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Abstract

Symbolic trajectory evaluation (STE) — a model checking technique based on partial order

representations of state spaces — has been shown to be an effective model checking technique

for large circuit models. However, the temporal logic that it supports is restricted, and as with all

verification techniques has significant performance limitations. The demand for verifying larger

circuits, and the need for greater expressiveness requires that both these problems be examined.

The thesis develops a suitable logical framework for model checking partially ordered state

spaces: the temporal logic TL and its associated satisfaction relations, based on the quaternary

logicQ. TL is appropriate for expressing the truth of propositions about partially ordered state

spaces, and has suitable technical properties that allow STE to support a richer temporal logic.

Using this framework, verification conditions called assertionsare defined, a generalised ver-

sion of STE is developed, and three STE-based algorithms are proposed for investigation. Ad-

vantages of this style of proof include: models of time are incorporated; circuits can be de-

scribed at a low level; and correctness properties are expressed at a relatively high level.

A primary contribution of the thesis is the development of a compositional theory for TL

assertions. This compositional theory is supported by the partial order representation of state

space. To show the practical use of the compositional theory, two prototype verification sys-

tems were constructed, integrating theorem proving and STE. Data is manipulated efficiently

by using binary decision diagrams as well as symbolic data representation methods. Simple

heuristics and a flexible interface reduce the human cost of verification.

Experiments were undertaken using these prototypes, including verifying two circuits from

the IFIP WG 10.5 Benchmark suite. These experiments showed that the generalised STE al-

gorithms were effective, and that through the use of the compositional theory it is possible to

verify very large circuits completely, including detailed timing properties.
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Chapter 1

Introduction

1.1 Motivation

As computers become ubiquitous in our society, as more parts of our global society are affected

directly and indirectly by computers, the need to ensure their safe and correct behaviour in-

creases. The hyperbole encountered in the media tends to make people blasé about the impor-

tance of computers and undervalue the revolutionary effect that computers have had. But, as

our dependency on computers increases, so does the complexity of computer systems, making

it more difficult to design and build correct systems at the same time as it becomes more impor-

tant to do so. What we can do ‘sort of’ right far exceeds what we can do properly.

As a scientific and engineering discipline computer science is intimately concerned about

making predictions about and knowing the properties of computer systems, and it is here that

mathematics and the application of methods of formal mathematics is critical.

Traditional methods of ensuring correct operation of software and hardware are often not

able to provide a sufficiently high degree of confidence of correctness. Methods such as testing

and simulation of systems cannot hope to provide anywhere near exhaustive coverage of system

behaviour, and while sophisticated test generation techniques exist, the sheer size of systems

makes testing more and more difficult and expensive.

Verification — a mathematical proof of the correctness of a design or implementation —

uses formal methods to obviate these problems. Questions of verification have been at the heart

of computer science since the work of Turing and others [124], and the fundamental limits of

1
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computation (questions such as computability, tractability and completeness) are of immense

consequence when discussing the theoretical and practical limitations of verification. The the-

oretical importance of verification is reflected in the practical consequences of verification, or

lack thereof, which has been illustrated recently by the extremely well-publicised error in a com-

mercial microprocessor [64, 104, 110].

This is not to suggest that formal methods are a panacea, and that other approaches are unim-

portant. Indeed, in many safety critical or other important applications, there may be social and

ethical constraints on what should be built. There are many technical and non-technical factors

that will affect the quality of systems that are built. Testing at different levels will continue to

be important.

Moreover, there are limitations on what verification can offer. With respect to hardware

verification, Cohn points out that neither the actual hardware implementation nor the intentions

motivating the device can be subject to formal methods [42]. Verification is inherently limited

by the models used. And, verification is expensive computationally and requires a high level

of expertise. Although there has been some success in the use of formal methods, there are a

number of practical and organisational problems that must be dealt with, especially when formal

methods are first used by an organisation [114, 119].

Over a quarter of a century ago, C.A.R. Hoare summed up his view of the use of formal

methods [82]:

The practice of supplying proofs for nontrivial programs will not become widespread
until considerably more powerful proof techniques become available, and even then
will not be easy. But the practical advantages of program proving will eventually
outweigh the difficulties, in view of the increasing costs of programming error. At
present, the method which a programmer uses to convince himself of the correct-
ness of his program is to try it out in particular cases and to modify it if the results
produced do not respond to his intentions. After he has found a reasonably wide
variety of example cases on which the program seems to work, he believes that it
will always work. The time spent in this program testing is often more than half the
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time spent on the entire programming project; and with a realistic costing of ma-
chine time, two thirds (or more) of the cost of the project is involved in removing
errors during this phase.

The cost of removing errors discovered after a program has gone into use is often
greater, particularly in the case of items of computer manufacturer’s software for
which a large part of the expense is borne by the user. And finally the cost of er-
ror in certain types of program may be almost incalculable — a lost spacecraft, a
collapsed building, a crashed aeroplane, or a world war. Thus, the practice of pro-
gram proving is not only a theoretical pursuit, followed in the interests of academic
respectability, but a serious recommendation for the reduction of costs associated
with programming error.

As a manifesto for verification, with minor changes it might well have been written today.

On the surface, re-reading this may seem to be cause for pessimism — what has changed in 25

years? However, this is misleading. Verification is very difficult and can be extremely expen-

sive1; this complexity, lack of expertise, and conservatism are problems in the greater adoption

of formal methods. But, the cost of not performing verification can be much higher2, and as

will be seen in Chapter 2, there have been significant theoretical and practical advances show-

ing that the promise of advantages from formal methods has been realised. The progress that

has been made, the increased needs for the use of verification, and the challenges which these

needs create, make the comments expressed in this extract more relevant today than it was in

1969: we need more powerful proof techniques, and techniques that are easier to use.

The rest of this chapter is structured as follows. Section 1.2 introduces the use of verification

and formal methods. Section 1.3 motivates and describes the underlying approach to verifica-

tion adopted in this thesis. Section 1.4 describes the research contribution of the thesis, and

Section 1.5 outlines the rest of this thesis.
1Owre et al. estimate that the cost of a partial formal specification and verification of a commercial, 500 000

transistor microprocessor as ‘three man-years’ of work [105].
2Intel estimate the cost of the flaw in the Pentium microprocessor at US$475-million [65].
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1.2 Verification and the Use of Formal Methods

Consider an example of a chip which divides two 64-bit numbers. There are 2128 possible com-

binations of input. Exhaustive testing of all these combinations is an impossible feat — even

if we were to test 109 combinations a nano-second for a million millenia we would be able to

test fewer than one per cent of cases. Moreover, this testing would ignore the possible effects of

internal state of the chip (it could be that the chip works correctly when initialised, but that the

effect of computing some answers updates internal registers so that subsequent computations

are incorrect).

