains too. In arecent paper, Bezem and Groote present the verification of a network
protocol in a recent paper [13]. The proof is very lengthy and detailed. The claim that thisis not such a problem
because the proofsare ‘trivial’ is unconvincing.
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verification area, thereis a strong theorem proving community and arange of different theorem
provershave been used in verification tasks. Some examples of theorem proversand work done

with theorem provers are:

e HOL [68]. HOL isoneof thefirst and best known theorem provers. It was built on work
done on the development of LCF [69] in the 1970s (see [60] for a brief history). HOL
implements a strongly typed higher-order predicate logic. The user’s interface to HOL
isthrough ML [107], apolymorphic, typed functional language. Thisinterface promotes
both security (by ensuring through the type system that only theorems proven in HOL can
be proved) and flexibility by allowing the programmer access to a fully programmable

script language. HOL has been used on the verification of a number of systems.

e Boyer-Moore[17]. Thistheorem prover isbased on aquantifier-freefirst order logic. Itis
heavily automated, although a user can (must?) ‘train’ the prover to deal with particular
proofs. An example of a substantial verification effort using this system can be found

in[86].

e PVS[106, 105] isalso theorem prover based on atyped, higher-order logic. It hasanum-
ber of decision procedures built in which alow a number of the proof obligationsto be

discharged automatically. See [112] for an example use of PV S.

Theorem provers can be used for either equivalence or property checking. For example, if
both the specification, S, and implementation, /, are logical formulas then asking whether 5
and / are equivalent means asking whether S = [ isatheorem in thelogic.

In the property checking approach, Gordon shows how asimple theorem prover can be used
to prove program correctness using the Floyd-Hoare logic [67]. Theorem provers have also
been used in model checking; some work is directly relevant to thisthesis. For example, Brad-

field describes a * proof assistant’ for model checking p-calculus formulas over Petri nets. The
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proof system isatableau-based one (see below). At each step inthe proof either the prover itself
applies aproof rule, or the user does[18].

Sometimes, this type of approach leads to a hybrid system which uses both the automatic
model checking algorithmsdescribed bel ow and theorem proving approaches—thisisdiscussed

in more detail later.

2.3.2 Automatic Equivalence and Other Testing

For certain systems which can be represented as labelled transition systems (such as certain
classes of CCS agents), the Concurrency Workbench has agorithms for computing different
kinds of equivalences and preorders [41]. The two advantages of using equivalences such as
bisimulation over language equivalence are:

e Bisimulation can distinguish behaviour which language equivalence can not.

¢ There are significant computational advantages. For example, deciding regular language
equivalence is PSPA CE-compl ete, while the best known agorithm for deciding bisimu-
lation between two regular processesis O(m log n) where m isthe number of transitions

in the process and » is the number of states [103].

For finite state systems, CCS agents can be represented using BDDs|[54], from which equiv-
alence relations can be computed [27]. Other work in this line includes a tool which can com-
pute equivalence of LOTOS programs[56].

Other approaches can also be applied to transition systems, see ([1, 14]).

2.3.3 Mode Checking

Given amodel of a system behaviour, M, and atemporal logic formula ¢ interpreted over M,

the model checking problem is to find out whether ¢ holds of M, or whether A is a model of
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g. Typicaly thisiswrittenas M = ¢. Variations such as finding whether a set of states or a set
of sequences of states satisfies the formulaare used too.

Model checking is a difficult problem: some useful versions are undecidable [55], and the
satisfiability and model checking problemsfor even simple modal logics are NP-hard [63, 52].
For finite state systems, whether a structureis amodel of a system can be determined directly
from the satisfaction relation by explicit state enumeration: however, except for small systems

thisisrarely feasible.

Tableau-based M ethods

The tableau-based method is one of the best-known methods and a number of variations have
been implemented (the best known implementation is the Concurrency Workbench [41]). Al-
though the underlying proof method isvery different to the method of symbolic trajectory eval-
uation, this method is of some relevance because tableau systems use rules of inference, and be-
cause there has been much work in compositional reasoning. Good introductionsto the tableau
method are [19, 121]. Note that tableau methods do not always require the construction of the
global state space.

A tableauisaproof treebuilt fromaroot sequent of theform S = & (thisisthegoal sequent).
Thetreeisbuilt using one of the tableau rules until all the leaves of the tree areterminals. If all
the terminals are ‘ successful’ then S' |= ®. The most important and difficult part of the tableau
construction is dealing with the fixed-point operators, particularly the least fixed point operator.

Stirlingand Walker proposed a sound and compl ete tableau system for finite-state processes[122].
They showed that the tableau-construction always terminates, making this method an effective
model checking scheme. They aso show how the model checking algorithm of Winskel [127]
can be incorporated in a tableau scheme.

Bradfield extended thetableau approach toinfinite state systems[19]. Dealingwith thefixed
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point operators is more complicated as the definition of a successful terminal takes some care.
His approach is sound and complete. If S = @, then using the rules automatically will derive
S+ @, ,and S F ¢ will only be derived when S |= ®. Note, however, that if S [~ &, his

algorithm may not terminate.

Automatic M odel Checking through State Exploration

For finitestate systems, it isfeasibleto model check somelogicsthrough state exploration meth-
ods. Although model checking expressive temporal logics such as CTL* is very expensive
(the problem is PSPACE-compl ete), for less expressive | ogics there are better results (note that
model checking LTL isalso PSPACE-complete). The best known result isonefor model check-
ing the subset of CTL* known as CTL [36]. This algorithm works by building the state tran-
sition graph, and then using graph algorithmsto label the states in the graph. The algorithmis
O(]S||¢|) where | S| isthe number of states in the system, and || isthe size of the formula ¢.
Recently this work has been extended to show how aricher logic CTL?* can be model checked
with the same complexity result [12].

Although the algorithm is linear in the size of the state space, thisis asignificant limitation
sincethe size of the state space in many realistic systemsisextremely large (avery small circuit
with only 100 state holding components can have a reachable state space of size 2!°).

State exploration methods can be extended to some types of infinite systems. Burkart and
Steffen have devel oped astate expl oration method for effective model checking of the alternation-
free u-calculusfor context-freeprocesses[29]. (A local model checking version based on tableaux

has also been developed [89]).



Chapter 2. Issues in Verification 30

Symbolic Model Checking

For finite systems symbolic model checking methods are very popular and have had success in
a number of applications. The use of BDDs has revolutionised model checking by providing
a compact method for implicit state representation, thereby increasing by orders of magnitude
the size of the state space that can be dealt with. (Other approaches exist too [14, 46]: however
BDDs seem to be most effective for alarge class of problems.)

The most well-known work based on symbolic model checking and BDDs has emerged
from Carnegie Mellon University. A number of model checking algorithms for the modal -
calculus and other logics have been developed [26, 27]. The SMV verification system based on
these ideas has successfully verified a range of systems[26, 98].

The basic idea of these approachesisto represent the transition relation of the system under
consideration with aBDD. A set of statesis also represented with aBDD. Given aformula of
the temporal logic, the model checking task isto compute the set of states that satisfy the for-
mula. The operations defined on BDDs allow the computation of operations such as existential
guantification, conjunction etc. Using these BDD operations, it is possible to compute the set
of reachable states and the set of states satisfying a given formula.

Although these methods have had some success, the computational complexity and cost
of model checking remains a significant stumbling block. Symbolic CTL model checking is
PSPA CE-complete in the number of variables needed to encode the state space [98]. A number
of approaches have been suggested to improvethe performance of the algorithm: compositional
approaches; abstraction; and improving representational methods (for example, partitioning the
next state relation [26]).

That BDDs revol utionised automatic model checking indicates the importance of good and

appropriate data structures, and motivates the search for new ones, and considerable work is
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being done on extending BDD-style structures and devel oping new ones[24, 34, 99]).2

All these approaches to improve symbolic model checking need to be pursued. Circuits
with wide data paths are not suitable for verification with SMV, which itself is unable to verify
circuits with arithmetic data. However, by extending the method through the use of abstrac-
tion [39] or more sophisticated data structures [35] such circuits can be verified.

There are other symbolic model checking approaches. Symbolic trgjectory evaluation — a
central part of thisthesis—isone. It differsfromother approachesinthe novel way inwhichthe
state space is represented. Although the logic which it supportsis limited it has been success-
fully used in hardware verification [8, 47]. Full details are given later. Other symbolic methods
have been proposed in [16, 43, 87].

Combining Theorem Proving and M odel Checking

Since combining model checking and theorem proving has considerable promise, research has
been done in combining the two approaches in different technical frameworks.

Seger and Joyce linked the HOL and Voss systems. This allows the HOL theorem proving
system to reason about propertiesof acircuit by using themodel checkingfacilitiesof Voss[117].
Although there are some similarities between the prototypes presented in this thesis, and the

HOL-Voss system, there are two important distinctions:

¢ One of the important uses of a theorem prover with the Voss system is to reason about
objectsthat do not have concise BDD representationsin all cases— for example, integer
expressions. Rather than providing ageneral and powerful theorem prover suchasHOL,
simple semi-automated methods are used to provide the prototypes the ability to do this

(see Section 6.2). Although not as powerful as HOL, it is much simpler.

e The prototypes provide specialised theorem proversthat implement a compositional the-

ory for STE. The use of this compositional theory increases the power of the verification

3Some of these approaches are applicable to other model checking approaches too.
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approach significantly.

Kurshan and Lamport have combined the COSPAN model checker with the TLP theorem
prover [93]. The model checker proves properties of components of the system, which are then
tranglated into a form suitable for the theorem prover. In order to prove the overall result, a
number of sub-results need to be proved. Not only isthe way in which composition is handled
different to the way it isin this thesis, there are also two very important practical distinctions:
first, their approachis not entirely mechanised; second their approach relieson linking two quite
distinct tools and using two distinct formalisms, rather than one integrated tool and verification
style.

The style of the method of Hungar [84], who also links model checking and theorem prov-
ing, is closest to the method of combining model checking and theorem proving proposed in
this thesis. The model is given by a Kripke structure representing the semantics of an Occam
program, and the properties are expressed in avariant of CTL. The results generated by model
checking are combined using the LAMBDA theorem prover. The proof system consists of rules
for inferring results using an assume-guarantee style of reasoning. Theinferencerulesused are:
embedding, modus ponens, conjunction and weakening. Given an Occam program consisting
of a number of processes, properties can be proven of each process using the model checker,
and the properties combined.

Animportant distinction between the model used in[84] and the model used in thisthesisis
that in Hungar’ sframework, each process hasits own model — the model for the entire program
isthe composition of these models. Inthe compositional theory proposed in thisthesis, amodel
isgiven for the entire system, and it is not necessary to give amodel for the components of the
system.

Rajan et al. have combined a«-calculusmodel checker with PV Sby using the model checker

asadecision procedurefor PV S[111]. They demonstrate how such an integrated system can be
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used. Using theideas of Clarke et al. discussed below, they create an abstraction of acircuit to
be verified. Using theorem proving they show that the abstraction has the required properties.
Using model checking they show that the abstraction satisfies the specification.

In an aternative approach, Dingel and Filkorn verify abstractions of a system using model
checking, using certain assumptions about the system environment [49]. Theorem proving is
used to prove the correctness of the abstraction and to ensure that the system environment as-

sumptions are met.

2.4 Symbolic Trajectory Evaluation

This section briefly outlinesthe existing STE based approach. Thisisuseful in thelater discus-
sion and will help illustrate some of the novel aspects of the thesis. Symbolic trajectory eval-
uation was first proposed in [23] and the full theory can be found in [116]. Good examples of
verification using STE can befoundin [8, 47]. This sectionis heavily based on the presentation
of STE found in [77].

The model of a system issimple and general, atuple M = ((S, C),Y), where(S, C ) is
a complete lattice (S being the state space and T a partial order on §) and Y is a monotone
successor functionY: § — S. A sequenceisatrajectoryif and only if Y(o') C o' for ¢ >

0.

24.1 Trajectory formulas

The key to the efficiency of tragjectory evaluation is the restricted language that can be used to
phrase questions about the model structure. The basic specification language used isvery sim-
ple, but expressive enough to capture many of the properties we need to check.

A predicateover S isamapping from S to thelattice {F, T} (where F C T). Informally, a
predicate describes a potential state of the system: e.g., a predicate might be (A is ) which
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says that node A hasthe value x. A predicate is simpleif it is monotone and there is a unique

weskest s € S forwhich p(s) = T. TF, the set of trajectory formulags defined recursively as:

1. Simplepredicates. Every simple predicate over S isatrgectory formula. Simple pred-

icates are used to describe simple, instantaneous properties of the model.

2. Conjunction: (Fy A Fy) isatragjectory formulaif F and F; aretrajectory formulas. Con-
junction alows the combination of formulas expressing simpler propertiesinto aformula

expressing a more complex property.

3. Domain restriction: (e — F') isatrgjectory formulaif F' is atrajectory formulaand e
is a boolean expression over a set of boolean variables, V. Through the use of boolean
variables, a large number of scalar formulas (formulas not containing variables) can be

concisely encoded into one symbolic formula

4. Next time: (NF') isatragjectory formulaif F' isatrajectory formula. Using the next time

operator allows the expression of propertiesthat evolve over time.

An interpretation of variablesis afunction, ¢ : V — {F, T}. Aninterpretation of variables
can be extended inductively to be an interpretation of expressions. The truth semantics of a
tragjectory formulais defined relative to amodel structure, atrajectory, and an interpretation, ¢.

Whether a sequence & satisfies aformula F' (writtenas & = F) is given by the following
rules.

1. 05 = piff pog) = T.

220 (FiAF)iffo = Flando = F;

3.0 (e — F)iff ¢(e) = (o = F), for dl interpretations, ¢.

4. 0% ENFiffs = F.
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Given aformula F' thereis a unique defining sequenceé, which is the weakest sequence that
satisfies the formula* The defining sequence can usually be computed very efficiently. From
dr auniquedefining trajectory, can be computed (often efficiently). Thisistheweakest tra-
jectory which satisfies the formula— all trajectories which satisfy the formulamust be greater
than it in terms of the partial order.

If the main verification task can be phrased in terms of ‘for every trgjectory o that satisfies
thetrajectory formula A, verify that the trajectory also satisfies theformulaC”, verification can
be carried out by computing the defining trajectory for the formula A and checking that the
formula C' holds for this trgjectory. Such results are called trajectory assertiongnd we write

them as = (| A=>C'). The fundamental result of STE is given below.

Theorem 2.1.
Assume A and C' are two trajectory formulas. Let 74 be the defining trajectory for formula A

and let 5 be the defining sequence for formulaC'. Then = ( A=>C") iff 6c T 74.0

A key reason why STE isan efficient verification method is that the cost of performing STE
is more dependent on the size of the formula being checked than the size of the system model.

STE uses BDDs for manipulation of boolean expressions.

2.5 Compositional Reasoning

The main problem with model checking is the state explosion problem — the state space grows
exponentially with system size. Two methods have some popul arity in attacking this problem:
compositional methods and abstraction. While they cannot solve the problem in general, they
do offer significant improvementsin performance.

Compositional reasoning is acritical aspect of program verification. The following advan-

tages are stated in [5]:
4“Wesakest' is defined in terms of the partial order.
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e Modularity: if amodule of asystem is replaced, only the module need be verified;

e Indesign or synthesis it is possible to have undefined parts of a system and still be able

to reason about it;
e By decomposing the verification task, verification can be made smpler;

e Re-use of verification results is promoted.

The difficulty of compositional reasoning isthat oftenit is the case that a particular compo-
nent may not have a property that we desire of it when placed in ageneral environment. How-
ever, when placed in the context of the rest of the system, then it does display the property.
See [3] for some discussion of the issues involved in this type of reasoning.

For tableau-based methods, a number of approaches have been suggested. Andersen et al.
have proposed a proof system for determining the whether processes of a general process alge-
bra[5] satisfy aformula. They show that a set of 39 inference rulesis sound, and —for a class
of finite-state systems — is complete. Although thisis an important contribution, it is difficult
to assess the impact of this work without substantive examples. Furthermore, to be practical |
believe the proof system needs some form of mechanical assistance.

In related work, Berezine has proposed two model checking algorithms for fragments of
the u-calculus [11] (here model checking asks whether p |= ® — does the process p satisfy ).
Both methods can be used to verify problems of theformp x ¢ = ®, wherep x ¢ representsthe
composition of processes p and g. Thefirst takes the problem and constructs aformula®, such
that ¢ = @, iff p x ¢ = ®. The second constructs two formulas ¢, and ¢, suchthat p x ¢ = @
iff ¢ = ®,andp E ¢,. Asthework is preliminary, it is difficult to assess the applicability and
effectiveness of this approach.

Compositional techniques have been proposed for symbolic model checking. Clarke et al.
have proposed a method for systems of concurrent processes [40]. To model check P||E | ¢

may not be computationally feasible (where P representsaprocess of interest, and £ represents
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the environment). They show how an interfaceprocess, A, can be constructed such that under
certainconditions P|| £ |= ¢ if P||A = ¢. Thepoint of thisisthat the state graph of P|| A canbe
considerably smaller that of /|| £. Although this method has theoretical interest and there are
examples of systemsfor which it works, it has not been established how applicable this method
is, and how easy (in terms of human and computation cost) it is to establish the conditions for
correct application.

Another approach to compositional reasoning — modular verification — is based on defin-
ing apreorder relation, <, between models[72, 95]. This preorder isbased on asimulation rela-
tionship between the models and has the property that if M; < M, and M, = ¢ then M, E ¢.
Suppose we wish to show that a process M when placed in its environment satisfies a property
¢. While M may not in general satisfy ¢, it may satisfy it whenever its environment satisfies
another property «». Given the formula v, there exists a ‘tableau’ A7, which is the strongest
element in the preorder which satisfies . If £ < M, and M||M, |= ¢, then by the property
of the preorder, M || E = ¢. The verification therefore includes proving the simulation relation
and performing model checking. Both of these steps are automatic, using symbolic algorithms.
This method is only applicable to finite state systems.

Aziz et al. propose a compositional method dependent on the formula being checked [6].
The model is represented as a composition of state machines. Given aformulato be checked,
an equivalence relation is computed for each machine which preservesthe truth of the formula.
Using these equivalence relations, quotient machines are constructed and the composition of
these machines computed. This composition will have a smaller state space than the original
composition and can be used to determined the correctness of the formula.

Other compositional approaches exist too. Some of these focus on the question of the re-
finement of a specification into an implementation. They tend to use hand proofs. Examples of

other approachesinclude[3, 89, 93].
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2.6 Abstraction

The idea behind abstraction isthat instead of verifying property f/ of model A, we verify prop-
erty f4 of model A4 and the answer we get helps us answer the original problem. The system
M 4 is an abstraction of the system M.

One possibility isfor the abstraction M 4 to be equivalent (e.g. bisimilar) to M. This some-
times |leads to performance advantages if the state space of M, issmaller than M, but usually
this type of abstraction is used in model comparison (e.g. asin [74]).

Typically, the behaviour of an abstraction isnot equivalent to the underlying model. The ab-
stractionsareconservativenthat A4 satisfies f4 impliesthat M satisfies f (but not necessarily
the converse). Some examples of abstraction methods are [50, 70, 83, 95].

In hardware verification, abstraction is particularly needed in dealing with the data path of
circuits. A drawback of abstraction isthat it takes effort to both come up with the suitable ab-
straction (see [37, 123]) and prove that the abstraction is conservative. For an example of this
type of proof see [28].

Clarkeet al. define abstractionsand approximations[39]. They show how an approximation
can be abstracted from the program text without having to construct the model of the system.
They provide a number of possible abstractions: congruence modulo an integer (the use of the
Chinese remainder theorem); representation by logarithm; single-bit and product abstraction;

and symbolic abstraction. They show how thisis used on a number of examples.

2.7 Discussion

Although equivalence checking is also attractive, this thesis explores one model checking be-
cause of itssuccess in verifying large state spaces. Moreover, in some situationsit is not appro-
priate or possible to have aformal model to compare an implementation against (although work

such as [130] offers some ideas in how such amodel could be built from a set of properties).
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Theorem provers and model checkers both have strong adherents because both methods
have had successes. However, they both have weaknesses. Automatic verification techniques
have the advantage of being automated, but have limitations on the size of the systems that they
can deal with, and theorem proving methods, while very powerful, are still computationally in-
tensive and require a great deal of skill. Work such as [77, 84, 93, 117] among others shows
that there is much to be gained from combining the approaches.

The vision adopted in this research is that symbolic model checking is used to prove low-
level properties of the system which would be very tedious for the theorem prover, while the
theorem prover — partly automated — is used to prove higher-level properties.

Efficient model checking is very important. Although tableau-based methods are powerful
and attractive in some situations, BDD-based methods are more appropriatefor finite state sys-
tems, especially VLSI circuits. Although progress has been made, much work remains to be
done to improve performance by examining issues such as abstraction, composition and meth-
ods for state and transition relation representation.

There are many different criteriafor evaluating verification methods, depending on appli-
cation and setting (for some discussion of this, see [119]). Three criteriafor evaluating the ap-
proaches discussed above are:

1. Range of application;

2. Performance;

3. Degree of automation/ease of use.

For afuller discussion of the use of verification methods in industry, see [119].

A problem with this area is that because verification is very difficult, methods tend to be
suited for particular applications. Often it isdifficult to compare approaches because they solve
different problems. The types of properties to be checked for and the way in which the model

is represented are critical. For example, verifying multiplier circuitry modelled at the switch
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level where timing is critical is a very different proposition to dealing with a very high level
description of an algorithm where timing is not an issue.

Furthermore, because many of these problems are so difficult (i.e. are NP-hard) analytic
categorisations of different algorithms are not always very useful. Empirical results are also
difficult to analyse since verifications are run with systems on different hardware architectures
and written in different languages. Particularly difficult to measure is how easy the verification
method is to use (how automatic is an automatic verification method) for different classes of
user.

Many examplesin the literature give a few examples but fail to give convincing evidence
that the method will work on alarger class of problems.

All of thisisexacerbated by alack of published empirical results. Work with detailed perfor-
mance figuresis available (such as[26]) but important theoretical contributions such as[5, 72]
come with no performance results and only small examplesto illustrate the applicability of the
method.

Theimportance of gaining more experimental resultshas been recognised ([26] isagood ex-
ample), and the IFIPworking group on hardware verification has recently established a bench-
mark suiteto help facilitate comparativework [91]. Chapter 7 presents some experimental data

in order to evaluate the methods proposed in this thesis.



Chapter 3

TheTemporal Logic TL

This chapter introduces and defines the quaternary temporal logic at the core of the research.
Section 3.1 describes the model over which formulas of the logic are interpreted: a complete
latticeis used to represent the set of instantaneous states, and amonotonic next state functionis
used to represent system behaviour. Thisgivesaway of formally describing an implementation
of asystem such asa VLSI design. Section 3.2 defines Q, a quaternary logic, and proves ele-
mentary propertiesof thislogic. Using Q asabase, the quaternary temporal logic TL isdefined
in Section 3.3. The syntax of TL formulasis given; the truth of these formulasis defined with
respect to sequences of states of the model. TL gives away of describing intended behaviour.

The primary application of thetheory presented in thisthesisisfor circuit models. For con-
venience, and as these models have useful properties, it isappropriate to specialise the temporal
logic for circuit models. Thisis discussed in Section 3.4.

A critical question is whether the model satisfies the intended behaviour. Section 3.5isa
precursor for the discussion of this question in Chapter 4 by presenting alternative semantics
for TL; these semanticsillustrate the idea on which the model checking approach of Chapter 4
is based.

3.1 TheModd Structure

The model structurd (S, C ), R, Y) represents the system under consideration.

41
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e S, acomplete lattice under the information ordering C , represents the state space. Let

X betheleast elementinS. (WhenS = (7, then X = U"))

e R C §, the set of realisable statesrepresents those states which correspond to states
the system could actually attain — S — R are the ‘inconsistent’ states, which arise as
artifactsof the verification process. Which states are realisable and which areinconsistent
isentirely up to the intuition of the modeller; the entire state space could be realisable, or

only part of it.

Verification conditions will be of the form: do sequences that satisfy ¢ also satisfy /?
Distinguishing unrealisable behaviour from realisable behaviour allows the detection of
cases where verification conditions are vacuously satisfied: if it is the case that no se-
guences with only realisable states satisfies ¢ then the verification condition may indeed
by satisfied. However, itislikely that either the specification or implementation arewrong.

On the other hand, it may be that for al sequences of realisable states the verification
conditions are satisfied, but that some sequences with unrealisable behaviour satisfy ¢
but do not satisfy /. If we consider the set of all sequences, the verification condition
will fail; if we consider only the sequences of realisable states the verification conditions

succeed.

Thus, the concept of realisability allows the modeller to deal with inconsistent informa-

tion in asensible way: detecting vacuous results and ignoring degenerate cases.

There is a technical requirement: R must be downward closed, so that if + € R, and
y C x then y € R. This makes computation much easier and has a sound intuitive basis.
Intuitively, if astate is not realisable, it is because it is‘inconsistent’; any state above it
in theinformation ordering must be even more‘inconsistent’ and thus also not realisable.

Conversely, if astateis‘consistent’, then a state below it in the information ordering will
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Figure 3.1: Inverter Circuit

also be ‘consistent’.

e Y: S — Sisamonotonic next state function: if s T ¢ then Y(s) C Y(¢).

Although the next state function is inherently deterministic, the partial-order structure of
the state space can model non-determinism to some extent. A useful analogy hereisthat
anon-deterministic finite state machine can be modelled by adeterministic one— in the
deterministic machine, a state represents a set of states of the non-deterministic machine.
In the same way, in our partial-order setting, a state represents all the states above it in
the partial order. By embedding aflat,' non-deterministic model in a lattice, the model
becomes deterministic. The next state function Y can be thought of as a representation

of the next state relation
{(5,1) €S xS :Y(s) Tt}

Therefore, athough technically we deal with a deterministic system, the deterministic

system models non-deterministic behaviour.

Example

For synchronous circuit models, the most important way in which non-determinismis used is
to model input non-determinism, that is the non-deterministic behaviour of inputs of a circuit.

Oneway of modelling thefact that inputs of the circuit are controlled by the environment, not by

LA set without any structure.
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the circuit, is to have a non-deterministic next state relation. For example, consider the simple
inverter circuit of Figure 3.1.

If the model structure uses a flat state space, the state space and next state relation shown
in Figure 3.2 are likely candidates for the model structure. For the next state relation, for each

row thereis atransition from the state in the first column to each state in the second column.

From To
(L,L) | (LH), (H H)
{(L, L), (L, H), (H,L), (H,H)} (L,H) | (L, H),(H,H)
(H,L) | (L,L),(H,L)
(H,H) | (L,L),(H,L)
(a) State space (b) Next state relation

Figure 3.2: Inverter Model Structure— Flat State Space

If apartial order state spaceisused, oneway of constructing the model structureisshownin
Figure 3.3. Figure 3.3(a) shows the state space, and Figure 3.3(b) gives the next state function.
A ¢ entry in the table means that this row holdsfor al ¢ € C.

(Z,7)

(L,Z)(Z,L)(Z,H)(H,Z)

From| To

(L, L) (L, H) (H,L)(H, H) Z.0) [ (U, 2)
(L.U) (U, L)(U; H)(H, U) e Rk
W (U7c) (U7U)
(a) State space (b) Next state function

Figure 3.3: Lattice-based Model Structure
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Branching timeversuslinear time

One of the key issues of temporal logics is whether the logic is linear time or branching time.

Since the next state function of the model is deterministic, and since in practice all temporal
formulas used are finite, the question of whether the logic used is linear or branching time is
rather a fine point. Nevertheless, as trgjectory evaluation has been described as a linear time
approach [26, p. 403], and as non-determinism can be represented by the model structure, the
topic should be discussed briefly.

‘Logically the difference between a linear and a branching time operator resides with the
possibility of path switching ... ' [120]. The model structure proposed here deals with non-
determinism by merging paths where necessary. If in the flat model structure there are non-
deterministic transitions from state s to states ¢y, . . . , ¢;, in the lattice model structure thereis
astate ¢, suchthat t C¢; for: = 1,...,7, and asingle deterministic transition from s to ¢.
Consider the non-deterministic transition diagram shown in Figure 3.4. The difference between
linear time and branching time semantics is nicely illustrated here. Suppose an instantaneous
property ¢ istruein states s; and s; and falsein all other states. With alinear time semantics,
we can expressthe property that in al runs of the system, there exists astate fromwhichtimeall
states in the run have the property ¢. This cannot be expressed in a branching time semantics:
for example, in the run sgs3sss3 . . ., abranching time semantics aways detects the possibility
of path-switching and takes into account the potential of a transition from s; to s,.

Using alattice structure, instead of usingtheset S = {so, . .. , s3} asthestate space, we use
a subset of the power set of S. The state space shown in Figure 3.4 is embedded in the lattice
state space shown in Figure 3.5(a) (here, the partial order is shown by dotted lines). The next
state relation of Figure 3.4 is replaced with the next state function shown in Figure 3.5(b) (note,
only states reachable from s, are shown in this transition diagram). Note how the two non-

deterministic transitions from s, to s; and s3 in Figure 3.4 are merged into one deterministic
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10

! S?O

Figure 3.4: Non-deterministic state relation

transition from s, to s4 shown in Figure 3.5(b).

0
{so}
(o} s} s} (s |

________________________ AR 7 }

) o) {l

{51752753} {81782783}

{50, 81.;.;.9.27 53}

(a) Partial order (b) Transition function

Figure 3.5: Lattice State Space and Transition Function

By using themodel structure adopted here, non-deterministic pathsthat exist in aflat model
structureare merged, losing informationin the process. Itispossibleto ask the question whether

inall runs of the system property ¢ holds; however, the answer returned will be ‘ unknown.” So,



Chapter 3. The Temporal Logic TL 47

it would not be accurate to characterise the logic proposed here as either linear time or branch-
ing time, since the distinction between the two is blurred. As the expressiveness of the logic
and the type of non-determinism used in modelsislimited compared to many other verification
approaches, this question of branching versus linear time semantics is not nearly as important
asin other contexts.
In the inverter example above, consider the sequence o = (L,H)(U,H)... in the partial

order model. This represents both of the sequences

(L,H)(H, H) ...

(L,H)(L,H). ...
intheflat model structure. Proving aproperty of o will takeinto account the branching structure
at each state in the sequence: but it does so in atrivial way by considering (at the same time)

both possible values of the input node of the inverter.

3.2 TheQuaternary Logic @

Thefour values of Q, the quaternary propositional logic used as the basis of thetemporal logic,
represent truth, falsity, undefined (or unknown) and overdefined (or inconsistent). Such alogic
was proposed by Belnap [10], and has since been el aborated upon and different application areas
discussed in a number of other works [59, 125]. This section first gives some mathematical
background, based on [58, 113], and then definitions are given and justified.

A bilatticeis a set together with two partial orders, < and <, such that the set isacomplete
lattice with respect to both partial orders. A hilatticeis distributiveif for both partial ordersthe
meet distributes over the join and vice-versa. A bilatticeisinterlacedif the meets and joins of
both partial orders are monotonic with respect to the other partial order.

In our application domain, we are interested in the interlaced bilattice

Q = {J_7f7t7 —l—}
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wherethe partial ordersare shown in Figure 3.6. f and t represent the boolean values false and
true, L represents an unknown value, and T represents an inconsistent value. B denotes the
set {f,t} (soB C Q).

Thepartial order < representsaninformation ordering (onthetruthdomain), and the partial
order < representsatruth ordering. (Note, the ordering C isused for comparing statesand the
ordering < isusedto comparetruth value$. Itisvery important to emphasise at this point that

differentlattices are used to represent truth information and state information.
/ T\
f t
=
\L /

<

Figure 3.6: The Bilattice Q

Informally, the information ordering indicates how much information the truth value con-
tains: the minimal element L contains no truth information; the mutually incommensurable
elementsf and t contain sufficient information to determine truth exactly; and the maximal el-
ement T contains inconsistent truth information. The truth ordering indicates how true avalue
is. The minimum element in the orderingisf (without question not true); and the maximum el-
ement ist (without question true). Thetwo elements | and T areintermediate in the ordering
— inthe first case, the lack of information places it between f and t, and in the second case,
inconsistent information does.

Formally, the partial orders < and < arerelationson Q (i.e., subsetsof Q x Q). Itisuseful
to consider the relations as mappings from pairs of el ements to a truth domain (if two elements
are ordered by the relation we get atrue value, if not afalse value). Informally, therefore, we

can consider the partial orders as mappingsfrom @ x Q to B.
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For representing and operating on Q as aset of truth values, there are natural definitionsfor
negation, conjunction and disjunction, namely the weak negation operation of the bilattice and
the meet and join of the Q with respect to the truth ordering [58].

These definitions are shown in Table 3.1, and have the following pleasant properties, which

makes it suitable for model-checking partially-ordered state spaces.

¢ The definitions are consistent with the definitions of conjunction, disunction and nega-

tion on boolean values.

e These operations have their natural distributive laws, and also obey De Morgan's laws

(so, the definition of digjunction was redundant).

e Efficiency of implementation. The quaternary logic is represented by a dual-rail encod-
ing, i.e. avaluein Q isrepresented by a pair of boolean values, where:
— 1= (F,F),
—f=(FT),
—t= (T, F),
- T =(T,T).

If « is represented by the pair (a1, a2) and b by the pair (by, b;) thena A b is represented
bythepalr (Cll /\bl,az \/bz), aVb by thepalr (Cll \/bl,ag /\bz) and —aq = (ag,al). These

operations on @ can be implemented as one or two boolean operations.

— T >
i e el N
o o=k =R R
— &+ = |
— - = %
&+ & =
G

— =+ <
o+ o+ o | e
o o |

H e
e

Table 3.1: Conjunction, Digunction and Negation Operators for Q
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Implication, =, is defined as a derived operator « = b = —a V b.

There is an intuitive explanation of the dual-rail encoding and the implementation of the
operators. If ¢ is encoded by the pair («,b), « is evidence for the truth of ¢, and b is evidence
againstg. To compute ¢; A ¢2, we conjunct the evidence for ¢; and ¢, and take the disjunction
of the evidence against. The computation of ¢; V ¢, iSsymmetric. Andif « isthe evidence for
¢ and b the evidence against ¢, then b isthe evidence for —¢ and « is the evidence against —q.

However nice thisintuition, the definition of Q is not without problem. In the context of a
temporal logic, it is hard to justify the definitionthat TA L= f. Similarly, since TV 1= t, if
t = q1 V ¢o itisnot necessarily the case that either ¢; or ¢, ist. Neverthelessitisthe‘classical’
definition, and is convenient because the dual-rail encoding is efficient. Other definitions are
possible too (for example, defining the operations so that if T is an operand, the result of the
operation must be T too) and might simplify some of the proofsin later sections and chapters;
the particular definition adopted in this thesis is not fundamental.

The following properties of Q are used in subsequent proofs. The first lemmais a conse-

guence of the property that negating a value does not increase the information available.

Lemma 3.1.

1. If g # —q,thenq £ —q.
2. If a1 j 42, then -1 j ¢2.

Proof.
1. Ifqge{Ll, T} theng = —q.
If ¢ =t,then g =f: t Af. Similarly, f A t.
2. @ Ifqgp=L,~¢=1L.1 <qgfordlgq.
(b) Ifg=t,then—-¢ =fandq, € {t, T}.
Therefore, ~q; < ¢

(C) S|m||ar|y, |f q1 = f, -1 j G2
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(d) If q1 = T, then 1 = 7¢1 = G2 = T(¢2.

Result follows by reflexivity of partial order.
]

The second lemma extracts some trivial properties of Q from Table 3.1; these are useful when

trying to deduce values of sub-formulas from values of formulas.

Lemma 3.2.
1LIft<q Vq,thent < ¢ foratleast oneof : = 1, 2.
2. 1ft = ¢ A go, thent = ¢, forbothof : = 1, 2.

Ift <q; A ¢, thent < ¢, forbothof : =1, 2.
3. Iff < g A g, thenf < ¢, foratleast oneof : = 1, 2.
4. Iff =g, V ¢z, thenf = ¢, forbothof : = 1, 2.

Iff <q, Vg, thenf < ¢, for bothof i = 1, 2.

Proof.

Consider Table 3.1.
1. gg=torgz=t,orqy=Landg;=T,0rq, =T andg, =L.

2. Onlywheng, =g, =tisq A ga = t.

Only for the four bottom, right entries of the tableis ¢; A ¢» < t.
3 go=forgp=~f,or¢g=Lorg=T;0rqy=ToOrg =1L
4. Onlywheng, = ¢ =fisq V ¢ = 1.

Only for the four upper, left entries of thetableisf < ¢; V ¢s.
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3.3 An Extended Temporal Logic

The propositional logic Q isused asthebasefor thetemporal logic TL. Thissectionfirst presents
thescalar version of TL, thefragment of TL not contai ning variables, and then presentsthe sym-

bolic version of TL, which contains variables.

3.3.1 Scalar Version of TL

Givenamodel structure((S, C ), R,Y), aQ-predicateover S isafunction mapping fromS to
the bilattice Q. A Q-predicate, p is monotonicif s T ¢ impliesthat p(s) < p(¢) (monotonicity
is defined with respect to theinformation ordering of Q). A Q-predicateisageneralised notion
of predicate, and to simplify notation, the term * predicate’ is used in the rest of this discussion.

Example 3.1.
Take, as an example, the state space S givenin Figure 1.1 on page 9. Define g, ~ : S — Q by:

1 whens € {sg, 32,6}

1L whens = sq
f when s € {81782784785786} f when s € {81784785}
g(s) = . H and i(s) =
when s € {ss, 57, ss} t  whens € {s3, sr,ss}
T whens = sg

T  whens = sg

Figure 3.7 depicts these definitions graphically. ¢ and / are Q-predicates. The same state space
and functions will be used in subsequent examples.

O

Note that in the example, s; is the weakest state for which g(s) = t. Inasense, s; partialy
characterises ¢, and we use thisidea as a building block for characterising predicates, motivat-
ing the next definition. Given a predicate p, we are interested in the pairs (s,, ¢) where s, isa

weakest state for which p(s) = q.
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9(S) h(S)

Figure 3.7: Definition of ¢ and i

Definition 3.1.
(sq4,q) € S x Q isadefining pairfor apredicate g if g(s,) = gand Vs € S, g(s) = ¢ implies
that s, C s. O

In Example 3.1 (s3,t) isadefining pair for g. If g(s) = t then s3 C s. However, thereisno
defining pair (s¢, f) for ¢ since there is no unique weakest element in S for which ¢ takes on

the value f. On the other hand (s,, f) isadefining pair for k.

Definition 3.2.
If g: S — Qthen D(g) = {(s4,¢) € S x Q : (s4,¢) isadefining pair for ¢}, isthe defining

setof ¢. O

Using this definition it is easy to compute the defining sets of the functions ¢ and % that were
defined in Example 3.1.

D(g) = {(507 J—)v (537 t)v (597 T)}
D(h) = {(807 L)? (Slvf)7 (837 t)? (897 T)}
If a monotonic predicate has a defining pair for every element in its range, then its defin-

ing set uniquely characterisesit (see Lemma 3.3 below). Such monotonic predicates are called

simple predicates and form the basis of our temporal logic. The following notation is used in
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the next definition and elsewherein thethesis: if g : A — B isafunctionthen g(A4) = {g(a) :

a € A} istherangeof g.

Definition 3.3.
A monotone predicate g: S — Q issimpleif Vg € ¢(S), 3(s,,9) € D(g). O

In Example 3.1, & is simple since every element in the range of /~ has a defining pair. On the
other hand, ¢ is not ssimple since there is no defining pair (s¢,f). Informally, ¢ is not simple

since we cannot use a single element of S to characterise the values for which ¢g(s) = f.

Definition 3.4.
Some of the important simple predicates are the constant predicates. For each ¢ € Q, the con-

stant predicate C,(s) = ¢ hasdefining set D(C,) = {(X, ¢)} and soissimple. O

Notethat simple predicates need not be surjective; the only requirementisthat if ¢ isintherange
of asimple predicate, thereis aunique weakest element is S for which the predicate attains the
value ¢. A trivial result used a number of times here is that the bottom element of S must be
one of the defining values for every predicate: this has the consequence that every element in
S isordered (by being at least as large as) with respect to one of the defining values of each

monotonic predicate.

Theorem 3.3.
Ifg,h: S — Q aresimple, then D(g) = D(h) impliesthat Vs € S, g(s) = h(s).

Proof. See Section A.1 O
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Thisresult is used later to show the generality of the definitions.

Definition 3.5.
Let ¢ bethe set of simple predicates over S. O

We now use (' to construct the temporal logic.

Definition 3.6 (The Scalar Extended Logic — TL).
The set of scalar TL formulasis defined by the following abstract syntax

TLu= G | TLATL | =TL | Next TL | TLUntilTL

O

The semantics of aformulais given by the satisfaction relation Sat(Sat: S¥ x TL — Q).
Given asequence o and a TL formula g, Satreturns the degree to which o satisfies ¢.

Suppose g and ~ are TL formulas. Informally, if g issimple, asequence satisfiesit if ¢ holds
of theinitial state of the sequence. Conjunction has a natural definition. A sequence satisfies
g if it doesn't satisfy ¢g. A sequence satisfiesNext ¢ if the sequence obtained by removing the
first element of the sequence satisfies g. A sequence satisfies ¢ Until & if thereisak such that
thefirst & — 1 suffixes of the sequence satisfy g and the k-th suffix satisfies 4.2 Note that in the
definitions below, A and -~ (bold face symbols) are operations on TL formulas, whereas A and
— are operationson Q.

Comment on notatiorSequences are ubiquitous throughout this thesis. Thereis extensive
need to refer to suffixes and individual elements of these sequences. Moreover, individual ele-
ments of sequences can be vectors, and on top of this, it is often useful to talk about different
sequences. Itis plausibleto use subscripts to describe al these, but, unfortunately, thereis also

often a need to refer to these different concepts in close proximity to each other and so thereis

ZInthe special case of g and h being simple, thisis equivalent to saying that g istrue of thefirst £ — 1 statesin
the sequence, and & istrue of the k-th state.
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great opportunity for confusion. To avoid this confusion, a slightly more cumbersome notation
is used than might otherwise be desirable. This notation is summarised below.
1. Lower case Greek letters, o, 7, ... areused to refer to sequences.
2. If 0 = 595159 .., then o; denotes s;,.
3. If o = sps15, ... iIsasequence, o>; refersto the sequence s;s;1; . . ., whichisasuffix of
ag.

4. Superscripts are used to refer to different sequences, e.g. o', 0. Although this conflicts
with the usual use of superscript in mathematical text, there islittle chance of confusion

since ‘sguaring’ statesis not defined.

5. If s isastate which is avector of elements, then s[k] refersto the k-th component of s.

For example, a;» refersto the suffix of the sequence o obtained by removing first : elements

of 0°. (03,)o[k] = o}[k] isthe k-th component of the :-th element in the sequence o°.

Definition 3.7 (Semanticsof TL).
Let o = s95152... € SY:
1. If g € GthenSato,g) = g(so).
2. Sato,gAh) = Sato,g) A Sato,h)
3. Sato,~g) = —Sato,g)
4. Sato,Nextg) = Satosi,9)

5. Sato,gUntilh) = V (A Satos;.g) A Satos:, h)
1= =
O

Notethat thisisthestrong version of theuntil operator: ¢ need never hold, and 2 must eventually
hold. The until operator is defined as an infinite disunction of conjunctions. That thisis well

defined comes from Q being a complete | attice with respect to the truth ordering. Recall that A
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isdefined as the meet of the truth ordering, and Vv isdefined asthejoin. Moreover, in acomplete
lattice, all sets have a meet and join. Therefore each conjunction iswell defined, and thus the
disiunction of the conjunctionsistoo. Anintuition to support that the definitioniswell behaved
is that the sequence «;, = i\:k/O ((Z\; Sato;,q)) A Satos;, h)) isanincreasing sequencein Q.
As Q isfinite and bounded above, the sequence («; ) has alimit.

Using these operators we can define other operators as shorthand.

Definition 3.8 (Other operators).
Some that we shall use are:—

e Disjunction: g V h = —((—g) A(=h)).

e Implication: g = h = (—g) V h.

e SometimeExistsg = t Until g. (Some suffix of the sequence satisfies ¢.)

e Always:Global g = ~(Exists—g). (No suffix of the sequence does not satisfy ¢, hence
al must satisfy g).

e Weak until:¢ UntilWh = (¢ Until h) V (Globalg). (This doesn’'t demand that / ever

be satisfied.)

Using the operators defined above, other operators can be defined, including bounded versions
of Global,Exists, Unti | Wand Unt i | and aperiodic operator Periodic that can be used
to test the state of the system periodically. Other operators — for example, periodic versions
of the until operators etc. — are possible too. Two very useful derived operators are the gener-
alised version of Next and the bounded always operator.
e The generalised Next operator is defined by:
Nextg = ¢

Next" g = Next (Next¥g)
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¢ The bounded always operator, defined by
no b
Global[(ao,bo), ... ,(an,b,)] g= A ( A Next"y),

7=0 k=a;

asks whether ¢ holds between a; and b; for j = 0,... ,n.
]

If ¢ = Sato, g) then we say that o satisfies g with truth value ¢, and if ¢ < Sato, ¢), then we
say that o satisfies ¢ with truth value at least q.

One of the key properties of the satisfaction relation is that it is monotonic.

Lemma 3.4.
The satisfaction relationismonotonic: for al o', 0% € S¥,if ¢ = Safs!, g) and o' C o2, then

q= Sato?,g)

Proof. If g issimple, thisfollows since ¢ is monotonic. Since the operators of Q (conjunction,
disunction and negation) are all monotonic with respect to their operands, the monotonicity of
TL follows by structural induction. Again, for the until operator thisrelies on Q being a com-

plete lattice. O

Although the basis of the logic is 7, the set of simple predicates, Theorem 3.5 shows that all
monotonic predicates can be expressed in TL. If ¢ isaTL formulanot containing any temporal
operators, then its semantics with respect to a sequence is determined solely by the value of
the first element of the sequence. Thisimplies that we can consider such a ¢ to be a predicate
fromS — Q. Formally, overloading the symbol ¢, we can defineg : S — Q by ¢(s) =
SafsXX....g)
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Theorem 3.5.
For all monotonic predicatesp : S — Q, 3p' € TL suchthat Vs € S, p(s) = p/(s).

Proof. See Section A.1. O

Consider the functions defined in Example 3.1, and let

1 whens € {so, s1, 84, 85 }

f whens e {s3, 56}

t  whens € {s3,s7, 35}

T whens = sg

D(h) = {(s0, L), (s2,f),(53,t),(s9, T)} @and so &’ issimple. Notethat g = hAR'. So, a-

though ¢ is not simple, it can be expressed as the conjunction of two simple predicates.

The depthof a TL formulais a measure of how far in the future it describes behaviour of
sequences; it shows how deeply nested next state operatorsare. Formally, if g isaTL formula,
its depth, d(¢) is defined by:

d(g)=0forg e G d(g1 A g2) = max{gi, g2} d(—g) = d(g)

d(Next g) = d(g) + 1 d(g1Untilgy) = o0

3.3.2 SomelLawsof TL

This section presents some of the algebraic laws of TL. These are used extensively in proofs

and are often used in practical situations. First, the equivalence of two TL formulasis defined.

Definition 3.9.
If g,h € TL,theng = h if Vo € §¥,Sato, ¢1) = Sato, g2). O

TL obeys most of the laws of a boolean algebra (Cy and (', two of the constant simple pred-

icates, are identities under disunction and conjunction respectively). However, the inverse or
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complementary laws do not hold (since the law of the excluded middle does not hold). More-

over, if wedo consider TL asan algebra, it hasamore complex structure than abool ean algebra.

Lemma 3.6 (Some algebraic laws of TL).

1. Commutativity:

GNG = G2 NG, 1Y G2 = G2V G

2. Associativity:

(1Vg)Ves = VeV (AR)Ag = g g Ags)

3. De Morgan’s Law:

GiANg = (mgVg), iV g = (06 Ang).

4. Distributivity of A and V :

hA(g1V g2) = (hAg)V (hAga), bV (1 Ag2) = (hV i) ARV )
5. Distributivity of Next :

Next (g1 A g2) = (Next g1) A(Next ¢2), Next (g1 V g2) = (Nextgy) V (Next gq).
6. Identity:

gV (s = g, gANCy = ¢

7. Double negation:

g = g

Proof. See Section A.1.3. O

3.3.3 Symbolic Version

Describing the properties of a system explicitly by a set of scalar formulas of TL would be far

too tedious. Symbolic formulasallow aconcise representation of alarge set of scalar formulas.

A symbolic formularepresents the set of all possible instantiations of that symbolic formula.
TL isextended to symbolic domains by allowing boolean variables to appear in the formu-

las. Let V beaset of variable names {vy, ... , v, }. It would be possible to define the symbolic
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version of thelogic by introducing quaternary variables. However, in practice, itisboolean vari-
ables which are needed, and introducing only boolean variables means that simpler and more
efficient implementations of the logic can be accomplished. Furthermore, the effect of a qua-

ternary variable can be created by introducing a pair of boolean variables.

Definition 3.10 (The Extended Logic — TL).
The syntax of the set of symbolic TL formulas, TL, is defined by:—

TL:= G|V |TLATL | ~TL | NextTL | TLUntilTL
O

The derived operators are defined in a similar way to Definition 3.8. For convenience, where
thereis little chance of confusion, the dots on TL formulas are omitted.

The satisfaction relation is now determined by a sequence, a formula, and an interpreta-
tion of the variables. An interpretation, ¢, is a mapping from variables to the set of constant
predicates {f.t},Let ® = {¢ : ¢: V — {f t}} bethe set of al interpretations. Given an
interpretation ¢ of the variables, thereisanatural, inductively defined interpretation of TL for-
mulas. For agiven ¢ € ®, we extend the definition from V' to all of TL by defining:

dlg)=gifge G
¢(mg) = ~9(g)
(g1 A g2) = d(g1) A d(g2)
¢(Next g) = Next ¢(g)
¢(g1Untilgs) = ¢(g1) Until &(ga)

This can be expressed syntactically: if ¢(v;) = b;, replace each occurrence of v; with b;, written

asd(g) = g[bi/v1, ... ,bn/vs).
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Given a sequence and a symbolic formula, the symbolic satisfaction relations, SAT,, deter-
mine for which interpretations of variables the sequence satisfies the formula with which de-
gree of truth. For example, we may be interested in the interpretations of variables for which a
sequence satisfies aformulawith truth value t, or the interpretations for which a sequence sat-
isfiesaformulawith truth value at least t. By being able to determinefor which interpretations
a property holds with a given degree of truth, we are able to construct appropriate verification
conditions. The scalar satisfaction relation, Sat is used in the definition of the symbolic rela

tions.

Definition 3.11 (Satisfaction relations for TL).
A number of satisfaction relations are defined.
e Forqg=1t, T,
SAT(0,9) = {¢ € P:q=Sato,d(g))}.
e Forqg=1t, T,

SATi(o.9) = {¢ € &:q=Sato,¢(g))}. O

Note that if ¢ is a (symbolic) formula and ¢ an interpretation, then SAT,(0,¢) C &, while
Sato, ¢(g)) € Q. Informally,

e SAT(0,g) isthe set of interpretations for which ¢ and —¢ hold. Such results are unde-
sirable and verification algorithms should detect and flag them.
SATy(0,9) = SAT(0.g).

e SAT(o,¢) istheset of interpretationsfor which ¢ is (sensibly) true.
SAT(o,9) = SAF(0,g9) U SAT(0, g).

e SAT (o, g) isthe set of mappings for which ¢ is (sensibly) false.
SAT(o,9) = SAT(0,9) U SAT(0, g).
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Thus each satisfaction relation defines a set of interpretations for which a desired relation-
ship holds. Sets of interpretations can be represented efficiently using BDDs, asisdiscussed in
Chapter 6.

3.4 Circuit Models as State Spaces

In practice, the model-checking algorithmsdescribed in thisthesis are applied to circuit models.
The state space for such amodel representsthe values which the nodesin thecircuit take on, and
the next state function can be represented implicitly by symbolic ssmulation of the circuit. The
nodesinacircuit takeon high (H) and low (L) voltage values. Itisuseful, both computationally
and mathematically, to allow nodesto take on unknown (U) and inconsistent or over-defined (Z)
values. Theset C = {U, L, H, Z} formsthe lattice defined in Figure 1.2 on page 10.

The special case of the state space being a cross-product of quaternary sets need be treated
no differently than the general case (when the state spaceis an arbitrary lattice) asall the above
definitions apply. However, it is convenient to establish some additional notation. Let S = C*
for somen. Typically inthiscase R = {U, L, H}" (node values can be unknown or have well-
defined values, but cannot be in an inconsistent state).

Let ¢, be the smallest set with the following predicates.—
e The constant predicates: f,t, L, T € G,;
o Vic{l,... ,n},[i] €q.

Here [¢] refersto the :-th component of the state space. A formulag is evaluated with respect to
astate by substituting for each [¢] which appears in the formulathe value of the :-th component

of the state. Formally,
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1 whens[i]=U
-+ Jf  whens[i] =L
*U= 00 whendfi] =
T whens[i]=27
o f(s) =",
o t(s)=t;
o L (s)=1;
e T(s)=T,

Note that all members of &, are ssimple and hence monotonic. The definition below of the TL,,
is based on that of TL, replacing G with &,,. The set of scalar TL,, formulasis defined by the
following abstract syntax:

TL, 5= G, | TLuATL, | =TL, | NextTL, | TL, UntilTL,

The semanticsof TL,, ispatterned on Definition 3.7, replacing G with Gz,,; thisisreproduced

below for compl eteness.

Definition 3.12 (Semanticsof TL,,).

The semantics of TL,, formulasis defined by the following:
1. If g € G, then Sato, g) = g(s0);
2. Sato,gAh) = Sato,g) A Sato,h);
3. Sato,—g) = —Sato,g);
4. Sato,Nextg) = Safos1,9);

5. Sato,gUntilh) = V (‘A Satos;.g)) ASatos:h))).
= 1=
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These definitions are useful because in practice properties of interest are built up from the set of
predicates that say things about individual state components. Lemma 3.7 shows that restricting
thebasisof TL, to &, isnot area restriction as any simple predicate can be constructed using

the operators such as conjunction.

Lemma 3.7 (Power of ).

If pisasimple predicate over C”, then thereis apredicate g, € TL,, such that p = g,.

Proof. See Section A.1. O

The combined impact of Theorem 3.5 and Lemma 3.7 isthat thelogic TL, is powerful enough
to describe al interesting (monotonic) state predicates over Q.

The definition of the symbolic version of TL,, isexactly the same as the general definitions
(Definitions 3.10 and 3.11), substituting ,, for .

Theset of T'L,, formulasinwhich T does not syntactically appear isknown astherealisable
fragmentof TL,,. If g isaformulain therealisable fragment of TL,,, then Satc, g) = T only if
thereexists ¢, j suchthat o;[j] = Z. Thus, if g isaformulawith thisrestriction, and Z does not
appear in o then SAT, (0, g) = SA%k(o, g). Thisresult isimportant since we are most interested
in the SAT; relation. As shown in the next chapter, there is a good decision procedure for the
relation SAT;: we check whether SAT, (0, g) = SA%(o, ¢g), and thereby extend the decision
procedure to formulasin the realisable fragment of TL,, to determine the SAT; relation too.

Other Application Areas

Although Q is proposed here as the basis of a temporal logic, it may have other applications
in computer science. In awidely quoted and influential logic text, the White Knight says (the

guote is taken from an extract dealing with names and reference):
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‘I'slong,” said the Knight, ‘but it's very, very beautiful. Everybody that hears me
sing it — either it brings tearsinto their eyes, or else —’

‘Or elseit doesn't you know ... " —[31]

In his commentary on this, Heath says[79]: ‘ An essentially vacuous claim, since it merely
sets forth the logical truism, p or not-p, embodied in the “law of the excluded middle.”’ In the
light of the preceding discussion, the White Knight's claim, and particularly Heath's critique
can be seen to be problematic. While it will be the case that hearing the White Knight sing the
song makes everyone cry or not cry, as computer scientists, we are interested in making predic-
tions about the behaviour of a system under study. Thus the analyses of the White Knight and
Heath are somewhat simplistic, and do not take into account lack of information or inconsistent
information which often occur when reasoning about the world.

A far more seriousinstance of the same error can be foundin [51] wherein The Beryl Coro-
net, Sherlock Holmes says: ‘It is an old maxim of mine that when you have excluded the im-
possible, whatever remains, however improbable, must be the truth.” In this context, Holmes
isusing logic to reason about a system that inherently has partial and inconsistent information.
Our knowledge about such a system must reflect this: the characterisation of propositions about
theworldinto‘impossible’ and ‘truth’ is, as argued earlier, an inadequate logical framework for
reasoning. Given theinfluence of thiswork on animportant branch of logic and deduction, itis
important to show the limits of atwo-valued logic. And, the notion that simple characterisations
may not be appropriate was recognised in work contemporaneouswith [51], in an approach that

isto be preferred: ‘ Truth is rarely pure, and never simple’ [126].
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3.5 Alternative Definition of Semantics

Although in this chapter the semantics of TL formulas was given through the definition of the
satisfaction relations, there are alternative ways in which the semantics could be given® A
method that is useful to consider here because its underlying motivation leads to an effective
verification method defines the semantics by giving for each temporal logic formulathe set of
sequences that satisfy it. For TL the same pattern could be used, adjusting for the fact that TL
is quaternary. Definition 3.13 suggests how this could be donefor TL (based on[120, p. 523)).

Definition 3.13 (Alter native definition of semantics).
lglle = {o : t =g(s0)} ifg € G,
g1 A gale = [[g1]le N [|g2]]e-
=glle = llglle-

l91 Untilgelle = U{o € ST :Vj:0<5<i, 055 € |gi]le and os; € [|galls}-
The definition of ||¢||, for values of Q other than t is similar. O

If this definition were used to give the semantics, then to ask whether o satisfies g with degree
q isto ask whether o € ||¢||,. Similar definitions could be given for satisfaction ‘with degree at
least ¢’ . Practically speaking, this definition is not useful since these sets are so large that even
if only finite subsegquences were considered (which is often reasonabl e to do) the sets would be
too large to compute and represent explicitly.

However, the partial order representation of the state space is extremely useful. Take as an
example simple predicates. If g isasimple predicate, in general, the set of sequences for which
Sato,g) = t will be too large to compute. However, we have seen that the defining set of
g, D(g), essentially captures thisinformation: if, for example, (s;,t) and (st, T) are defining

pairs, and if o isan arbitrary sequence, then o € ||g||¢ if s¢ < 09 < sT.

3The semantics are the same; it isthe way that the semantics is giventhat differs.
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Inthe same way as the defining sets of asimple predicates characterise the simple predicates,
there are analogous structures for other TL formulas that characterise them. And in the same
way the defining sets can be considered to give semantics to simple predicates when viewed as
TL formulas, these anal ogous structures give semantics to more complicated TL formulas, and

can therefore be used to test satisfaction of sequences. Thisis the subject of the next chapter.



Chapter 4

Symbolic Trajectory Evaluation

This chapter develops amodel checking algorithm for TL. It is based on the idearaised in the
last part of Chapter 3 that formulas of TL can be characterised by the set of sequences or tra-
jectories which satisfy them.

Initially, only thescalar version of TL isexamined. Extensiontothe symbolic caseisstraight-
forward; however, there is enough extra notation and detail to make an exposition of the scalar
case clearer, which overcomes the disadvantage of a little repetition to present the symbolic
case.

Let the model structure of the systembe M = ((S, C ), R,Y). S¥ isthe set of sequences
of the state space. The partial order on S is extended point-wise to sequences. Informally, the
trajectoriesare al the possible runs of the system; formally, atrajectory, o, is a sequence com-

patible with the next state function:
\V/Z Z O,Y(O'Z) E Ti41-

Let S; be the set of trgectories and, R+ = R“ N Sy isthe set of realisable trajectories
R represents those trajectories corresponding to real behaviours of a system. Ry (m) =
{0001 ... 01 : 0 € Ry} isthe set of prefixes of R of length m.
Section 4.1 explores the style of verification adopted; this introduces some useful notation
and definitionsand guidestherest of thisdiscussion. Section 4.2 showsthat aformulaof TL can
be characterised by the sets of minimal trgjectories that satisfy it, and furthermore shows that

these sets can be used to accomplish verification. The computation of such setsis not directly

69
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possible, but Section 4.3 shows that computing approximations of the sets is feasible (and as
later experimental evidence will show, forms a good basis for practical verification). Finally,

Section 4.4 generalises the work to the full symbolic logic.

4.1 Verification with Symbolic Trajectory Evaluation

The style of verification used in symbolic trgjectory evaluation (STE) is to ask questions of the

form:

Do al trgjectoriesthat satisfy g also satisfy h?

The formula g is known as the antecedentand the formula / is known as the consequent
‘Satisfy’ isabroad term — there are anumber of satisfaction relations that can be used. Which
one matches our notion of correctness? There are a number of possible ways of modelling cor-
rectness, and the key issue is how to deal with inconsistent information. How correctness is
modelled depends on choi cesthe verifier makes— although guided by technical considerations,
the verifier has considerable flexibility. There are two obvious ways to formalise the notion of

‘trajectory o (successfully) satisfies ¢'.

t = Sato, g) 4.2)
t < Sato, g) (4.2)

Relation (4.1) captures a more precise notion — successful satisfaction describes a situation
whereinconsistency has not caused a predicateto betrue of atrajectory. Intuitively, it isabetter
model of satisfaction than Relation (4.2). However, the latter definition has some advantages:
it does capture some useful information; most importantly, as shown later, thereis an efficient
model checking algorithm using Relation (4.2); and it is often practical to infer theformer rela-

tion fromthe latter one. For this reason, we concentrate, for the moment, on the second choice.
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Corresponding to these two definitions, there are two ways of asserting correctness with

respect to aformula

Definition 4.1.

g=>h ifandonlyif Vo € Ry,t = Sato, g) impliesthat t = Sato, h).
and

Definition 4.2.
g=>h iff Yo € S7,t < Sato, ¢(g)) impliesthat t < Sato, ¢(h)).

Thefirst definition takes a very precise view of realisability. First, we only consider realisable
trajectories — if there are unrealisable trajectories with strange behaviour, then these are ig-
nored. Moreover, by this definition a sequence satisfying aformulawith degree of truth greater
than t (i.e. with degree T) isundesirable. In practice, the model checking algorithm will check
in addition that there are some realisable trgjectories which satisfy the antecedent (i.e. that the
verification assertion is not satisfied vacuously). | submit that this definition best captures the
notion of correctness.

The second definition takes amore relaxed view of inconsistent behaviour. We consider the
behaviour of all trajectories, whether realisable or not, and treat the truth valuest and T as sat-
isfying the notion of correctness. Although, thisdefinitionisnot asgood amodel of correctness
asthefirst, it has the advantage that there is an efficient verification method for it.

Therefore, for pragmatic reasons, we concentrate at first on Definition 4.2, which will be
central in the development of the next three sections. These sections show how an efficient
verification methodology for correctness assertions based on this definition can be devel oped.
Thelast part of Section 4.4 shows that for circuit models, this methodology can be used to infer

correctness assertions based on Definition 4.1.
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4.2 Minimal Sequencesand Verification

This section first formalises the notion of the sets of minimal trajectories satisfying formulas,
and then shows how these sets can be used in verification.

Thefirst definition is an auxiliary one: given a subset of a partially-ordered set, it is useful
to be able to determine the minimal elements of the set. If B isasubset of A, thenb € Bisa
minimal element of B if no other element in B issmaller than b (i.e. all elementsof A smaller

than b do not liein B).

Definition 4.3.
If Aisaset, B C A,and C apartial order on A, then

minB={be B :ifdac A>aCh, eithera =bora ¢ B}.

Definition 4.4.
If g isa(scalar) TL formula, then min ¢ is the set of minimal trajectories satisfying ¢, where

min g is defined by: ming = min{o € S7: t < Sato,g)} O

Notethat if min ¢ C min &, then every trgjectory that satisfies ¢ also satisfies 2. For suppose
o satisfies g: then there must exist o/ € min g such that t < Sato’, ¢) and ¢’ C o; but since
ming C minh, ¢/ € minh and hencet < Sato’, h); hence by monotonicity t < Sato, /).
This gives some indication that manipulating and comparing the sets of minimal trajectories
that satisfy formulas can be useful in verification.

Although wewill be comparing sets of sequences, containment istoo restrictive, motivating
amore general method of set comparison. The statement ‘every trgjectory that satisfies ¢ also
satisfies i’ impliesthat the requirementsfor ¢ to hold are stricter than the requirementsfor / to

hold. Thus, if o isaminimal tragjectory satisfying ¢, o must satisfy ~. Since the requirements
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for g are stricter than the requirementson ., o need not be aminimaltrajectory satisfying &, but
there must be a minimal trajectory, o', satisfying 2 where ¢’ C o. Thisis the intuition behind

the following definition, which defines arelation over P(S), the power set of S.

Definition 4.5.
If S isalattice with partial order C and A, B C S, then
ACp Bifvbe B,3a € Asuchthat a C b. O

Toillustrate this definition, consider the example of Figure4.1. Assume A and B are subsets of
some partially ordered set, S. Note that in this example that both A and B are upward closed.
Although the definitions given here do not require this, we will be dealing with upward closed
sets.! Figure4.1(a) depicts A. Let A,, = min A = {a, 3, v, (} be the set of minimal elements
of A. Then A consists of al the elements above the dotted line. Similarly, Figure 4.1(b), de-
picts B. Let B,, = min B = {5, v} be the set of minimal elements of B. Figure 4.1(c) isthe
superposition of Figures4.1(a) and (b).

Notethat A,, Cp B,,. For each element of B,, thereisan element of A,, lessthan or equal
toitt aCpandy C ~.

Suppose A is the set of elements with property ¢, and that B is the set of elements with
property 2. Then ming = A,, and minh = B,,. By examining the figureit is easy to see
that al elements of S that have property ~ aso have property ¢ (A implies ¢). But, note that
minh Z ming. However, it is the case that min ¢ =» min k, which motivates exploring the

Cp relation further.

LWe will be manipulating sets of trajectories and sequences that satisfy formulas; that these are upward closed
follows from the monotonicity of the satisfaction relation (Lemma 3.4).
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(@ A (b) B (©) A and B

Figure4.1: The Preorder Cp

Lemma4.1.

If S isalatticewith partial order C , then Cp isapreorder (i.e., it isreflexive and transitive).

Proof.
Reflexivity follows directly from the reflexivity of C .

Supposethat ACp Band BEp C,andletc € C.
(1) FbeB3bCC BCp(C:VeeC,dbe BobLC ¢

(2) dJaeA>3aCb ACp B:Vbe B,dae A>3aCb
B aCec C istransitive

4 ACpC Since ¢ was arbitrary.
U

Notethat if B C A, then A Cp B. The following theorem shows the importance of the defini-

tionof Cp .

Theorem 4.2.

If g and i are TL formulas, then g=>- if and only if min A Cp ming.
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Proof.

By the definition of minimal sets, if t < Sato, g), thereexists o’ € min g witho’' C 0.

g=>h <= Vo€ Sr,t <XSato,q)impliesthatt < Sato, )
<= Vo' € ming impliesthat t < Safo’, h)
<= Vo' € ming implies3o” € minh, withe" C o

<= minh Cp ming
O

Although computing the minimal sets directly is often not practical, it is possible to find ap-
proximations of the minimal sets (they are approximations because they may contain some re-
dundant sequences). The next section shows how to construct two types of approximationsto
the minimal sets. A(%) is an approximation of the set of minimal sequencethat satisfy #,
and T%(g) is an approximation of min g. The importance of these approximations are that (i)
At(h) Ep T(g) exactly when g=>h (an analogue of Theorem 4.2), and (ii) thereis an effi-

cient method for computing these approximations, which we now turn to.

4.3 Scalar Trajectory Evaluation

The method of computing the approximationsto the minimal sets of formulasis based on sym-
bolic trajectory evaluation (STE), a model checking algorithm for checking partially-ordered
state spaces. The original version of STE was first presented in [25] and a full description of
STE can be found in [116]. In these presentations, the algorithm is applied only to trajectory
formulas, arestricted, two-valued temporal logic. This chapter generalises earlier work in two

important respects.

1. It presents the theory for applying STE to the quaternary logic.

2. It presents the theory for the full class of TL. In particular it deals with disunction and

negation.
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This section examines the scalar version of TL and shows how given a TL formula, a set of
sequences characterising the formula can be constructed. Recall the definition of defining pair
and defining set from Section 3.3.1. The defining set of a simple predicate characterises that
predicate; this can be used as a building block to find a characterisation of all temporal predi-
cates. By using the partial order representation, an approximation of the minimal sequencesthat
satisfy aformulacan be used to characterise aformula. These sets are called defining sequence
sets. Practical experience with verification using STE has shown that there are many formulas
that have small defining sequence sets.

This section shows how to construct defining sequence sets using the defining pairs of sim-
ple predicates as the starting point. The defining sequence sets of a formulaare a pair of sets
where the first set of the pair contains those sequences, o, for which t < Sato, ¢), and the sec-
ond set contains those sequences for which f < Safo, ¢). These sets are constructed using the
syntactic structure of TL formulas. If aformulais simple its defining sequence sets are con-
structed directly from the defining set of the formula. For compound formulas, these sets are
constructed by performing set manipulation described below.

As manipulating sets of sequences is very important, first we build up some notation for

manipulating and referring to such sets.

Definition 4.6 (Notation).

If A and B are subsets of alattice £ on which a partial order C is defined, then A IT B =
{alUb : a€ Abec B}. Ifg: L — L, g(A) continues to represent the range of ¢, and
similarly, g((A, B)) = (g(A), g(B)). 0

Note that wewrite A IT B rather than A U B since athough Al B isaleast upper bound (with
respect to Cp ) of A and B it is not the least upper-bound (this reflects the fact that C» isa

preorder not a partial order).



Chapter 4. Symbolic Trajectory Evaluation 77

The two fundamental operations used are join and union, and it is worth discussing how
they are used. Firgt, if we know how to characterise sequences that satisfy ¢ and those that
satisfy ¢,, how do we characterise sequences that satisfy ¢ A ¢.? Let ¢ € Q and suppose that
o' and o2 are the weakest sequences such that ¢ < Sato', ¢;). Let o/ = o' Ll 0% Clearly,
q=Sata’, g, A g;). Moreover, supposeq < Sato’, g A g2), thenitmust bethat ¢ < Sato’, ¢1)
and g < Sato’, ¢;). Thus o' C o’ and 0% C o’ since the o' are the weakest sequences such that
q=Sato',g). But, sincec’ = o' LU o?, 0/ C o’. Thus o’ isthe weakest sequence satisfying
g1 A\ gs.

What about characterising sequences that satisfy ¢; V ¢2? At first it may seem that thisis
analogous, and we should just use meet instead of join. However, thisis not symmetric: since
we are characterising a predicate by the weakessequences that satisfy it, taking the meets will
lose information. While it will be the case that if ¢ < Sato’, g1 V ¢2) then o' M o < ¢/, the
converse does not hold in general. This means that to characterise ¢ V ¢ we need to use both
ol and 2.

Sincethe law of the excluded middle does not hold in the quaternary logic, we need to char-
acterise both the sequences that satisfy a predicate with value at least t and those that satisfy a
predicate with value at least f.

Definition 4.7 (Defining sequence set).
Let g € TL. Definethe defining sequence seifg asA(g) = (A¥(g), Af(g)), wherethe A?(g)

are defined recursively by:

LIf gissimple, A%(g) = {sXX...:(s,q) € Dy, 0r (s, T) € Dy}. Thissaysthat provided
a sequence has as its first element a value at least as big as s then it will satisfy ¢ with
truth value at least ¢. Note that A?(g) could be empty.

2A(01 V g2) = (A%(g1) U A¥(g2), Af(g1) IT AT(g2))
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Informally, if a sequence satisfies g V h with atruth value at least t then it must satisfy
either g or ~ withtruthvalueat least t. Similarly if it satisfiesg V h with atruth value at
least f then it must satisfy both ¢ and /& with atruth value at least f.

3.A(g1 A gz) = (A%g1) T A%(g2), Af(g1) U A'(g2))

This case is symmetric to the preceding one.

4.A(ng) = (A(g), A%9))
Thisis motivated by the fact that for ¢ = f,t, o satisfies g with truth value at least ¢ if
and only if it satisfies —¢ with truth value at least —q.

5.A(Next g) = shift A(g), where shift(sos; . ..) = Xsosy .. .
508183 . .. satisfiesNext g withtruthvalueat least ¢ if and only if s;s, . .. satisfiesg with
at least value q.

6.A(g1 Untilgy) = (Ab(gy Until gy), Af(gy Untilg,)), where

o A(g1 Until gy) = U, (A (Next®q) IT. .. IT At(Next Vg ) II Ab(Next'g,
=0

oAf(g1 Untilgy) = 112 (Af(Next®g ) U ... U Af(Next(Vg;) U Af (Nextig,
=0

Recall that Next*g = ¢ if & = 0 and Next*g = NextNext® !¢ otherwise. Here we
consider the until operator as a series of digunctions and conjunctions and apply the mo-

tivation above when constructing the defining sequence sets.

Notethat it may bethat 6', 6% € A?(g) whered' C §%. Asapractical matter it would be prefer-
able for only &' to be a member of A?(g). However, this redundancy does not affect what is

presented below.
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Animportant consequence of Definition 4.7 isthat for each formulag of TL, A(g) charac-
terises ¢: al sequences that satisfy ¢ must be greater than one of the sequencesin Af(g). The

lemma below formalises this (the proof isin Section A.2).

Lemma 4.3.

Letg € TL,andlet o € S¥. Forq = t,f, ¢ < Sato, g) iff 369 € Al(g) withé? C 0. O

4.3.1 Examples

The constant predicates have very simple defining sequence sets.

A(t) = ({XX... },0) A(L) =(0,0)

A(f) = (0,{XX... }) A(T) = ({XX. o H{XX 0
Every sequence satisfies the predicate t with truth value t, and no sequence satisfies the pred-
icate t with truth value f or T. Similarly, no sequence satisfies f with truth value at least t,

while all sequences satisfy f with truth value f. Notethat A(t) = A(—f) (indeed, it would be

disconcerting if this were not the case).