This example illustrates the underlying problem in checking for correctness. The number of

behaviours of a system, particularly if it is reactive or concurrent, is very large. Not only does

this make exhaustive testing impractical, it makes reasoning about computer systems, whether

software or hardware, difficult.

Since testing often cannot be comprehensive, verification is appealing in giving a higher

confidence in the correctness of systems. The use of formal methods allows a mathematical

proof to be given of correctness. Of course, we can only verify what can be modelled mathe-

matically. The verification of the correctness of a chip is the verification of its logical design.

We have some mathematical model of the behaviour of the components (gates or transistors)

and use this to infer properties of the system. Such a verification is only as good as the model

of the components. Models like this must make simplifications about the physical world. While

often the simplifications made do not affect our ability to make predictions about the behaviour

of the world, it is important to realise the potential problem.

The question of how good the model of the world is, and the problem of realising a logical

design as a physical artifact are critical problems. However, they are beyond the scope of this

thesis. Focussing on the problem of verifying a logical design is difficult enough, and this will be

the focus of this research: this section introduces verification and some of the research problems
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associated with verification, and Chapter 2 will give a fuller survey of verification.

Verification requires that both the specification and the implementation be described using

some mathematical notation with a well-defined formal semantics. There are many choices

open to the verifier. Common choices for describing an implementation are finite state machines

or labelled transition systems — often these are extracted directly from higher level descriptions

such as programs. A common choice for the specification is a temporal logic, which allows the

description of the intended behaviour of a system over time. If the implementation is described

as a finite state machine and the specification as a set of temporal formulas, verification consists

of showing that the finite state machine satisfies these formulas.

The fundamental problem with verification is that the number of states in a model of a sys-

tem is exponentially related to the number of system components; this is known as the state

explosion problem. Finding automatic verification techniques is difficult; the general versions

of the problem are undecidable [124] and restricted versions remain undecidable, while others

are NP-hard [55].

Many verification approaches have been suggested — these will be surveyed in the next

chapter. The problems caused by large state spaces manifest themselves in different ways, as

can be seen with two of the most popular methods, theorem proving and automatic model check-

ing. A large state space imposes significant computational costs on the verification task. This is

a particular problem for automatic model checking techniques, which are based on state explo-

ration methods. Although theorem provers may be less sensitive to the size of the state space

in terms of their computational cost, the cost of human intervention is high, often requiring a

high degree of expertise and making the verification more difficult and much more lengthy.

Dealing with the state explosion problem motivates much research in verification, and a

number of methods to limit the problem have been suggested. Some of the methods examined

in this research are:
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� The use of good data structures to represent model behaviour is critical. The develop-

ment and use of Ordered Binary Decision Diagrams in the 1980s was very important in

extending the power of automatic verification methods.

� Abstraction. By constructing an abstraction of the model, and proving properties of the

abstraction rather than the model, significant performance benefits may be gained. Of

course the problem of finding the abstraction, and showing that the properties proved of

the abstraction are meaningful of the model are non-trivial.

� Compositionality. Divide and conquer is one of the most common strategies in computer

science, and one which can be very helpful with verification. Property decomposition is

useful when the cost of verification is highly sensitive to the complexity of the properties

to be proved; it provides a way of combining ‘smaller’ results into ‘larger’ ones. Struc-

tural decomposition allows different parts of the system to be reasoned about separately;

these separate results are then used to deduce properties of the entire system.

� Hybrid approaches. Different verification techniques have different advantages and dis-

advantages, so by combining different approaches it might be possible to overcome the

individual disadvantages.

The choice of model of the system is critical. This choice affects the way in which properties

are proved, what satisfaction means, and how abstraction and compositionality can be used.

The next section motivates and describes the method of representing state space and model be-

haviour adopted by this thesis.

1.3 Partially-ordered State Spaces

One of the starting points of this thesis is that partially-ordered sets are effective representa-

tions of state spaces of systems. This section introduces the necessary mathematical definitions,
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motivates why partial orders are useful representations, describes how they are used, and then

introduces an appropriate verification method.

1.3.1 Mathematical Definitions

A partial order, R, on a set S is a reflexive, anti-symmetric and transitive relation onS , i.e.R �

S � S and

8s 2 S; (s; s) 2 R

(s1; s2); (s2; s1) 2 R =) s1 = s2

(s1; s2); (s2; s3) 2 R =) (s1; s3) 2 R

Typically, an infix notation is used for partial orders. Thus, if v is a partial order, then

xv y is used for (x; y) 2 v . A preorderon S is a reflexive and transitive relation.

If v is a partial order on S , then it can be extended to cross-products of S and sequences

of S . If hs1; : : : ; sni; ht1; : : : ; tni 2 Sn, then hs1; : : : ; sni v ht1; : : : ; tni if si v ti, for i =

1; : : : ; n. Similarly for sequences (elements of S!), s1s2s3 : : : v t1t2t3 : : : if si v ti, for i =

1; 2; : : :

If S is a set with partial order v , and s; t 2 S , then u is the least upper bound, or join, of

s and t if s; tv u (i.e. it is an upper bound) and if s; tv v, then uv v (i.e. it is no larger than

any other upper bound). In this thesis, the join of s and t will be denoted s t t. In general, it is

not the case that every pair of elements in a partially ordered set has a join — a pair of elements

could have many least upper bounds, each of which is incommensurable with the others, or no

least upper bound at all. Similarly, the greatest lower boundof s and t, or the meetof s and t,

is denoted s u t, and in general not all pairs of elements will have a meet.

A partially ordered set S is a lattice if every pair of elements has a meet and join. By in-

duction, in any lattice any finite subset has a least upper bound and a greatest lower bound. S

is a complete latticeif every set of elements — finite or infinite — has a least upper bound and
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greatest lower bound. In particular, complete lattices have unique universal upper and lower

bounds. Note that all finite lattices are complete — this is a result that is used extensively in

this thesis.

If S is a complete lattice over the partial order v , then, under the natural extensions of v :

� a finite cross-product of S , Sn is a complete lattice; and

� S!, the set of all sequences of S is a complete lattice.

If S1 and S2 are two lattices with partial orders �1 and �2, and g : S1 ! S2 is a function,

then g is monotonicwith respect to �1 and �2 if s �1 t implies that g(s) �2 g(t).

If S is a lattice and A � S , thenA is upward closedif a 2 A, x 2 S and av x implies that

x 2 A. Similarly,A is downward closedif a 2 A, x 2 S and xv a implies that x 2 A.