Example4.1.
Supposethat A(g) = (A,, B,) and A(h) = (A, Br). Then,
A(gV h) = A(=(=g A =h)). To facilitate the proof, let rev(A, B) = (B, A).
A(=(mg A =h)) = rev A(ng A —h)
= rev(A*(mg) LAY (=h), Af(=g) U A (~h))
= rev(AT(g) AT (h), A'(g) U A*(h))
= (A%(g) U A (h), A'(g) IL A'(h))

=A(gV h)
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Example 4.2.
x =yisshortfor (z Ay) V ((—z) A(-y)).
Alz=y) = (A%zAy V (mzA-y)),

Af(aAy V (meA-y)))

= (A2 Ay) UAY((mz A=y)),

Af(e Ay) T A~z A-y))

= ((A%(2) WA (y)) U (A% (=a) T A" (=y),
(Af(=2) U Af(=y)))

U (Af(2) LA (y)),

(A%

At

(
(
= ((
(

Example 4.3.
Let S = C?; this models a circuit with three state holding components. The formulag =
(([1] v [2]) = f) asks whether it is true that neither component 1 nor component 2 has the H

value.

A(f) = (0.{(U,U,U)...})
A]) = ({(H, U, U)(U, U, U)... 1 (LU, U)(U, U, U)o )
A(l2]) = (U H,U)(U, U, U)o 1 (U, L UYU, UL U)o )

ALV [2]) = ({(H,U,U)(U,U,U)...,(U,H,U)U,U,U)...},

(

(

(L,L,U)(U,U,U)... })

AV D) =) =AYV [2)IT¢ u ANV [2)) T {(U,U,U)...}
(v [2))
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AV [2)) =) = (A v 2D U{(U,U,U)...3) T (A1) v [2]) U D)
= (AT V 2D U {(U,U,0)...3) T (AY([I] v [20)
= ({(L,L,u)(U,u,U)...;u{(U,U,U)... })

IT {(H,U,U)(U,U,U)...,(U,H,U)U,U,U)...}
= {(L,L,U)(U,U,U)... ,(U,U,U)...}

T {(H,U,U)(U,U,U)....(U,H,U)(U,U,U)...}
= {(Z,L,U)(U,U,U)...,(L,Z,U)(U,U,U)...,

(H,U,U)(U,U,U)... (U, H,U)(U,U,U)...}

Notethat A*([1] v [2]) Tr (AT([1]V [2)) U{(U,U,U)...}) IT (A%([1] V [2])) showing the
redundancy in defining sequence sets. O

4.3.2 Defining Trajectory Sets

The defining sequence sets contain the set of the minimal sequences that satisfy the formula.
It is possible to find the analogous structures for trajectories — we can find an approximation
of the set of minimal trajectoriesthat satisfy aformula. This section first shows how, given an
arbitrary sequence, to find the weakest trajectory larger than it. Using this, the defining trajec-
tory setsof aformulaare defined. Finally, Theorem 4.5 is presented, which provides the basis
for using defining sequence sets and defining trajectory sets to accomplish verification based on
Definition 4.2.

Definition 4.8.
Leto = S05182 .+ ... Let T(O') == totltz ce Where:
So Whenl =0

Y(ti_l) Us; otherwise
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totity ... isthe smallest trgectory larger than o. s, isapossible starting point of a trgjectory,
S0ty = s¢. Any run of the machine that startsin s, must bein astate at least aslargeas Y (s)
after onetime unit. Sot; must be the smallest statelarger than both s; and Y (s¢). By definition

of join, #; = Y(so) U sy = Y(fo) U s;. Thiscan begenerdlisedtot; = Y (t;—1) U s;.

]
In the same way that there is a set of minimal sequences that satisfy aformula, thereis a set of
minimal trajectories that satisfy aformula. A set that contains this set of minimal trajectories
can be computed from the defining sequence sets. The defining trajectory sets are computed by
finding for each sequence in the defining sequence sets the smallest tragjectory bigger than the

sequence.

Definition 4.9 (Defining traj ectory set).
T(g) = (T*(9), T"(g)), where T(g) = {r(c) : 0 € A%(g)}. O

Note that by construction, if 77 € T%(g) then thereisaé? € A%(g) with §? T r9. T'(g) char-
acterises g by characterising the trajectories that satisfy ¢g. Thisis formalised in the following

lemmawhich is proved in Section A.2.

Lemma 4.4.
Let g € TL, and let o be atrgectory. For ¢ = t.f, ¢ < Sato, g) if and only if 379 € T(g)

with79 C o. O

The existence of defining sequence sets and defining trajectory sets provides a potentially effi-
cient method for verification of assertions such as g—>>h. Theformula g, the antecedentcan
be used to describe initial conditions or ‘input’ to the system. The consequenth, describes
the ‘output’. This method is particularly efficient when the cardinalities of the defining sets are
small. Thisverification approachisformalisedin Theorem 4.5 (whichisprovedin Section A.2).
Section 4.1 showed how thisresult isused in practice. Recall that these antecedent, consequent
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pairs are called assertions.

Theorem 4.5.
If g and % are TL formulas, then A*(k) Tp T*%(g) if and only if g=>h. O

Some formulas have small defining sequence sets with simple structure.

Definition 4.10.
If g € TL, and 36 € A(g) such that V6 € Af(g),d? C 4, then 67 is known as the defining
sequencef g. If the é? isthe defining sequence of ¢, then 77 = 7(§7) isknown asthe defining

trajectoryof g. O

Finite formulaswith defining sequences are known astrgjectory formulas. Seger and Bryant
characterised these syntactically (see Section 2.4).

Two useful special cases of Theorem 4.5 should be noted. First, if A isaformulaof TL with
awell-defined defining sequence 64, and 1 € TL, then¥é € A%(h),d C 74 if and only if, for
every trgjectory o for whicht < Sato, A) itisthecasethat t < Sato, h).

Second, let A and C' be formulas of TL with well-defined defining sequences ¢4 and 6¢.
Then §° C 74 if and only if, for every trajectory o for which ¢ < Safo, A) it is the case that
g < Sato, (). Thisis essentially the result of Seger and Bryant generalised to the four valued

logic.

4.4 Symbolic Trajectory Evaluation

The results of Section 4.3 can easily be generalised to the symbolic version of TL. The con-
structs used in the previous section such as defining set and so on all have symbolic extensions.
Each symbolic TL formulais a concise encoding of a number of scalar formulas; each inter-

pretation of the variables yields a (possibly) different scalar formula. To extend the theory of
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trajectory evaluation, symbolic sets are introduced; these can be considered as concise encod-
ings of anumber of scalar sets. Symbolic sets can be manipulated in an analogousway to scalar
sets. Using this approach, the key results presented above extend to the symbolic case.

This section first presents some preliminary mathematical definitions and generalisations
and then presents symbolic trgjectory evaluation.

Theverification conditions are extended to the symbolic case. Giventwo symbolicformulas
g and h we areinterested in for which interpretations, ¢, it isthe case that for all trgjectories, o,

if o satisfies g, then o also satisfies .. Again, both the =—> and —> relations are considered.

44.1 Preiminaries

Definition 4.11.
(9=>h) = {p€®:Voec Ry, t=Satlo,¢(g)) impliesthat t = Sato, ¢(h))}. O

Ideally such verification assertionsshould hold for all interpretations of variables.

Definition 4.12.

E {g=>h) denotes { g=>>h )= . n

Note thet = (g=>h) if and only if Vo € Ry,SAT(0,9) € SAT(o,h). An dternative
approach is to treat inconsistency more robustly (which is what happens in STE defined on a

two-valued logic). We could use these definitions.

Definition 4.13.
{g=>h)= {p€®:VoeSr,t=<Sato,¢(g)) impliesthat t < Satc, ¢(h))} O

and
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Definition 4.14.

= ( g=>h) denotes { g=>h )= . O

Notethat = (g=>h ) if and only if Vo € S7, SAT (0, g) C SAT(o, h)).

Symbolic sets are now introduced.

Definition 4.15.
Define &, the boolean subset of TL, by
Ex=t |T |V ]|EANE | E

This definition is used in this chapter and Chapter 5.

L
Recall that an interpretation of variables can be considered as a function mapping a symbolic

TL formulatoascalar one. Inparticular, if ¢ isaninterpretation of variables,and« € &, ¢(a) €

{f.t}.
In what follows, let S be alattice over apartial order C ; thisinduces alattice structure on

S¥;inturn, Cp istheinduced preorder on P(S“) defined earlier.

Definition 4.16.

A symbolic set over adomain P(S*) is one of
1. AeP(S),
2.0 — Awherea € &;
3. AjUA,, where A;, A, are symbolic sets;
4. A;AA,, where A;, A, are symbolic sets; or

5. A;ITA,, where A, A, are symbolic sets.
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Each symbolic set represents a number of sets. Each interpretation of variables, yields a
scalar set contained in P(S*). Given an interpretation of variables, thereis a natural interpre-

tation of symbolic sets, given below.

Definition 4.17.
Let ¢ € ¢ begiven.
1. ¢(A) = Aforal A € P(S¥);
2. ¢pa — A) = {x € A: ¢(a) = t}. Thusif a evaluatesto t, thena — A isthe set A,
otherwise it is the empty set.
3. AIl Bisdefined by $(AIl B) = ¢(A) 1T ¢(B).
4.1f f: P(S¥)™ — P(S¥), then the symbolic version of f is defined by
O(f (v A)) = F(e(AL),... 6(A)).
These definitions can be used in extending set operations such as set union, as well asfor
more general functions, for example in extending Definition 4.9 to give a definition of

symbolic defining trajectory sets.

5. AC, B={¢ e ®:¢(A)Cp ¢(B)}.

The following lemma shows that these definitions are sensible.

Lemma 4.6.
Let A, B, (' be symbolic sets over domain P(S*).
1. (AC AIIB) = ©.

2.1f (ACC)=dand (B () = &, then (ATIBLC C) = @.
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Proof.
Let ¢ be arbitrary.
() H(A)CTH(A)TT¢(B)  Property of IT.
(2 ¢(A)CH(AIlB) Definition.

Since ¢ is arbitrary part 1 follows.

(3 @(A),¢(B)E&(C)  Hypothesis2.

(4) (AT H(B)T H(C)  From(3), by property of join.
(5) H(AIIB)C ¢(C) Definition.

Since ¢ is arbitrary, part 2 follows.

4.4.2 Symbolic Defining Sequence Sets

Given this mathematical machinery, symbolic defining sequence sets can now be defined. The
definition of defining sequence sets (Definition 4.7) must be extended by using the symbolic
versions of set union and join etc. In addition, one more part must be added to the definition
to take into account formulas of TL containing variables. For completeness, this definition is

given below.

Definition 4.18 (Extension to Definition 4.7).
Let g € TL. Definethe symbolic defining sequence setg asA(g) = (At(g), Af(g)), where
the A7(¢) are defined recursively by:

1. If gissimple, A?(g) = {sXX...: (s,q) € D, 0r (s, T) e D;}.

2. A1V ga) = (A4 (§1)UAY(ga), AT (g0)TA' (g2))

3. A1 A de) = (A% (g)TAHga), AT(91) AT (g2))

4. A(=g) = (AT(9), A%(9))

5. A(Next g) = shift A(g)

6. A(§1 Untilgy) = (A% Until gy), Af(gy Until gy)), where
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o Af g1 Until g,) = Us At Next®g, IT...TIA® Next (=Yg, ITA® Next'd,
=0

o Af(g Untilgy) = I, (Af (Next®g)U . .. UAf(Next (=1 g JUAT (Nextig,))
7.0 eV, A(v) = (v = {XX...},=v = {XX...}).

If $(v) = t, then H(A(v)) = A(t), and if (v) = £, then H(A(v)) = A(f).

The extension of the definition of defining trajectory set is straightforward.

Definition 4.19 (Symbolic defining trajectory set).

T9(g) = 7(A(9)).

The main result of symbolic trajectory evaluation is based on Theorem 4.5. It says that the set
of interpretations | g==>-h ) (those interpretations, ¢, such that ¢(g)=>¢(h). is exactly the

same as the set of interpretations for which At(2) Cp T%(g). So, if we can compute one, then

we can compute the other.

Theorem 4.7.
Let g, h beTL formulas.  ( g==>h )= (At(h) Cp T%(9))

Proof.

(g=>h)={dec®:VoeSrt=Salo,4(g)) impliesthat t < Sato, (1))}

={p € ®: A%d(h)) Ep T*@(g))} (Theorem 4.5)

=A%) Cp T%(g)  (By definition.)

Thisisan important result, because efficient methods of computing these symbolic setsand per-
forming the trajectory evaluation exist, and have been implemented in the Voss tool discussed

in Chapter 6. This formsthe basis of the verification presented here.
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4.4.3 Circuit Modes

When§ = C" and R = {U,L,H}", and only the realisable fragment of TL,, (those TL,, for-
mulas not syntactically containing T) are considered, computing these verification results is
simplified. In the rest of this section we only consider the realisable fragment of TL,,. Two
important properties of the realisable fragment of TL,, are given in the next lemma.
Lemma 4.8.

1. 0 € Ry if and only if Z does not appear in o (for dl ¢, 7, o;[7] # Z).

2. If o € Ry and g isintherealisable fragment of TL,,

SAT (o, g) = 0 and SAT (o, g) = SAT (0, g)
Proof.
The proof of (1) comesfromthedefinitionof R. For (2), recall from Section 3.4 that Sato, g) =
T only if g contains a subformula ¢’ € G, which is either the constant predicate T or if Z
appearsino. O
We compute |= { g=>h ) asfollows. First, compute 7*(g). Itis easy to determine whether

T*(g) € Ry using Lemma4.8(1). If not, then there areinconsi stencies in the antecedent which
should be flagged for the user to deal with before verification continues. Thus we may assume

that 7(¢) € R

= (g=>h) =
Vo € St,(SATy(0,g) € SAT(o,h)) (By definition)
—=Vo € Rr,(SAT(o,9) € SAT4(o,h)) (sinceRy C S7)
—Vo € Ry, (SA%(0,9) C SAT(o,h)) (By Lenma4.8(2).)
=E{g=>h)

Thisresult is useful because in thisimportant specia case, efficient STE-based a gorithms can
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be used. The rest of this thesis uses this result implicitly. The main computational task is to
determine = | g=>-h ). By placing sensible restrictions on the logic used and checking for

inconsistency in the defining trajectory set of the antecedent, we can then deduce = ( g=>h )

from = (g=>h).



Chapter 5

A Compositional Theory for TL

5.1 Motivation

Although STE is an efficient method of model checking, it suffers from the same inherent per-
formance problemsthat other model checking algorithmsdo. Enriching the logic that STE sup-
ports, asis proposed in previouschapters, potentially exacerbatesthe problem. A primary thesis
of thisresearch isthat a compositional theory for TL can overcome performance limitations of
automatic model checking. Compositionality provides a method of divide-and-conquer: the
problem can be broken into smaller sub-problems, the sub-problems solved using automatic
model checking, and the overall result proved using the compositionality theory. This chapter
presents the compositional theory for trajectory evaluation, which is a set of sound inference
rules for deducing the correctness of verification assertions. Chapter 6 discusses the develop-
ment of a practical tool that can use this compositional theory — this allows the use of an inte-
grated theorem prover/model checker with useful practical implementations.

As discussed in Chapter 1, the focus of this theory is property composition: Section 5.2
presents compositional rules for TL; Section 5.3 presents additional compositional rules for
TL,.; and practical considerations are presented in Section 5.4. Structural compositionisbriefly

discussed in Section B.1.

91
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5.2 Compositional Rulesfor theLogic

This section presents the main compositional theory with each rule being presented and proved
inturn. The compositional theory is developed for the =—>> relation. In general, the theory does
not apply to the => relation since the digunction, consequence, transitivity and until rulesdo
not hold for thisrelation. However, the other composition rulesdo apply for —=> (intherelated
theorems below, replacing =3 with => and < with =, and considering only trajectoriesin
R+ will yield the desired result). Moreover, as shown in Section 5.3, the full compositional
theory does hold for the => relation for the important realisable class of TL,,

The circuit shown in Figure 5.1 will be used in the rest of this section to illustrate the use
of the inference rules. The circuit is very simple and can easily be dealt with directly by STE,
but the smallness of the circuit helps the clarity of the example. A unit-delay model is used for
inverter and gate delays. Notation: [B] isthe simple predicate which evaluatesto T when the
state component B has the value Z, t when B has the value H, f when B hasthevalue L, L
when B hasthe value U.

Note that except for the Specialisation Rule, all of the proofs are for the scalar case only as
thissimplifiesthe proof. However, as asymbolic formulais merely shorthand for a set of scalar

formulas, the rules for the symbolic case follow directly in all cases.

B e I F
[ A

Figure 5.1: Example
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5.2.1 Identity Rule

Thisruleisatrivial technical rule. However, it turns out to be useful in practice where a se-
guence of inference rules will be used to perform a verification. In the practical system which
implements this theory, the proofs are written as a program script, and thisruleis useful to ini-

tialise the process. Its advantage is that it makes the program slightly more elegant.

Theorem 5.1.

Foradl g € TL, g—>g.

Proof.Lett < Safo,g). Clearly thent < Sato, g). Hence g=—>¢. OJ

5.2.2 Time-shift Rule

Thetime-shift ruleisimportant because it allows abstraction from the exact timesthings happen
at. Thismay reducethe amount of detail that the human verifier will haveto deal with, and more
importantly, allows verification results to be reused a number of times. In practice thisis very

important in making verification efficient.

Lemmab5.2.

Suppose g=>h. Then Next g—>Next h

Proof.Let o = sps152 ... beaseguence such that t < Sato, Next g).

() t < Satosi,9) By definition of the satisfaction relation.
(2 t = Satosq,h) Since g=>h.

(3) t = Satoso,Nexth) Definition of satisfaction of Next .

(4) ThusNext g=—>Next h.

Theorem 5.3 follows directly from Lemma 5.2 by induction.
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Theorem 5.3.

Suppose g=>-h. ThenVt > 0, Next'g=—=>Next'h.

Example5.1.
In the circuit of Figure 5.1, using STE, it can be shown that [ B]=>Next (=[D]). Using The-

orem 5.3, we can deduce that v/ > 0, Next![B]=> Next *1) (=[D]).

Therequirement of Theorem 5.3 that ¢ > 0 isnecessary: ingeneral it doesnot holdwhent < 0.
For example, in our circuit we can prove that Next'[D]=>Next?[F]. However, it is not the
case that Next’[D]=>Next'[FE]. In the former case, the node C' has the value H at time 1

because A is connected to ground; at time O we know nothing of the value of C'.

5.2.3 Conjunction Rule

Conjunction and digunction allow the combination of separately proved results. Thisis partic-
ularly useful where properties of different parts of the system being verified have been proved
and need to be combined. Given two results g;=>h, and g,=>h., the two antecedents are
combined into one antecedent and the two consequents are combined into one consequent. Us-
ing the conjunction rule, combination is done using the A operator, and using the digunction
rule, combination isdone using the vV operator. Thereisno need for the ¢; and /; to be ‘inde-

pendent’, i.e. they can share common sub-formulas.

Theorem 5.4.
Suppose g, =>h; and g;=>h,.

Then q1 A 92:>>h1 A hz.
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Proof.Let o € S* and supposet < Sato, g1 A g2).
(1) t = Sato,g1) A Sato,g2)  Definition of Sato, g1 A ¢2).

(2 t = Sato,g:), 1=1,2 Lemma 3.2(2).

(3) t < Sato,h;), i=1,2 Since g;=>h;, i = 1,2.

(4 t = Sato,hi)ASato,hy) Lemma3.2(2).

(5) t = Sato,hiAhs) Definition of Sato, by A hs).

As o isarbitrary, g1 A go=>h1 A h. O
Example5.2.

In the circuit shown in Figure 5.1, we can show using STE that
—[B]=>Next [D]

-[A]=>Next [C].
Using Theorem 5.4 we have that:

[A] A 1[B] => Next [C] A Next [D].

5.2.4 Digunction Rule

Theorem 5.5.
Suppose g, =>h; and g;=>h,.
Then q1 A% 92:>>h1 A% hg.

Proof.Let o € S and supposet = Sato, g V ¢2).

(1) t = Sato,g1)V Sato, ¢2) Definition of Sato, g1 V ¢2).
(2 t = Sato,qg;), fori=10r: =2 Lemma3.2(1).

(3) t =% Sato,h;), fori=10r:=2 Sinceg,=>h,, i=1,2.

(4 t < Sato,h,)V Sato,hs) Lemma3.2(1).

4) t = Sato,hiV hy) Definition of Sato, hy V hy).

Asoc isarbitrary, g1 V go=>h1 V hs. O
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Example5.3.

In the circuit in Figure 5.1, we can use STE to show that
—[D]=>Next [F]

-[C]=>Next ~[F].
Using Theorem 5.5, we have that

(—[D] V ~[C])=>Next ~[E].

Although the consequents of both premisses used here in the disunct rule are the same, in gen-

eral they may be different.

5.25 Rulesof Consequence

The rules of consequence have two main purposes.
¢ Rewriting antecedentsand consequentsinto syntactically different but semantically equiv-
alent forms (see Example 5.4);
e Removing information which is not needed for subsequent steps in the proof so asto re-

duce clutter (see Example 5.5).

The next lemmaisan auxiliary result. Informally it saysthat if the defining sequence sets of

g and h are ordered with respect to each other, then every sequence that satisfies / also satisfies
qg.

Lemma 5.6.

Suppose Af(g) Ep Af(h) and t < Sato, h).

Thent < Sato, g).
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Proof.
(1) FI6eA%(h)>36Coandt < Safs,h) Lemmad3.
(2 3 eAf(g)>dCS Definitionof Cp .
(3) t = Satd’, g) Lemma4.3.
4 dCo Transitivity of (1) and (2).
(5) t = Sato,g) From (3) and (4) by Lemma4.3.

]
Theintuition behind thisisthat if A*(g) Cp Af(h), then any sequence that satisfies . will also

satisfy g. Given this result, the rules of consequence are easy to prove.

Theorem 5.7.
Suppose g=>-h and A*(g) Cp A®(gy) and A*(hy) Cp Af(h).
Then 91:>>h1

Proof. Suppose o isatrgjectory such that t < Sato, ¢1).
(1) t =% Sato,g) Lemmab.6.

(2 t <X Sato,h) g=>h.
(3) t =< Sato,h;) Lemmab.6.

4 g=>h Since o isarbitrary.

Example 5.4.
Using this theorem to rewrite one assertion into asemantically equivalent one can beillustrated

by examining the result of Example 5.2:
(—[A] A =[B])=>(Next [C] A Next [D]).

Since conjunction can be distributed over the next-time operator, as Next [C'] A Next [D] =

Next ([C] A[D]), this can be rewritten as:

(~[A] A =[B]) = Next ([C] A[D]).
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Example5.5.
In the circuit of Figure 5.1, we can show using STE that

([B] ANext [B])=>Next'(= D) ANext*(=D).
Using Theorem 5.7, we can refine thisto

([B] ANext [B])=>Next'(-D).

5.2.6 Trangitivity

The rule of transitivity is an analogue of the transitivity rule of logic: it givesthe condition for
deducing from g; =1, and g,=>>h, that g; =>h,. Thisconditionisthat A*(g;) Cp A¥(g;)II
A*(hy). Note that thisis aweaker condition than showing that A*(gs) Cp A®(hy).

Theorem 5.8.
Suppose g;=>-h; and g.=>-h, and that A*(g;) Cp A¥(gy) U A¥(hy).

Then q1 :>>h2

Proof. Suppose o isatrgjectory suchthat t < Sato, ¢ ).

(1) t j Sa,‘,iO'7 hl) 91:>>h1
(2 t =< Sato,g1Ahy) Definition of Sato, g; A hy).
3 e A (g1Ah)>6Ca Lemma4.3.

(4) Ab(giAhy) = A%g) T Ahy) By definition of A®.

(5) 39 € Ab(g) > C 46 Ab(g2) Tp Ab(gy) IT A¥(hy).

6) d'Co Applying transitivity to (3) and (5).
(7) t =< Satd’,g2) From (5) by Lemma 4.3.

(8) t = Sato, ) From (6), (7) by monotonicity.
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(9) t j Sa(O',hQ) 92:>>h2

(10) g1=>h, Since o was arbitrary.

Example 5.6.
Using STE, we can prove the following about the circuit of Figure 5.1:
o =[B]=>Next?[F]

o Next?[F]=>Next?(~[F])

Then, using Theorem 5.8, we can deduce —| B|=>Next>(~[F]).

5.2.7 Specialisation

Speciaisationisone of thekey inferencerules. By using specialisation it is possible to generate
alarge number of specific resultsfrom one general result. With STE, it isoften cheaper to prove
amore general result than a more specialised result. Thusin some cases, it may be cheaper to
generate amore general result than needed and then to specialise this general result than to use
STE to obtain the result directly. Specialisation also promotes the re-use of results. It is often
used together with transitivity: before applying transitivity to combine two assertions, one or
both of the assertions are first specialised.

For example, a general proof of the correctness of an adder is straightforward to obtain us-
ing trgjectory evaluation, even for large bit widths. Such a proof may show that if bit vectors
representing the numbers « and 6 are given as inputs to the circuit, then a few time steps later
the bit-vector representing « + b emerges as output. There are two reasons why one might want
to specialise such a proof:

e If theadder ispart of alarge circuit the actual inputs may be bit-vectorsrepresenting com-

plex mathematical expressions. Since STE relies on representing bit-vectorswith BDDs,

if the BDDs needed to represent these mathematical expressionsarevery large, it may not
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be possible to use STE to prove that the adder works correctly for the particular inputs.
The solution is to prove that the adder works correctly for the general case, and then to

specialise the result appropriately.

¢ The adder may be used a number of times in a computation, each with different input
values. Instead of proving the correctness of the circuit for each set of inputs, the proof
can be done once and then the specific results needed can be obtained by specialisation

(and, probably, time-shifting).

Recall the definition of the boolean subset of TL presented as Definition 4.15.

Definition 5.1.
Define £, asubset of TL, by

Ex=t |T |V ]|EANE | E

Definition 5.2.
1. £V — £ isasubstitution

2. A substitution £: 'V — £ can be extended to map from TL to TL.:
o {(g1Ag2) = E(g1) AE(g2)
o {(mg) = ~¢(y)
o {(Next g) = Next ({(g))
o £(gUntilh) = £(g)Until £(h)

e Otherwise, if g isnotavariable, {(g) = ¢

If T isthe assertion |= | g=>-h ) then {(T') isthe assertion = (£(g)=>¢(h) ).
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Lemma 5.9 (Substitution Lemma).
Suppose |= | g=>h ) and let £ be asubstitution.
Then |= ({(g)=>¢(h) ).

Proof. Let ¢ by an arbitrary interpretation of variables and o be an arbitrary trajectory such that
t < Salo, (¢(9))).

(1) Letg'=¢o¢

(2 t =< Sato,¢'(g)) Rewriting supposition.

(3 ¢ isaninterpretation of variables By construction.

(4) t = Sato,¢'(h)) = (g=>h).
(5 t = Sato,¢(¢(h))) Rewriting (4).
6) E{&g)=>¢h)) ¢ and o were arbitrary.
L]
Example5.7.

Suppose that part of a circuit multiplies two 64-bit numbers together and then compares the
result to some 128-bit number. Let ¢ be the boolean expression that this part of the circuit com-
putes — in general it will not be possible to represent ¢ efficiently since the BDD needed to
represent ¢ will be extremely large. Now suppose that the next step in the circuit isto invert c.
We may wish to prove that

Ty = E {[B] = c=>Next ([D] = —¢) ) istrue.

Giventhat cissolarge, it will not be possible to use STE directly to do this. But, let

T, = E{[B]=a=>Next([D] =—a))

where « isavariable (an element of V).

Proving that 7>, holdsusing STE istrivial. Having proved 75, we can easily prove 7; using
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Lemmab.9. Let

¢ whenv=ua
¢(v) =
v otherwise
be a substitution. Note that 77 = £(73). AsT; holds, and as ¢ is asubstitution, by Lemma 5.9,

T, holdstoo.

Although substitution is useful, in practice sometimes a more sophisticated transformation is
also desirable. Lemma5.10 shows that it is possible to perform atype of conditional substitu-
tion. A specialisatioris a conjunction of conditional substitutions which allows us to perform
different substitutions in different circumstances. An example of the use of specialisation is

given in Chapter 7.

Definition 5.3.
== [(e1,&1),... ,(en, & )] Whereeach ¢ isasubstitution and each ¢; € £, isaspecialisation.

If g € TL,then=(g) = A%, (e; = &(9)).

Lemma 5.10 (Guard lemma).
Supposee € £ and = ( g=>h).
Then|= ( (e = g)=>(e¢ = h)).

Proof.

Supposet < Sato, e = ¢). By the definition of the satisfaction relation, either:

(i) t = Sato,—e). Inthiscase, by the definition of the satisfaction relation,

t < Sato,e = h).

(i) t <X Sato, ¢). Inthiscase, by assumption Sat o, /). Thus, by definition of the satisfaction

relation, t < Sato, e = h).

As o was arbitrary the result follows. O
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Theorem 5.11 (Specialisation Theorem).
Let==[(e1,&1),. .., (en, &) beaspeciaisation, and suppose that |= (| g=>h ).
Then |= (Z(g9)=>E(h) ).

Proof.
(1) Fori=1,....n, = {&g)=>&h)) By Lemma5.9.
2 E{(e=&g)=>(e; = &(h)) By Lemma5.10.
B E(ALi(e;= &(g)=>N",(e; = &(h))) Repeated application of Theorem 5.4.
@) E(Z(g)=>Z(h)) By definition.
]
5.2.8 Until Rule
Theorem 5.12.
Suppose g =>h, and g;=>h,. Then g, Until g=—=>h, Until h,.
Proof.Let o = sps1s2 ... beatrgectory such that t < Sato, ¢; Until gs).
1) Fi>
t < AL Sato,Nextigi) A Safo,Next'g;) By definition of Sat
(2) t =< Sato, Next'g,) and
t < Satjo,Next/g), 7 =0,...,i—1 Definition of conjunction.
(3) t < Sato,Next'h,)and 0
t < Sato,Next’hy), 7=0,...,i—1 Assumptions and Theorem 5.3.

(4) t =< A'Z} Sato,Next’h;) A Safo,Next'hy)  Definition of Sat

(5) t=Sato,h;Untilhs) Definition of Sat

(6) ¢1Until gp=>h,Untilhy Since o was arbitrary.
Corollary 5.13.

Suppose g=—>>h: then Exists g=—>Existsh and Global g=—>Global h.
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Proof.
The first result follows directly from the theorem using the definition of the Exists operator
and the fact that t=>t.

Let o be an arbitrary trgjectory such that t < Sato, Globalg).
(1) f=<Sato,Exists(—g)) Expanding thedefinitionof Global.

(2) Vi,f =< Satos;,—g) Definition of Satfor Exists.

(3 Vi,t =< Satos;,g) Definition of Satfor -, Lemma3.1.
(4) Vi, t =< Satos;,h) g=>h

(5 Vi,f= Satos;,—h) Definition of Satfor —.

(6) f < Sato,Exists(—h)) Definitionof Satfor Exists.

(7) t < Sato,Globalg) Definition of Satfor Global.
Which concludes the proof since o was arbitrary. O
Example 5.8.

Consider again the circuit in Figure 5.1. Using STE, it is easy to prove
[B]=>Next (0[D]).
Using Corollary 5.13, we can deduce that Global [B|=>Global (Next (—[D])).

5.3 Compositional Rulesfor TL,,

For the realisable fragment of TL ,,, the compositional theory above appliesto the —> relation
as well as the = relation. A key result used is Lemma 4.8. The remainder of the section
assumes that we are dealing solely with the realisable fragment of TL,,.

Only the statements of theorems are given asthe proofsare very similar to or use the proofs

inthe previoussection so the proofsare deferred to Section A.3. Table5.2 summarisestherules.
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Theorem 5.14 (Identity).

Fordl g € TL,,, g=>g.

Theorem 5.15 (Time-shift).

Suppose g=>h. ThenVt > 0, Next'g=—>Next'h.

Theorem 5.16 (Conjunction).

Suppose g; =>hy and g =>hy. Then g1 A go=>h1 A hs.

Theorem 5.17 (Digunction).

Suppose g, =>hy and go =>hy. Then g1 V go=>hy V hs.

Theorem 5.18 (Consequence).
Suppose g=>h and A(g) Cp At(gy) and At(hy) Cp Ab(R). Then gy = 1.

Theorem 5.19 (Transitivity).
Suppose g; =>hy and g, =>h, and that A*(gs) Cp Af(gy) I Ab(hy).

Then a1 = h,.

Theorem 5.20 (Specialisation).
Let = = [(e1, &), ..., (€n, )] be specidisation, and suppose that = (g=>h ). Then |=
(E(g)=E(h) ).

Theorem 5.21 (Unitil).

Suppose g; =>hy and g, =>h,. Then g; Until go=>h, Until h,.

Other rules, like Corollary 5.13 are possible too. To illustrate this, and because the result is

useful, afinite version of Corollary 5.13 follows.

Lemma 5.22.

If g=>h, thenfor al ¢, then G1lobal[(0,t)] g=>Globall(0,1?)] h.
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Proof. (By induction ort)
(1) Global[(0,0)] g=>Globall(0,0)] &~ By hypothesis.

(2) Assume asinduction hypothesis:
Globall[(0,? — 1)] g==>Global[(0,t —1)]
(3) Next’g=>Next'h Time shift of hypothesis.
(4) Globall(0,t)] g==>Globall[(0,#)] ~  Conjunction of (2) and (3)
This concludes the induction. O
Corollary 5.23.

If g=>h, thenfordl s,¢,¢ > s, Global|[(s,?)] g => Global](s,t)] h.

Proof.
(1) Global[(0,t— s)] g=>Global[(0,f—s)] ~ Lemmabs.22

(2) Global](s,t)] g=>Globall(s,t)] h Time-shift (1).

5.4 Practical Considerations

54.1 Determiningthe Ordering Relation: isAf(g) Cp Af(h)?

To apply the rules of consequence and transitivity, it iS necessary to answer questions such as
At(g) Cp Af(h)? One way of testing this is to compute the sets and perform the comparison
directly. However, for practical reasons we often wish to avoid the computation of the sets,
and to use syntactic and other semantic information to determine the set ordering. Typically
formulaslike ¢ and / share common sub-formulas and even some structure, which makes the
tests explored in this section practical.

Lemma 5.24 is the starting point of these tests, and although very smple, it isimportant in
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Name Rule Side condition
| dentity
g=—=g
. . h
Time-shift §= t>0
Next’g=—>Next'h

Conjunction

g=>h1 ga=>ho
g N ga=hi Ahy

g=>h1 ga=>ho

g1 Until go=>hy Until Ay

Digjunction PRV

Conseguence % Ab(g) Tp At(gy), Ab(hy) Tp Ab(R)
Transitivity 9 :Zhlz‘f?hz:bh? Ab(gs) Cp A(g) ILAH(hy)
Specialisation = ngzié(bh) ) = aspecidisation.

Until G=bh  ga=thy

Table5.2: Summary of TL,, Inference Rules
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practice. One effect of thislemmaisthat if two formulas are syntactically different but seman-

tically equivalent, then they are interchangeable in formulas.

Lemma 5.24.

If g and / are simple then the question whether A*(g) C» A®(%) iswhether for V(s,q) € D,

withg=torqg=T,3(s,q) € D, withs' C s.

Proof. Thisis a restatement of the definition of A®.

O

Given this starting point, the ordering relation can be determined by examining the structure of

formulas and applying the following lemmas.
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Lemma 5.25.

If g = g1 V g2, then Af(g) Tp Af(gy).

Proof.
() Letse Af(gy)

(20 A(g) = A%(g1) UA*(g2) By definition of A*

(3) §e At(g) Set theory

4 6C6 Reflexivity of partial order
(5) A(g) Cp A1) Definition of Cp

Corollary 5.26.

Fore e & Af(e = g) Cp Af(g).
Proof. Straight from the definition of implication. O

Lemma 5.27.

If g = g1 A ga, then A¥(gy) Ep At(g).

Proof.
(1) Letse Af(g)

(2) 35 € A¥(g1),6% € A¥(ge) > 6 = ¢ U* Definition of A®.
(3) 'L Definition of join.
(4 Ab(g1) Cp Ab(g) Definition of Cp

Lemma 5.28.

Suppose Af(g) Ep Ab(h): then Vi > 0, Af(Next'g) Cp A¥(Next'h).

Proof. By induction on :. The base case of : = 0 follows directly from the assumption.

Suppose Af(Next'g) Cp Af(Next'h).
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Then shiftf Af(Next'g)) Cp shiff At(Next'h))?!.

Thus At (Next((t1)g) Cp Ab(Next(+Vh), O

Lemma 5.29.
Suppose A*(g1) Ep A*(hy) and A*(gz) Ep Af(ha).

Then At(gl Untllgz) Ep At(hl Until hg)

Proof.
(1) Vi>0,A%Next'g;) Cp Ab(Next'h;) ByLemmab.28
(2) Vi>0,A%Next'gy) Cp Ab(Next'h,) ByLemmab.28

(3) Ab(g Untilgy) = U (Ab(Next g ) IT ... II Ab(Next( Vg ) IT A¥(Next'g,))

By definition
(4) Cp UL, (AY(Next®hy) IT... IT A4(Next VA, ) IT At(Next'hy))
From (1) and (2)
(5 = A%(hy Untilhy) By definition
L
Lemma 5.30.
For all ¢, Af(Next’g) Cp A*(Globalg).
Proof.Let 6 € A*(Globalyg).
(1) t=< Satd,Globalg) LemmaA.6
(2) = —Satd,Exists—yg) Definition of Global
(3) = -—Saté,tUntil—yg) Definition of Exists
(4) =-VZ,(Satds;, Next'g)) Definition of satisfaction
(5) =-VE,(Safds;, Next'g)) Definition of satisfaction
6) = A2, Satds;,Next'g) De Morgan's law
(7) Vit = Satds;,Next'g) Definition of conjunction

I'Recall that Shift(808182 .. ) = Xsp8189 ...
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(8) Vi,36" € Af(Next'g) 2 8'C 4 Lemma4.3

(9) Vi, A*(Next'g) Cp A*(Globalg) Definitionof Cp
]

Similar rules can be developed for Af; the two sets of rules are tied together by the definition
of the satisfaction of negation. These tests seem very simple and obvious, but in practice they

allow the development of efficient algorithms to test whether A*(g) Cp A®(R).

54.2 RestrictiontoTL,,

Therestrictionson thelogic TL,, make it much easier reason about. Recall that the basis of the

logic isthe set of predicates &,,. In practice, many TL,, formulas are of the form

i/:\O Next (j/:\o[ni’j] = 62'7]‘)

wherethee; ; € £. Given

9= NLoNext (A y[nf,] = ¢!

h = /\2:0 Nextk(/\;io[nw] = ew),
from Lemma 5.27 it follows that to determine whether Af(g) Cp A*(%), we need to check
whether

. ;o ;o
Vi,g; Ao g, =nig Nep s = €

This can largely be done syntactically. Depending on the representation used, testing whether
e;; = ¢, may either be done syntactically or using other semantic information. Particularly
when the level of abstraction israised, it is often the case that other semantic information must
be used.

Of course, thereareimportant cases whereformulasare not of thisform, and we need to have
other ways of reasoning about them. A more general and typical case is verifying an assertion

of theform { g=>h ), where g isan arbitrary TL,, formulasand & = Next/( A%_([n;] = &) ).
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Definition 5.4.

Strict dependencenformally, ¢ € TL,, is strictly dependent on the state components R =
{r,...,r; } attimet if g beingtrueat timet¢ impliesthat the componentsry, . . . , r; havedefined
values, and ¢ is not dependent on any other state components. The formal condition for strict

dependenceis. ¢ is strictly dependent on the state components R if
Ve Ab(g): Vre R, ULC &[r]; Vs € R, &[s] = U.

In practice, strict dependence can often be checked syntactically. For example [B] = ¢ where
e € £ isstrictly dependent on B. This comes from the property of exclusive-or —if « © b € B,
where exclusive-or, a & b, isdefined asa A(=b) V (—a) Ab—thena,b € B). Moreover, strict

dependence can be checked relatively efficiently (as will be seen later).

Theorem 5.31 (Generalised Transitivity).
Let A; be atrgjectory formulasuch that - = 74 € Rr(¢), and let h; = Next'h beaTL,
formulastrictly dependent on state components {4, ... ,r; } a timet where i containsno tem-
poral operators. Let A; = Next/(Al_,[r;] = v;) wherethev; € V.
Suppose = | Ay=>hy ) and = { As=>hs ). Then,

(1) Thereisasubstitution ¢ such that = | Ay=>¢(h) ); and

(2 h(r) =t.
Proof.

() Fori=1,....1, 3¢, € &3¢, =714[r] k(A =>h,),strict dependence of ;.

(2) LetC =Next'Al_j[r]=¢;

) E(Ai=>C) By construction of C'.

4 E(Ai=hAC) Conjunction.

(5) Forve{vy,...,v}leté(v;) =e;

Forv & {vy,..., o} leté(v) =wv
6) = (A,=ho) Given.
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(7))  E(&(Ay)=>¢(ha)) Substitution (Lemma A.18).

8) [E (hiA&(A)=>¢&(he)) Ruleof consequence.

(9) C=¢(Ay) By construction.

(10) = (Ai=>¢&(h2)) From (4), (8) by transitivity.

This concludes the proof of (1)

(A1) A(r) =t = (A =>Next'h) and 741 € Rr(t)

This concludes the proof of (2)
]

Although the proof of this theorem is relatively complex, the theorem itself is not, and very
importantly many important side-conditions can be checked automatically. The seeming com-
plexity of the theorem comes from having to relate A, to A,. But, thisturnsout to be the virtue
of thetheorem. Thedifficulty withtrying to use transitivity betweentworesults|= { Ay =>h4 )
and |= | A;=>h, ) isto find the appropriate specialisation for the latter result. This theorem
provides a method for doing this: the first part of the theorem says that a specialisation exists,

and the second part helps find it. The example below illustrates the use of the theorem.

Example5.9.

Figure 5.2 shows two cascaded carry-save adders (CSAs). There are four inputs to the entire
circuit, and two outputs. Three of the inputs get fed into one of the CSAS; the other CSA gets
the fourth of the inputs and the two outputs of the first CSA. Assuming each CSA takes one
unit of timeto computeitsresults, if four values get entered at ./, /', L and M, two units of time
later, the sum of these four values will be the same as the sum on nodes P and ().

Let
A = ()= DA
hy = Next ([N]+ —
Ay =Next ([M]=m)A([N] =n)A([O] = o)
hy = Next?([P]+
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Then
E{Ai=>h)
E (As=>hy).
These two results can be proved using trajectory evaluation. The process of performing tra-

jectory evaluation also checks that 741 € R7(d(hy)). A, and h,; are of the correct form for
Theorem 5.31. Furthermore the strict dependence of /; on components M, N and O can be

checked syntactically. By the theorem we have that there is a specialisation ¢ such that
= (Ay=>Next*([P] +[Q] = {(m +n +0)) )

and

which means that
(TN + 0] =+ k+1) =t.

But, by the structure of /; we know that

Aq _ Ay _ Ay _

M [N] = €(n) and 75 [0] = €(0) and =" [M] = £(m)
and so, as by the properties of substitution ¢(z + y) = £(x) + £(y),
(E(n+o)=j+k+1 A Em)=m)=t.

This result has given us sufficient information about £. Thus,

= | Av=pNext®([P]+[Q] = j + k + 1+ m)).

55 Summary

This chapter presented acompositional theory for TL ; thistheory isvery important in overcom-
ing the computational bottlenecks of automatic model checking. The focusof the compositional
theory is property composition, which is particularly suitable for STE-based model checking.
The general compositional theory for TL was presented, followed by additional rulesfor TL,,.
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exrZ

Figure 5.2: Two Cascaded Carry-Save Adders

Section 5.4 discussed some issues that are important in the practical implementation of the the-
ory.

Chapter 6 shows how the compositional theory can be implemented in a practical tool.



Chapter 6

Developing a Practical Tool

This chapter discusses how to put the ideas presented in the previous chapters into practice. A
number of prototype verification systems using these ideas have been implemented to test how
effectively the verification methodology can be used. Although these prototypeshave been used
to verify substantial circuits, they are prototypesand the purpose of the chapter isto show how
apractical verification system using TL can be developed, rather than to describe a particular
system.

Section 6.1 discusses the Voss system, devel oped to support the restricted form of trajectory
evaluation. Vossis important because the algorithms that it implements form the core of the
prototype verification systems. This section also discusses the important i ssues of how boolean
expressions, sets of interpretations, and sets of states are represented. Section 6.2 examines
higher-level representational issues, in particular efficient ways of representing TL formulas so
that they can be efficiently stored and manipulated. It isimportant that appropriate representa-
tional schemes be used since different methods are appropriate at different stages. By convert-
ing (automatically) from one scheme to another, the strengths of the different methods can be
combined. Section 6.3 shows how trajectory eval uation and theorem proving can be combined
into one, integrated system. The motivationfor thisisto providethe user with atool which pro-
vides the appropriate proof methods at the right level of abstraction — model checking at the
low level, theorem proving at the highlevel wherehumaninsightismost productively used. The

theorem prover component is the implementation of the compositional theory, whichis critical

115
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for the practicality of the approach. One of the key issues hereis how to provide as much assis-
tance to the human verifier aspossible. Thefinal section, Section 6.4 extends existing trajectory

evaluation algorithms so they can be used to support aricher logic.

6.1 The Voss System

In order to verify redlistic systems, any theory of verification needs a good tool to support it.
Seger developed the Voss system [115] as aformal verification system (primarily for hardware
verification) that uses symbolic trajectory evaluation extensively.

There are two core parts of Voss. The user interface to Voss is through the functional lan-
guage FL, alazy, strongly typed language, which can be considered adiaect of ML [107]. One
of the key features of FL isthat BDDs are built into the language, as boolean objects are by de-
fault represented by BDDs. Since BDDs are an efficient method of representing boolean func-
tions, data structures based on BDDs, such as bit vectorsrepresenting integers, are conveniently
and efficiently manipulated. Of course, as previously discussed, the limitations of BDDs mean
that there are limitations on what can be represented and manipulated efficiently; how these
limitations are overcome is an important topic of this chapter.

The second component of Voss is a symbolic simulation engine with comprehensive delay
modelling capabilities. This simulation engine, which isinvoked by an FL command, provides
the underlying tragjectory evaluation mechanism for trgjectory formulas.

Trajectory formulas are converted into an internal representations (the ‘ quintuplelists') and
passed to the simulation engine; these quintuplelists essentially are representations of the defin-
ing sequences of the antecedent and consequent formulas comprising the assertions. The an-
tecedent formulais used to initialise the circuit model, and the simulation engine then com-
putes the defining trajectory for the antecedent. As this evaluation proceeds, Vosswill flag any

antecedent failuresviz. a Z appearing in the antecedent, and compares the defining trajectory



Chapter 6. Developing a Practical Tool 117

with the defining sequence of the consequent. Two typesof errorsarereportedif the comparison
fails: aweak consequent failure occursif Us appearing in the defining trgjectory are the cause
of thefailure!; astrong consequent failureisreported if the defining trgjectory of the antecedent
is not commensurabl e with the defining sequence of the consequent.? Using the terminology of
TL and Q, awesk failure corresponds to the satisfaction relation returning L, a strong failure
correspondsto af.

Circuit models can be described in a number of formats. Interacting through FL, the user
sees models as abstract data types (ADTS) of type fsm. FL provides alibrary (called the EXE
library) which allows the user to construct gate level descriptions of circuits. Once a circuit is
constructed as an EXE object, the model can be converted into an fsm model. There are also
tools provided for converting other formats (both gate level and switch level models) into fsm

objects;, among others, VHDL and SILOS circuit descriptions can be accepted.

Representing Sets of I nter pretations

Since STE-based verification computes the sets of interpretationsof variablesfor whichagiven
relation holds, efficient methods for representing and manipulating these setsisimportant. Voss
represents a set of interpretations by a boolean expression (i.e., by aBDD). If ¢ is a boolean
expression, then ¢ representsthe set {¢ € @ : ¢(p) = t}. Thisrepresentation relies on the
power of BDDs, so although usually agood method, it breaks down sometimes. One advantage
of thisrepresentation isthat set manipulation can easily be accomplished as boolean operations.
If v represents the set of mappings ®; and ¢, the set of mappings @,, then ¢, V ¢, isthe
representation of ®; U ®,, 1 A ¢, the representation of ®; N ®,, —¢4 isthe representation of
¢\ d,, and set containment can be tested by computing for logical implication.

1 This happens if the defining trajectory of the antecedent is less than the defining sequence of the consequent;
the verification might succeed with a stronger antecedent.
A stronger antecedent will only make things worse.
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A more general point about representing interpretationsal so needs to be made. Supposethat
b € £ isaboolean expression (and so represented asa BDD). Let vy, . .. , v, bethevariables
appearing in b.3 To ask whether there is an interpretation ¢ such that ¢(b) = t isthe same as
asking whether Fvy, ... , v,,.b (arethere boolean valuesthat can replacethe variables so that the
expression evaluatesto true?). Since existential quantificationisastandard BDD operation, this

can be computed in FL through the construction and manipulation of BDDs.

Representing Sets of States

Voss manipul ates and anal yses circuit models, viz. model s wherethe state spaceisnaturally rep-
resented by C" for somen. A stateinC™ isthusavector (¢, ... ,¢,), whereeach ¢; € C. Voss
uses a variant of the dual-rail encoding system discussed in Section 3.2 for representing ele-
mentsof C*, which meansthat each statein Vossisrepresented by avector ((a, by ), ... , (as,b,)),
wherethe a;, b; € B.

The use of boolean variablesallows one symbolic stateto represent alarge number of states.

The vector

s={(ay,b1),...,(an,by))

(wherethe a;, b; € £) represents the set of states {¢(s) : ¢ € &} where

¢(s) = ((¢(a1), ¢(b1)), - -, (Plan), ¢(bn)))-
Note that the «; and b; need not contain any variables. Thisideacan be extended so that sets of
sequences can be represented by symbolic sequences.
Thistype of representation is known as a parametric representatiornl he alternative repre-

sentation is the characteristic representatior{For discussion of these representations, see [43,

3Thisisasimple syntactic test; since quantification does not exist in £, we do not have to ask whether variables
are free or bound.
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87].) x: C" — B represents the set

{s:x(s) =t}
Note thesimilarity to theway inwhich interpretations arerepresented. Thisindicatesthat y can
be represented as a BDD — the mechanics of this are presented now. Let s = (sq,... ,s,) be
a symbolic state representing the set of states 5, and let vy, . .. , v, bethe variables appearing
ins. Letr = (ry,...,r,), whereeach r; isapair of boolean variables(r; 1, r; ») not appearing

in{vy,..., v}

X(r)=t <= o€ ®>r=24¢s)
— Jpe ® 5 AL (ri = d(s))

< E'Ul, LU D /\?:1(7“2' = Si)

Thus x(r) can be represented a boolean expression (BDD) containing the r; ; variables only.
To determine whether a particular state is in the set, the r; are instantiated in y(r); the value
obtained ist if and only if the state is the set.

The advantage of the characteristic representation is that it is convenient to perform union
and intersection operations on sets of states. Moreover, as each set is represented by one BDD,
set representations are canonical, which is extremely useful. However, this monolithic repre-
sentation of sets of states can be very expensive.

The primary advantage of the parametric representation is that it is very compact. » inde-
pendent BDDs represent a set of states, which increases the size of the state space that can be
manipulated. Moreover, this representation is particularly suitable for the symbolic simulation
of the state space, and for the computation of defining sequences. Itisthe representation method

on which STE is based.
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6.2 Data Representation

Although exploiting the power of BDDs to implement the underlying trgjectory evaluation ef-
ficiently is essential, there needs to be complementary ways of representing and manipulating
data.

One way of doing thisisto represent TL formulas and associated data structures symboli-
cally. Thisisbest explained by the following example. Suppose the circuit being verified isan
integer adder. Formally, the circuit model represents the integers as bit vectors of appropriate
size, and addition of integersis formally represented as bit vector manipulation. The TL for-
mulas used to specify correctness will formally describe the behaviour of the circuit at the bit
level.

In our prototypetools, integer types like this are represented and manipulated in the follow-
ing way.

¢ An abstract datatype representing integersisdeclared. See Figure 6.1 which givesan ex-

ampledeclaration: integersare constants, variables, or the addition, subtraction, multipli-
cation, division, or exponentiation of two integers; integer predicates are the comparison

of two integers.

¢ A routine which converts integer objects into bit vectors, and integer predicates into an
equivalent predicate over bit vectorsis written. For convenience, thisroutineis referred
toas bv. Typicaly, the bit vectors are finite and can be represented in standard ways (e.g.
twos complement). However, itisalso possible to have representations of infinite bit vec-

tors (the lazy semantics of FL is useful here).
e A set of bit vector operations giving the formal semantics of the objectsis implemented.
Addition, for example, is modelled by operations on two bit vectors.

e A set of ADT operations corresponding to the vector operations is implemented. This

meansthat the FL program can manipul ateinteger-rel ated objects without converting them
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into the associated bit vectors.

lettype N = // Natural nunber expressions
Nvar string
| Nconst int
| Nadd N N
| Nsub N N
| Nrult N N
| Ndiv NN
| Npow N N

Figure 6.1: An FL Data Type Representing Integers

Although the formal semantics of integer objectsis given by bit vectors and the operations
on bit vectors, the higher-level representation isuseful for two reasons. First, it has the effect of
raising the level of abstraction, which makes the verification task for the user easier sinceit en-
ablesthe user to deal with higher-level, composite objects. Second, and moreimportantly, it has
significant performance advantages, BDDs can be used where appropriate and other methods
where BDDs fail.

This situation is depicted in Figure 6.2. The FL program stores the object d; by applying
the conversion routine, bv, the bit vector which represents d can be computed. Applying the
operation f,4: to d isthe same as applying the operation f,44 t0 dpys, Whichisillustrated by the

commutative diagram in Figure 6.2.

foda
dbdd — d/bdd

Figure 6.2: Data Representation

Thus, even if d or d' cannot be represented efficiently as BDDs, there is an effective way
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of representing and manipulating them through the abstract data type representation. As will
be seen, using this method of representation is an effective way of going beyond the limits of
BDDs.

It is critical that both the conversion routine bv and the ADT operations are implemented
correctly so that thediagram in Figure6.2 is commutative. Inthe HOL-Voss system correctness
was formally proved [90]. Although I did not go through this exercise in the prototype imple-
mentations, thisisacritical stepin the production of atool. However, one should notethat there
may be a trade-off between degree of rigour and performance. For example, in an interesting
paper showing how BDDs can be implemented as a HOL derived rule [75], Harrison reports
that a HOL implementation of BDDs as being fifty times slower than a Standard ML imple-
mentation. Although this work is cited as being ‘superior to any existing tautol ogy-checkers
implemented in HOL’, Harrison points out that other approaches to ensuring correctness can be
adopted.

The ADT routinesthat implement the operations on the data objects constitutedomain knowl-
edge representing the verification system’s higher level semantic knowledge of what bit-level
operations mean. There are different ways in which domain knowledge can be provided. One
method isto have a canonical representation for data objects, or to have a set of decision proce-
duresfor thetype (for example, to tell whether two syntactically different objects have the same
semantics — whether if they are both converted into BDD structures, the structures will be the
same). Thereis alimit to how far this can go; for example, with the integer representations
used, no canonical formsexist, and decision procedures have limitations and can be expensive.
However, as will be seen this can be effective and, since it is automatically implemented, user-
friendly, reducing the load of the human verifier.

Another method — which can be implemented as an alternative or as a complement to the

decision procedure method —isto provide an interfaceto an external source of knowledge. One
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likely such sourceisatrusted theorem prover suchas HOL, allowing the verifier to proveresults
inHOL, and then to import these resultsinto the verification system. Although approachisvery

flexibleand very powerful, it increasesthelevel of expertise needed by the verifier considerably.

6.3 Combining STE and Theorem Proving

The practical importance of the compositional theory presented in Chapter 5isthat it provides
a powerful way of combining STE and theorem proving. The inference rules of the composi-
tional theory are implemented as proof rules of atheorem prover. The combination of theorem
proving and STE creates a tool which provides the appropriate proof mechanism at the appro-
priate level. For a human to reason at the individual gate level, while conceptually simple and
straightforward, is often too onerous and tedious. A single trajectory evaluation can often deal
with the behaviour of hundreds or thousands of gates, depending on the application. The the-
orem prover alows the human verifier to use insight into the problem to combine lower-level
results using the compositional theory. By using the representation method discussed above,
and the compositional theory, the computational bottle-neck of automatic model checking al-
gorithms can be widened considerably.

The prototype verification systems built implement proof systems based on STE and the
compositional theory for STE. The object of verification is to prove properties of the form =
{ g=>h ). The proof system does thisby using STE asa primitiverulefor proving assertions;
the compositional theory is implemented as set of proof rules that can be used to infer other
results.

From apractical point of view, the Voss system provides agood basis for this. The user in-
teracts with the proof system using FL. By using the appropriate FL library routines, trajectory
evaluation and the compositional theory can be used. There are different ways in which this

could be done and packaged.
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For example, in the first prototype tool, the verification library consisted of the following

rules,

implemented as FL functions, each function either invoking trajectory evaluation or one

of the compositional inference rules.

Voss: This performs trgjectory evaluation.
IDENTITY implements the identity rule.
CONJUNCT implements conjunction.
SHIFT allows assertions to be time-shifted.

PRESTRONG implements part of the rule of consequence, allowing the antecedent of an

assertion to be strengthened.

PosTWEAK implements the other part of the rule of consequence, alowing the conse-
quent of an assertion to be weakened. Both of these rules use domain knowledgeto check

the correctness of the use of therule.

TRANS takes two assertions, checks whether transitivity can be applied between thefirst
and second (i.e., the correct relationship holds between the two assertions), and if it can

be, appliesthe rule of transitivity.
SPECIAL allowsthe user to specialise an assertion.

SPTRANS takes two assertions, 7; and 75, and attempts to find a specialisation = such
that transitivity can be applied between 7 and =(73). The heuristic used to find the spe-
cialisation (discussed later) does not compromise the safety of the verification sinceiif it
fails and no specialisation isfound, no result isdeduced. Moreover, if aputative special-
isation is found, the correctness of the specialisation is checked by testing whether the
conditions for transitivity to apply do hold once the specialisation is applied.

AUTOTIME takestwo assertions, 7; and 75, and attemptsto find an appropriate time-shift

t for one of the assertions so that transitivity can be applied. Recall that thetime-shift rule
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only appliesif ¢ > 0. If ¢ < 0 isfound, then the verification system shifts 7; forward by
—1 time steps and attempts to apply transitivity between the shifted 77 and 75; if ¢ > 0,
then 75 is shifted forward by ¢ time units, and then the verification system attempts to

apply transitivity between 77 and the shifted 7.

e ALIGNSUB combinesthe ideas of the above two rules. Given two assertions it attempts
to find a time-shift and specialisation so that when both are applied, transitivity can be
used.

e PRETEND allows a desired result to be assumed without proof. When deciding whether
an overall proof structure is correct, it may be useful to assume some of the sub-results
and then see whether combining the sub-resultswill obtain theoverall goal, before putting
effort into proving the sub-results. Furthermore, in along proof built up over some pe-
riod of time it may be desirable at different stagesin proof development to replace some
callsof Voss with PRETEND. Having proved a property of the circuit using STE it may
take too much time in proof development to always perform al STE verifications when
the proof script is run. Although at the end, the entire verification script should be run
completely, it is not necessary to always perform all trajectory evaluations in proof de-

velopment.

Animportant part of implementing this verification methodology wasto integrate the trajec-
tory evaluation and theorem proving aspectsinto onetool. Not only does this make the method-
ology easier for the user (since the quirks of only one system have to be learned and only one
conceptual framework and set of notations have to be learned), the practical soundness of the
system is maintained (the user does not have to translate from one formalism to another).

Moreover, using FL astheinterfaceisvery beneficial. Although thisrequiresthe user to be
familiar with FL, once learned it provides a flexible and powerful proof tool. Using the basic

verification library provided by the tool, the user can package the routines in different ways.



Chapter 6. Developing a Practical Tool 126

The proof iswritten as an FL program that invokes the proof rules appropriately. This alows
the proof to be built up in parts and combined. The use of a fully programmable proof script
language — FL — removes much drudgery and tedium.

A critical factor in trajectory evaluation, affecting both the performance and the automatic
nature of STE, isthe choice of the BDD variable orderings used in the trajectory evaluation. A
poor choice of variable ordering can make trajectory evaluation impossible or slow [44]. Al-
though the use of dynamic variable ordering techniques (one of which has been implemented in
Voss) amelioratesthe situation, the compositional method meansthat dynamic variable ordering
isnot apanacea. In many cases, thereis simply not onevariable ordering that can be used. The
strength of the compositional theory isthat it allows different variable orderingsto be used for
different trgjectory evaluations. If different variable orderings must be used for each of many
trajectory evaluations (for some proofs hundreds of trajectory eval uations could be done), using
dynamic variable ordering alone might significantly degrade performance.

On other hand, in many applications, good heuristics exist for choosing variable ordering
automatically based on the structure of the TL formulas. One of the advantages of representing
data at a high level (an integer ADT) is that knowledge of the type and operations on the type
can be used to determine appropriate variable orderings. A useful technique is to provide as
part of the FL library implementing a particular ADT, afunction which takes an expression of
the type and produces a ‘good’ variable ordering.

This particular exampleillustrates the advantages of incorporating heuristics into a system
to aid the user. Other examples of heuristics which proved to be useful are the heuristicswhich
takes two assertionsand try to find appropriate specialisations and time-shifts so that transitivity
can be used between the two assertions. The algorithms that implement these heuristics are
straightforward. Although there are a number of possible heuristics and algorithms that could

be used, experience showed that simple implementations are quite flexible.
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Finding a time-shift Thisalgorithm takes the consequent of one assertion and the antecedent
of another and determines whether if one of the formulasis time-shifted, the two formulas are
related to each other (in that their defining sequences are ordered by the information ordering).
String matching is the core of the algorithm, and although the extremely large ‘alphabet’ re-
stricts the sophistication of the string matching algorithms that can be applied, in practice the
simple structure of the formulas means that simple string matching algorithms are quite ade-
quate.

Finding a specialisationThis heuristic performs a restricted unification between two for-
mulasto discover whether if one of the formulasis specialised, itisimplied by the other (inthat
the defining sequence of one is ordered with respect to that of the specialised formula). A simi-
lar approach is used in implementing Generalised Transitivity (Theorem 5.31). Since semantic
information must be used as well as syntactic (two syntactically different expressions may be
semantically equivalent), the effectiveness of the algorithm is limited by the power of the do-
main knowledge incorporated into the tool. However, the simple structure of most antecedents
means that a simple heuristic works well.

It is also possible to incorporate both heuristics into one heuristic so that candidate time-
shifts and specialisations are sought at the same time. To implement this completely is much
more difficult since there may be a number of different time-shift and specialisation combina-
tionsthat can be applied. It can aso be computationally more expensive, sincefor each possible
time-shift it may be necessary to use different domain knowledge. However, in practice, since
formulas tend not be very large, this can be useful and practical. Here, the representation of
dataat the ADT level isvery important practically since high-level information can be used to
find whether time-shifts and specialisations will be appropriate; if alower level representation
were used, much more work would need to be done.

Inall cases, onceatransformationisfound, it isautomatically applied and checkeglthis also
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showsthat heuristics can be incorporated without compromising the soundness of the proof sys-
tem. The core inference rules are always used for deducing results; the heuristics provided by
the user or the verification system as FL functions are there to automate the proof (at least par-
tially) in determining how the inferencerules are to be used, and at no stage is the safety of the
result compromised. Moreover, if a transformation cannot be found, suitable error messages
can be printed indicating why such a transformation could not be found, helping the user to
determine whether the attempted use of the rule was wrong (e.g. because the desired result is
false), whether more information is needed (e.g. perhaps the rule of consequence must be ap-

plied to one of the assertions first), or more domain knowledge must be provided by the user.

6.4 Extending Trajectory Evaluation Algorithms

The core of the practical tool proposed here is the ability to perform trajectory evaluation to
check assertions of the form |= ( g=>h ), where g and h are TL formulas (actualy TL,, for-
mulas since we are dealing with circuit models). The basis of these algorithmsis the trajectory
evaluation facility of Voss, which can computeresults of theform |= ( A=>C'}), where A and
C' aretragectory formulas.

There isatrade-off between how efficiently tragjectory evaluation can be done, and the class
of assertionsthat can be checked. This section first describes and justifiestherestrictions placed
on assertions, and then outlines three possible algorithms that can be used to extend Voss's STE
facility. (The advantages and disadvantages of these algorithms are discussed in Section 7.6

after the presentation of experimental evidence.)

6.4.1 Restrictions

What are the problems in determining whether |= ( g=>1% )?



Chapter 6. Developing a Practical Tool 129

First, STE computes the =>> relation, rather than the => relation. However, as shown in
Section 4.4.3, if only the realisable fragment of TL,, isused, thereis an efficient way to deduce
the —> relation from the =—> relation. The limitation to the realisable fragment means that
users cannot explicitly check whether a component of the circuit takes on an overconstrained
value. But, the nature of the circuit model means that this is checked for implicitly in any tra-
jectory evaluation. The underlying trajectory evaluation engine can easily check for antecedent
faillures by testing whether aZ appearsin the defining trajectory of the antecedent. Thus, | argue
that this limitation is not a severe restriction, and worth the price.

Second, allowing a general TL,, formulain the antecedent can be very costly since it may
reguire numerous trajectory evaluations to be done. Recall from Chapter 4 that computing the
defining sequence sets of a disunction is done by taking the union of the defining sequence
sets of the diguncts. Thus, the cardinality of the defining sequence sets is proportional to the
number of diguncts. At first sight, it may seem that in practice that the structure of formulas
is such that this will not be a real problem. For circuit verification, how many formulas have
more than a dozen digjuncts (a number of sequences that could probably easily be dealt with)?
However, thisis misleading since while disuncts may not appear explicitly in aformula, they
may actually be there, particularly when dealing with non-boolean data types. For example, a
predicate on an integer datatype such as [/] + [J] = k 4+ [ + m can trandateinto avery large
number of diguncts, even for moderate sized bit-widths.

Thus, for performance reasons, one restriction placed on formulas is that trajectory evalu-
ation is only done for assertions that have trgjectory formulas as antecedents, i.e. for formulas
g such that the cardinality of Af(g) isone. Besides the performance justification, experience
with STE verification has shown that the main need for enriching thelogic isto enrich the con-

sequents rather than the antecedents. Moreover, the use of the compositional theory allows the
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enriching of antecedentsindirectly (for examplethrough thedisunction, until, and general tran-
sitivity rules). Nevertheless, even though experience so far with STE has not shown this to be
asignificant restriction, thisis an undesirabl e restriction, and more work needs to be done here.

The final restriction is made with respect to the infinite operators such as Global. Since
the state space being modelled is finite, all trgjectories must have repeated states; thus, in prin-
ciple, itisonly necessary to investigate a prefix of atrajectory. However, thisrequiresknowing
when astate in atragjectory has been repeated. Since, in the tool, symbolic sequences represent
a number of sequences or trajectories, given a symbolic sequence we have to know for which
element in the sequence it isthe case that for al interpretations of variables there have been re-
peated states. The parametric representation of state is unsuitable for this computation, which
requires the characteristic representation to be used. However, if the characteristic representa-
tionisto be used, then the advantages of STE over other model checking approachesis reduced.
If infinite formulas must be tested, other approaches may well be more suitable. Moreover, for
hardware verification, infinite operators are less important than in more genera situations since
timing becomes more critical. We are not interested that after agiven stimulus, output happens
some time in the future; we want to know that output happens within = ns of input. Trajectory
evaluation’s good model of time and its ability to support verifications where precisetiming is
important is one of its great advantages. Finally, in the same way the compositional rules can
be used to enrich the antecedent, they can be used to allow the infinite operatorsto be expressed
usefully (the until rule and its corollaries are good examples here).

Insummary, the STE-based al gorithms proposed here check assertionsof theform = ( A=>h ),
where

1. Aand areintherealisable fragment of TL,;
2. Aisatrgectory formula; and

3. h does not contain any infinite operators.
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Through the use of the compositional rules, the limitations of (2) and (3) can be partially over-
come.

The rest of this chapter examines how Voss's ability to check formulas = ( A=>C") can
be used effectively. Three algorithms are presented.

6.4.2 Direct Method

If A and (' aretrgjectory formulas, the standard use of STE for model checking trajectory as-
sertion of the form { A=>C") is straight-forward since the cardinality of Af(A) (and hence
T*(A)) and A*(C') areone. §4 and 6 are constructed, and 7 is computed from 6. The last
part of the verification is to check whether §¢ C 74,

Where we choose the consequent to be ageneral formulag of TL,,, we need to consider the
entire set A%(g). However, the basic ideaiis the same: construct 54 and compute 7+, and then

check whether V5 € A®(g),§ C 7. How thisis doneis sketched in the pseudo-code below:

Compute(g, j)=
case g of
[i] . 7] =H
go\ 1 : Compute(go, j) A Compute(g:, j)
Next g . Compute(g, 7 + 1)
-9 : — Compute(g,;)
t ot
f c f

This algorithm is simple and straight-forward, although care must be taken in implementa-
tions to ensure efficiency, particularly when dealing with ADTSs such as vectors and integers,
and derived operators such as the bounded versions of Global. First, only necessary informa-
tion must be extracted from 7. Second, a very important optimisation in the Vosstool is event
scheduling — usually from one time step to the next only a few state holding elements change
their values. By detecting that components are stable for long periods of time, much work can

be saved. Any modifications to the STE agorithm must not interfere with this.
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The way this was implemented in the prototype tool was to (i) determine from the conse-
guent which state components are important, (ii) use Voss'strace facility to obtain the values of
those components at relevant times, and (iii) compute whether the necessary relationship holds.
All of thiscan be donein FL on top of Voss, obviating the need to make any changes to the un-
derlying trajectory evaluation algorithm. Not only did this choice of implementation make de-
veloping the prototype much easier, but more fundamentally it means that the event scheduling
capacity of Vossis not impaired in any way.

Asaside note, modificationsto this approach to deal with theinfinite operatorsis, in princi-
ple, straightforward. At each step inthetrajectory evaluation the set of reachable statesis added
to. Onceafix-pointisreached, thetrgectory evaluation can stop. The useof partial information
might improve the performance of the modification (in some cases— but not all — once a state
s has been explored, we need not visit any state above s in the information ordering). Provided
we are prepared to pay the cost of computing the characteristic representation of the state space,
thisisfeasible, although care must be taken not to conflict with the event scheduling feature of

Voss.

6.4.3 Using Testing Machines

An aternative way of extending STE is through the use of testing machines. The goal is to
determine, given a model M, whether =, ( A=>g¢ ). The idea behind testing machines
is to answer this question by constructing a model M’ and a trgjectory formula €', such that
Exm (A=>C, ) if andonly if =x ( A=>¢ ). An anaogous approach is the one adopted
by Clarke et al. in extending their CTL model checking tool by using tableaux so that LTL for-
mulas can be checked [38]. Other verification techniques also use thisidea of using ‘ satellite’
or observer processes to capture properties of systems[9].

Asan example, using only trajectory formulas STE can check whether anode always takes



Chapter 6. Developing a Practical Tool 133

on acertainvalue, y, say; it cannot check that anode nevertakes on the value y since the corre-
sponding predicateis not simple and thus the question cannot be phrased as atrajectory formula
However, suppose the circuit were to have added to it comparator circuitry that compares the
value on the node to y and sets a new node N with H if the node doesn’t have the value y and
L if it does. To check whether the node takes on the value can now be phrased as a trgjectory
formula. This section gives a brief outline of this, and detail can be found in Appendix B.

As presented, model checking takes amodel and aformulaand then performs some compu-
tation to check whether the model satisfiestheformula. The basic motivation behind testing ma-
chinesisthat some of the computation task can be simplified by moving the computation within
the model itself. In essence what we do is construct acircuit that performsthe model checking,
compose this circuit with the existing circuit and then do straightforward model checking on
the new circuit. Thistask issimplified by the close relationship between Q and C.

There arethustwo stepsinthe model checking algorithm. Thefirstistotaketheformulaand
to construct the testing machine; the second is to compose the testing machine with the original
circuit and to perform model checking.

The construction of the testing machine is done recursively based on the structure of the
formula. Animportant part of the algorithm is constructing the testing machines for the basic
predicates. For predicates dealing with boolean nodes, the construction is straightforward, es-
sentially doing atype conversion. For other types— especially integers— it is somewhat more
complex; for example, integer comparator and arithmetic circuits are needed. Given the test-
ing machines for the basic predicates, there is a suite of standard ways in which these testing
machines are composed, depending on the structure of the formula.

One of the complexities is dealing with timing information. For example, in the formula
gV h, g and h may be referring to instants in time far apart. This will mean that the testing

machines that compute ¢ and %~ will probably produce their results in time instants far apart,
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which in turn means that some sort of memory may be necessary. If theformulag Vv % isnested
within atemporal operator such asthe bounded always operator, it may be necessary to compute
thevalues of ¢ V i for many instants in time, which means that a large number of results may
need to be stored temporarily. This will affect the computation and memory costs of model
checking.

Thetesting circuitry does not deal with the unbounded operatorsGlobal andExists. The
method of Section 6.4.2 could deal with these operators by recording the set of states already
examined and other information. Testing circuitry could be built that duplicates that. As the
state space is finite, we know that at some finite time all states will have been examined, but
since the operators are unbounded it cannot be determined a priori at which instant in time all
states will have been examined. Thusthe schemefor examiningthetesting circuit at aparticular

moment fails. It seems that this can only be dealt with by modifying the STE algorithm.

6.4.4 Using Mapping Information

Supposethat A and C' are trgjectory formulas which have the property that no boolean variable
in C appearsin A. Let ®, = ( A=>C"). Thisisthe set of assignments of boolean variables
to values for which A=>C'". In particular, it describes the relationship between the variables
in the antecedent formula and the variables in the consequent formulawhich must hold for the
trajectory evaluation to succeed.

C essentially extracts relevant components of 74, so by making C' general enough, enough
useful mapping information can be used to makemodel checking TL,, feasible. Provided enough
informationis extracted, we can use @, to determine whether = { A=—¢ ) holds: if for all in-
terpretationsin @, ¢ holds (thisis formalised later), and provided some side conditions hold,
thenso does|= (A=>g¢ ).