Partial orders are used in two important ways in this thesis. First, given a state space, par-

tial orders are used to compare the information content of states. sv t implies that s has less

information than t; if sv t and sv u, then informally we can think of s as representing both t

and u, it is an abstraction of these two states. It is fairly easy to generate partial order models

of systems like circuits from gate level descriptions of circuits, and good partial-order models

from switch-level can automatically be extracted in many cases. The second way partial orders

are used is to differentiate between levels of truth, a central theme in this thesis.

1.3.2 Using Partial Orders

Formally, a model can be described by (hS; v i;Y), where S is a complete lattice under the

partial order v and the behaviour of the model is represented by the next-state function Y :

S ! S which is monotonic with respect to the partial order. The partial order can be extended

to sequences of S .

To see why partial orders might be useful, consider as an example of a system which can be

in one of five states. A next state function Y describes the behaviour of the system. The state



Chapter 1. Introduction 9

space could be represented by a set containing five elements. However, there is an advantage in

representing the state space with a more sophisticated mathematical structure. In this example,

we represent the state space with the lattice shown in Figure 1.1 (note that this is just one possible

lattice). States s4–s8 are the ‘real’ states of the system, and the other states are mathematical

abstractions (Y can be extended to operate on all states of the lattice). The partial ordering of

the lattice is an information ordering: the higher up in the ordering we are, the more we know

about which state the system is in. For example, the model being in state s1 corresponds to the

system being in state s4 or s5. State s9 represents a state that has contradictory information.

f@
@

�
�

s0

f@
@

s1
fs2

f�
�

s3

f�
��

��

s4
f�
�

s5
fs6

f@
@

s7
fH

HH
HH

s8

fs9

Figure 1.1: Example Lattice State Space

States like s1 are useful because if one can prove that a property holds of state s1, then (given

the right logical framework) that property also holds of s4 and s5. There can be a great perfor-

mance advantage in proving properties of states low in the lattice.

Furthermore, state s9 plays an important role, since it represents states about which incon-

sistent information is known. Although such states do not occur in ‘reality’, they are sometimes

artifacts of a verification process.

A human verifier may introduce conditions which are inconsistent with each other or the op-

eration of the real system. These conditions could lead to worthless verification results — ones

that while mathematically valid tell us nothing about the behaviour of the system and may give
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verifiers a false sense of security.3 Since it may not be possible to detect these inconsistencies

directly, it is useful to have states in which inconsistent properties can hold at the same time. In

such states, a property and its negation may both hold, and we should have a way of expressing

this.

In this example, the potential savings are not large, but for circuit models extremely signif-

icant savings can be made. The state space for a circuit model represents the values that the

nodes in the circuit take on, and the next state function can be represented implicitly by sym-

bolic simulation of the circuit.

The nodes in a circuit take on high (H) and low (L) voltage values; there is a natural lattice

in which these voltage values can be embedded. It is useful, both computationally and mathe-

matically, to allow nodes to take on unknown (U) and inconsistent or over-defined (Z) values.

The set C = fU; L;H;Zg forms a lattice, the partial order given in Figure 1.2.

U

Z

L H

@
@

�
�

�� @@
6

v

Figure 1.2: The Partial Order for C

The state space for a circuit then is naturally represented by Cn, which is a complete lattice.

Consider a circuit with n components and a state, s, of the circuit:

s = h v1; : : : ; vm;U; : : : ;U| {z }
n�m

i;

where the vis are boolean values. With the right logical framework, if we can prove that a prop-

erty g holds of the state s, then we can infer directly that the property holds for all states above

it in the information ordering.
3‘A truth that’s told with bad intent,/ Beats all the lies you can invent.’— William Blake
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If we only consider the subset of states, fL;Hgn (those states with known, consistent volt-

ages on each component), there are 2n�m states above s, of the form h v1; : : : ; vn i, where the

vis are boolean variables. So, in one step 2n�m ‘interesting’ proofs are done (this step would

also prove properties about states with partial or inconsistent information). Through the judi-

cious use of U values, the number of boolean variables needed to describe the behaviour of the

circuit can be minimised, increasing the size of the circuits that can be dealt with directly.

The purpose of model checking is to determine whether a model has a certain property —

ideally, a verification method should answer this ‘yes’ or ‘no’. Unfortunately, the performance

benefit gained by using only partial information compromises this goal. In the example above,

while every property of the circuit will be true or false of states s4–s8, there will be some proper-

ties which are neither true nor false of states s0–s3, since there is insufficient information about

those states.

The converse problem exists with a state like s9. Assigning the same level of credibility

and meaningfulness to the truth of property g in state s9 as the truth of g in s5 violates common

sense understanding of truth.

Both these factors indicate that a two valued logic has insufficient expressiveness when deal-

ing with a partially-ordered state space. To say that something is true or false in states like s1

and s9 may be very misleading. And, we shall see later that a two valued logic also has a serious

technical defect in this situation.

1.3.3 Symbolic Trajectory Evaluation

Symbolic trajectory evaluation (STE) is a model checking approachbased on partially ordered

state spaces. STE computes the next state relation using symbolic simulation. Not only does

this allow the partially-ordered state space structure to be exploited effectively, it supports accu-

rate, low-level models of circuit structures. (‘Approach’ is emphasised above because a number
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of different possible STE-based algorithms and implementations exist. Moreover, STE-based

algorithms can be used in different logical frameworks.)

Previous work with STE has shown that it is an effective method for many circuits (e.g.,

see [8, 47]) and it is recognised as one of the few methods with good asymptotic performance

on a large class of non-trivial circuits [26].

STE is particularly useful in dealing with large circuits, where the circuit is modelled at a

low level (gate or switch level), and where timing is important. Higher-level verifications are

important too, but, as Cohn points out, realistic and detailed models of circuits are important to

ensure that the mathematical results proved are meaningful [42].

Although successfully applied, these STE-based approaches are not without their problems.

First, the underlying problem of the state explosion problem still exists, and as with all verifi-

cation methods, better and more powerful techniques must be developed as the computation

bottle-necks are still there. Second, in existing STE-based approaches, the logic used to ex-

press properties is limited; for example, disjunction and negation is not fully supported. While

the logic is expressive enough for many problems and the restricted form of the logic leads to

very efficient model checking algorithms, there are problems which need a richer logic. Third,

previous approaches have used a two valued logic, which, in the context of partially ordered

state spaces, is confusing. For a restricted logic, the complication caused by insufficient and

contradictory information can be dealt with adequately in an extra-logical way; this is inade-

quate for a richer logic.

1.4 Research Contributions

No one verification method is suitable for all verification problems. The choice of model (how

complete and what level), how correctness is expressed, and the choice of underlying theoretical

framework and practical tool depends on many factors: the problem domain; what properties
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the verifier wishes to prove; the expertise of those involved; what level of confidence in the

verification has to be obtained; and very importantly the computational and human resources

available.

The research work presented in this thesis is motivated by the promise that trajectory evalua-

tion offers in dealing with large circuits, especially where a detailed model of timing is required.

The strength of this is that not only can the high-level algorithmic descriptions of functional-

ity be verified, but the low-level implementation details can be checked too; verification can

be done on switch-level or detailed gate level circuit descriptions. This is particularly impor-

tant when the transformation from high-level description to low-level implementation is error-

prone. Timing properties can be verified at the micro-level (e.g. checking that circuit values

stabilise by the end of a clock cycle) or at the macro-level (e.g. checking which clock cycle

something happens). Since many other verification methodologies have difficulty with detailed

verification of large circuits, this is an important line of research to develop. This thesis starts

from the premiss that extending the power of STE-based methods by increasing the range and

size of systems that can be verified, and the types of properties that can be expressed in a veri-

fication is a significant contribution.

The goal of this research is to show that the applicability of symbolic trajectory evalua-

tion can be significantly extended though the development of an appropriate temporal logic for

model checking partially-ordered state spaces, and the use of a compositional theory for trajec-

tory evaluation. The specific contributions of this thesis are listed below.

� Proposing a suitable temporal logic suitable for partially ordered state spaces.

Traditional two-valued logics are unsuitable for expressing properties of partially-ordered

state spaces; my first thesis is that a four-valued logic is suitable. This logic distinguishes

the following four cases: true, false, under-determined, and over-determined. Not only

does the four-valued logic provide a framework for representing our knowledge of the
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degree of truth of a proposition, it is a suitable technical framework. This framework is

useful not only for STE-based model checking algorithms, but other verification methods

based on partially-ordered state spaces developed in the future.

A qualification is in order — the use of uncertainty to model both state information and

degrees of truth is epistemological rather than ontological in nature. The question of un-

certainty in the ‘real world’ is well outside of the scope of this thesis. Uncertainty is used

in system models because this offers significant computational advantages. This uncer-

tainty in the model induces an uncertainty in our knowledge of the model. Thus the four-

valued logic is useful to reason about our knowledge of the model, and the use of the four

valued logic is proposed for its utilitarian value, not as an excursion into general philos-

ophy.

� Generalisation of symbolic trajectory evaluation based algorithms

My second thesis is that using the four-valued framework, STE-based algorithms can be

generalised to support a richer logic. Providing a richer logic is important because it sup-

ports the verification of a greater range of applications. Moreover, it often makes the spec-

ification of properties clearer, which makes the verification more meaningful for the user;

and more elegant specifications can also lead to more efficient model checking.

� A Compositional Theory

My third thesis is that a compositional theory for model checking partially-ordered state

spaces can be developed, and provides a foundation for overcoming the performance lim-

itations of model checking. The compositional theory allows verification results to be

combined in different ways into larger results. The structure of the state space lends itself

to the compositional theory, and together with the compositional theory allows very large

state spaces to be model checked. The key part of the development of the compositional

theory is to show that it is sound; that all results inferred could, at least in principle, be
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directly obtained through trajectory evaluation or some other model checking algorithm.

� Development of a practical tool

While the proposed four-valued logic and compositional theory have theoretical interest,

a major part of the significance of the contribution of the work comes from my fourth

thesis: that generalised STE and the compositional theory for model checking partially

ordered state spaces using a four-valued logic can be used effectively, making a significant

contribution to the size and complexity of circuits that can be verified.

This is demonstrated by the development of prototype verification tools. These proto-

types show that it is effective to combine theorem proving and STE-based model-checking

as these approaches complement each other. While the prototypes are not of interest in

themselves, they demonstrate that very large circuits can be formally verified using the

approaches advocated here. The prototypes are also of interest because of the lessons they

provide about tool-making.

1.5 Outline of Thesis

The rest of the thesis is structured as follows. Chapter 2 gives a brief overview of verification,

and then reviews related literature. This raises the important issues and problems of verification,

motivates choices made in this research, and places the research into context.

Chapter 3 presents the four-valued logic Q, and the temporal logic, TL, based on Q. After

defining the logics, the issue of satisfaction — what it means to say that a certain property holds

of a state or sequence of states — is explored and different alternatives given.

The theory of generalised symbolic trajectory evaluation is given in Chapter 4 using the

theory presented in Chapter 3. Although the theory of trajectory evaluation is general, at this

stage its major application area is circuit verification.



Chapter 1. Introduction 16

Chapter 5 develops the theory of composition for the verification of partially-ordered state

spaces. The compositional inference rules are explained, and shown to be sound. Simple exam-

ples are given. The compositional theory is very important in increasing the range of systems

that can be verified using trajectory evaluation.

Chapter 6 ties the preceding chapters together and shows how the theory can be practically

implemented. Issues of data and state representation are discussed, practical model checking

algorithms based on STE outlined, as well as how the verification style of model checkers and

theorem provers can be combined.

Chapter 7 is devoted to example verifications. A few simple verification examples are given

to show the style of verification, and then some large verification examples are given. This chap-

ter shows that the methodology proposed here can be effectively implemented.

Chapter 8 is a conclusion, and the appendix contains some of the more technical proofs and

example programs.

A Guide to the Reader

This thesis contains many definitions, theorems and a significant level of mathematical nota-

tion. A reader may find the index at the end of the thesis and the List of Important Definitions,

Theorems and Lemmas starting at page ix useful in finding cross-references.

The nature of the research requires that the thesis contain many proofs. Many of these proofs

are highly technical and uninteresting in themselves; this does not make for the easiest or most

captivating reading, for which I apologise. I have tried to make the exposition of proofs as clear

as possible, and have adopted the following convention for proofs. Each step in the proof con-

tains three parts, laid out in three columns: a label, a claim, and a justification. The justification

may refer to previous steps in the proof using the labels given.
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Lemma 1.1 (Example).

If S is a complete lattice under the partial order v , and g : S ! S is monotonic with respect

to v , then for all s; t 2 S , g(s) t g(t)v g(s t t).

Proof.

(1) sv s t t Definition of join.

(2) tv s t t Definition of join.