An example will illustrate the method.
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| N

Figure6.3: A CSA Adder

The Carry-Save adder (CSA) shownin Figure 6.3 isused in anumber of arithmetic circuits.
An n-bit CSA adder consists of » independent single-bit full adders. For simplicity in the ex-
ample, we consider a one-bit adder. Suppose that at time 0, the state of the circuit is such that
node .J hasthevaue 7, node K hasthevalue &, and L. hasthevalue!. Then at time 1, the state
of the circuit should be such that M hasthevaue j & k & [ (& representing exclusive or) and
N hasthevaluej AkV 3 ALV EV L

Thisiseasy enough to verify using atrajectory formula. However, there are verificationsin
which what we areinterested in is not what the particular values of nodes M and V are, but that
the sum of the values of nodes ./, K and L at time O is equal to the sum of the nodes M and NV
at time 1. (Thisis exactly what we are interested in when verifying a Wallace-tree multiplier).
In STE, this property can not be verified directly.

Define the trgjectory formulas A and C' by:

A=(J=)ANK =k)AL=1)

C =Next (M =m)A(N =n)

and then compute ¢, = ( A=>C").

®, givesthe constraints which must hold for the trgjectory evaluation to hold. In particular
it gives the constraints relating j, £ and [ with m and n. Suppose V¢ € @4, ¢(g) = t where
g = (J+k+1=m+n) (assuming heretwo-bit addition). If thisis the case then we know that
for each mapping of boolean variablesto values for whichthe STE holds, (j + &+ = m+n).
Or putting thisin terms of an expressionin TL,,, that h = Next (j + k +{ = [M] 4 [N]) holds.
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Essentially ¢ is h where we substitute the variables m and » into 4 to act as place-holders for
the state components M and N. ' isaway of extracting appropriate values out of 74. So, if
Voe ®,0(g) =tand®, = (A=>C) then {A=>1h ).

One important check needs to be made — we must ensure that the above condition is not
satisfied vacuously by ®; being empty or only containing very few interpretations. What we
want to ensureis that ¢, covers all the interesting cases: that for every possible assignment of
valuesto the boolean variables j, & and [, there is an assignment to the boolean variables 1 and

n such that the trgjectory evaluation holds. Thisis formalised now.

Definition 6.1.
Let U beaset of variables, and ¢: V — B be an interpretation of variables. The set of exten-
sionsof ¢ withrespectto U is Fut (¢, U) ={ € @ : Vv € V — U, ¢(v) = ¢(v)} O

The condition that ¢, is non-trivial can be expressed as. for every interpretation) € o,
there is an interpretationy € Faxt(¢,v(A))wherev(A)is the set of variablesid, andy € .
In other words for every interpretation of variables of A thereis an extension of that interpre-
tation to include variablesin (', such that the extension is an element of ;.

Note: If " isaTL, formulanot containing temporal operators, then by the remarks preced-
ing Theorem 3.5, then we can consider /' as a predicate from C” to Q. For convenience, if /'’

is strictly dependent on nodes {n, ... ,n, }, thenwewrite A’ (x4, ... , z,).

Theorem 6.1.
Let A be atrgjectory formula, and &+ = Next /' be a TL, formula such that 4’ contains no
temporal operators. Let i’ be strictly dependenton N = {n;,... ,n,}.
Let C' = Next (A][n;] = w;) wherethe w; aredistinct and digoint from the variablesin A; let
W = {wy,... ,w,}. SUppose:

1.¢; =({A=C);
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2.V € O 0 (wy,. .. ,w,)) =t
3. Vpe d I e Eat(p, W), and ¢ € ¢4; and

4. Ve ®;0=0,1;7=1,. TZMA)[]']#Z.

Then = ( A=>h).

Proof.
(1) Ve, I Ext(d, W), Hyp. 3.
(2) Voe &, T € Ext(d, W), ( ):mz)( ) (1), Hyp. L.
(3) Voe &, € Ext(d,W),d @ (2), Theorem 4.5.
(4) Vo€ ® I Eat(d,W),8 []:T;“ i k=1,....,n

(3), structureof C”.
(5) Voe &, I e Ext(d, W), p(w,) T/ Wn,),i=1,...,r

(4), structureof C'.
(6) Voed, e Ert(op, W), (w,) =7 Wn],j=1,...,r

(5), Hyp. 4.
(7)) R (W(wy),... ,¥(w)) =1t Hyp. 2, definition of «(4’).
(8) Voed, e Ext(p, W), K (7], ..., 7P n]) =t
(6), (7).
©) Vo & (P, .., W) =t (8), w; not in A.
(10) V¢ € ®,Satr*@ (k) =t (9).
(11) Vo€ &, 0(A)=>0(h) (10), Lemma4.4, Hyp. 4.

This theorem can be generalised to deal with assertions such as
d .
= Q/1:|>(4A1 Next’h;) )
]:

and implemented.



Chapter 7

Examples

This chapter shows that the ideas presented in this thesis can be used in practice. The verifica
tion of the examples done in this chapter requires arelatively rich temporal logic — trajectory
formulas are often not rich enough — and efficient methods of model checking. Efficient al-
gorithms for performing STE are essential, but in themselves not enough; the compositional
theory for TL is necessary.

Section 7.1 presents the verification of a number of simple examples performed using the
first prototype verification tool. These examples are used as illustrations of the use of the in-
ference rules. Section 7.2 presents an example verification of a circuit that is well suited for
verification by traditional BDD-based model checkers such as SMV. The B8ZS encoder chip
verified has a small state space which is easily tractable by the traditional methods. While the
circuit can easily be represented as a partially ordered model, it is difficult to use the methods
proposed by this thesis to verify this circuit completely. This example shows some interesting
points about the need for expressive logics, and shows some limitations of the approach pro-
posed in thisthesis.

Section 7.3 describes the verification of more substantial circuits, multipliers, which can
have up to 20 000 gates. These are circuitsthat are beyond BDD-based automatic model check-
ers and require the use of methods such as composition and abstraction. The verification of a
number of different multipliers are described and analysed.

One of the verified multipliersis Benchmark 17 of the IFIPWG10.5 Hardware Verification

Benchmark Suite. Section 7.4 builds on the verification of this multiplier and shows how its
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verification is used in the verification of a parallel matrix multiplier circuit (Benchmark 22 of
the suite); the largest version of thiscircuit verified contains over 100 000 gates.

The examples mentioned hereall show that these methods are well suited to exampleswhere
detailed timings at which events happen isknown. Section 7.5 shows how time can be dealt with
inamore generalised way. Although this section is more speculative in nature (the verification
has not been mechanised) it showsthat using theinference rulesand inducting over time, allows
the practical use of TL in amore expressive way.

Finally, Section 7.6 summarises the results of this chapter and evaluates the methods pro-
posed.

7.1 Simple Example

7.1.1 Simple Example1

For the first example, consider the circuit shown in Figure 7.1 which takes in three numbers m,
n and o on nodes M, N and O, and produces o + max(m,n) on R. Thereare three partsto the
circuit: a comparator compares the value on M with the value on V and produces H on P if
the number at M isbigger than the number on N and produces O otherwise; a selector takesthe
valuesat M, N and O and produces at node () thevalueat M if P issetto H, and the value at
N otherwise; the third part of the circuit takes the values at node ¢ and O, and produces their
sum at node R. Thisexampleisonewhich could be verified using STE aone, but its small size
makes it useful as an example.

Verification starts by checking the correctness of the individual components. The verifica-
tion of each component is done in the presence of the rest of the system, which means that any
unintended interference will be detected. These individual proofs are put together using spe-
cialisation, time-shifting and transitivity. An outline of the formal proof follows. To simplify

notation, « — b|c is used as shorthand for (¢ = b) A((—a) = ¢).
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M>N

—mw
O

Figure 7.1: Simple Example 1

Let A" = ([M]=m) A(IN]=n) A(10] o).
Let A = A’ ANext A’ ANext?A'.

LetC =Next®(m>n — [R]=m+o|[R]=n+ o).

We wish to show that = ( A=>C ).

(1) |:4A:|>Next([P]:(m>n))b By STE
(2) E(AAP]=v =>Next (z = [Q]=m [[Q]=n)) By STE
3) F {([O]=y) M[Q] =z)=>Next ([R]=y + 2) ) By STE
(4) | (Next (A'A([P]=m>n))=>Next*(m>n — [Ql=m][Q]=n))
Time-shift, specialise (2)
(5) E({A=Next?*(m>n — [Q]=m|[Q]=n)) (1), (4), transitivity.

(6) = (Next*([O]=0)A(m>n — [Q]=m|[Q]=n)=>C)
Time-shift, speciaise (3)
(1) (A=>C) (5), (6), transitivity.
Perhaps the most interesting part of this proof is how specialisation and transitivity are used.
Consider how (1) and (2) are combined. Note that .A contains all the information that Next A’
does; and note the similarity in structure between [P] = (m >n) and [P] = . By time-shifting

(2) as well as substituting m > n for « transforms (2) into (4), which can be combined with (1)
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using transitivity.

The other place in which specialisation was used was in line (6). Here, using only substi-
tution on line 3 isinadequate; a much richer transformation is needed. Rather than just substi-
tuting one expression for z in (3), two different substitutions are made, which are qualified and
combined (one substitution is made when m > n, and the other when m < n).

This proof was donein thefirst verification tool, whereit is easier to do than manually be-
cause the time-shifts and specialisations are found automatically. Steps 4 and 5 are done with
acall to one of the automated rules; and steps 6 and 7 with another call to the same rule. A full

description can be found in [76], and the FL proof script can be found in Section C.1.

7.1.2 Hidden Weighted Bit

The hidden weighted bit problem was one of the first to be proved to need exponential space
to verify using traditional BDD-based methods [21]. A circuit for an 8-bit version is shown in
Figure7.2. Theverificationof thiswasdoneinthefirst prototypetool; the proof isoutlined here,

and afull description including the one page proof script is described in atechnical report [76].

Count er

Count Node

Buf ferl

d obal | nput

~ Resul t
5 —
“— Error
5
fia)

Chooser

Figure 7.2: Circuit for the 8-bit Hidden Weighted Bit Problem

In this version, the global input z4,... ,x, is copied to two buffers. The Counterpart of

the circuit computes the number of 1's on theinput (i.e. ¥7z;). The Chooserpart of the circuit
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takes the number 5 output on CountNodegthe number is in binary form, hence if there are n
input lines, CountNodecomprises |lg n | + 1 lines), and outputs the value x; on Resultand on
Error when j > 0. If j = 0 then Error isset to 1.

Intuitively, a verification of thiscircuit as a wholetakes exponential time and space (in n)
because the output value on CountNodes so complicated, intermsof the bool ean variables, that
no suitable variable ordering can be found so that the Chooserpart of the circuit can be verified
efficiently. The virtue of the compositional approach is clearly illustrated: by decoupling the
verification of the two parts of the circuit, we can choose suitableindividual variable orderings
for both parts of the circuit; moreover, it is more efficient to verify the chooser circuit for an
arbitrary input 5 (which only needs very simple BDDs to represent it), and then substitute for
j the actual input, than to verify for the actual input (which needs more complicated BDDs to
represent it).

There are five steps in the proof, in which all the time-shifts and specialisations are found

automatically.
e The proof that the copying of the input to the buffer is correct — BufferTheorem
e The verification Counterpart of the circuit — CounterTheorem

e Thecomposition of BufferTheorenand CounterTheoremThisisdonein two steps: first,
CounterTheorenis time-shifted along so that transitivity between BufferTheorenmand
CounterTheoreroan be used to produce BufferCounterTheorenBufferCounterTheorem
is conjoined with BufferTheorenso that we can use the value of Buffer2at a later stage.

Call the result of this stagelTheorem
¢ Verification of the Chooserpart of the circuitry — ChooserTheorem

e Composition of stagelTheorerand ChooserTheoreray time-shifting ChooserTheorem

by an appropriate amount and specialising this so that transitivity can be used between
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stageland ChooserTheorem

Results We verified the circuit for different values of » (4, 8, 16, 32, 64, 128). For these values,
verification takes roughly cubic time (and importantly, space was not an issue). The verification
of the 128 bit problem took just under 27 minuteson a Sun 10/51. Comparedto this, verification
of the system as one unit was not possiblefor n = 64 or larger. The FL script for the verification

isshown in Section C.2

7.1.3 Carry-save Adder

The carry save adder (CSA) shown in Figure 6.3 was verified using all three extensions to the

STE agorithm described in Chapter 6. Table 7.3 summarises the computational cost of verifi-

cation of a 64 bit CSA.
| | Algorithm | Time(9) |
1 || Direct 3.8
2 || Testing Machine 3.6
3 || Mapping information 2.6

Table 7.3: CSA Verification: Experimental Results

The experiments were run on a DEC Alpha 3000, and show that for all three approaches,
verification is easily accomplished. The FL script for thisis shown in Section C.3. Note that

the compositional theory is not used to verify this circuit.

7.2 B8ZS Encoder/Decoder

This example shows the verification of a B8ZS encoder, a very simple circuit but one which
would be very difficult to do in traditional STE and illustrates some points about the style of

verification. Note that the compositional theory is not used to verify this circuit.
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7.2.1 Description of Circuit

Bipolar with eight zero substitution coding (B8ZS) isamethod of coding data transmission used
in certain networks. Some digital networks use Alternate Mark Inversion: zeros are encoded
by ‘0", and ones are encoded alternately by ‘+ and ‘' —’. The alternation of pluses and minuses
is used to help resynchronise the network. If there are too many zeros in a row (over fifteen
— something common in data transmission) the clock may wander. B8ZS encoding is used to
encode any sequence of eight zeros by acode word. If the preceding 1 wasencoded by ‘ +’, then
the code word *000+-0—+' is substituted; if the preceding 1 was encoded with a‘—’, then the
codewordis‘000—+0+—". Using this encoding, the maximum allowable number of consecutive
Zeros is seven.

The implementation of the circuit is taken from the design of a CMOS ZPAL implementa-
tion of the encoder (and corresponding decoder) by Advanced Micro Devices [4]. The encoder
comprises two parts. One PAL detects strings of eight zeros and delays the input stream to en-
surealignment. If thefirst PAL detects eight zeros, the second PAL encodes the data depending
on whether eight zeros have been detected or not. Figure 7.3 given an external view of the chip.
The inputs are areset line (active low), and NRZ_IN which provides the input. There are two
outputs, PPO and NPO which as a pair represent the encoding: (1,0) isthe *+’ encoding of a
one, (0, 1) isthe *—" encoding of aone, (0,0) encodes a zero, and (1, 1) is not used. Output

emerges six clock cycles after input.

7.2.2 Verification

There are two questions one could ask in verification:

1. Does the implementation meet its specification? Here we want to check that the output

we see on NPO and PPO is consistent with the input.
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NRZ_IN NPO

Figure 7.3: B8ZS Encoder

2. Does the implementation have the properties that we expect? (Specification validation)
In particular is it the case that:
e At no stage are there eight consecutive (PPO, NPO) pairs which encode a zero;
e At no stage are there fifteen or more consecutive zeros on the PPO output; and

¢ At no stage are there fifteen or more consecutive zeros on the NPO output.

Checking that the implementation meets the specification is a bit tricky, and shows the need
for aricher logic than the set of trgjectory formulas. With trajectory formulas, the obvious way
to perform verification is to examine the output and check to see that the output produced is
determined by the finite state machine which the PALs implement. However, the equations of
the FSM are complicated and non-intuitive. Verification that the implementation is * correct’
doesn’t give us information about the specification. Worse, essentialy the verification condi-
tions would be a duplicate of the implementation, increasing the likelihood of an error being
duplicated. And there don’t seem to be easier, higher level ways of expressing correctness us-
ing trgectory formulas since the circuit has the property that the »-th output bit is dependent on
thefirst input bit.

Using thericher logic, afar better way of verifying the circuit is to show that the input can

be inferred from the output. Suppose that we want to check the output bit pair at time £ (recall
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that the output is encoded as the (PPO, NPO) pair). If thisbit pair isin the middle of one of the
code words then the input bit at time & — 6 must be a zero; otherwise the (k — 6)-th input bit
can be inferred directly from the value of the bit pair.

The testing machine method was used in verification. To test that the bitsare correctly trans-
lated, the proof first shows that after being reset the encoder enters a set of reachable states, and
that once in a reachable state the encoder remains in this set of states. Next, the proof shows
that if the encoder startsin the reachabl e set then the output of the encoder is correct. The com-
putational cost of all of thisis approximately 30s on a Sun 10/51.

The second step is to check that the implementation has properties that cannot be directly
inferred from the design. In particular we want to show that at no stage are there eight or more
zeros consecutively produced by the encoding of PPO and NPO and also that if we look at PPO
and NPO individually that at no stage are there fifteen or more zeros consecutively. These con-
ditions can be expressed succinctly in TL, while they could not be expressed as trajectory for-
mulas. The mgjor restriction here is that using testing machines, the antecedent can only be a
finite formula. We cannot check that this result holds for arbitrary input. What we can show
is that given arbitrary input of length » the circuit has the properties we expect. Using testing
machines, verification for » = 100 presents no problem (10s on a Sun 10/51). In principle, the
direct method could verify the general case.

Thefinal verificationthat was done wasto implement the complementary B8ZS decoder and
to check that when the output of the encoder is given as input to the decoder, then the output
of the decoder is just the input of the encoder, suitably delayed. Again, it was possible using
the testing machine method to check this for finite input prefixes. An error was detected: the
initial states of the encoder and decoder are not synchronised. If thefirst eight input bits given
the encoder are zero, the code word used by the encoder is ‘000+-0-+"; however, the decoder

expectsthe other codeword to be used if thefirst eight bitsare zero. Thiserror only occurswhen
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the first eight bits are zero as the state transition table of the decoder has the pleasant property

that thefirst encoded 1 (either a“+’ or ' —’) emitted by the encoder synchronises the decoder.
Thisexampleillustrates someinteresting pointsabout verification. However, itisnot agood

example for trajectory evaluation; since the state space of the circuit is quite small (fewer than

20 state holding components), other verification methods work well.

7.3 Multipliers

Since BDDs are not able to represent the multiplication of two numbers efficiently [21], auto-
matic model checking algorithms find the verification of multipliers very challenging. For this
reason, multipliers have received much attentionin the literature. The methods proposed in this
thesis have been used successfully to verify a number of multipliers: three of these examples
are briefly discussed, and then one case is presented in great detail. The section concludes by

comparing these verification studies to other work.

7.3.1 Preliminary Work

Thefirst multiplier verified using acompositional theory for STE was asimple n-bit multiplier
consisting of » full adders. The verification is accomplished by using STE to prove that each
adder works correctly, and then by applying the inference rules to show that the collection of
addersperformsmultiplication. The key inference rules used were time-shifting, specialisation,
transitivity, and rules of consequence.

Of immense practical importancein the prototype tool used to perform the verification was
the ability to use a simple theorem prover coupled with some decision procedures to reason
about integers. This enabled the tool to break the limitation of BDDs. Also important for ease
of use of the system is that specialisations and time-shifts were al found automatically by the

tool.
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The compl ete verification of this 64 bit multiplier took just lessthan 15 minutesof CPU time
on a Sun 10/51. For this verification, trajectory formulas were sufficient to express all needed
properties. A full description of the verification, including the proof script can be found in a
technical report [76].

The next step — the verification of a Wallace tree multiplier [66] — showed the need for a
richer logic. A Wallace tree multiplier uses Carry-Save adders (CSA) asits basic components.
Example 5.9 indicated that what is important in the verification of a CSA is to show that the
sum of the two outputsisthe sum of the three inputs. This cannot be represented as atrajectory
formula. What trgjectory formulas can represent is the particular values of each output, which
is not helpful.

As a preliminary test, the mapping method was used to extend the expressiveness of tra-
jectory evaluation based verification, and the verification completed. The implementation of
the prototype algorithm was not particularly efficient, but the need for a richer logic, and the

feasibility of the approach was demonstrated.

7.3.2 |1EEE Floating Point Multiplier

One of the largest verifications done using the theory presented in thisthesis is the verification
of an IEEE compliant floating point multiplier by Aagaard and Seger [2]. The multiplier, im-
plemented in structural VHDL, includes the following features:

¢ double precision floating point;

e radix eight multiplier array with carry-save adders,

e four stage pipeline; and

e three 56-bit carry-select adders.

The circuit verified is approximately 33 000 gatesin size.
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The verification was done using the VossProver, a proof system built by Seger on top of
Voss. Based on the first prototype tool discussed here, this implements the theory presented
in [78], augmented by using the mapping approach to allow a more expressive logic than tra-
jectory formulas. The VossProver contains extensive integer rewriting routines, which are very
important in verification proofs.

Aagaard and Seger estimate that verifying the circuit took approximately twenty days of
work. The computational cost of the verification was reasonable (afew hours on aDEC Alpha

3000).

7.3.3 |IFIP WG10.5 Benchmark Example
Description of Circuit

Benchmark 17 of the IFIPWG10.5 Benchmark Suiteisamultiplier which takes two rn-bit num-
bers and returns a 2n bit number representing their multiplication. This description is heavily
dependent on the | FIP documentation.t
Let A = a,_y...aja0ad B = b,_y...bibo. Then A x B = Y171 2/(3 207 2 a;b;).

Implementing thisisstraightforward: the basic operationismultiplyingonebit of A with onebit
of B and adding thisto the partial sum. The component that accomplishes this basic operation
takes four inputs:

a One bit of the multiplicand,

b One bit of the multiplier,

¢ Onebit of the partial sum previously computed,

C'IN A onebit carry from the partial sum previously computed;

and computes a * b 4+ ¢ + CIN producing two outputs:

S One bit partial sum, and

ftp://goethe.ira. uka.de/ pub/ benchmarks/ Ml tiplier/
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COUT One hit carry.

The equations for the output are:
S=aAb® (cdCIN)

COUT=anbAcV aNbACIN V ¢ACIN

Theimplementation of the equations (as given in the I FI P documentation) and the graphical

symbol used to represent these componentsis presented in Figure 7.4.

b :DFD— S
CTN :) cout
i

1 p— Jo—cour T
— »-

Figure 7.4: Base Module for Multiplier

A vector of these components multiplies one bit of B with the whole of A and adds in any
partial answer already computed. It might seem appropriate rather than just having a vector of
these components to also have an adder which added in carries from less significant columns
to the results of more significant bits. The problem with doing that is that each stage would be
limited by the need for possible carriesfrom the least significant bit to be propagated to the most
significant bit, with concomitant increases in the time and number of gates needed.

The approach used in the implementation is to produce two outputs: the first output is the

sum of the bit-wise addition of the two inputs, ignoring the carries; and the second output isthe
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carries of the bit-wise addition. Both of these outputs are forwarded to the next stage; here the
carries are added in and new carries generated. We can consider the vector of S outputs as one
n-bit number and the vector of COUT outputs as another »-bit number. If we consider stage &
by itself, if thevector of « inputsis z, if the b inputsare al the bit i, and if the vector of ¢ inputs
isz, thenweshall havethat S +2**'COUT = &y + 2. (Thisis something that must be proved
in the verification.)

These components are arranged in a grid (Figure 7.5 shows how a 4 bit multiplier is ar-
ranged). The multiplier contains n stages, each of which multiplies one bit of B with A and
addsit to the partial result computed so far. After & stages, n + & bits of the partial answer have
been computed. The components making up each stage are arranged in columns in the figure.
The components making up arow compute one bit of thefinal answer; carriesfromless signifi-
cant bitsare added in, and any generated carries are output for the more significant rowsto take
care of .

In the Figure 7.5, each of the base components is labelled with indices: :: j indicates that
the component is the j-th component of the :-th stage.

Having passed through » stages, the full multiplication has been computed. However, as
the final stage still outputs two numbers, the carries must now all be added in. Therefore the
final step in the multiplier isarow of n — 1 full adders that adds in carries. These full adders
arelabelled FA in Figure 7.5.

The implementation of the circuit was done in Voss's EXE format as a detailed gate-level
description of the circuit. A unit-delay model was used, although thisis essential neither to the

implementation nor the verification.
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Figure 7.5: Schematic of Multiplier
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Verification

This section presents adetailed description of the verification of thefour bit multiplier presented
inFigure7.5. Thisexampleissmall enough that the complete proof can be described, and thisis
useful to show how theinferencerules are used. However, the exampleis big enough that there
issometedium involved too; it must be emphasi sed that in practicethe verificationisdone using
FL as the proof script language, which alleviates much of the tedium.

It is aso worth mentioning that the verification of a four bit multiplier is well within the
capacity of trajectory evaluation. Although the proof isnot independent of data path width since
issues of timing are important, it may be useful to do the verification for a small bit width first

using trajectory evaluation by itself.

Identifying structure Using the inference rules relies on using the properties of integers to
break thelimitationsof BDDs. Therefore, thefirst stepin the proof istoidentify somestructure,
in particular to identify which collections of nodes should be treated as integers.

Notation BM(:: j)(x) refersto node « in the basic module ¢ : j; FA(x) refersto node «
of the full adder FA,. For each stage, we consider the collection of « inputs as an integer, the
collection of 4 inputs as an integer, and so on ... Similarly, the collection of S outputs and
COUT outputs are both considered as integers. Table 7.4 presents the correspondences.

The following bit vector variablesare used:

a standsfor the bit vector (as, . .. , ao);
b stands for the bit vector (bs, ... , by) (¢« and b are the inputs to the circuit);
¢ stands for the bit vector (cz, ... , c);

d stands for the bit vector (ds, . .. , dy).

If N isabit vector, then N(z) refers to the :-th least significant bit (so N (0) is the least
significant bit), and N(:..j) refers to the (sub)bit vector (N(i),... , N(j)). We aso use the
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Integer node | Vector of bit nodes
A The four bit integer input
B The four bit integer input
@) Output of the or gate
RS; S output of stage: for: =0,...,3
(BM(7: 3)(5),...,BM(:: 0)(S),BM(: — 1 :0)(S),... ,BM(0:0)(5))
RC; COUT output of stage: for: = 0,...,3
(BM(i: 3)(COUT), ... ,BM(i: 0)(COUT)
RS, The output Out
(O,FA,, ... ,FAG,BM(3: 0)(S),... ,BM(0: 0)(5))

Table 7.4: Benchmark 17: Correspondence Between Integer and Bit Nodes

short hand that RC'; = d isshort for RC;(2..0) = d (RC; isfour bitswide, d is three bitswide).
Defining this correspondence has two advantages: thelevel of abstractionisraised sincethe
verifier can think in terms of integers rather than bit vectors; and the verifier can use properties

of integersto prove theorems without having to convert everything into BDDs.

Anomaliesin circuit implementation There are a number of aspects of the circuit that can
be criticised and improved. The most obvious isthat BM(:: 3)(COUT) = 0 for al :. Inturn,
this means that one of the inputs to the or gate is dways 0, i.e. RSi(7) depends entirely on
FA,(COUT). Theonly advantage of thisimplementation is that it makes the circuit description
(slightly) moreregular. Thecost isthe extracircuitry and time required to perform the computa-
tion. Furthermore, thisimplementation makes the proof more complicated. Thefina stepinthe
proof below will be to show that since RS; + 2* RC3 = abthat RS, = ab; thisisonly true be-
cause the one input to the or gate is zero. Therefore, as the proof is constructed, we shall prove
that BM(¢, 3)(COUT) = 0, complicating the proof slightly. A better implementation would

have meant asimpler proof.
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The Proof

Stage0 Thefirst stepisto show thefirst stage performsthe correct multiplication/addition.

~ By STE
(Globall[(0,100)] ([A]=a A [B](0)=b,) (7.1)
=  Global[(3,100)] ([RSo] + 2'[RCo]=ab(0) A [RC](3)=0))

To make STE as efficient as possible, we use as little information as possible by considering
only one bit of 6. However, at alater stage we shall want to use all the bits of b, so the next
step isto include therest of b in the result. There are a number ways of doing this. One would
be to use the identity rule to show that B has any value imposed on it and then use conjunc-
tion with Result 7.1. However, in thiscase it is easier to use one of the rules of consequence

(Theorem 5.18) and strengthen the antecedent.

= By rule of consequence from Result 7.1
(Global[(0,100)] ([A]=a A[B]=b) (7.2)
=  Global[(3,100)] ([RSo] + 2'[RCo]=ab(0) A [RC](3)=0))
This use of the rule of consegquence relies on Lemma 5.27, and is motivated by the fact that the

antecedent of Result 7.2 uses more information than that of Result 7.1

Stagel Thefirststepistoshow Stage 1 performsthe correct multiplication/addition. Note,
the proof is done for arbitrary input for RS, and RC, rather than the actual input. Thisisim-
portant because STE is used to do the proof; if the actual input (which is a function of A and

B) were used, in general STE would not be able to cope.
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= By STE
{Global[(3,100)]
[A]=a A [B](1)=by A[RSo]=¢(3..0) A[RCo]=d A [RC](3)=0 (7.3

=—> Global[(6,100)]
[RS1] + 2*[RCy ] =¢(3..0) + 2'd + 2'ab(1) A [RC1](3)=0)

In proving thisresult, STE is used; thisimpliesthat BDDs are used to represent data as this
is necessary for STE. However, once the proof is done, the result is only stored symbolicaly,
and the BDDs used to represent Result 7.3 are garbage collected.

Having proved this, we now combine Results 7.2 and 7.3 using acombination of transitivity
and specialisation. Thisis useful to do since we know something about the values of RS, and
RCYy; itisfeasible to do since the consequent of Result 7.3 is strictly dependent on the nodes
RSy and RCy — this means that Generalised Transitivity — Theorem 5.31 — can be used.
Informally, Theorem 5.31 saysthat ¢(3..0) + 2'd = ab(0).

= By Generalised Transitivity
{Global[(0,100)] ([A]=a A [B]=0) (7.4)
=—> Global[(6,100)]
[RS1] + 22[RCy]=ab(0) + 2'ab(1) A [RC,](3)=0)
Now we have the output of stage 1 solely in termsof « and 6. This can be rewritten into a
more elegant form. The proving system has integer rewriting procedures which automatically
rewrites ab(n—1..0) + 2"ab(n) as ab(n..0). Thus applying Lemma5.24 and the rule of conse-

guence, Theorem 5.18, yields the next result:
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= By rule of consequence
(Global[(0,100)] ([A]=a A[B]=0) 75
=—> Global[(6,100)]

[RS)] + 22[RCy] = ab(1..0) A [RC1](3)=0)

Stages2 and 3 The steps are exactly the same as stage 1.

~ By STE
{Globall(6,100)]
[A]=a A [B(2)]=by A[RS)]=c(4..0) A[RC1]=d A[RC1](3)=0) (7.6)
=—> Global[(9,100)]
[RS,] + 23[RCy] = c(4..0) + 22d + 22ab(2) A [RC3)(3)=0)

= By Generalised Transitivity (Results 7.5 and 7.6)
{Global[(0,100)] ([A]=a A[B]=0) 77
=—> Global[(9,100)]

[RS,] + 22[RCy] =ab(1..0) + 22ab(2) A [RC3)(3)=0)

= By ruleof consequence from Result 7.7

Global((0,100)] ([A]=a A[B]=b

{GLobal[(0,100)] ([A]=a A [B]=b) (7.8)
=—> Global[(9,100)]

[RS5] + 22[RCy) = ab(2..0) A [RC)(3)=0)
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~ By STE
{Globall(9,100)]
[A]=a A [B](3)=bs A[RS3]=¢(5..0) A[RC3)=d A[RC5](3)=0 (7.9)
—> Global[(12,100)]

[RSs] + 24 [RCs) = e(5..0) + 2%d + 22ab(3) A [RC3)(3)=0)

= By Generalised Transitivity (Results 7.8 and 7.9)
{Globall(0,100)] ([A]=aA[B]=0)

(7.10)
—> Global[(12,100)]
[RSs] + 2*[RCs] = ab(2..0) + 2°ab(3) A [RC5](3)=0)
= By rule of consequence from Result 7.10
{Global[(0,100)] ([A]=a A [B]=0) (7.12)

—> Global[(12,100)]
[RS3] + 2*[RC3)=ab A [RC5](3)=0)

Theadder stage Thefinal step in the proof isto ensure that the last, adder stage, addsin
the carries correctly. Here possible carriesin the least significant bit must be passed to the most
significant bit. For large bit widths, this adder stage may take tens or hundreds of nanoseconds,

so timing may be important here.

~ By STE

(Global[(12,100)] ([RSs]=¢(6..0) A [RCs]=d A [RC5)(3)=0) (7.12)
= Global[(22,100)] ([RS4]=(c(6..0) 4+ 2*d){7..0)))

Now, using general transitivity, we have:
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Bit width  Number of gates D Time(s) T Time(s)
4 135 3.9 5.4
8 473 9.8 15.0
16 1841 36.0 60.8
32 7265 168.7 371.4
64 28865 1081.9 > 6000

Table 7.5: Verification Times for Benchmark 17 Multiplier

= By Generalised Transitivity (Results 7.11 and 7.12)
(Global[(0,100)] ([A]=a A [B]=b) (7.13)
—>  Global[(22,100)] ([RSs]=a b))
Again, theautomaticrewrite systemsrecognisesthat «6 isan eight bit number, and so rewrites
a * b(7..0) asa * b. This concludes the proof.

Appendix C has the FL proof script for the multiplier example.

Experimental resultsand comments ThisIFIPWG10.5 Benchmark 17 multiplier was veri-
fied for anumber of bit widths (the ». bit width case multipliestwo r-bit numbersand produces
a2n bit number). The time taken to perform the verification on aDEC Alpha 3000 is shownin
Table 7.5: the column labelled ‘D Time' shows the time taken using the direct method, and the
column labelled ‘T Time' shows the time taken using the testing machine approach (all times
shown in seconds). These results are useful for evaluating the testing machine approach, and
are used in the discussion on testing machines in Section 7.4.4.

The proof script itself is short (less than 200 lines, about 50 of which are declarations) and
straightforward to write, relying only on simple properties of integers. The full script can be
found in Section C.4. Once structure in the circuit is identified by associating integers with

collections of bit valued nodes, the verification no longer has to deal with bits, and at no stage
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doesthe verification have to concern itself with how the full adders or the base components are
actually implemented.

The reason why STE cannot deal with the verification by itself is not because of the size of
thecircuit; the problemisthat thereisno good variable ordering for the multiplication of two bit
vectors. However, good variable orderings are definitely possible for verifying the individual
components of the multiplier with STE, and good heuristics to find good ordering can easily be

automated.

7.3.4 Other Multiplier Verification

One of the main examples used in thisthesisis the verification of amultiplier circuit. To put the
thesiswork in context, other work on multipliersissurveyed. Multipliersrepresent animportant
class of circuit, because arithmetic circuits are in themselves important, and because they are
particularly challenging for BDD-based approaches.

Simonis uses a simple proof checker to verify amultiplier in [118]. The circuit description
isrepresented in a Prolog-likelanguage, and the correctness proof simulates a hand proof: nine
correctness conditions are identified and checked (although it is not proved that these nine con-
ditionsimply that the multiplier workscorrectly). Each of the conditionsis checked by aProlog
routine. Although the computational costs of verification were low, the correctness of the proof
relies on the correctness of the nine conditions and the correctness of the Prolog routines. Tim-
ing is not checked.

Pierre presentsthe verification of theWG 10.5 multiplierin [108, 109]. The proof isdonein
the Boyer-Moore prover Ngthm. The work presented is not completely automated in that man-
ual work isneeded to trand ate the behavioural description fromVHDL into thefirst-order logic
used by Ngthm. The proof itself is based on a methodol ogy supporting induction developed by

Pierre for the verification of replicated structures. Provided certain design criteriaare met, the



Chapter 7. Examples 161

proof can be automatically done by the system. Using replication and induction ageneral proof
can be done for an n-bit multiplier rather than having to do individual proofsfor individual bit-
widths. Moreover, the approach is computationally efficient so duplicated work can be avoided.

The disadvantage of thisapproachisthat it relies on the VHDL programs being writtenin a
certain way. Thisis probably not too critical since the restrictions are not unreasonable. More
seriously, timing issues are not dealt with. This may be a problem since while the functional-
ity is independent of the bit width, timing is not. Astiming isan important part of low-level
verification, this approach needs further devel opment.

Equivalence methods have also been used to verify multipliers. Van Eijk and Janssen use
a BDD-based tool to show equivalence between different implementations of multipliers [30].
Their method relies on (automatically) finding structural and functional equivalences between
different implementations of the circuit. For some circuits they get excellent experimenta re-
sults. However, they too do not consider timing. Typically, one of the circuitsis derived from
the other through a number of design steps; thus, the confidence in the verification depends on
the confidence on the correctness of the original circuit.

Although the compositional method proposed in this thesis relies on some structure of the
circuit being identified, it is not necessary to decompose the circuit, or that clearly defined gross
structure be determined. To be useful, it is only important to be able to identify circuit nodes
with ‘interesting values'; this makes it relatively robust to circuit optimisation.

An advantage of the compositional theory isthat it incorporatesagood model of time, which
may be important in many applications. This advantage outweighs the disadvantage of having
to verify circuit designs for each bit-width, which theorem proving approaches may obviate.

Asdiscussed in Section 2.3.3, Kurshan and Lamport al so explored combining theorem prov-
ing and model checking, and have applied their technique to verifying multipliers [93]. The

work was not fully mechanised, and the implementation of the multiplier given at ahigh level.
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However, although exploratory, their work suggested that combining different approacheswould
be successful.

7.4 Matrix Multiplier

A filter circuit based on a design of Mead and Conway is Benchmark 22 of the IFIP WG10.5
suite [100]. The filter is a matrix multiplication circuit for band matrices. A band matrix of
band width « isamatrix in which zeros must be in certain positions (the matrices contain natu-
ral numbers), and the maximum number of non-zero itemsinarow or columnisw. Thiscircuit
iscalled 2Syst. Section 7.4.1 discusses the specification of the circuit; Section 7.4.2 discusses
itsimplementation; Section 7.4.3 presentsits verification; and Section 7.4.4 analyses and com-
ments on the verification in which a significant timing error was discovered. Sections 7.4.1

and 7.4.2 rely heavily on the benchmark documentation.?

7.4.1 Specification

The suite documentation does not give ageneral specification of the circuit (it does give agen-
eral implementation), but presents the case of w = 4. A circuit implemented for a band-width
of w can be used to multiply matrices of any size— larger matricesjust take longer to multiply;
the documentation does not consider the general case, and gives only a specification for 4 x 4
matrices.

Let A and B bethetwo 4 x 4 matrices given below:

2The URL for the documentationisf t p: / / goet he. i r a. uka. de/ pub/ benchmar ks/ 2Syst / . This
section is based on the documentation of this benchmark dated 16 November 1994. As aresult of this research,
the documentation has been revised, and the new version will be released shortly.
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The external interface of the 2Syst circuit is shown in Figure 7.6. The coefficients of matrix

A areinput ontheinputsao, ... , a3, the coefficientsof B areinput on b0, ... , b3, and the

coefficients of (', the result, is output on outputs cO to c6. (What this picture, taken from the

documentation, does not show is that the circuit is clocked and there should be a pin for clock

input too.)

Figure 7.6: Black Box View of 2Syst
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Timing

The timing of when and where the inputs must be applied and the outputs become available
iscritical. The timing for the inputs is presented in Table 7.6. In clock cycles 0 to 3, al the
inputs are initialised by having zero applied to them. Then, for the next ten cycles the matrix
coefficients are input to the circuit. For example, in cycle 9, the coefficients a,s, a42, b3 and
by @reinput on pinsa0, a3, b0, and b3 respectively, while all other pins have zero applied to

them.

clock | a0 al a2 a3 b0 bl b2 b3
0-3,0 0O O 0O 0 O 0 0O
4 0 a1 0 0 0 bll 0 0

5 0 0 a; 0 0 0 by O
6 a1z 0 0 asz; by 0 0 bys
7 0 axw 0 0 0 by 0 O
8 0 0 ap 0 0 0 by O
9 ass 0 0 auo bsa 0 0 by
10 0 axs 0 0 0 b33 0 O
11 0 0 a3 0 0 0 by O
12 asgs, 0 0 0 by O 0 O
13 0 ag 0 O 0 by 0 O

Table 7.6: Inputs for the 2Syst Circuit

Table 7.7 shows when and where the coefficients of the output matrix can be found. The
specification gives some freedom in timing here. It requires that the output be given in clock
cyclesty, ... ,ts, but does not specify valuesfor thet;; and, whilet, < ¢, ... < ts, thet; need

not be consecutive clock cycles. This gives some latitude in the implementation of the circuit.

7.4.2 Implementation

Thematrix multiplicationC' = A x B can bedefined in different ways. Assuming for simplicity
that A and B are both r x r matrices, the usual definition of C' is through defining each ¢;; =
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cycle|cO ¢c1 ¢c2 ¢3 ¢4 c5 cb6
to C11

31 C12 a1

3 C13 C22 C31

13 C14 C23 C32 Cq1
14 Co4 C33 Cq2

t5 C34 C43

le Cq4

Table 7.7: Outputs of the 2Syst Circuit

> iy @irbri. An aternative definition is useful inimplementing parallel hardware to perform

the multiplication: matrix multiplication can aso be defined by the recursive equation 7.14.

cg;) = 0
gfﬂ) — cgf) + a;br; (7.14)
Cij CE;H)

Theentriesinarrays A and B aren-bit numbers. If the band-width of the matricesisw, the
maximum number of non-zero termsin any ¢;; is w, which means that each entry in ¢;; is of
bit-widthm = 2n + r — 1.

The basic operation of Equation 7.14 is performing an addition and a multiplication; this
is modelled in the implementation, where the basic cell has an integer multiplier and adder to
perform this. The external interface of these cells is shown in Figure 7.7. The cell has three
inputs: C.I n isan m bit number, containing a partial sum; and A_l n and B_I n are n bit data
which are either zero or coefficients of the A and B matrices. A Qut, B_.Qut are two n-bit
output values and C_Qut isan m-bit output. If in oneclock cycle Al n, B_.I n and C_I n have
the values «, b and ¢ respectively, then at the start of the next cycle: A Out = «, B.Out =
b, C_0ut = ab+ c.

Thus, the cell has two purposes: it acts as a one clock-cycle delay buffer for coefficients of

the matrices (which are passed on to neighbouring cells), and performs the basic operation of
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c.aut (m..1 — 0)

Al n(n.1-0) ‘ Bl n(n..1 —0)

N e
/| N\

B_Qut (n..1 — 0) ‘ A Qut (n..1 - 0)

Cln{m..1-0)

Figure 7.7: Cell Representation

an addition and multiplication.

Figure 7.8 shows how the cells are implemented. Each cell contains a multiplier, an adder,
and three registers. The multiplier is the one discussed and verified in the previous section,
and the adder is a conventional 2r-bit adder. Each register has an input, an output, and a clock
and select pin. By connecting the select and clock pins to the same global clock, the registers
become positive-edge triggered: when the clock rises the value at the register’sinput islatched,
output, and maintained until the clock rises again.

These cells are connected in a systolic array: each clock cycle cells performs an addition
and multiplication and then passes its results to its neighbours for use in the next cycle. The
cellsare arranged as presented in Figure 7.9, and the timings given in Table 7.6 are designed so
that cells get theright inputs at the right time. A simple example will illustrate how this works.
To help the description, each cell in the systolic array has been labelled by i : ;.

Thecircuitisimplementedin Voss's EXE format as adetailed gate level description, using a
unit delay model. The implementation is based on the VHDL program given in the benchmark

suite documentation.
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Figure 7.8: Implementation of Cell

Example 7.1.
Consider the computation of co; = az1b11 + a22b9;. Inthefirst three clock cyclesthe circuit is

initialised so that at the start of the fourth cycle, all inputs have value zero.

Cycle4: by; isinput on bl (input B_I n of Cell 1:0). (ay; isaso input in this cycle, but in the

example, we only consider values contributing to c;).

Cycle 5: Cell 1:0 will have passed b, to its neighbour, so that 5;; now becomes an input for Cell
1:1. ay; isinput on a2 (the ALl n input of Cell 0:2).

Cycle 6: Cell 1:1 will have passed b;, to the B_I n input of Cell 1:2, and Cell 0:2 will have passed
ay; tothe ALl ninput of Cell 1:2. At thisstage, theC_I n input of Cell 1:2 hasthe value 0.
Cell 1:2 therefore computes a11b1;. At the same time, by, appears as input on b0, which

isinput B_I n of Cell 0:0.
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Cycle 7: Cell 1:2 will have passed «;,b;; to Céll 0:1 asits C.I n input. Cell 0:0 will have passed
on by; to Cell 0:1 asits Bl n input. ay; appearson al, whichisthe Al n input of Cell
01 Ce” 01 Compu'[es allbll —|— azzbgl.

Cycle 8: Cell 0:1 outputs a11b11 + a22b9, onits C_Qut port (whichisc4).

c3

t
cT4aO\ 00 L bOcTz
cT5a1\ o1 v T. N Lo /blch
CTGaZ\ 0 5 | T. N i v T. N . /bchO
VN VLN v N
0:3 i 1:2 i 2:1 i 3:0
AN | AN | N |
8 1:3 i 2:2 i 3:1 8
N v N |
] 2: 3 i 3:2 ]
N |
8 3:3 8

5

Figure 7.9: Systolic Array

7.4.3 Verification

Theverificationtask can bedividedinto two parts, the verification of theindividual components,

and using the verification of the components to show that whole array is correct.
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Verifying the Cells

The verification of acell must show the multiplier, adder and registersall work correctly. Each
cell must be verified individually. This section describes the verification of Cell u:v, and as-
sumes for the sake of this exposition that the clock cycle is 200ns, and the bit-widthis 4.

In the discussion below, the A_In,, and B_In,, arefour-bit nodes, whileall variablesare 12
bit values. To simplify notation, in all the discussion below, « and b are short hands for «(3..0)
and b(3..0) respectively.

It turns out that it useful to divide this proof into three parts:
e Givenvauea on A_In,, bonB_In,,, and ¢ on C_In,,, Ooneclock cyclelater a « b + ¢

appears on C_0ut,,;
e Givenvalue« on A_In,,, onecyclelater « appearson A_Out,,; and

e Givenvalueb onB_In,,, onecyclelater b appears on B_Out,,.

When the cells are connected together, port C_In,, isconnectedto C_0ut ,41)(v+1), POrtA_Out,,
is connected to A_In,(,41), and B_Out,, isconnected to B_In(,1),. Therefore, the above veri-

fication conditions are rewritten as:
e Given value ¢ on A_In,,, b on B_In,,, and ¢ on C_Out,41)(w+1), ONE clock cycle later

a* b+ c appearson C_Out,,;
e Givenvaluea on A_In,,, One cyclelater a appears on A_In,,41); and

e Givenvalueb onB_In,,, onecycle later b appears on B_In 1), .

Of coursg, it is possible to combine all three into one, stronger result. However, having three
weaker results makes the proof more flexible since at some stages the proof needs only the
weaker result, and using a stronger result would clutter things up and be more inefficient.

The costliest part of the proof is to show the multiplier works correctly. As Section 7.3.3
showed how the Benchmark 17 multiplier can be verified, for the purpose of this section, Re-

sult 7.15 is assumed (in the actual verification, the multiplier for each cell is reverified).
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= By variousrules
{Global[(0,100)] ([A_In,]=a A [B.In,,]=b) (7.15)
—> Global[(22,100)] ([Oy]=a=*b))

In the cell, the clock has an important effect; to include information of when clocking happens,
the rule of consequence is often used to strengthen the antecedent of aresult. For convenience,

let
Clock, = Global[(200k,200k 4 99),(200(k + 1),200(k + 1) +99)] ([clock]=1f) A
Global [(200k + 100,200k + 199)] ([clock]=t)

which is the information about clocking which is needed in the proof of the k-th cycle. This
formulasaysthat theclock islow fromtime 200k to time 200k + 99, then high fromtime 2004 +
100 to 200k + 199, and then low again from time 200% 4 200 to 200k + 299.

Using thisidea, Result 7.15 is transformed strengthening the antecedent, as well as taking
into account theinput on C_I n. Although, thisisnot useful for itsown sake, itisuseful in using

the essence of Result 7.15.

= By Theorem 5.7
(Global[(0,100)] [A-In,,]=a A [B_In,]=b A [C_Out(ui1)ws)]=c A Clock, (7.16)

—> Global[(22,100)] ([Oy]=a=*b))
In the next step we show that the adder works correctly and that the output of the adder islatched

for the appropriate time. This can be done with one trajectory evaluation. Note that the time
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interval in the consequent could be made bigger, but the one given suffices.
~ By STE
{Global[(22,100)] ([04.]=d(7..0) A [C0Ut(ut1)ws1)]=c A Clock) (7.17)

=> Globall(200,300)] ([COut,,]=c+ d(7..0)))
Results 7.16 and 7.17 are now combined by specialising the latter result (substituting ab for d),

and using transitivity. Notethat thisisjust aspecial case of General Transitivity (Theorem5.31).

= By Theorem 5.31
(Global[(0,100)] ([A-In,]=a A [B.In,]=b A [C_Out(.i1)w+1))=c A Clock) (7.18)

=—> Global[(200,300)] ([COut,]=c+ax*b))
Result 7.18 isthe coreresult that hasto be proved about the cell. The next two results show that

the cell also acts as one cycle delay buffersfor values of the A and B matrices. Both of these

results can easily be done using STE aone.

~ By STE
(Global[(0,100)] ([A-In,]=a A Clock) (7.19)

—>  Global[(200,300)] ([AInyu4n]=a))

~ By STE
(Global[(0,100)] ([B.In,]=b A Clock) (7.20)
—>  Global[(200,300)] ([B_In, 1),]=b))

Overall Verification

Once each of the cells has been individually verified, the proofs about the individual cells must
be combined to prove that the systolic array as a whole works correctly.

The proof is modelled on how the systolic array computes its results; in its development the
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proof traces the behaviour of the circuit as it uses its inputs, computes results, and outputs the
answers.

Consider the operation of onecell, Cell u:v. It hasthreeinputneighboursfromwhichit gets
values (the boundary cells are specia cases and easily taken care of):

e Cdl u:(v — 1), its A-left-neighbour from which it gets a value of the A matrix,

e Cdl (u — 1):v, its B-right-neighbour from which it gets avalue of the B matrix, and

e Cdl (u+ 1):(v + 1) its C-down-neighbour from which it gets a partial sum;

and three outputneighboursto which it gives values:
e Cdl u:(v + 1), its A-right-neighbour, to which it gives a value of the A matrix,
e Cdl (u + 1), its B-left-neighbour, to which it gives a value of the B matrix, and

e Cdl (v — 1):(v — 1) its C-up-neighbour, to which it gives a partial sum;

At the beginning of clock cycle k&, none, some, or all of the following will be known about
Cell w:v’sinput neighbours (recall that a clock cycle is 200 time units long), where the /; are

antecedent TL formulas, and the 6, are integer expressions:

= ( [; =>Global [(200k, 200k + 100)] [A_-In,,]=60,) (7.21)
= ( I;=>Global [(200k, 200k + 100)] [B_In,,]=0) (7.22)
|: q I;=—=>Global [(QOOIC, 200k + 100)] [C_Out(u+1)(v+1)] =0, D (7.23)

If all three results are known, then we use conjunction on Results 7.21-7.23, and introduce new

clocking information. For convenience, et
[4 — [1 /\ [2 /\ [3 /\ CIOCI@

Thisisthe conjunction of /;, I, and /5 and contains necessary clocking information for the &-th
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cycle. Then we have:

= By Conjunction and Rule of Consequence

(L4

(7.24)
—> Global[(200k, 200k + 100)]
[A-In,|=0, A [B.In,|=0, A[COut,,]|=0..)
Then Result 7.18 is time-shifted forward by £-clock cycles to get:
= By time-shifting
Global [(200k, 200k 4+ 100
G10ba1 ( ) 725
([AIng)=a A [BIn,|=b A [COut(1)ws)=c A Clock;)
=—> Global[(200(k + 1),200(k + 1) 4+ 100)] ([C_Outy,,|]=c+a*b))
Using General Transitivity on Results 7.24 and 7.25 leads to:
= By Theorem 5.31
(I (7.26)

= Global[(200(k + 1),200(k + 1) 4 100)] ([COuty,]=0.+0,%6))
This is a proof of what Cell «:v computes in the k-th cycle. In proving what happens in the
(k+1)-th cycle, Result 7.26 is used in the proof of the behaviour of Cell (v +1):(v+ 1), which
is Cell u:v’sup-C-neighbour.
Similarly, if Result 7.21 is known, then precondition strengthening is used to introduce new

clocking information to get:

= By Theorem 5.7
(1 A Clock, (7.27)

—>  Global [(200k, 200k + 100)] [A_In,,]=¥6,)
Then Result 7.19 istime-shifted by % clock cyclesto get:
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~ By STE
( Global[(200k, 200k 4 100)] ([A_In,]=a) A Clock, (7.28)
=>  Global [(200(k +1),200(k + 1) +100)] ([A-Inyt1))=a))
General Transitivity between Results 7.27 and 7.28 then yields:
= By Theorem 5.7
(I, A Clock (7.29)

= Global[(200(k 4+ 1),200(k + 1) +100)] ([A-Inyt1y)="0a))
This shows what Cell «:v passes to its A-right neighbour at the end of the .-th cycle, and this

result will be used to prove propertiesof Cell «: (v+ 1) inthe (k+ 1)-th cycle. A similar result

shows that in the k-th Cell u:v also passes on the value input onits B_I n port,

= By variousrules
(I A Clock, (7.30)
= Global[(200(k 4+ 1),200(k + 1) + 100] ([B-Ingt1)n]="0))

FL Proof script  TheFL proof script that performsthe proof usesthe approach outlined above.
First, the behaviour of each cell isindividualy verified. Then, the proof proceeds by proving
properties of the circuit in each clock cycle.

A two dimensional array of proofsis kept: at the start of the k-th cycle, the array’s (u, v)
entry contains proofs of what the output of Cell «:v input neighbour’sare at the end of the (k£ —
1)-th cycle. The proof then uses thisinformation to infer as much as possible about the output
of Cell u:v at the end of the k-th cycle, and this information is then used to update the array of

proofs so that Cell «:v’s output neighbours can use thisinformation in the (k£ + 1)-th cycle.
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Table 7.8: Benchmark 22: Actua Output Times

7.4.4 Analysisand Comments

The FL proof script uses STE and the inference rules to prove what the output of the circuit is
at different stages —thisis summarised in Table 7.8.

Comparison between Tables 7.7 and 7.8 shows that even given the ability for the designer
to choose thevalues of ¢4, . . . , s, the implementation does not meet the specification.

There are two possibilities. The easier and probably better solution would be to change the
specification, in accordance with the results shown in Table 7.8. However, another solution
would be to place one cycle delay buffers on the outputsc_0, ¢_1, ¢_5 and c_6; the amount
of extracircuitry issmall, would not slow down the circuit, and would lead to a more elegant
specification.

The proof script, including the proof of the correctness of al the multipliers and declara-
tions, is approximately 500 lines long, of which about 100 lines are declarations. The proof
script can be found in Section C.5. The program itself is straightforward, although the use of a
two dimensional array does not show off afunctional, interpreted language at itsbest. The com-

plete verification of a4 x 4 systolic array of 32 bit multipliers (roughly 110 000 gates) takes
just over 10 hours of CPU time on a DEC Alpha 3000 using the testing machine approach, and
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just under three hours using the direct method.

This verification uses the testing machine algorithm for STE, showing the weakness of us-
ing testing machines. The data structure needed to represent the model of the circuit is approx-
imately 4M in size, making composition of circuit and testing machines difficult. While other
implementations of machine composition are possible, the sheer size of the circuits remainsan
inherent problem. A similar problem can be seen in the verification of the multiplier (Table7.5).
Since both the size of the circuitry and the number of trgjectory evaluationsis quadratic in the
bit-width, if every timetrajectory evaluation must be done, circuit composition must betoo, the
resulting algorithmwill be at least quartic. Thisexplainswhy the verification of large bit widths
becomes so expensive for testing machines.

The second part of the verification — showing that when connected together the multipliers
produce the correct answer — is essentially performing symbolic simulation. Zhu and Seger
have shown that given a set of trgjectory assertion results, there is a weakest machine which
satisfies these assertions [130]; this weakest machine is a conservative approximation of the
circuit as any assertion that is true of the approximation is aso true of the circuit.

This suggests an alternative verification methodology. The verification of the correctness of
each of the multipliersextractsthe essence of the behaviour of thecircuit. From these assertions
it should be possible to automatically generate a conservative approximation of the entire sys-
tolic array. This representation of this approximation would not use BDDs; in fact it would be

at ahigher level of abstraction. STE could then be used on the verification of the entire systolic
array.
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7.5 SinglePulser

This example shows how the fundamental compositional theory introduced in Chapter 5 can be

built on; particularly through the use of induction on time, composite, problem-specific infer-

ence rules can be devel oped.

75.1 TheProblem

Johnson has used the Single Pulser — atextbook example circuit — to study different verifica-

tion methods [88]. The original problem statement for the circuit is:

We have a debounced pushbutton, on (true) in the down position, off (false) in
the up position. Devise acircuit to sense the depression of the button and assert an
output signal for one clock pulse. The system should not allow additional assertions
of the output until after the output has rel eased the button.

Johnson reformul ates this into:
e the pulser emits asingle unit-time pulse on its output for each pulse received on ¢,
e thereis exactly one output pulse for every input pulse, and

e the output pulse isin the neighbourhood of the input.

Figure 7.10 illustrates the external interface of the pulser. The port | n is the button to be

pressed (if it has the value H, the button is pressed, if L thenitis not), and Qut isthe output.

Figure 7.10: Single Pulser
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Johnson presents the verification of this circuit in a number of different systems. This sec-
tion attempts the verification using the compositional theory of STE. This attempt isnot asgen-
eral as some of Johnson’s approaches since the specification is very specific about the timing of

the output with relation to the button being pressed.

7.5.2 An Example Composite Compositional Rule

The motivation for the lemma below is that the essence of the behaviour of the pulser can be
described by three assertions that show how the pulser reacts immediately to stimulation. By

using induction over time, these results can be combined and generalised.

Lemma 7.1.

Let s, ¢, and u be arbitrary integerssuch that 0 < s < ¢ < u. Suppose:
1. | (—g1 =>Next hy ),
2. = {(—g1 A Nextg;)=>(Next?h,y)), and

3. | { g1=>Next?hy |;

then
1. = {Globall(s,t)] (mg1)=>Global[(s+ 1,4+ 1)] Ay ).
2. k= ( (Global[(s,1)] (mg1) A Global[(t+1,u)] ¢1)
—>
(Global[(s + 1,24 1)] hy) A (Next ™ h,) A (Global[(t + 3,u + 2)] ha))

Proof. The proof of 1 comes straight from Corollary 5.23. For 2, let s, ¢, and « be arbitrary

natural numbers such that s < ¢ < u.
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(1) [=(Global[(s,t)] (mg1)==> Global[(s+ 1,t+1)] A1)
From hypothesis (1) by Lemma5.22

(2 E (VNext!(—g1) A Next(FVg = Next(+Dh, )
Time-shifting hypothesis (2)

(3) [ (Globall[t+ 1,u)] gi=> Global|({+ 3,u+2)] Ay )
From hypothesis 3, by Lemma5.22

(4 [E ((Globall(s,t)] (mg1) A Globall(t+ 1,u)] ¢1)

= (Global[(s + 1,¢ 4 1)] hy A Next(+2hy A
Globall[({ + 3,u + 2)] hy))

Conjunction of (1), (2), (3)

7.5.3 Application to Single Pulser
Given a candidate circuit, it should be possible to use STE to verify the following three prop-
erties:

1. = { (—[In])=>Next (~[0ut]) );

2. = {(—[In] A Next[In])==> (Next?[Out])), and

3. = { [In]=>Next?(—[0ut]) ).

Using these results, the above lemma can be invoked to show that

1. E (Globall(s,?)] (—[In])=>Global[(s + 1,7+ 1)] =[0Out]}), and
2. k= ((Global[(s, )] (=[In]) A Global|[(t+ 1,u)] [In])
—>
(Global[(s+ 1, 4 1)] (—[0ut]) A Next*?[out] A

Global[(t+ 3,u + 2)] (=[0ut])))
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The first result says that if the input does not go high (the button is not pushed), then the
output does not go high. The second result says when the button is pushed (input goes from
low to high), the output goes high for exactly one pulse and then goeslow and stays|ow at least
as long as the button is still pushed.

| arguethat these two properties capture the intuitive specification of Johnson. However, the
specification is more restrictive; there are valid implementations that satisfy Johnson's specifi-
cation which would not pass this specification, showing the limitations of our current methods.
It is possible to give amore general specification based on Johnson's SMV specification?®, but

currently there are not efficient model checking algorithmsfor these specification.

7.6 Evaluation

The experiments reported in this chapter showed that the compositional theory can be success-
fully implemented in acombined theorem prover-traj ectory eval uation system, thereby enabling
circuits with extremely large state spaces to be fully verified with reasonable human and com-
putational costs. The following table summarises the examples verified (in the size column, n

refersto the bit-width).

| Description of circuit | How verified | Approx. size (gates) |
Simple comparator STE/Compositional Theory O(n?)
Hidden weighted bit STE/Compositiona Theory O(n*)
Carry-save adder STE 200
B8ZS encoder STE 75
|EEE floating point multiplier | STE/Compositional Theory 33000
Simple 64-bit multiplier STE/Compositional Theory 25000
Benchmark 17 multiplier STE/Compositional Theory 28 000
Benchmark 22 systolic array | STE/Compositiona Theory 115 000

3Note that although the timing constraints in the SMV specification are more general, thisSMV specification
is also implementation dependent — in particular, it requires some knowledge of the internal structure of the im-
plementation, which this proof does not.
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Inusing the verification system, akey issueisthe user interfaceto the system. Boththe STE
and the other inference rules are provided in one common, integrated framework. This not only
makes it easier for the human verifier to use, but reduces the chance of error. Providing STE as
an inference rule for the theorem prover to use proved useful. The ability to use FL as a script
language was extremely important for increasing flexibility and ease of use.

The method of data representation proved to be very successful. It allowed BDDsto be used
where appropriate, and other representations where BDDs are inappropriate. Decision proce-
dures and other domain knowledge are critical for the success of the approach.

The results presented show that the increased expressiveness of TL not only allows aricher
set of propertiesto be expressed, but can make specification cleaner too.

This chapter also shows that all three extensionsto STE are feasible and can be applied suc-
cessfully. However, both the testing machines and the mapping method have significant draw-
backs in different circumstances.

Testing machines are not appropriate to use when the circuit being verified is very large,
and when a number of trajectory evaluations will be run requiring different testing machines.
Although the cost of automatically constructing testing machines is reasonable, the overhead
of performing circuit composition repeatedly can be very large. On the other hand, once the
new circuit is constructed, trajectory evaluation is efficient, and therefore the method may be
appropriate where only a few trajectory evaluations will be done, and where the consequents
are complicated.

The mapping method suffers from the need to introduce extra boolean variables. Thisis
particularly the case when wishing to show that a state predicate holds for a sequence of states,
where although the individual states are different, the relationship between state components
stays constant. For example, we may wish to show that for a sequence of » states, at any time

exactly one of m of the state’'s components have a H value. Using the mapping method would
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require the introduction of nm variables. A different exampleis the B8ZS verification, where
we wish to show that too many zeros do not appear consecutively. The testing machine and
direct methods require no new boolean variables; the mapping method would require two new

boolean variables for each time step.
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Conclusion

Verification of large circuitsis feasible using the appropriate logical framework. Chapters 3, 4
and 5 presented such a framework. Chapters 6 and 7 showed how this theory can be success-
fully implemented and illustrated the method by verifying a number of circuits. A summary
of the research findingsis given in Section 8.1, and some issues for future research is given in

Section 8.2.

8.1 Summary of Research Findings

8.1.1 Lattice-based Modelsand the Quaternary logic Q

The motivation of model checking isto use alogic to describe properties of the model of the
system under study, and to verify the behaviour of the model by checking whether the properties
(written as logic formulas) are satisfied by the model. The key questions are: how the model is
represented; which logic is used; and how satisfaction is checked.

Using a lattice model structure has significant advantages for automatic model checking.
By using a partial order to represent an information ordering, much larger state spaces can be
modelled directly than with more traditional representation schemes. Previous work described
earlier showed the advantage of this method of model representation.

Thisinformation ordering has adirect effect on what can be known about themodel. A two-
valued propositional logic istoo crude atool to use — it must conflate lack of knowledge with

falseness. Thisis not only wrong in principle; the technical properties of a two-valued logic

183
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make it impossible to support negation fully.

The quaternary logic Q is suitable for describing the state of |attice-based models since it
can describe systems with incomplete or inconsistent information. This makes it possible to
distinguish clearly between truth and inconsistency, and fal seness and incomplete information.
Moreover, it supports a much richer temporal logic.

Onthewhole, the use of @ has been very successful. However, there are some minor points
which need some attention. As discussed in Chapter 3 the definition of Q givenin Table 3.1 on
page49isnot theonly one possible. For example, inthedefinitiongivenhere, 1. VT = t. This
definition is not without its problems — although it does have the advantage of very efficient
implementation, it complicates some of the proofs and, notwithstanding the usual intuitive mo-
tivation, seems difficult to justify in the context of atemporal logic. L VT = T, would seem
to be abetter definition. In order to keep monotonicity constraints this would necessitate defin-
ingt v T = T too. These redefinitions would mean that digunction in @ would not be the
meet with respect to the truth ordering of Q. Which would be the better definition is not clear;

more theoretical and practical work must be done.

8.1.2 TheTemporal Logic TL

Q can only describe the instantaneous state of a model. The temporal logic TL uses Q asits
base, and can describe the evolving behaviour of the model over time. Note that the choice of
Q asthe base of the temporal |ogic leaves much freedom in choosing the temporal operators of
atemporal logic, and other temporal logics could be built on top of Q.

Previous temporal logics proposed for model checking partially ordered state space could
not be as expressive as TL because they were based on a two valued logic. In particular TL
supports negation and disjunction fully. In the examples explored in thisthesis, the expressive-

ness of the logic was quite sufficient (the problems encountered with some of the verifications
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were caused by limitations in the shortcomings of the model checking algorithms). Neverthe-
less, whether introducing new temporal operatorsisworthwhileisan interesting one, especially

if the model structure were extended (see Section 8.2.1).

8.1.3 Symbolic Trajectory Evaluation

STE has been used successfully in the past for model checking partially ordered state spaces.
However, previous work only supported a restricted temporal logic. The thesis showed that
the theory of STE could be generalised to deal with thewhole of TL, and a number of practical
algorithmswere proposed for model checking asignificant subset of TL. In particular, thefour-

valued logic of Q proved a good technical framework for STE-based algorithms.

8.1.4 Compositional Theory

The increase in expressiveness makes the need to overcome the performance bottlenecks of
model checking more alluring and more important computationally. One of the primary con-
tributions of the research is the development of a sound compositional theory for STE-based
model checking using TL formulas. A set of sound inference rules can be used to deduce re-
sults: the base rule uses STE to verify a property of a model; the other rules can be used to
combine properties previously proved.

At apractical level, the compositional theory can be used to implement ahybrid verification
system that uses both theorem proving and model checking for verification. BDD-based model
checking algorithms are extremely effective in proving many properties. However, there are
inherent computational limitsin what these methods can do; by using atheorem prover which
implements the compositional theory, these limits can be overcome to a great extent. By pro-
viding automatic assistance, increasing the level of abstraction, and, most importantly, by pro-

viding apowerful and flexible user interface to the theorem prover (through FL), the task of the
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human verifier using the theorem prover can be made easier.
Features of this approach are:
e An appropriateverification methodol ogy can be applied at the appropriatelevel — model

checking at the low level, theorem proving at a higher level.

e STE supports agood model of time. This makes it suitable to verify not only functional

correctness, but many timing properties.

¢ Intheverification, although the implementationis given at alow level (e.g. at the gate or
switch level), the correctness specification (viz. the TL formulasused) is, through the use

of data abstraction, at afairly high level.

e Userinterventionisnecessary. Low level verification through STE, and important heuris-
ticsin the theorem proving component areimportant in alleviating the burden the verifier

might otherwise encounter.

To illustrate the effectiveness of the approach, a number of circuits were completely ver-
ified. The largest of these circuits is one of the circuits in the IFIP WG10.5 Benchmark suite
and containsover 100 000 gates. A serioustiming error was discovered in theverification. This
experimental work showed that increasing the expressiveness of the temporal logics that STE
supports not only means that more properties can be expressed, but that through the use of the

compositional theory, is computationally feasible.

8.2 FutureResearch

The research has raised a number of research issues, and left some questions only partially an-

swered.
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8.2.1 Non-determinism

The lattice structure of the state space means that although the next state functionis determinis-
tic, non-determinism can be implicitly represented through the use of X values. Although suit-
able for dealing with non-deterministic behaviour of inputs of circuit models, this treatment of
non-determinismis not very sophisticated. One avenue of research would be to investigate the
possibility of incorporating non-determinism explicitly within the model structure by replacing
the next state function Y with a next state relation. Whether the semantics would be linear or
branching time needs exploration, although | conjecture that a branching time semantics would
bemoresuitable. Trees, rather than sequences or tragjectories, would be used to model behaviour
(and propertiesverified using symbolic trgjectreeevaluation). Thiswould clearly raisetheissue

of the expressiveness of TL, and the need for operators that express path switching.

8.22 Completeness and Model Synthesis

Thework of Zhu and Seger [ 130] showed that the compositionality theory for trajectory formu-
las [78] with minor modification is complete in the following sense. If K isaset of assertions,
there is a weakest model M such that each assertion in A holds of the model. Moreover, any
assertion that istrue of M can be derived from K using the compositional theory. Whether the
same thing is true of the compositional theory for TL needs further investigation.

This question is important from a practical point of view. Being able to construct such a
weakest model from aset of assertions can bevery useful for specification validation. It canaso
be used for verification, as discussed in Section 7.4.4, where a possible verification strategy for
the verification of systolic array multiplier was outlined. After proving that the individual base
modules of the circuit work correctly, it should be possible to construct amodel (the extracted
model) of the circuit from the set of assertions proved of the base modules; these assertions

extract out the essential behaviour of the circuit. Then, the overall behaviour of the circuit can
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be verified by performing STE on the extracted model.

This raises the question of how to execute temporal logics efficiently, which involvesinter-
esting theoretical and practical questions (see [57] for an introduction). The key in making this
efficientis, | conjecture, that the appropriate data structures should be used for representing the
extracted model. In particular, given that BDDs are avery good representation of bit-level de-
scriptions of the circuit, it is unlikely that using a BDD representation for the extracted model
will gain significant improvement in performance, and for a multiplier circuit, it will certainly
fail. Rather, the extracted model should be used as a method for finding a higher-level descrip-
tion of the circuit. For example, in the case of the array multiplier, an integer level description
would besuitable. Even using anon-canonical representation of integerswould allow STE to be
accomplished inthis particular case. What isimportantisthat it should be easy to apply domain
information to the problem. Notethat from apractical point of view, it may not be necessary for
the compositional theory to be complete, provided that all, or most, interesting properties can
be derived. If the compositional theory is not complete, then the usefulness of this approach

must be determined experimentally.

8.2.3 Improving STE Algorithms

Although the STE-based algorithms presented here were shown to be effective, they are not

capable of model checking all assertions. There are two major aspects that need research.

¢ Enriching the antecedent

So far the STE-based a gorithms require that the antecedents be trajectory formulas. Al-
though the use of the compositional theory ameliorates this restriction, it would be desir-
able to support richer antecedents. The key question is how sets of sequences can effi-

ciently be represented. Through the introduction of fresh boolean variablesit is possible
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to represent the union of two sets, thereby increasing the types of formulasfor which rel-
atively ssimple representations exist for their defining sequence sets. How efficiently can

this be implemented? Are there alternative representation techniques?

e Supporting the infinite temporal operator

At present thereare no general algorithmsfor supporting the until operator and the derived
infinitetemporal operators. To do thisrequiresnot only an efficient way to represent a set
of states, but also efficient methods of performing operations such as set union and com-
parison. STE uses parametric representation of state, which allows extremely large state
spaces to be represented. This representation does not yet support efficient set manipu-
lation operations. Thus, an important research question is how these operations can be

implemented efficiently.

8.24 Other Mode Checking Algorithms

This leads on to the question of whether model checking algorithms other than those based on
symbolic trgjectory evaluation would be effective. It appearsthat adapting thetraditional BDD-
style model checking algorithms such as those described in [26] to deal with partially-ordered
state spaces would be possible. The logical framework developed here— Q, TL and the vari-
ous satisfaction relations — would form the basis of such adaptation. The research questionis
how these model checking algorithms could be adapted to make use of partia informationin
an effective way. Particularly if extended to deal with non-determinism, an advantage of these
model checking algorithmsis that they would support model checking of properties requiring

more expressive formulas than those of the style of verification supported by STE.
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8.25 Tool Development

The prototypes devel oped in the course of this research have showed that efficient, usable tools
can be devel oped to support the compositional theory. The key componentsare supporting pow-
erful, easy use of domain knowledge, and the provision of aflexible user interface through FL.
Although the prototypes were successful, they were prototypes and contained a number of ad
hocfeatures. Not only is a cleaner implementation required, but there are some issues which

need further attention.

e Forward or backward style of proof. The prototypes used the forward style of proof,
whereas Seger’s VossProver used the backward style of proof. While | believe that the
forward style of proof ismore appropriatefor hardware verifications using this approach,

theissueis not clear.

¢ Incorporating new domain knowledge. The use of decision procedures and the incorpo-
ration of domain knowledge in other ways (e.g. through decision procedures) is impor-
tant. Standard packages for types such as bit vectors and integers must be provided, and
it would be desirable to have a clean way for usersto integrate new theories or extend old

ones.

e Partial automation of theorem proving. Although using STE for much of the verification
alleviates much of the tedium traditionally associated with low-level of verification using
theorem provers, it is desirable to automate as much as possible. The use of heuristicsfor

finding time-shifts and specialisations needs to be extended.

e Debugging facilities. When errors are detected it isimportant that meaningful error mes-
sages be provided. Oneissueisrelating higher-level concepts (e.g. an equation involving
integers) to lower-level concepts (e.g. values on bit-valued nodes). Another issueisintel-

ligent intervention when errors occur — determining what information is needed for the
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user to correct the proof and presenting it in a meaningful way. Thisis ageneral lesson

for verification systems [105].