(3) g(s)v g(s t t) From (1) by monotonicity of g

(4) g(t)v g(s t t) From (2) by monotonicity of g

(5) g(s) t g(t)v g(s t t) From (3), (4) by property of join



Chapter 2

Issues in Verification

This chapter is intended to place the thesis work in perspective and relate the research to other

work. It is not intended as a comprehensive survey of verification, and therefore some simpli-

fications are made and important verification methods skimmed over. For fuller surveys on the

topic see [73, 97, 119].

Overview of Chapter

Section 2.1 briefly introduces a method of representing boolean functions. Since boolean ex-

pressions are used extensively in verification for a variety of purposes, efficient methods for

representing and manipulating them is essential.

The review of verification starts with Section 2.2, which introduces two of the main styles

of verification. In one style, verifying a model means checking whether the model has certain

properties. In the other method, two models are compared to see whether a certain relationship

holds between the models (for example whether they have equivalent observable behaviour).

For each of the styles of verification, there are a number of possible verification techniques.

Section 2.3 gives a brief overview of some of the large number of verification techniques, dif-

fering in approach and detail, that have been proposed. Section 2.4 examines one of these proof

techniques in more detail; the method of symbolic trajectory evaluation proposed by Bryant and

Seger forms the basis of this thesis.

Due to the computational complexity of verification, all these methods have limitations, and

18
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research continues in trying to improve upon them. Much of this research in improving verifica-

tion techniques deals with the search for better algorithms and data structures. Although this is

very important, the underlying complexity limitations indicate that something more is needed.

Two of the most promising lines of research in this regard have been the work in composition-

ality and abstraction. They are discussed in Sections 2.5 and 2.6.

Section 2.7 concludes the review with a brief discussion of the issues raised in this chapter.

2.1 Binary Decision Diagrams

Many verification techniques — including STE — represent boolean expressions with a data

structure called (ordered) Binary Decision Diagrams (BDDs). BDDs are a compact, canonical

method for manipulation of boolean expressions [22]. A BDD is a directed, acyclic graph, with

internal vertices representing the variables appearing in the expression. BDDs are ordered in

the sense that on all paths in the graph, variables appear in the same order.

Using this representation, operations such as conjunction, negation and quantification and

equivalence testing can be efficiently implemented.

Boolean expressions are used to represent state information and truth of propositions, so it

is critical that they can be manipulated efficiently. BDD-based approaches have been extremely

successful. Unfortunately, although BDDs are a very compact representation, there are things

that cannot be represented efficiently. This is not surprising; the satisfaction problem [63] can

be represented and solved using BDDs so if a BDD representation polynomial in size could

be constructed in polynomial time, this would imply that P=NP. Some arithmetic problems

cannot be represented efficiently. For example, multiplication of two integers (represented as

bit-vectors) requires BDDs exponential in size. For a discussion of the limitations of BDDs,

see [21].
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One of the critical issues when BDDs are used is the ordering of variables used in the con-

struction of the graph. The size of the resulting BDD may be highly dependent on the variable

ordering, so it is vital that a good variable ordering is used. In general human intervention is

needed to determine a good ordering, but fortunately for many real problems a good variable

ordering can be found, and heuristics for dynamic variable ordering can be applied successfully.

So, while the need to find good variable orderings is an issue, it is not a fundamental problem

with BDD-based methods.

Although BDD-based approaches are very successful, there are a number of other successful

approaches that do not use BDDs. Some of these are described below. The success of BDDs

has also motivated research on other data structures for representing data that BDDs cannot

represent efficiently (these are mentioned below too).

2.2 Styles of Verification

To say that a program or circuit is verified is to say that there is a proof that certain mathemat-

ical statements are true of a model of that system. This section looks at the different ways of

expressing these statements, while Section 2.3 looks at how the statements are proved to hold.

Section 2.2.1 introduces the property checking approach. The idea here is that there is a

formal language for expressing properties of the system, and verification consists of proving

that these properties hold. Section 2.2.2 leads on from this by introducing modal and temporal

logics; these are logics that are commonly used to express properties of interest. This is the style

of verification adopted in this thesis.

Section 2.2.3 introduces the other style of verification, model comparison. Here, two models

of the program or circuit are expressed formally (typically, a specification and an implementa-

tion), and verification consists of proving that the two models are equivalent.
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2.2.1 Property Checking

One major approach to verification is to determine whether a description of a program1 has (or

does not have) a set of properties. Turing showed that this problem — one of the foundational

problems in computer science — is, in general, undecidable: for example, there is no general

method for determining whether a program halts, or whether it prints out a zero [124].

One of the landmarks in program verification was the development of the Floyd-Hoare logic

used to describe the behaviour of sequential programs (introduced in [82], and see [67] for a

good introduction). In this logic, verification results are written in the form fAgPfCg, where

A and C are logical formulas and P is the program segment. This Hoare triplesays that if A

holds when P starts executing, then if P completes then C will hold. There have been many

other approaches used to describe the behaviour of sequential (see [7] as a good example of this

style of proof) and concurrent programs (see [96] for an example).

This style of verification can be used for small programs, and can be appropriate for small,

complicated algorithms. However, on a larger scale it is not useful as it is just too tedious to

use, especially for hardware systems.

There are many ways of expressing properties. For example, one approach has been to

perform reachability analysis on the program (e.g. discovering whether there are any deadlock

states). Another approach — the one adopted in this research — is to use some form of logic

to express properties. Often modal or temporal logics are used for reactive systems.

2.2.2 Modal and Temporal Logics

Modal logics are systems of logic for describing and reasoning about contingent truths. The

type of modal and temporal logics of interest here are used to describe the behaviour of systems

1As the term ‘system’ can be ambiguous since it can refer to the system being verified, or the tool performing
verification, the term ‘program’ is used in a generic sense to describe the system being verified, whether or not the
system is represented as a program, a finite state machine, a netlist etc.
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that have dynamic or evolving structure. Many of these logics have been proposed; see the

works of Galton [62], Emerson [52] and Stirling [120, 121] for overviews.

Typically, a set of formulas of the logic form the specification of the program being verified.

The verification task is to test whether the mathematical structure representing the program sat-

isfies this set of formulas.

The wide variety of modal logics reflects both the wide variety of application and complex-

ity of the topic. Modal logics and the mathematical structures over which they are interpreted

differ in expressiveness. Issues such as non-determinism and the ability to express recurring

properties greatly affect issues such as usefulness, decidability and computational complexity.

Temporal logics are particularly useful in verification. They can be used to specify the be-

haviour of a system over time. Time can be a ‘real’ time, or some abstraction thereof; and can

also be modelled as continuous or discrete. The method proposed in this thesis has the advan-

tage of being able to model time fairly accurately.