Epilogue

Verification is a central theoretical and practical problem of computer science, and much re-
search is being done on different facets of the problem.

Systems with very large state spaces pose a particular challenge for verification, especially
when a detailed account of timing is important. For these types of state space, partial order
representations can be very effective. The three major contributions of this thesis have been:

¢ Developing a suitable theoretical framework for atemporal |ogic used to describe the be-

haviour of finite state systems with lattice-structured state spaces,

¢ Extending symbolic trgjectory eval uation techniquesto provide effective model checking

for an important class of assertions about these systems; and
¢ Developing and implementing a compositional theory for model checking, which alows
the successful integration of theorem proving and automatic model checking approaches

in apractical tool that can successfully verify large circuits.
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Appendix A

Proofs

A.1 Proof of Propertiesof TL

A.1.1 Proof of Lemma 3.3

LemmaA.1 (Lemma 3.3).

Ifg,h: S — Q aresimple, then D(g) = D(h) impliesthat Vs € S, g(s) = h(s).

Proof. To emphasise that D(g) = D(h), weset D = D(g). Lets € S. Let £ = {¢q € Q:
(sq,9) € DANs;Cshandlete = LIE. The proof first shows that g(s) = e.
@)g(s) e

() s, €S2 (sp,9(5)) €D gissimple.

2 s,Cs Definition of defining pair.

3 gls)e E Definition of £, (1), (2).

4 g(s) X UFE Definition of join.

(b)e =< g(s)

(1) Y(sqq) € D,g=g(s) q=9(s4),8, C s, g ismonotone.

(2) g(s)isanupperbound of F Q)

(B) UL =g(s) Property of join.
Thusg(s) = e.

Similarly, h(s) = e.
Therefore, g(s) = h(s). Asswasarbitrary Vs € S, g(s) = h(s). O

Note that the proof does not rely on the particular structure of Q; it only relieson @ being

202
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acomplete lattice.

A.1.2 Proof of Theorem 3.5

The ideabehind the proof isto partition the domain of an arbitrary p : S — Q depending on the
value of p(s). Then, we construct afunction which enables us to determine which partition an
element fallsin. We can now usethisinformationinreverse— onceweknow which partitionan
element fallsinto, we can return the value of the functionfor that element. The complication of
the proof isto use the properties of Q to combine all this information together. As an analogy
supposethat g : S — {—10,10}. Suppose we know that ¢_(s) = 1 if g(s) = —10 and
g—(s) = 0 otherwise; and ¢4 (s) = 1if g(s) = 10 and g4(s) = 0 otherwise. Then we can
write g(s) = —10g_(s) 4+ 10g4(s). The two steps in doing this were to find the ¢_ and ¢
functions, and then to determine how to combine them. The proof of Theorem 3.5 follows a
similar pattern: first the functions that are the equivalent of ¢_ and ¢, are given; after that it
is shown that these functions can be combined to simulate p, and that they can be constructed
from simple predicates.

The functions given in the next definition are the analogues to the ¢_ and ¢, functions.

Definition A.1.
Suppose that we have an arbitrary monotonic function p : S — Q. Define the following:

T dse€S§,sCu,p(s)="1
t otherwise.

t dseS,sCup(s)=t
1 otherwise.

(w) T 3se€S,sCu,p(s)=T
ul =
AT t otherwise.

O

The proof of Theorem 3.5 comes in two parts: first, LemmaA.2 demonstrates how to combine
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the y, functionsto construct a function p’ that is equivalent to p; and Theorem A.3 concludes
by showing that the functions ¢, v+ and x+ can be defined from the simple predicates using

TL operators.

LemmaA.2.
Letp: S — Q beamonotonic predicate. Define p/(u) by
() = xe(u) Axe(u) Axr(u) V =y (u).

Then, Vs € S, p(s) = p(s).

Proof.
(a) Suppose(u) =1
(1) xe(w) = x7(u) =t, xe(u) =L By definition and monotonicity of p.

2 pu)y=tn LAtV IE=1L=pu) Q)

(b) Suppose(u) = f
(D) xe(w) =T, xe(u) =L, x7(u) =t By definition and monotonicity of p.
2 pu)y=LATAtVE=f=pu) Q)

(c) Suppose(u) = t
(1) welu) =¢t, xe(u) = xr(u) =t. By definition and monotonicity of p.
2 pu)y=tAtAat Vv E=t=pu) Q)
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(d) Suppose(T) =T

D xtw) = T, L =<y, By definition and monotonicity of p.
t = ve(u)
2 pPu)=LAtAT VT (1) and monotonicity of A and V.
=fvT=T
= p(u)
3 p'(u)=pu). Since T = UQ.

]
The final part of the proof is to show that the x, functions can be constructed from the smple

predicates.

Theorem A.3 (Theorem 3.5).
For all monotonic predicatesp : S — Q, 3p' € TL suchthat Vs € S, p(s) = p/(s).

Proof.
Partition S according to the value of p:
SL=4{s€ S :p(s) =L} St ={s € S:p(s) =1}

Sg ={s €S :p(s) =t} St={se€S:p(s) =T}

Some of these sets may be empty. Now, for each s € S we define \,: S — Q (each y’, char-

acterises al elements at least as big as s) asfollows:

1 siZt
Note that each y’, issimple. For the purpose of this lemma, define vV ) =1.. The ' have the

following two properties.
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Supposels € S 5 s C u, p(s) = ¢ for somey € Q.

1) Vi(u)=t Definition of \'.

2 Vv{x(u) vesS,}t=t s € S, by supposition.

SupposeAs € S 3 s Cu, p(s) = ¢ for someg € Q.

(1) VveS,viZu Supposition.

2 Vv{xi(u) :veS,}=1L Either S, isempty or follows from (1).

Now, define:
xi(u) = 2(VAX(u) s €5 V T
xe(u) =V {xi(u) : s € S¢}
xr(u) ==(VA{xi(u) s s€SrhH vV T

Using the properties of ' proved above, we have that:

T dse€S§,sCu,p(s)="1
xr(u) =

t otherwise.

t dseS,sCup(s)=t
Xt(u) =

1 otherwise.

T 3se€S,sCu,p(s)=T
xT(u) =

t otherwise.

Note that we have constructed from simple predicates the functions v, givenin Definition A.1.
Thus, by Lemma A.2, given an arbitrary monotonic predicate p, we are able to define it from
simple predicates using conjunction, digunction and negation — showing we can consider any

monotonic state predicate as a short-hand for aformulaof TL. O
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A.1.3 Proof of Lemma 3.6

LemmaA.4 (Lemma 3.6).
1. Commutativity:
GNG = G2 NG, 1Y G2 = G2V G
2. Associativity:
(1Vg)Ves = VeV (AR)Ag = g g Ags)
3. De Morgan’s Law:
GiANg = 2(ma Vog) gV = a(naAng).
4. Distributivity of A and V :
hA(g1V g2) = (hAg)V (hAga), bV (1 Ag2) = (hV i) ARV )
5. Distributivity of Next :
Next (g1 A g2) = (Next g1) A(Next ¢2), Next (g1 V g2) = (Nextgy) V (Next gq).
6. Identity:
gV (s = g, gANCy = ¢
7. Double negation:
g =g
Proof. The proofsall rely on the application of the definition of satisfaction and the properties
of Q. Let o € S¥ begiven.

1. Follows from the commutativity of Q.

2. Follows from the associativity of Q.

3. Sato, g1 A g2) = Sato, 1) A Sato, g2)

= ~(=Sato, 1) V ~Sato, g2)) = ~Sato, mg1 V gs)
= Sato,~(mg1 V ~g2)).

S'm”arly, a1 \Y/ go = —|(—|gl/\—|92)



Appendix A. Proofs 208

4. Follows from the distributivity of Q.
5. Sato, Next (g1 A ¢2)) = Satos1, g1 A g2)
= Satos1,91) A Salos1, g2).
= Sato,Next ¢g;) A Sato, Next ¢;).
= Sato, (Next g;) A(Next g2)).
The proof for disunctionis similar.
6. Follows since t is the identity for A with respect to Q and f is the identity for v with
respect to Q.

7. Sato,~—g) = —Sato,~g) = ~~Safo, g) = Sato, g)

Since o is arbitrary the result follows. O

A.1.4 Proof of Lemma 3.7

LemmaA.5 (Lemma 3.7).

If pisasimple predicate over C", then thereis apredicate g, € TL,, such that p = g,.

Proof.

Consider (s,,q) € D(p), and suppose that p(u) = ¢. Then, since p issimple, for all ¢ =
L,....n, s,[¢] Culr]. What we will do is construct functions that enable us to check whether
foralli=1,... ,n,s,[7] C u[:]. Thiswill be enough of abuilding block to complete the proof.
We define the functions y;, so that x;(7,v) = tif s,[i] E v[i] and x| (i,v) =L if 5,[i] £ v[2].

Formally, the x’s are defined as:
1 V=il whens,[i] = L.

Xy(1,0) = € 1 v [i] when s,[i] = H.

LV (=[i] Ali]) when s,[i] = Z.
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Informally, this means that X;q, v) indicateswhether v is greater than the i-th component of p's
defining value for ¢. Extending this, we get that A7_, (x; (¢, v)) returns t if s, C v and returns

1 otherwise. Extend this further by defining:

>3

xi(s) = =(A (x¢(6,9))) V T, if 3(se,T) € D(p)

=1
=1, otherwise.
vels) = A(viliys), if 3(se,t) € D(p)
=1, otherwise.

(X7 (68))) vV T, i 3(st,1) € D(p)

>3

XT(s) =~(.

=1

=1, otherwise.

Consider . Supposeds suchthat s C vand p(s) = t. Sincepissimple, s; C s. By transitivity
s¢ C v. Hence by the remarks above, y¢(v) = t. On the other hand, if As suchthat s C v and
p(s) = t, then either t isnot in therange of p or s IZ v. In either case y¢(v) =L.
Forthecaseof ¢ = f, T, suppose ds suchthat s C v and p(s) = ¢. Sincepissimple, s, C s.
By transitivity s, C v. Hence by the remarks above, v,(v) = T. Onthe other hand, if As such
that s C v and p(s) = ¢, then either ¢ isnot intherangeof p or s, IZ v. Ineither case y,(v) = t.
This implies that the definitions given of y, here are equivalent to those of Definition A.1,
and thuswe can apply LemmaA.2. Asthe y, areconstructed hereasformulasof TL,,, the proof

is complete. O

A.2 Proofsof Propertiesof STE

This section contains proofs of theorems and lemmas stated in Chapter 4.

Proof of Lemma 4.3

First, an auxiliary result.
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Lemma A.6.

IfgeTL,g=1,t,0 € Ag),theng < Satd,g).

Proof.Letg € TL,§ = sps182... € A?(g). Proof by structural induction.

If g is simple (base case of induction):

D)
(2)
3)

Either (s0,q) € D(g) or (so, T) € D(g)
Satd,g) € {¢, T}
q = Satd, g)

Letg = g1 A ga.

D)

(28)
(33)
(49)
(58)

(2b)

(3b)
(4b)
(5b)
(6b)

Satd, g) = Satd, g1) A Satd, g2)
Suppose = t, i.e.§ € Af(g).

361 € Al(g1), 0% € A¥(gy) 26 =6"U 62
q=Saté', g1),q = Saté?, g»)

q = Satd, g1),q = Satd, g2)

g < Satd, g)

Suppose = f, i.e. § € Af(g).

Either (or both) § € A%(gy) oré € A% gz)

Definition of A?
Definition of Sat

Definition of <.

By definition.

Construction of A

I nductive assumption.

Monotonicity.

(), (4a), monotonicity of A.

Construction of A

Suppose (without loss of generality) that § € A4(qgy ).

f < Saté', g1)
Trividly, L < Saté?, g2)

f AL <Saté', g1) A Satfd?, ¢2) = Satd, g).

But f A L= f which concludes the proof.

I nductive assumption.

(3b), (4b)

210



Appendix A. Proofs 211

Letg = —gi.

(1) d€A™(q) Construction of A.

(2) —q=Sats, g1) I nductive assumption.
(3 —q¢=-Satd,g) Satéd, g) = -Satd, g ).
(4) Henceq < Saté,g). Lemma 3.1(2).

Letg = Next g;.
(1) so=Xandsysy... € Alg) Construction of A.

(2 g=xSatsisz...,q) Inductive assumption.
(3) ¢g=XSatXsysy...,Nextg;) From (2), definition of Sat
(4) qg=Satd,g) Monotonicity of Sat

Suppose = ¢; Until g,.

By definition,

Sato, g1 Untilg,) = ViZy(Satoso,g1) A ... ASalosi—1,g1) A Salo>i, g2)).

Let § € Al(g) be given.

Suppose = t, i.e.d € Af(g, Until go)

(1) 336 Ab(Next®qy) ... 1T At(Next("Yg,) IT At(Nextigy)
Construction of A

(2 Vi=0,...,1, 35 € A¥(Nextig,)suchthat LI{’ : 5 =10,...,i} =6
Definition of 1I.

8 §Cs5j=0,...,1 (2), property of join
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(4)
(5)
(6)
(7)
(8)

D)

(2)

3)
(4)

212
t < Sats’/, Next/g ), =0,...,1—1 | nductive assumption.
t < Satd, Next’q) (4), monotonicity.
Similarly t < Saté, Nextg,)
t < Sats, (Next®g)) A ... A (Next(Vg ) A (Nextigy))
(5) and (6).
t < Satd, g; Until gs) Definition of Sat
Suppose = f, i.e.d € Af(g; Until gy).
Vi=0,...,36withé'C § and
5" e Af(Next®q ) U... U Af(Next™ g ) U Af(Nextiy,)
Construction of A.
Vi=0,...,6 € Af(Next®g A ... AlNext(i"Yg ) ANextig,
Definition of Af
f < Satd’, Next®g; A ... ANext("Yg A Nextigy) Inductive assumption.
f < Satd, g: Until ¢s) Definition of ¢; Until gs.

LemmaA.7 (Lemma 4.3).

Letg € TL,andlet o € S¥. Forq = t,f, ¢ < Sato, g) iff 369 € Al(g) withé? C 0.

Proof. (=) Assumethat ¢ < Sat o, g). The proof is by structural induction.

Supposeg is simple (base case of induction).

D)

(2)
3)

q =< g(oo)and 3¢’ € {¢, T} with (s,,¢') € D(g) and s, C o
g issimple.

sgXX...Co From (1).

But s, XX... € Al(g) Definition of A?(g).

Suppose = g1 A g,.
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Suppose =t.
(1) t=Sato,g), t <Satco,q)
(2) 35t € A¥(g1),6% € A¥(ge) withs' 6* Co
(3) Lets=4'Ué?
(4 fCo
(5 §eAig)
Suppose = f.
(1) Either (or both) f < Satc, ¢,) or f < Sato, ¢2)
Without loss of generality assumef < Sato, ¢1).
(2) 3t e Af(g)withs' Co
(3) o' e Al(g)

Supposeg = g, .

(1) ¢CE-Sato,gi)

(2 —q=Sato,g1)

B FeA™M(¢p1)>0C o
(4) ¢ Ai(g)

Suppose = Next g;.

(1) g=Satosi, 1)

(2) F0€ A g1)>6C 05y
(3) Xde Aig)

(4 XiCo

Supposg = ¢; Until g,.

Lemma 3.2(2).

I nductive assumption.

From (2).
Definition of A(g)

Lemma 3.2(3)

I nductive assumption.

Definition of A(g).

Definition of Sat

Lemma3.1.

I nductive assumption.

Definition of A(g).

Definition of Sat

I nductive assumption.

Construction of A(g).

XEO’O

213
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D

(2)

3)

(4)
(%)

(6)
(7)

D)

(2)

3)

(4)

(%)

(6)
(7)

Suppose =t.

3 >t < Sato,Next®q ) A ... A Sato,Next("Vg,) A Sato, Next'g,)
Lemma3.2(1)

t < Sato, Next'g,) and From (1), Lemma3.2(2) .

Vj=0,...,i—1,t < Sato, Next’g,)

35" € Ab(Nextigy) 2 0'Co | nductive assumption

Vi=0,...,i—1,38 € A¥(Next’q;) 2 ¥ Co
Letd=46U...U4"
§ € At(Next®g ) IT... IT At(Next(~Vg,) IT At(Nextiy,)

Construction of A

SCo (3) and (4).

§ € A%(g, Until go) (5), construction of A.

Suppose = f.

Vi, < Sato, Next®g ) A ... A Sato, Next~Vg,) A Safo, Next'g,)
Lemma3.2(4)

Either f < Sato,Next‘gy)or 35 €0,...,i — 1 > f < Safo,Next/g;).
Lemma 3.2(3)

Either 36" 5 6" € Af(Next’g,) withd" C o, 0or  Inductive assumption.

367 € Af(Next’gy) and ¢’ C 0.
In either case, V¢, by construction
350 € Af(Next®g ) U ... U Af(Next( Vg, ) U Af(Nextigy) With§ C o

Let § = LUS2,0°.

§ € Af(g, Untilgy) Construction of Af.

dCo S isacomplete lattice.
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(<) Letg € TL,o € §¥, and assume that 36 € A?(g) such that 6 C o,
By LemmaA.6, ¢ < Saté?, g). By the monotonicity of Sat ¢ < Sato, g). O

A.2.1 Proof of Lemma 4.4

Lemma A.8 (Lemma 4.4).
Let g € TL, and let o be atrgectory. For ¢ = t.f, g < Sato, g) if and only if 379 € T(g)

with 79 C o.

Proof. (=) Suppose ¢ < Sato, g).
By Lemma4.3, 36 € A?(g) suchthat 6 C o.
Let 79 = 7(49). Notethat 79 € T(g) by construction and that ¢ C 79.
79 C o: the proof is by induction.
1. 75 = &3 C oo.
2. Assume 77 C o,

3. Since o isatraectory,

Y(7/)CT Y (o) Monotonicity of Y
C o1 o isatrgjectory.
674 Eoip Sinced? C o.
i, = 0L, uY(77) Definition of 79.
L oit1 Property of join.

(<) Suppose 379 € T%(g) suchthat 79 C o.
As 79 € Tg),307 € Ag) suchthat 69 C 79.
By transitivity, ¢ C 0. By Lemma4.3, ¢ < Satd’, g).

By monotonicity ¢ < Sato, g). O
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A.2.2 Proof of Theorem 4.5

Theorem A.9 (Theorem 4.5).

If g and i are TL formulas, then A*(h) Cp T%(g) if and only if g=>h. O

Proof. (=) Recalling the definition of = on page 71, suppose V¢ € T%(g), 36" € A%(h)
with " C 79.

Supposet < Sato, g).

By Lemma4.4, 379 € T(g) suchthat 79 C o.

By assumption then, 36" € A“(h), with 6" C 9. By trandtivity, 6" C o.

By Lemma4.3, ¢ < Sato, h).

(<) Supposefor al trgjectories o, t < Sato, g) impliesthat t < Sato, h).
Letm9 € T*(g).

Then by Lemma4.4,t < Satr?, g).

By the assumption that g=>h, t < Satr?, h).

By Lemma4.3, 36" € A4(h) such that §" C 79.

As ¢ was arbitrary, the proof follows. O
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A.3 Proofs of Compositional Rulesfor TL,,

Recall that in this section we are dealing solely with the realisable fragment of TL,,.

Theorem A.10 (Identity — Theorem 5.14).

Fordl g € TL,,, g=>g.
Proof.Lett = Sato,g). Clearly thent = Safo, g). Hence g=>¢. O

Lemma A.11.

Suppose g=—>h. Then Next g=—>Next h

Proof.

Leto € R+ > t = Sato,Nextyg).

(1) t=Safos,9) Definition of Sat

(2) t=Satosi,h) g=>h.

(3) t=SatXosi,Nexth) Definitionof Sat O
(4) t=Sato,Nexth) (3), monotonicity of Sat Lemma4.8.

(5) Next g=—>Nexth.

Corollary A.12 (Time-shift — Theorem 5.15).

Suppose g=>h. ThenVt > 0, Next'g=—>Next'h.
Proof. Follows from LemmaA.11 by induction. O

Theorem A.13 (Conjunction — Theorem 5.16).
Suppose g; =>hy and gy => ho.

Then a1 /\92:|>h1 A hs.

Proof.

Let o € R+ and supposet = Sato, g1 A g2).
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D
(2)
3)
(4)
(5)

t
t

Sato,g1) A Sato,g.)  Definition of Sato, g1 A g2).
Sato,g;), i = 1,2 Lemma3.2(2).
Sato, h;), i = Since g;=>h;, 1 = 1,2.

Sa(O',hl) A Sa(O', hz) (3)
Sato, hy A hs) Definition of Sato, hy A hy).

As o isarbitrary, g1 A go=>h1 A hs.

Theorem A.14 (Digunction — Theorem 5.17).

Suppose g, =>hy and go =>hy. Then g1 V go=>hy V hs.

Proof.

Let o € Ry andsupposet = Sato, g1 V gq).

D
(2)
3)
(4)
(%)

t
t
t
t
t

Sato, g1) vV Sato, ¢2)
Sato,g;), fori=10r: =2 Lemma3.2(1), Lemma4.8.
Sato, h;), fori=10ri=2 Snceg,=>h;, i =1,2.
Sato, hy) vV Sato, hy) (3)

Sa(O', hl VvV hg)

Asoc isarbitrary, g1 V go=>h1 V hs.

LemmaA.15.
Suppose Af(g) Ep Af(h), 0 € Ry andt = Sato, h).
Thent = Sato, g).

Proof.

(1) t=Sato,h) t = Sato, h).
(2 F6eAt(h)>3éCoandt < Sats,h) (1), Lemmad.3.

(8 I eAf(g)ad s

Definitionof Cop .

(4 t < satd,g) Lemma 4.3.

Definition of Sato, g1 V ¢2).

Definition of Sato, hy V hy).

218
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B Co
(6) t = Sato,g)
(7) t=Sato,g)

219

Transitivity of (2) and (3).
From (4) and (5) by Lemma4.3.
(1), Lemma4.8.

Theorem A.16 (Consequence— Theorem 5.18).
Suppose g=>h and A*(g) Cp A(gy) and A¥(hy) Cp Af(h).

Then a1 :|>h1.

Proof.

Suppose o € Ry isatrgectory suchthat t = Sato, ¢1).
(1) t= Sato,g) LemmaA.15.

(2) t= Sato,h) g=>h.
(3) t= Sato,h;) LemmaA.l5.

4 g=>h

Since o is arbitrary.

Theorem A.17 (Transitivity — Theorem 5.19).

Suppose g; =>hy and g, =>h, and that A*(g2) Cp Af(gy) I Ab(hy).

Then a1 = h,.

Proof.

Suppose o € Ry isatrgectory suchthatt = Sato, ¢1).

D)
(2)
3)
(4)
()

t = Sato, hy)

t = Sato, g1 A h)

36 € AY(g1Ah)36C o
Af(gi Ahy) = A¥(gr) TTA®(hy)
36" € A¥(g) 2 6'C 6

g1=>h

Definition of Sato, g; A hy).
Lemma4.3.

By definition of Af.

A%(g2) Tp A%(gr) LA (hy).
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6) dLCo Applying trangitivity to (3) and (5).
(7) t = Sato,g2) From(6) by Lemma4.3.

(8) t = Sato,g2) From(7)by Lemma4.8.

(9) t = Sato,hz) g=hs.

(10) g1=>h, Since o was arbitrary.

Lemma A.18 (Substitution Lemma).
Suppose = ({ g=>h ) and let £ be asubstitution: then = ( £(g)=>&(R) ).

Proof.
Let ¢ bean arbitrary interpretation of variablesand o € 'R+ be an arbitrary trajectory such that
t = Sato, ¢({(g)))-

(1) Let¢'=¢o¢

(2 t = Sato,¢'(9)) Rewriting supposition.

(3 ¢ isaninterpretation of variables By construction.

(4 t = Sato,¢'(h)) = (g=>h).
(5) t = Sato,¢(&(h))) Rewriting (4).
6) E({&(g)=&(h)) ¢ and o were arbitrary.

Lemma A.19 (Guard lemma).

Supposee € £and = (g=>h): then = ( (e = g)=>(e = h) ).

Proof.
Supposet = Sato,e = ¢) forsomeos € Ry. Recdl thate = g = (—e) V ¢, and note that
Safo,—e) € B. By the definition of the satisfaction relation, either:

(i) t = Sato,—e). Inthiscase, by definition of satisfaction, t = Sato, e = h).
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(i) t = Sato,g). Inthis case, by assumption Sato, 2). So, by definition of satisfaction,
t = Safo,e = h).

As o was arbitrary the result follows. O

Theorem A.20 (Specialisation Theorem — Theorem 5.20).
Let==[(e1,&1),. .., (en, )] bespecialisation, and suppose that |= ( g=>1h ).
Then = (=(g9)=>Z=(h) ).

Proof.
(1) Fori=1,...,n, = {&(g)=&(h)) By LemmaA.18.
(2 F{lea=&lg)=> (e = &(h))) By LemmaA.19.
) E(ALi(ei= &(g))=> A (e; = &(h))) Repeated application of Theorem A.13.
@ E{Z(g)==(n)) By definition.

O

Theorem A.21 (Until Theorem — Theorem 5.21).

Suppose g; =>hy and g, =>h,. Then g; Until go=>h; Until h,.

Proof.Let o € Ry beatrgjectory suchthat t = Sato, ¢; Untilgs).
Q) Ji> Definition of Sat
t = /\;;B Sato, Nextjgl) A Sato, Next'g,) Lemma 3.2(1), Lemma4.8.

(2) t = Sato,Next'g,

) an
t = Safo,Next/q), j =1 Lemma 3.2(2).
(3) t = Sato,Next'h,)and ga=—>>h, Corollary A.12.
t = Safo,Next’hy), 7=10,...,i—1 g1 =>hq, Corollary A.12.

(4) t = AZySato;, Next’hy) /\Sa(Ui,Nextihg) Definition of Sat
(5) t=Sato,h;Untilhs) Definition of Sat

(6) ¢1Until go=—>h,Untilh, Since o was arbitrary.
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Detail of testing machines

This chapter presents the details of testing machines. Section B.1 formally defines composi-
tion of machines. Subsequent sections build on this by showing how testing machines can be
constructed and composed with the circuit under test: Section B.2 presents some notation used;
Section B.3 presents the building blocks from which testing machines are constructed; and Sec-

tion B.4 shows how model checking is accomplished.

B.1 Structural Composition

The focus of the research on composition is the property composition described in Chapter 5.
However, sometimesit isalso desirable to reason about different models and use partial results
to describe the behaviour of the composition of the models. A full exploration of composing
models of partially ordered state spaces is beyond the scope of thisthesis— there are important
considerations which need attention [129]. A partial exploration of the areais useful though for
two reasons: (1) it gives aflavour of how structural composition could be used; and (2) some
of the definitions given are needed in justifying the details of testing machines.

The content of this section isvery technical. Although conceptually the composition of sys-
temsisvery simple, thenotation needed to keep track of thedetail isnot. Thissectionisincluded
for completeness and the details of this section are not needed in understanding the thesis.

This section has three parts. First, composition of modelsis defined formally. Second, in-
ferencerulesfor reasoning about acomposed model is given. Thethird part elaborates on com-

position for circuit models, where the definition of composition has natural instantiation.
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B.1.1 Composition of Models

Definition B.1.
Let M; = ((S1, E1),R1, Y1), My = ({83, C,), R, Ys),and M = ((§, C),R,Y) be
models. Let X;, X, and X be the bottom elements of S;, S; and S; Z1, Z,, and Z be their top
elements; and let &y, G5 and & be the simple predicates of S, S; and S respectively.

Ifp:S51 x8 —8,p: G — Gandp, : G5 — G then M isa p-composition of M; and
M if

1. p ismonotonic;

2. p(X1,Xy) = X and p(Zy,Zy) = Z;

8. ¢=g(s1) = q=pilg1)(p(s1.X2));

4. q=g(s2) = q=pa(g2)(p(X1, 52));

5. p(Yi(s1), Ya(s2)) E Y(p(s1,52)).

The required propertieson p may seem onerous, and indeed in general they may be too restric-
tive. However, for the application of composition needed in this thesis they are sufficient. In
particular, for compositions where the ‘ outputs’ of one circuit are connected to the ‘inputs’ of

another, these conditions will be met.

Definition B.2.

We inductively extend the domain of the p; by defining
e pi(gNh) = pi(g) A pi(h);
o pi(mg) ==(pi(9));
o p;(Next g) = Next p;(g);

e pi(gUntilh) = p;(¢) Until p;(h).
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Definition B.3.
Let M, M, and be models and M a p-composition of M; and M,. Leto! € Sy, 0* € S5.

plot,o?) = p(af,o8)p(al,07) ...

Since we are dealing with different models, we modify the notation for the satisfaction relation
and use the notation Saty, (¢, ¢) to refer to whether the sequence o of the model M ; satisfies
g.

LemmaB.1.

Let M, and M, be models and M a p-composition of M; and M,. Leto' € S¥, 7 = 1,2.
Suppose g € TL(S;) and g = Safu, (¢, g). Theng = Satu(p(c',o?). p;(9)).

Proof. The proof is by induction on the structure of ¢g. We assume without loss of generality

that j = 1.
Suppose = Satu, (', g) whereg is simple
1) q=g(o) Definition of satisfaction.
2 q=pi(9)plol,Xy)) Definition B.1(3).
() a=pi(g)p(og.03)) Monotonicity.
(4) ¢ = Satu(p(ct,co?),pi(9)) Definition of satisfaction.

Suppose = Satu, (7', gu A g)

(1) Letg, = Satu,(c',qu), w=a,b

2 g=q. N Definition of satisfaction.

() quw = Satu(p(ct,c?),pi(gw)),w = a,b Inductive assumption.

(4) q= Satu(p(c',0?),pi(ga Ags)) Definition B.2 and satisfaction.
Suppose = Satu, (o', h)

(1) ~g= Saty,(o',h) sato',~f) = -Sata', f)
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(2) —q= Satu(p(at,c?), pi(h)) I nductive assumption.
(3) ¢ = Satu(p(ct,a?), pi(=h)) Definition B.2 and satisfaction.
Suppose = Sata, (o', Next h)
(1) q= Satu,(di,h) Sato',Nexth) = Satol,,h)
(2) q= Satu(p(al,, i), pi(h)) I nductive assumption.
(3) ¢ = Satp(c',o?), pi(Next h)) Definition B.2 and satisfaction.
Suppose = Satu, (0!, hy Untilhy)
(1) Letg; = Satu,(clg,hi) Ao ASatu, (01, 1, hi) A Satu, (01, hs)
(2 q=Vilg Definition of satisfaction.
(3) ¢; = Satu(p(so,0%0)s p1(h1)) A ... A Satu(p(os;_y,0%,_1), pr(fh1))A
Satu(p(cs;,0%;), pi(hs)) From (1) by induction assumption.
(@) g2 ViZo (Satulp(oie, 030), pilha)) A ASatu(p(ol;_1,0%;_1), pr(hi))A
Satu(p(al;, 03;),pi(he)))  (2) and (3)
(5) ¢q= Satu(p(c',o?),hyUntil hy) Definition of satisfaction.
L

LemmaB.2.

Let M;, M, and be models and M a p-composition of M; and M.

suppose that:

(1) p isasurjection;

(2) o = p(ct,0?),and t < Satu(a, p:(g;)) impliesthat t < Safu, (o

Then =, { pi(gi)=>p:i(h) ) iff |, {

gi=>h;).

Leti € {1,2}, and
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Proof.
Supposé=,, (| gi=>"h;

b
(1) Supposet < Satu(c, pi(g:))

(2 Fo',0? >0 =p(ct,o?) p isasurjection.

() t= Satu,(c', ) By hypothesis (2).

(4) t= Satw,(o', k) Since =, { gi=>h; ).
(5) t = Satu(o,pi(hi)) By LemmaB.1.

(6) Therefore =, { pi(g:)=>pi(hi) )

Supposé=,,. { pi(g:)=>pi(h:) )
(1) Supposet = Saiwv, (o, g:)

(2) t=<Satu(o,pilg)) LemmaB.1
() t = Satu(o, pi(hi)) t < Satu, (v, g:).
(4) t=Satu(c,h;) By hypothesis 2.

B.1.2 Composition of Circuit Models

For circuit models, there are several natural definitions of composition that have useful proper-
ties. Thereare, of course, other ways of composing circuits, but the one discussed hereissimple
and useful.

Let My, = ((C™, C), A™.Y,)and M, = ((C™, C), A™,Y,) betwo models. For
circuit models, the next state function’ Y : C* — C” is represented as a vector of next state
function (Y[1],... .Y [n]) whereeach Y[j] : C* — Cand Y (s) = (Y[1]|(s),..., Y [n](s)).

To composetwo circuit models, weidentify » pairs of nodes (each pair comprising one node
of both circuits) and ‘join’ the pairs (i.e., informally, think of these pairs as being soldered to-
gether, or physically identical). The state space of the composed circuit consists of my +my—r

components. The first m; — r components are the components of M that are not shared with
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M. Thenext m, —r components are the components of M, that are not shared with M. The
final » components are the » components shared by both M; and M.

The formal definition of composition isalittle intricate since it identifies state components
by indices. The difficult part of the definition is identifying for each state component in the
composed circuit the component or componentsin M, and M, that make it up.! Theideais
simple — the book-keeping is unfortunately off-putting.

Let I, = (ai,...,qa,),and J, = (ai,... ,a;, _,) belists of state components of M. If
s € Sy, thenthe s[a;] arethe componentsof the state space that are shared with M, and the s[a’}]
are the components of the state space that are not. We place the natural restriction that /; and ./,
are digoint, and that their elements are arranged in strictly ascending order. > = (by,... ,b,)
and.J; = (bf,...,b;, _,.) arethe corresponding of lists for M. Each («;,b;) pair is a pair of
state components that must be ‘joined’.

Let convi () be the component of M to which the j-th component of A1, contributes. For-

mally, define

| k when3da, € J; 3 a, = j
conv(j) =
mi+my—r+k whendaz €L dap=j
Similarly, define
: my —r+k when3b, € J; 5 b, =5
cony(j) =

my+mo—r+k whendb, €, 50, =37
Sincethe /; and J; aredistinct, we can define an inverse to cony. Defineindex(j) = k£ where
conv(k) = j. Note that index is not defined on all of {1, ... ,m; + my — r}, but that where
itis defined, index( ;) is the component of the state space of M, which contributesto the j-th

component of M. With this technical framework, composition can be defined easily. If s; €

'In practice, compositionis alot easier. Nodes are labelled by names drawn from a global space. We use the
convention that if the same name appears in both circuits, then the nodes they label are actually the same physical
node. Thus, the pairs that must be connected are implicit and do not have to be given.
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C™ and s, € C™2, define o(s1, s2) by

5(s1,52) = (si[index(1)], ... , s [index (m, — )],
solindex(my — r+ 1)], ..., solindex(my + my — 2r)],
sp[index (my 4+ ma — 2r 4+ 1)] U syfindex(my + me — 2r + 1)],... ,
splindex (r)] U syfindex(mqy + m2 —r)] )

Part of defining the composition is to define the mapping from simple predicates in M, and
M, to M. For TL,,, thisiseasy sinceit isonly for predicates of the form [;] that a non-trivial

mapping has to be defined.
Define
[conv(j)] wheng = [j] for some
@2(9) =
g when ¢g a constant predicates.
Then define
M = (<Sml+m2_r7 L >7Y)
where
Y, [index (7)]((s[conu(1)],...,s[conu(m4)])), J<mqg—r
YIil(s) = Y[index(7)]((s[conw(1)],...,s[conk(ms)])), m1—r <j<my+my—2r
Y [index (7)]({s[conu(1)],... ,s[conu(m4)])) L
Y[index(7)]((s[conw(1)],...,s[conk(ms)])), my+mg—2r <y

Then M is ag-composition of M; and M, denoted o( M, M,).
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LemmaB.3.

o meets all the criteriagiven in Definition B.1.

Proof.
(1) ¢ ismonotonic.
o isdefined component-wise.
Each component is constructed from the identity and join functions.

Since both of these are monotonic, monotonicity follows.

(2 6(Um,Um2) = Uretma=r and o(Zm, Zm2) = Zmitmer

Follows straight from the definition of 5.

(3 ¢=gi(s1) impliesthat ¢ =< p1(g1)(p1(s1,U3?))
a Supposeq = gi(s1), lets = p(s1,U™2).
b. s1[j] = s[conu(j)] From definition of g(s;, U™2).
C. Letg €Ghh.
Suppose ¢; = [7] for some ;.
d. 0:([y]) = [conu(y)]. Definition of p;.
e oi(g)(s) =gi(s1)  (b)and(d).
f. 01(g1)(s)=¢q By assumption and ().
Otherwise ¢; must be one of the constant predicates { L, f,t, T }.
9 o0i(g1) = Definition of .
h. ¢=201(g1)(s) 01(¢g1) is constant.
(4) Similarly g = ga(s2) = ¢ = 02(92)(2(Uy, 52)).

(5) o(Y1(s1),Yz(s2)) 2 Y(0(s1,s2)). Proved by showing for al 7,
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o(Y1(s1), Ya(s2))[7] 2 Y[j](0(s1, 52)).
Suppose j < my — 7.
o(Yi(s1), Ya(s2))ly]
= Y (s1)[index(j)]
= Y,[index(7)](s1)
=Y, [index(j)]
= ((s[conu(1)],... ,s[conu(my)]))
= Y[jl(s)
Similarly if m; —r < 57 < my +my — 2r,
2(Y1(s1), Ya(s2))[j] = Yaindex(j)](s2) = Y[j](s)
Suppose my + my — 2r < j
o(Yi(s1), Ya(s2))ly]
=Y (s1)[index (7)) U Ya(s2)[index(j)]
= Y.[index (7)](s1) U Y[index(5)](s2)
= Y[jl(s) O

Lemma B.3 is important because it means that Lemma B.1 can be used. Furthermore, where
composition of machinesisdoneis such away that the ‘ outputs of one machine are connected
to the ‘inputs’ of the other (so there is no ‘feedback’ — signals go from one machine to the
other, but not vice versa), Lemma B.2 appliestoo (to the circuit that provides the outputs).
This definitionis dependent on 11, 15, .J; and .J,; for convenience, the following short-hand
isused: o(A, B)(ry,...,r) refersto the composition of A and B wherether,... ,r, com-
ponents of A are shared with the first & components of B; formally I, = (ry,...,r), J1 =
(L...oom =1+ 1, =L+ 1,000 k), L=(,... ;kyand Jy = (k+1,... k).
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B.2 Mathematical Preliminariesfor Testing Machines

This section assumes the state space of the system isC" for some ». There is nothing inherent
in the method which limits the state space to this. However, from anotational point of view itis
easier to explain the method with this simple case; furthermore, thisis the important, practical
case. The method generalises easily to an arbitrary complete | attice.

Suppose that M; and M, have both been derived from a common machine, M, using a
sequence of compositions. (Assumethat M = (C",Y*), My = (C""™ Y,) and My =
(C"*™2 Y,).) By the definition of composition the two next state functions Y; and Y- re-
stricted to C" are identical and thesame as Y*.

M; (: = 1,2) consists of M and atester 7;. The relative composition of A/; and M, with
respect to M isthe compositionof A/, 77 and 75. All of this could be described by composition,
but it is convenient to define a specific notation. Formally, rel_comp,,(M,, My) = (C",Y),

wheren’ = n + my + my and if the current state is s, (¢1, ... ,t,) = Y(s) isdefined by:
Y1(<517"' 75n+m1>)[j] Whm1§]§n+m1

Yo((S1yee s 8ny Sntmyd1s---»8a))[7]  wWhenn 4+ my < 5 <n'
B.3 Building Blocks

Basic Block BB 4

Some predicates may depend (in some way) on the value of node 1 at atime¢; and node 2 at
timet,. (Formally, a‘node’ isacomponent of the state space; informally since we arereasoning
about physical circuits nodes are wiresin the circuit.) The purpose of BB 4 isto provide delay
slots so that both values of interest are available at the same ‘time’. BB 4 takestwo parameters:
afunction g : C — C which is used to combine the values, and » which indicates how many

delay slots need to be constructed. Figure B.1 depicts BB 4(g,4).
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Figure B.1: BB 4(g,3): aThree Delay-Slot Combiner

BB 4(g, n) consistsof two nodeswhich act asinput nodes, » delay slots, and one nodewhich
isthe output value of the machine. Thetwoinputsnodesaretypically part of theoriginal circuit,
which iswhy BB 4’s next state function does not affect the first two components. Formally,
1, whenj = 1,2;

BB4(g,n) = (C""%,Y) whereif t = Y(s), thent; = ¢, whenj =3,...n +2;

9(s1,8n-1), whenj=n+3.
The comp _test operator adds the BB 4 circuit to an existing circuit. Given a machine M

and a predicate ¢ which depends on the value of 7; at time ¢, and i, at time ¢,, the composite

machine (M plusthe testing circuit) is defined by:

Oo(M, BB 4(g,t1 —t2))(11,12) Tty >ty
comp_test(M,g, (tlvil)v(t%i?)) = (Bl)

o(M, BB 4(g,t; —t1))(i2,1;) Otherwise.

The problem with the BB 4 testing machine is that if the two defining times are far apart,
the testing circuit could be large due to the need to retain and propagate val ues, which has both
Space and computation costs associated.

There is an aternative approach — build a memory into the circuit which keeps the needed
information. Define BB 4(g) = (C®,Y). If the state of the machineis (s, ... , s5), think of s,

and s, as theinputs, and s; as the output. s, is used as the memory, and sz indicates whether
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the memory’s value should be reset or maintained. Formally,

1, when j = 1,2, 3
59, whenj =4 and s3 = 0
Y(s;) = (B.2)
84, whenj =4and s; = 1
g(s1,84), whenj =5

Define

o(M, BB A(g)){ix,iz) ifty >1
comp_test(M, g, (t1,11), (2,12)) = b =" (B.3)

o(M, BB 4(g))(iz,11) otherwise.

Althoughin general the definition of equation B.3 will be more efficient, it cannot always be
used. To see why consider thisexample. Let ¢ and / be two predicates containing no temporal
operators, where the result of ¢ can be found at node 7; and the value of % at node ;. Suppose
we want to evaluate the predicate g A Next®h. Implicitin thisisthat we are interested in 7, at
time 0 and ¢, at time 3. For thiswe could use the second implementation of comp_test and get
the new machine

comp_test(M, (Ax,y.x Ny),(0,11),(3,172)).

Now suppose that we are interested in the predicate Exists[(0,10)] (g ANext>h). This
asks whether thereisatime ¢ between 0 and 10 such that ¢ holds at time¢ and 4 holds at time
t + 3. For this predicate, the second implementation will not work since it only remembersthe
value of ¢ at one particular time, and we need to have the value of ¢ at a sequence of times.

The general rulein choosing between the implementationsis that if the predicate for which
the tester being constructed is within the scope of tempora operators such as Exi st s and
A obal |, then thefirst implementation must be used; otherwise the second, more efficient im-

plementation can be used.
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Basic Block BBg

BB g is used when we need to combine the value of a predicate at a number of different times.
For example, Global ¢ and Exists g depend on the value of ¢ at a sequence of times. Define

BBg(g,k) = (C**2Y) whereif ¢t = Y(s) then:
1 whenj =1

t] = S1 When] =2

f(s;,s;-1) otherwise.

Figure B.2 depicts this graphically.

FigureB.2: BBg(g,4)

Basic Block BB

Thisis just a smple latch with a comparator. BB = (C*,Y) where Y ((s1,s2,53)) = (L
, 82,81 = s2).

Inverter

Define I = (C*,Y) where Y ((s1,s2)) = (L, 7s1).

B.4 Model Checking

This section shows how to accomplish the following:
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Given a machine M and an assertion of the form = ( A=>¢ ), construct a ma-
chine M’ and trgjectory formulae A’,C such that = (A=>¢) <— Ew

ANA'=>C.

Every temporal formula, ¢, has an associated tuple (¢, ¢, A, M"): i indicates that the formula
can be evaluated by examining the :-th component of the state space of the new machine; ¢ indi-
cates the time at which the component should be examined; A’ givesaset of trajectory formulas
which are used as auxiliary antecedents for the new machine; and A’ isthe new machine. The

tuple is defined recursively on the structure of the temporal formula.?

1. g is([¢] = v). The tester which checks this compares the value of node : to v. The asso-
ciated tupleis (n + 2,1, A’, M"), where
o A= ([n+2 =v)
o M’ = 5(M, BB¢)(i).

2. gisNext’¢g’. Thisdoes not require any extracircuitry — the tester that tests ¢/ is already
builtin, and the only differenceisthat theresult is checked at adifferent time. If thetuple
associated with g is(¢,¢, A, M), thetuple associated with Next jg is (i, ¢ + 7, A, M’).

3. gis—¢'. If thetester for ¢’ isalready built, an inverter will compute the answer for ¢g. So,
if the tuple associated with g is (i, ¢, A, M"), the tuple associated with = f is (| M"|, +
1, A, M"), where M" = (M, I){1).

4. gisg'(g1,92). Typicaly ¢’ would be conjunction or disunction. The tester takes as its
input the results of ¢; and g, and applies ¢’ to them. Let the tuple associated with ¢ be
(11,t1, Ay, My) and the tuple associated with ¢, be (72, t5, As, Ms). Assume that |M; | =
n 4+ my and | M| = n 4+ ma.

*Note that in thisdiscussion M refers to the original machine, andn = |M|.
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The tuple associated with ¢( g1, g2) is(|M'|, max(t1,t2) + 1, A1 A Ay, M') where

M' = comp_test(M", g, (t1,n+ml), (to, n+ml+m2))and M" = rel_comp ,( My, M3).2
5. g isGlobal[(i,7)] ¢. This can be computed as Next!(Nextq’' A ... A(Next(=9g")).

Evaluating this directly istoo inefficient (since lots of redundant work will be done). The

following approach computes ¢’ exactly once and then provides appropriate circuitry to

combine this value produced at various times.

If the tuple associated with ¢ is (i1,t, A1, M), where |M;| = m, then the new tuple
associated with g is (|M'|,t 4+ 1, A’, M") where:

o M' = o(M,BBp((Ax.y.x Ay),(j—1))){ir)

A smaller, more efficient testing machine can be built provided that Global operator is
not nested within another temporal operator. In this case, suppose the tuple associated
with ¢ is (i1, t1, A1, My), where |My| = my. The new tupleis (|M'|,t; + 1, A", M")
where:
o« M’ = (M, M")(iy)
o« M" =(C%Y)
o if t =Y (s) then:
1 when j = 1.
s1 Asy whenj = 2.

o A= A A(Next![m; + 1] =1).

6. ¢ = Exists|[(4,7)]¢. Thisis analogous to the Global case, and can be computed as
Next!(Next’s' V ... V (NextU=)g")). All the remarks pertaining to the GLobal oper-

ator apply to the Exists operator — the difference is that instead of conjunction being

3Recall that M isthe underlying machine.
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applied, digunction is applied. This shows that De Morgan’s laws have a direct corre-

spondence in the testing machines.

7. The bounded strong until, weak until, and periodic operatorsareall derived operators (see
Definition 3.8). A straight-forward approach to model -checking these operatorsis model -
check their more primitive definitions. For all three, smaller and more efficient machines

are possible too.

There are competing threads here—the more operators the easier it is for a verifier to express
properties, but with the wider choice comes the cost of greater complexity for the verifier. Con-
structing testing machines for the derived operators using the primitive definitions is not the
most efficient approach: if theoperatorsare going to be used, optimised testing machines should
be constructed; but, if they are not going to be used the verification system will be more com-
plicated that it needs to be.

There are two further types of optimisationswhich could be done. Testing machines are not
canonical—there are different ways with different complexities of evaluation. The rewriting of
formulas could yield improvement. The other issue has been discussed already: in some cases
the testing machine needed for aformula depends on whether that formulais embedded within
other temporal operators. If aformulastands by itself, then its satisfaction can checked by ex-
amining one component of the testing circuit at one instant in time. However, if the formulais
embedded within some of the temporal operators, then we need to know the satisfaction of the

formulaat a number of instantsin time.
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Program listing

C.1 FL Codefor Smple Example 1

let c_size = bit_wdth;

let bwidth ="' c_size;
let i =1Ilvar "i"; let j =Ivar "j"; let &k =IVar "k";
let | =1I1var "I";

let GND = "GN\D';
let a = Var "a";

let A
let D

"a"; let B
"d"; let E

"b"; let C="c";
"e"; et FNode = "f";

let Goballnput = ((AISINT i) & (B ISINT j) & (CISINT k)) FROM 0 TO 100

let Iistl
[ et varnmapl
[ et varmap2

[("i", 1 upto 8, ("j", 9 upto 16), ("k", 17 upto 24)];
BVARS |ist1;
BVARS (("a", [25]):1istl);

et AL = d obal |l nput;
let C1L = DISBOOL (i '>j) FROM 10 TO 100;
et T1 = VOSS varmapl (Al ==>> Cl);
let A2 = @oballnput & ((DI1SBOOL a) FROM 10 TO 100);
let C2 = @oballnput &
((EISINTi WHEN a) _& (EISINTj WHEN (Not a)) FROM 20 TO 100);

et T2 = VOSS varmap2 (A2 ==>> C2);
let AB=EISINTI _& CISINT k FROM 20 TO 100;
et C3 = FNode ISINT (I "+ k) FROM 50 TO 100;
et T3 = VOSS varmapl (A3 ==>> C3);
| et proof =

let GL = SPTRANS [] T1 T2 in

let @ = SPTRANS [] GL T3 in

&;

238
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C.2 FL Codefor Hidden Weighted Bit

| et
| et
| et
| et
| et
| et

| et

| et

letrec add_bits x num = x
|

N = bit_width;

X = |VvVar "x";

| nput Node = "I nput Node";
Buf f er Nodel= "buffer1”;
Chooser = "chooser";
Error = "error";

| et
| et
| et
| et

j = Ivar "j";
Count Node
Buf f er Node2
Resul t

varmapl = BVARS([("x",1 upto N1]);

Buf f er Theorem = VOSS var mapl

" Count Node" ;
"buf fer2";
"result";

((I'nput Node I SINT x FROM 0 TO 1000)
==>> ((BufferNodel I SINT x) _&

(BufferNode2 | SINT x) FROM 5 TO 1000));

= N=>BIT2 ("N num
(BIT2 (" x) num

letrec count_of num= add_bits 1 num
Count er Goal = (BufferNodel |SINT x FROM 0 TO 990) ==>>

| et

( Count Node

| et Counter Theorem = VOSS varmapl Counter Goal ;

| et

| et
| et

stagel = CONJUNCT BufferTheorem
(AUTOTI ME [] Buffer Theorem Count er Theorem ;

seg x = BWD ('Nbit) x;
kthBit k var = (BIT2 (' k) var)

| etrec case_analysis var j =

|l etrec case k =

"+ (add_bits (x+1) num;

I SINT (count_of x) FROM 400 TO 990);

= (BIT2 (') ("1);

k=1 => Result |SBOOL (kthBit
| (Result ISBOOL (kthBit k var) WHEN (j "= (seg ('k))))

(case (k-1) ) in
case N,

i nfix 3 | SBOOL_VEC;

letrec 1 SBOOL_VEC [x] [VY] = x | SBOOL y /\

| SBOOL_VEC (x:rx) (y:ry) = (x ISBOCL y) _&
(rx 1SBOOL_VEC ry);

| et

Chooser Goal =

k var) VHEN (]

((CountNode ISINT j FROM O TO 400) &
(Buf f er Node2 1 SINT x FROM 0 TO 400))

==>>
(((case_analysis x j) _&

"= (seg ("k)))

239

&
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(Error 1SBOOL (seg('0) "=1j)))
FROM 300 TO 400);

| et Chooser Theorem = VOSS varmap2 Chooser Goal ;

et Proof = ALIGNSUB [] stagel Chooser Theor em

C.3 FL Codefor Carry-Save Adder

let A = Nnode "A"; |et B = Nnode "B"; let C = Nnode "C';
let D= Nnode "D'; I|et E = Nnode "E";
let a = Nvar "a"; let b = Nvar "b"; let ¢ = Nvar "c";

| et bdd_order = order_int_1 [b, ¢, a];

| et range = (bit_width-1)--0;

| et sum | hs = ( D+E) <<r ange>>;

| et sum rhs = (at+b+c) <<range>>;

| et Ant 1 = ((A==12a)??) and ((B == b) ??) and ((C == ¢)??);
| et Conl = NextG 3 ( (sumlhs == sumrhs) ??);

et T1 = prove_voss bdd _order adder Ant1l Conl;

C.4 FL Codefor Multiplier

/1 mscellaneous
et high_bit entry width - 1; // O..entry_wi dth-1

et max_tine = 800;

let out _tine = 3;

N T Node, vari abl e decl arations
| et A = Nnode Al NP;

| et B = Nnode BI NP;

| et RS i = Nnode (RS i);

| et RCi = Nnode (R Ci)<<(high bit-1)--0>>;
| et TopBit i = Nnode (R_C i) <<high_bit>>;

| et a = (Nvar "a")<<(entry_wi dth-1)--0>>;

| et b = (Nvar "b")<<(entry_wi dth-1)--0>>;

| et c = Nvar "c";

| et d = (Nvar "d")<<(high_bit-1)--0>>;
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| et partial {n :: int} = c¢ <<(n+high_bit)--0>>;
/1 BDD variable ordering for each stage of multiplier

| et m bdd_order {n::int} =
n=2=0
=> order_int_1 [b, a]
| n=entry_width
=> order_int_1 [partial n, d]
| order_int_1 [b<<n>> a, partial n, d];

| et zero_cond i = ((TopBit i)==("0))"?7?;

| et interval n =
n <= entry_w dth
=> [("(n*out _tine), 'max_tine)]
| [("(n*out _tinme+2*entry width), "nmax_time)];

| et | nput Ants = Al ways (interval 0)
(( (A==a) ??) and ( (B ==b) ??));
| et Qut put Cons =
let lhs = RS entry_width in
let rhs = (a * b)<<(2*entry_width-1)--0>>in
Al ways (interval (entry_w dth+1)) ((Ihs==rhs)??);

/1 Antecedent for rown of the nultiplier
| et MAnt {n::int} =
n==0
=> Always (interval 0)
( ( (A== a)??) and
( (B<<n>> == b<<n>>)?? )

| Always (interval n)
(( (A==a)??) and

( (B<<n>> == b<<n>>)?? ) and
( (RS (n-1) == (partial (n-1)))??) and
( (RC(n-1) ==4d)??) and

( zero_cond (n-1)) );

/1 Consequent of row n of the multiplier
let res_of _rown =
et power n = Npow (’2) ('n) in
let Ths = (RS n) + (power (n+l))*(RCn) in
let rhs =
n=0
=> a * b <<0>>
| ((partial (n-1))+(power n) * d) + (power n)*a *(b <<n>>) in
((I'hs == rhs)??);
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| et Con_of _stage n =
et power n = Npow ("2) ('n) in
let Ths = (RS n) + (power (n+l))*(RCn) in

let rhs = a * b<<n--0>>in
Al ways (interval (n+l))
((I'hs == rhs)?? and (zero_cond n));
| et MCon {n::int} = Always (interval (n+l))
((res_of rown ) and (zero_cond n));

| et Mhmn =

| et bdd_order = (mbdd order n) in

[ et ant = MANnt nin

[ et con = Mon n in

prove_voss bdd_order multiplier ant con;
| et preanbl e_thm =
let start = MhmO in
Precondition InputAnts start;

letrec do_proof mmin_stage n mprevious_step =

let curr = Mhmn in
et curr’ = GenTransThm previ ous_step curr in
et current = Postcondition (Con_of_stage n) curr’ in
n= m
=> current
| do_proof_nmin_stage (n+l) mcurrent;
| et mai n_stage = do_proof _main_stage 1 high _bit preanble_thm

| et adder _proof =
| et post_ant _cond =

(( (RS high_bit) == (partial high_bit))??) and
(( (RC high_bit) == d)??) and
(( (TopBit high_bit) == ('0))??)
in
l et post_ant = Always (interval entry w dth) post_ant_cond
in
et power = Npow ('2) ("entry_width) in
let rhs = ((partial high_bit) + power * d)<<(bit_width-1)--0>>1in
| et post_con_cond = ((RS entry width) == rhs)?? in
| et post_con = Always (interval (entry_ w dth+1))

post _con_cond in
prove_voss (mbdd order entry width) multiplier post_ant post_con;

| et proof = GenTransThm mai n_st age adder _proof;
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C.5 FL Codefor Matrix Multiplier Proof
/1 mscell eneous

let high bit =
let max_tine =
let clock tine
et out_tine =

entry width - 1; // O..entry_wi dth-1

entry_ width < 10 => 100 | 10*entry_wi dth;
= max_ti ne; /1 half a clock cycle
3;

| et prove_result = prove_voss_fsm
| et prove result_static = prove_voss_static;

R Node, vari abl e decl arati ons

[]----- gl obal

| et Cl ock = Bnode CLK

[]----- i ndi vidual cells

| et A u v = Nnode (AINP u v); | et B uv = Nnode (BINP u v);

| et INC uv = Nnode (Clnp uv); let QUT_Cu v = Nnode (C Qut u v);

| et M = make_fsm sys_array;

| et RSuvi = Nnode (RSuvi);

| et RCuvi = Nnode (RCu v i)<<(high bit-1)--0>>;

| et TopBit u v i = Nnode (R.C u v i)<<high_bit>>;

| et a = (Nvar "a")<<(entry_wi dth-1)--0>>

| et b = (Nvar "b")<<(entry_wi dth-1)--0>>; | et c = Nvar "c
| et d = (Nvar "d")<<(high_bit-1)--0>>; | et e = Nvar "e"

| et partial {n :: int} =e <<(n+high_bit)--0>>;

/1 BDD variable ordering for each stage of multiplier
| et m bdd_order {n::int} =
n=2~20
=> order_int_1 [b, a]
| n=entry_width
=> order_int_1 [partial n, d]
| order_int_1 [b<<n>> a, partial n, d];

/1 timngs
| et Duringlnterval n f = During (n*out_tine, max_tine) f;

letrec dockAnt n =
let range = 0 upto (n-1) in
let false range = map (\x. ((' (2*x*cl ock_ti nme),
"(2*x*cl ock_time+clock time-1))))
range in
let true_range = map (\x. (' (2*x*cl ock_ti ne+cl ock_ti nme),
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"(2*(x+1) *cl ock_tinme-1)))

(butlast range) in
(Al'ways fal se_range ((C ock == Bfal se)??)) and
(Al'ways true_range ((C ock == Btrue )??));

| et I nput Ants u v = Duringlnterval O
((Auv '=a) and (Buv '=Dh));

| et zero_cond u v i = TopBit u v i "= (7 0);

/1 Antecedent for rown of the nultiplier

| et MANt u v {n::int} =
n=2~0
=> Duringl nterval 0O
(( Auv'’'=a) and
( (B u v)<<n>>'= b<<n>>))

| Duringl nterval n
(( Auv '=a) and
( (B u v)<<n>>
( RSuv (n-1) (partial (n-1))) and
( RCuv (n-1) d) and
( zero_cond u v (n-1));

b<<n>>) and

/1 Consequent of row n of the multiplier
| et res_of _rowu v n =
et power n = Npow ("2) ('n) in
let Ths = (RSuvn) + (power (n+l))*(RCu v n) in
let rhs = n=0
=> a * b <<0>>
| ((partial (n-1))+(power n)* d) + (power n)*a*(b <<n>>)in
Il hs "= rhs;

| et Con_of _stage u v n =
et power n = Npow ("2) ('n) in
let Ths = (RSuvn) + (power (n+1))*(RCu v n) in

let rhs = a * b<<n--0>>in
Duri ngl nterval (n+l)
((I'hs "= rhs) and (zero_cond u v n));
let MCon u v {n::int} = Duringlnterval (n+l)
((res_of rowu v n) and (zero_cond u v n));

| et Mhmu v n =

| et bdd_order = (mbdd order n) in

[ et ant = MANt uv nin

[ et con = Mon u v nin

prove _result bdd_order M ant con

| et preanble_thmu v =
print (nl”"Doing preanble" " nl) seq
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let start = Mhmu v 0 in
(start catch start) seq
Precondition (lnputAnts u v) start;

letrec do_proof _mmin_stage u v n mprevious_step =

245

let curr = Mhmu v nin
et curr’ = GenTransThm previ ous_step curr in
let current = Postcondition (Con_of_stage u v n) curr’ in
(print (nl™" Doing M""(int2str u)™", "“(int2str v)~
"T(""(int2str n)"")""nl"nl) seq
(current catch current))
seq
(n=m
=> current
| do_proof_main_stage u v (n+l) mcurrent);
let nmain_stage uv =
do_proof _main_stage u v 1 high bit (preanble thmu v);
| et adders_proof u v =
| et post_ant_cond =
( (RS u v high_bit) = (partial high_bit)) and
( (RCu v high_bit) = d) and
( (TopBit u v high_bit) "= ('0))
in
l et post_ant = Duringlnterval entry_wi dth post_ant_cond in
et power = Npow ('2) ("entry_width) in
let rhs = ((partial high_bit)+ power*d)<<(bit_width-1)--0>> in
| et post_con_cond = (RS u v entry width) "= rhs in
| et post_con =
During (entry_w dth*(out _tinme+2), clock_ tine)
post _con_cond in
| et bdd_order = mbdd_order entry width in
(print "Doing adder" seq (post_con catch post _con)) seq
prove_result bdd_order M post_ant post_con;
| et cell _out time =[('(2*clock_time), '(3*clock tinme))];
| et regi ster_proof uv =
let ccant = (((RSu v entry width) "= (partial entry_w dth))

and ((INCuv) "=¢))
let c_ant’ =
(d ockAnt 2) and
(During (entry_ width*(out time+2), clock tine)
c_ant) in

>

let c_rhs = (partial entry width) + c in
let ccon = (QUT_Cuv) "=c_rhsin
let c_reg = prove_result

(order_int_1 [c, partial entry_ wi dth])
M
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c_ant’
(Al'ways cell _out _time c_con)
in
((print "Doing register") seq c_con catch c_con)
seq

c_reaqg;

/1 one_proof u v: proves that the (u,v)-th cell works
/1 correctly
| et one_proof u v =
/1 Prove that nultiplier parts work (uncl ocked)
et mstage = main_stage u v in
(m stage catch m stage) seq
/1 take into account clocking and the partial suminput
et new ants= I nputAnts u v and
(d ockAnt 2) and
(Duringlnterval O (INCuv ’'=¢)) in
et new thm= Precondition new ants mstage in
/1 show the adder part of the ceol works
et a_proof = adders_proof u v in
(a_proof catch a_proof) seq
/1 Add cl ocking to the adder proof

[ et conp_proof = GenTransThm new_thm a_proof in
/1 Show that the registers work
[ et r_proof = register_proof uv in
((r_proof catch r_proof)
seq

/1 stick themall together
let result = (normaliseCon (GenTransThm conp_proof r_proof)) in
result);

letrec nake _cell _rowlist p_proc uv =
v=array_depth
=> []
| let res = p_proc u v in
print (snd (time res)) seq
(res seq (res:(make_cell _row list p_proc u (v+1))));

letrec nake_proof list p_proc u =
u=array_wdth
=> []
| (make_cell _row list p_proc u 0):
(rmake_proof list p_proc (u+l));

| et cell _proof list = nake_proof |ist one_ proof O;

/1 Show that the cells also progate their A and B inputs
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| et one_proof propagateA u v =
et ants = (Duringlnterval O (Au v = a)) and (CockAnt 2) in
let ab con = Au (v+l) "= ain
let ab reg =

prove result (mbdd order 0) Mants
(Al'ways cell _out _time ab_con) in

ab_reg;
| et one_proof propagateB u v =
let ants = (Duringlnterval O ((Bu v) '=Db)) and (O ockAnt 2) in
et ab_con = (B (u+l) v) ’'=bin
let ab reg =

prove result (mbdd order 0) Mants
(Al'ways cell _out _tinme ab_con) in
ab_reg;

make proof |ist one_proof propagateA O;
make_ proof |ist one_proof propagateB O;

Apropagat e_proof |i st
| et Bpr opagat e_proof _|i st

| et cell _proof uv =-el (v+1) (el (u+l) cell_proof_list);

| et Apropagat e_proof u v el (v+1) (el (u+l) Apropagate_proof list);

| et Bpr opagat e_proof u v el (v+1) (el (u+l) Bpropagate_proof list);
| et emthm= ([],[].[1);
R e R R

/1 The * proof list contains all the proofs that the individua
/1 conponents of the hardware work correctly. The rest of the
/1 proof shows that when connected together they produce

/1 the right matrix nultiplication result

letrec InsertActiveTheorem addfn
({u::int},{v::int},{new_thm:theoren}) [] =
[(u, [(v, addfn new thmemthm])]
/\ InsertActiveTheoremaddfn (u,v, new_thn)
((au, alist):brest) =
letrec PutActiveTheorem n ({v::int}, {new thm:theoren}) []
= [(v, addfn new thmemthm]
/\ PutActiveTheoremin (v, new thm ((av, avlist):vrest) =
vV = av
=> (av, addfn new_ thmavlist):vrest
| (av, avlist):
(Put ActiveTheoremin (v, new_thn) vrest)
inu=au
=> (au, PutActiveTheorem n (v, new thn) alist):brest
| (au, alist):
(I'nsert Acti veTheorem addf n(u, v, new t hn) brest);
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| et

| et

/1
111

| et

| et
| et
| et
| et
| et
| et
| et
| et
| et
| et
| et

| et

rec RetrieveTheorem {u::int} {v::int}
/\ RetrieveTheorem u v
VvV =
u = au
=>
I
VERI FI CATI ON CONDI TI ON
set I nput InpNode {u :: in
let input =
(I'npNode u v '= n_val)
in (u, v, ldentity input);
all = Nvar "all"; let
ald = Nvar "al4d"; let
a23 = Nvar "a23"; let
a32 = Nvar "a32"; let
a4l = Nvar "a41"; |let
a44 = Nvar "a44"; |let
b13 = Nvar "b13"; let
b22 = Nvar "b22"; let
b31 = Nvar "b31"; let
b34 = Nvar "b34"; |et
b43 = Nvar "b43"; et
the_inputs =
/1 a0 al a2
[ ([ "0, "0, 'O,
([ "o, "0, 'O,
([ "o, "0, 'O,
([ "o, "0, 'O,
([ "0, al11, 'O,
([ "0, "0, a21,
([a12, '0, 'O,
([ '0, a22, 'O,
([ "0, "0, a32,
([a23, '0, 'O,
([ "0, a33, 'O,
([ "0, "0, a43,

((au,

alist):brest) =

[l =

letrec GetActiveTheoremv []

/\ CGetActiveTheoremv ((av,

av

> avlist

| GetActiveTheorem v vrest

= ([1.11,11)

avlist):vrest) =

(f1. 11,11

CGet Acti veTheorem v ali st
Retri eveTheorem u v brest;

InsertActivelList add fn thmlist current =

itlist (\x.\y.InsertActiveTheoremadd fn x y) thmlist current;

| nput specifications

t} {v ::

int} {i::

During (i*2*clock_tine,

al2
a2l
a24
a33
a42
bl1
bl4
b23
b32
b41

o
S
N

Nvar "al2"; |et
Nvar "a21"; |et
Nvar "a24"; |et
Nvar "a33"; et
Nvar "a42"; |et
Nvar "b11l"; |et
Nvar "b14"; |et
Nvar "b23"; et
Nvar "b32"; et
Nvar "b41"; |et
= Nvar "b44";
b0 bl b2
[ 0, "0, 'O,
[ 0, "0, 'O,
[ 0, "0, 'O,
[ 0, "0, 'O,
[ "0, b11, 'O,
[ 0, 0, blz,
[b21, '0, 'O,
[ "0, b22, 'O,
[ 0, 0, b23,
[b32, '0, 'O,
[ "0, b33, 'O,
[ 0, 0, b34,

int} {n_val

in

N}

248

(i +1)*2*cl ock_ti ne-1)

al3
a22
a3l
a34
a43
b12
b21
b24
b33
b42

b3

'0]),
' 0]),
'0]),
'0]),
'0]),
'0]),
b13]),
'0]),
'0]),
b24]),
'0]),
'0]),

Nvar
Nvar
Nvar
Nvar
Nvar
Nvar
Nvar
Nvar
Nvar
Nvar

/10
/111
112
/13
/14
/15
/16
17
/18
119
/110
/111

"al3";
"a22";
"a3l";
"a34",;
"a43",;
"b1l2";
"bh21";
"b24";
"b33";
"b42";
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([a34, 'O, '0, '0], [b43, '0, '0, '0]), /112
([ 0, a44, '0, '0], [ 'O, b44, 0, '0]), /113
(p ‘o, 'o, 'o0, '0], [ 'O, 'O, 'O, '0]), /114
(p ‘o, 'o, '0, '0], [ '0, 'O, 'O, '0])]://15
N Qut put specifications
| et ti meForQut puts =
/1 1 2 3 4
R
[ [ 6 7, 8 9], /11
[ 7, 9, 10, 11], I 2
[ 8 10, 12, 13], /1 3
[ 9, 11, 13, 15] /1 4
1
| et out put For row col = el col (el row tineForQutputs);
let InputForCells _ _ =11;
let addfirst x (a,b,c) = (x:a,b,c);
| et addsecond x (a,b,c) = (a,x:b,c);
let addthird x (a,b,c) = (a,b,x:c);
let InputAtStage n the lists =
val (avals, bvals) = el (n+l) the_inputs in
let left list = map (\x.setlnput A{x::int} 0 n (el (x+1) avals))
(O upto (array_depth-1))
in
let right_list =
map (\x.setlnput B O x n (el (x+1) bvals))
(O upto (array_width-1)) in
et down_list =
(map (\x.setlnput INC (array_depth-1) {x::int} n (’0))
(O upto (array_width-1))) @
(map (\x.setlnput INCx (array_width-1) {n::int} (’0))
(O upto (array_depth-2))) in
et resl = InsertActivelList addfirst left_list the_lists in
et res2 = InsertActivelist addsecond right_list resl in
I nsert Acti veLi st addthird down_list res2;
| et start_step = InputAtStage 0 [];
| et this step = start_step; I et numstep = 0;
| et Propagat eVal addfn row col okl {ok2::bool} res old list =
okl AND ok2
=> | nsert ActiveTheorem addfn (row, col, res) old_I|ist
| old_Iist;
| et PropagateRes row col all res res | =
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et c_index = "C'"(nunRstr(array_wi dth-col-1+row)) in
all AND (rowrcol = 0)
=> (c_index, res, (row, col)): res_|

| res_I;
letrec ProcessStageRow n {row :int} [l so_far = so_far
/\ ProcessStageRow n row ((col, colthmns):rest)

(prop_list, res_|) =
| et make_step (a, b, ¢) =
let ok an length a > nin
let all _thms = (ldentity(d ockAnt ((n+1)*2))):(a@®@) in

[ et ab_inps (a@) in
let all ok all_thms 3 in
let curr_gen = all

=> Conjunct [cell _proof row col, Apropagate_proof row col,
Bpr opagat e_proof row col] |

length ab_inps = 2

=> Conj unct

[ Apr opagat e_proof row col, Bpropagate_proof row col] |
ok a 0
=> Apropagat e_proof row col
| Bpropagate_ proof row col in

et curr_thm= Transform (Ti meShift (2*n*clock_tine))
curr_gen in

let inps = Conjunct all_thms in
let res = normal i seCon (GenTransThminps curr_thm in
| et new | = PropagateVal addfirst

row (col +1) (col <(array_wi dth-1))
(ok a 0) res prop_list in
| et newr = PropagateVal addsecond
(rowtl) col (row<(array_depth-1))
(ok b 0) res new !l in
| et new d = PropagateVal addthird
(row1) (col-1) ((rowcol) > 0)
all res newr in
et new rl= PropagateRes row col all res res_|
in
enpty ab_inps
=> (prop_list, res_l)
| (new_d, new.rl)
in
ProcessSt ageRow n row rest (make_step colthns);

letrec ProcessSt ageProof n [] so_far = so_far
/\ ProcessSt ageProof n ((row, rowt hnms):rest) so_far =
let current = ProcessStageRow n row rowt hms so_far in
(print ("Doing row ""(int2str row)"nl)) seq
(current catch current) seq
ProcessSt ageProof n rest current;
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let do_step n start_step =
letrec performmcurr_step =
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I et current = ProcessStageProof m (I nput At Stage m curr_step)

(1. [1) in
(print ("Performing step "“(int2str m"nl"nl)) seq
(current catch current) seq
m=n
=> [snd current]
| (snd current):(perform(ml) (fst current)) in
performO start_step;

let output list = do_step 15 [];

/1 present results
let ShowRes t res list = el (t+1) res_list;

et Showt node =
let res = ShowRes t output_list in
find (\(x,y,a,b).(x=node) AND ((a*{b::int}) = 0)) res;

let QutputOfArray row col =
let strip (Always r f) =f in
val (a, th, b, ¢) = Show (outputFor row col)
("C""(nunstr(3+rowcol))) in
strip (con_of th);

[ etrec PrintRowCut put row col =
(col = array_wi dt h+1)
=> nl"nl
|  ("(""(int2str row) ™" ,""(int2str col)™")
(el 2str (QutputOfArray row col)) " nl)
" (Print RowQut put row (col +1));

letrec PrintCQutput row =
row = array_depth + 1
=> nl
| (PrintRowQutput row 1) = (PrintCQutput (rowtl));
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model, 42
truth domain, 48
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correctness, 89
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compositionality, 6, 35
completeness, 187
property, 91-113
structural, 222—230

conjunction rule, 94

consequence rules, 96

consequent, 70
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defined, 112
verification, 143
verification code, 240
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data representation, 120
De Morgan's Law

Q, 49
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defining pair, 53
defining sequence, 35
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defining set, 53
defining trajectory, 35
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direct method, 131
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£, 85
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hand proof, 24
heuristic, 126
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scalar, 56
symbolic, 62
simple, 54
specialisation
definition, 102
discussion, 99-103

253



Index

heuristic, 127

rule, 103
state explosion problem, 5
state representation, 118, 183
strict dependence, 111
substitution, 100
substitution rule, 100
summary of results, 183-186
symbolic model checking, 30
symbolic simulation, 63
symbolic trajectory evaluation, 83-88
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