The most powerful logic of interest here is the family of modal�-calculi, variously attributed

to Park and Kozen. The expressive power of the �-calculi, determined by the modal operators

available, have a marked effect on the decidability of logic: for example, the linear time modal

�-calculus is decidable, while the branching time modal �-calculus is not [55].

Other modal and temporal logics are restricted versions of the�-calculus. CTL*, CTL, LTL,

and the Hennessy-Milner logic are good examples of logics which can be encoded within a ver-

sion of the �-calculus. There are a number of ways in which temporal logics can be classified

(see [52] for details). The most important question is whether the logic is branching time or

linear time (see [53] for some discussion of this).



Chapter 2. Issues in Verification 23

2.2.3 Model Comparison

In this approach, two models or descriptions are compared to see whether a given relationship

holds between them. The most important relationship is equivalence, but there are other useful

relationships. One way of using this form of checking is for one description to be a specifi-

cation of a system and the other description to be an implementation. Showing that a formal

relationship holds between the two descriptions shows that the implementation is correct.

General versions of this problem are undecidable. Turing machine equivalence is the best

example, and these decidability results apply to popular methods such as process algebras (as

CCS can encode Turing machines this has direct relevance to much work in this area). However,

there are restricted, useful versions of the problem which are decidable (see, for example [32]).

There are a number of different ways in which models can be represented. What equivalence

and more general types of relationships mean and how they are checked depends very heavily

on this. Three of the main approaches are:

1. Process algebras such as CCS [102] and CSP [20]. There are many different types of

equivalence which depend on how fine-grained an equivalence is desired (see [102] for

a discussion of this).

There are a number of other relationships which are defined as preorders on processes.

These can be used to define correct implementations of specifications. See [80] for ex-

amples.

A good example of this approach is the LOTOS specification language which is based on

CCS and CSP [15]. Equivalence and implementation relationships can be used to show

that one LOTOS program is a correct implementation of another.

2. Language containment. If the descriptions are finite state machines, then equivalence



Chapter 2. Issues in Verification 24

may be language equivalence. Some verification problems can be posed as language con-

tainment problems. See [73] for an overview.

3. Logic. Equivalence is logical equivalence. Other logical relationships such as implica-

tion may be suitable for showing that a model is a correct implementation of a specifica-

tion. See [94] for an example.

Other approaches exist (e.g. [74]).

There is a close relation between equivalence checking and property checking. In CCS, two

processes are bisimilar exactly when they satisfy the same set of formulas of the Hennessy-

Milner logic [81]. Grumberg and Kurshan have shown a relationship between classes of CTL*

formulas and language equivalence or containment problems [71].

2.3 Proof Techniques

Now that we have defined what we mean by program correctness, we can examine proof tech-

niques. We first look at why formal proof techniques are important, and then examine some of

these techniques: Section 2.3.1 discusses theorem proving; Section 2.3.2 discusses automatic

techniques suitable for proving equivalences; and Section 2.3.3 discusses model checking, an

approach that can be used to prove that models of systems satisfy temporal logic formulas. Sec-

tion 2.4 presents the model checking that forms the basis of this thesis in more detail.

Hand proof techniques are the most ubiquitous for a variety of reasons. They are powerful

methods which allow a variety of proof techniques, appropriate informal arguments, and ab-

stractions to be made. However, there are two important reasons why hand proofs are avoided

in the context of verification, particularly hardware verification.

First, proofs are extremely tedious to perform. Often they are not complex but have large

amounts of intricate detail which is difficult and unpleasant for humans to keep track of. Second,

errors are extremely likely. These two factors are related.



Chapter 2. Issues in Verification 25

Some examples illustrate this. In [102], Milner presents the ‘jobshop’ example — a specifi-

cation, implementation and a proof of weak bisimulation between the two. The proof has many

errors. Most of these errors are trivial; however, there is a serious theoretical error on which the

proof relies which was only detected much later. It must be emphasised that this is a best case

scenario for hand proofs: the models and notation are fairly abstract, the proofs fairly short and

interesting in themselves, and the person making the proof of undoubted mathematical ability.2

There are many other examples like this; they show how fallible and time-consuming hand

proofs are (see [112]). The alternative to hand proofs are machine checked and automated proofs.

A machine checked proof is a proof that has each step validated by a program that implements

some logical inference system. An automated proof is one which is generated without human

intervention according to some set of sound rules. Often the performance of these systems may

depend on extra information given by the human verifier. These approaches have been applied

to both the equivalence and property-checking types of problems.

2.3.1 Theorem Proving

A theorem proveris a program that implements a formal logic. Using this program, statements

in the logical system can be proved. Typically, the logical system consists of a set of axioms and

inference rules, and the program ensures that all theorems are sound in that they are derived from

the axioms by application of the inference rules. Although much work has gone into automatic

theorem proving the key aspect is mechanically checking each step rather than the automatic

derivation of the proof.

Theorem provers can be used to prove theorems about any mathematical system. Within the

2For hardware verification the converse is true: the level of abstraction is low with intricate detail, the proofs
are long and tedious and of no intrinsic interest, and few people doing verification are Turing Award winners. This
criticism extends to other domains too. In a recent paper, Bezem and Groote present the verification of a network
protocol in a recent paper [13]. The proof is very lengthy and detailed. The claim that this is not such a problem
because the proofs are ‘trivial’ is unconvincing.
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verification area, there is a strong theorem proving community and a range of different theorem

provers have been used in verification tasks. Some examples of theorem provers and work done

with theorem provers are:

� HOL [68]. HOL is one of the first and best known theorem provers. It was built on work

done on the development of LCF [69] in the 1970s (see [60] for a brief history). HOL

implements a strongly typed higher-order predicate logic. The user’s interface to HOL

is through ML [107], a polymorphic, typed functional language. This interface promotes

both security (by ensuring through the type system that only theorems proven in HOL can

be proved) and flexibility by allowing the programmer access to a fully programmable

script language. HOL has been used on the verification of a number of systems.

� Boyer-Moore [17]. This theorem prover is based on a quantifier-free first order logic. It is

heavily automated, although a user can (must?) ‘train’ the prover to deal with particular

proofs. An example of a substantial verification effort using this system can be found

in [86].

� PVS [106, 105] is also theorem prover based on a typed, higher-order logic. It has a num-

ber of decision procedures built in which allow a number of the proof obligations to be

discharged automatically. See [112] for an example use of PVS.

Theorem provers can be used for either equivalence or property checking. For example, if

both the specification, S, and implementation, I , are logical formulas then asking whether S

and I are equivalent means asking whether S � I is a theorem in the logic.

In the property checking approach, Gordon shows how a simple theorem prover can be used

to prove program correctness using the Floyd-Hoare logic [67]. Theorem provers have also

been used in model checking; some work is directly relevant to this thesis. For example, Brad-

field describes a ‘proof assistant’ for model checking �-calculus formulas over Petri nets. The
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proof system is a tableau-based one (see below). At each step in the proof either the prover itself

applies a proof rule, or the user does [18].

Sometimes, this type of approach leads to a hybrid system which uses both the automatic

model checking algorithms described below and theorem proving approaches – this is discussed

in more detail later.

2.3.2 Automatic Equivalence and Other Testing

For certain systems which can be represented as labelled transition systems (such as certain

classes of CCS agents), the Concurrency Workbench has algorithms for computing different

kinds of equivalences and preorders [41]. The two advantages of using equivalences such as

bisimulation over language equivalence are:

� Bisimulation can distinguish behaviour which language equivalence can not.

� There are significant computational advantages. For example, deciding regular language

equivalence is PSPACE-complete, while the best known algorithm for deciding bisimu-

lation between two regular processes is O(m log n) wherem is the number of transitions

in the process and n is the number of states [103].

For finite state systems, CCS agents can be represented using BDDs [54], from which equiv-

alence relations can be computed [27]. Other work in this line includes a tool which can com-

pute equivalence of LOTOS programs [56].

Other approaches can also be applied to transition systems, see ([1, 14]).

2.3.3 Model Checking

Given a model of a system behaviour, M , and a temporal logic formula g interpreted over M ,

the model checking problem is to find out whether g holds of M , or whether M is a model of
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g. Typically this is written as M j= g. Variations such as finding whether a set of states or a set

of sequences of states satisfies the formula are used too.

Model checking is a difficult problem: some useful versions are undecidable [55], and the

satisfiability and model checking problems for even simple modal logics are NP-hard [63, 52].

For finite state systems, whether a structure is a model of a system can be determined directly

from the satisfaction relation by explicit state enumeration: however, except for small systems

this is rarely feasible.

Tableau-based Methods

The tableau-based method is one of the best-known methods and a number of variations have

been implemented (the best known implementation is the Concurrency Workbench [41]). Al-

though the underlying proof method is very different to the method of symbolic trajectory eval-

uation, this method is of some relevance because tableau systems use rules of inference, and be-

cause there has been much work in compositional reasoning. Good introductions to the tableau

method are [19, 121]. Note that tableau methods do not always require the construction of the

global state space.

A tableau is a proof tree built from a root sequent of the formS ` � (this is the goal sequent).

The tree is built using one of the tableau rules until all the leaves of the tree are terminals. If all

the terminals are ‘successful’ then S j= �. The most important and difficult part of the tableau

construction is dealing with the fixed-point operators, particularly the least fixed point operator.

Stirling and Walker proposed a sound and complete tableau system for finite-state processes [122].

They showed that the tableau-construction always terminates, making this method an effective

model checking scheme. They also show how the model checking algorithm of Winskel [127]

can be incorporated in a tableau scheme.

Bradfield extended the tableau approach to infinite state systems [19]. Dealing with the fixed
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point operators is more complicated as the definition of a successful terminal takes some care.

His approach is sound and complete. If S j= �, then using the rules automatically will derive

S ` �, and S ` � will only be derived when S j= �. Note, however, that if S 6j= �, his

algorithm may not terminate.

Automatic Model Checking through State Exploration

For finite state systems, it is feasible to model check some logics through state exploration meth-

ods. Although model checking expressive temporal logics such as CTL* is very expensive

(the problem is PSPACE-complete), for less expressive logics there are better results (note that

model checking LTL is also PSPACE-complete). The best known result is one for model check-

ing the subset of CTL* known as CTL [36]. This algorithm works by building the state tran-

sition graph, and then using graph algorithms to label the states in the graph. The algorithm is

O(jSjj�j) where jSj is the number of states in the system, and j�j is the size of the formula �.

Recently this work has been extended to show how a richer logic CTL2 can be model checked

with the same complexity result [12].

Although the algorithm is linear in the size of the state space, this is a significant limitation

since the size of the state space in many realistic systems is extremely large (a very small circuit

with only 100 state holding components can have a reachable state space of size 2100).

State exploration methods can be extended to some types of infinite systems. Burkart and

Steffen have developed a state exploration method for effective model checking of the alternation-

free�-calculus for context-free processes [29]. (A local model checking version based on tableaux

has also been developed [85]).
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Symbolic Model Checking

For finite systems symbolic model checking methods are very popular and have had success in

a number of applications. The use of BDDs has revolutionised model checking by providing

a compact method for implicit state representation, thereby increasing by orders of magnitude

the size of the state space that can be dealt with. (Other approaches exist too [14, 46]: however

BDDs seem to be most effective for a large class of problems.)

The most well-known work based on symbolic model checking and BDDs has emerged

from Carnegie Mellon University. A number of model checking algorithms for the modal �-

calculus and other logics have been developed [26, 27]. The SMV verification system based on

these ideas has successfully verified a range of systems [26, 98].

The basic idea of these approaches is to represent the transition relation of the system under

consideration with a BDD. A set of states is also represented with a BDD. Given a formula of

the temporal logic, the model checking task is to compute the set of states that satisfy the for-

mula. The operations defined on BDDs allow the computation of operations such as existential

quantification, conjunction etc. Using these BDD operations, it is possible to compute the set

of reachable states and the set of states satisfying a given formula.

Although these methods have had some success, the computational complexity and cost

of model checking remains a significant stumbling block. Symbolic CTL model checking is

PSPACE-complete in the number of variables needed to encode the state space [98]. A number

of approaches have been suggested to improve the performance of the algorithm: compositional

approaches; abstraction; and improving representational methods (for example, partitioning the

next state relation [26]).

That BDDs revolutionised automatic model checking indicates the importance of good and

appropriate data structures, and motivates the search for new ones, and considerable work is
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being done on extending BDD-style structures and developing new ones [24, 34, 99]).3

All these approaches to improve symbolic model checking need to be pursued. Circuits

with wide data paths are not suitable for verification with SMV, which itself is unable to verify

circuits with arithmetic data. However, by extending the method through the use of abstrac-

tion [39] or more sophisticated data structures [35] such circuits can be verified.

There are other symbolic model checking approaches. Symbolic trajectory evaluation — a

central part of this thesis — is one. It differs from other approaches in the novel way in which the

state space is represented. Although the logic which it supports is limited it has been success-

fully used in hardware verification [8, 47]. Full details are given later. Other symbolic methods

have been proposed in [16, 43, 87].

Combining Theorem Proving and Model Checking

Since combining model checking and theorem proving has considerable promise, research has

been done in combining the two approaches in different technical frameworks.

Seger and Joyce linked the HOL and Voss systems. This allows the HOL theorem proving

system to reason about properties of a circuit by using the model checking facilities of Voss [117].

Although there are some similarities between the prototypes presented in this thesis, and the

HOL-Voss system, there are two important distinctions:

� One of the important uses of a theorem prover with the Voss system is to reason about

objects that do not have concise BDD representations in all cases — for example, integer

expressions. Rather than providing a general and powerful theorem prover such as HOL,

simple semi-automated methods are used to provide the prototypes the ability to do this

(see Section 6.2). Although not as powerful as HOL, it is much simpler.

� The prototypes provide specialised theorem provers that implement a compositional the-

ory for STE. The use of this compositional theory increases the power of the verification

3Some of these approaches are applicable to other model checking approaches too.
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approach significantly.

Kurshan and Lamport have combined the COSPAN model checker with the TLP theorem

prover [93]. The model checker proves properties of components of the system, which are then

translated into a form suitable for the theorem prover. In order to prove the overall result, a

number of sub-results need to be proved. Not only is the way in which composition is handled

different to the way it is in this thesis, there are also two very important practical distinctions:

first, their approach is not entirely mechanised; second their approach relies on linking two quite

distinct tools and using two distinct formalisms, rather than one integrated tool and verification

style.

The style of the method of Hungar [84], who also links model checking and theorem prov-

ing, is closest to the method of combining model checking and theorem proving proposed in

this thesis. The model is given by a Kripke structure representing the semantics of an Occam

program, and the properties are expressed in a variant of CTL. The results generated by model

checking are combined using the LAMBDA theorem prover. The proof system consists of rules

for inferring results using an assume-guarantee style of reasoning. The inference rules used are:

embedding, modus ponens, conjunction and weakening. Given an Occam program consisting

of a number of processes, properties can be proven of each process using the model checker,

and the properties combined.

An important distinction between the model used in [84] and the model used in this thesis is

that in Hungar’s framework, each process has its own model — the model for the entire program

is the composition of these models. In the compositional theory proposed in this thesis, a model

is given for the entire system, and it is not necessary to give a model for the components of the

system.

Rajan et al. have combined a�-calculus model checker with PVS by using the model checker

as a decision procedure for PVS [111]. They demonstrate how such an integrated system can be
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used. Using the ideas of Clarke et al. discussed below, they create an abstraction of a circuit to

be verified. Using theorem proving they show that the abstraction has the required properties.

Using model checking they show that the abstraction satisfies the specification.

In an alternative approach, Dingel and Filkorn verify abstractions of a system using model

checking, using certain assumptions about the system environment [49]. Theorem proving is

used to prove the correctness of the abstraction and to ensure that the system environment as-

sumptions are met.

2.4 Symbolic Trajectory Evaluation

This section briefly outlines the existing STE based approach. This is useful in the later discus-

sion and will help illustrate some of the novel aspects of the thesis. Symbolic trajectory eval-

uation was first proposed in [23] and the full theory can be found in [116]. Good examples of

verification using STE can be found in [8, 47]. This section is heavily based on the presentation

of STE found in [77].

The model of a system is simple and general, a tupleM = (hS; v i;Y), where hS; v i is

a complete lattice (S being the state space and v a partial order on S) and Y is a monotone

successor function Y : S ! S . A sequence is a trajectoryif and only if Y(�i)v �i+1 for i �

0.

2.4.1 Trajectory formulas

The key to the efficiency of trajectory evaluation is the restricted language that can be used to

phrase questions about the model structure. The basic specification language used is very sim-

ple, but expressive enough to capture many of the properties we need to check.

A predicateover S is a mapping from S to the lattice fF;Tg (where Fv T). Informally, a

predicate describes a potential state of the system: e.g., a predicate might be (A is x) which
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says that node A has the value x. A predicate is simpleif it is monotone and there is a unique

weakest s 2 S for which p(s) = T. TF, the set of trajectory formulasis defined recursively as:

1. Simple predicates: Every simple predicate over S is a trajectory formula. Simple pred-

icates are used to describe simple, instantaneous properties of the model.

2. Conjunction: (F1^F2) is a trajectory formula if F1 and F2 are trajectory formulas. Con-

junction allows the combination of formulas expressing simpler properties into a formula

expressing a more complex property.

3. Domain restriction: (e ! F ) is a trajectory formula if F is a trajectory formula and e

is a boolean expression over a set of boolean variables, V . Through the use of boolean

variables, a large number of scalar formulas (formulas not containing variables) can be

concisely encoded into one symbolic formula.

4. Next time: (NF ) is a trajectory formula if F is a trajectory formula. Using the next time

operator allows the expression of properties that evolve over time.

An interpretation of variables is a function, � : V ! fF;Tg. An interpretation of variables

can be extended inductively to be an interpretation of expressions. The truth semantics of a

trajectory formula is defined relative to a model structure, a trajectory, and an interpretation, �.

Whether a sequence ~� satisfies a formula F (written as ~� j= F ) is given by the following

rules.

1. �0~� j= p iff p(�0) = T.

2. � j= (F1 ^ F2) iff � j= F1 and � j= F2

3. � j= (e! F ) iff �(e)) (� j= F ), for all interpretations, �.

4. �0~� j= NF iff ~� j= F .
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Given a formula F there is a unique defining sequence, �F , which is the weakest sequence that

satisfies the formula.4 The defining sequence can usually be computed very efficiently. From

�F a unique defining trajectory, �F , can be computed (often efficiently). This is the weakest tra-

jectory which satisfies the formula — all trajectories which satisfy the formula must be greater

than it in terms of the partial order.

If the main verification task can be phrased in terms of ‘for every trajectory � that satisfies

the trajectory formulaA, verify that the trajectory also satisfies the formulaC’, verification can

be carried out by computing the defining trajectory for the formula A and checking that the

formula C holds for this trajectory. Such results are called trajectory assertionsand we write

them as j= hjA==�C ji. The fundamental result of STE is given below.

Theorem 2.1.

Assume A and C are two trajectory formulas. Let �A be the defining trajectory for formula A

and let �C be the defining sequence for formula C . Then j= hjA==�C ji iff �C v �A:2

A key reason why STE is an efficient verification method is that the cost of performing STE

is more dependent on the size of the formula being checked than the size of the system model.

STE uses BDDs for manipulation of boolean expressions.

2.5 Compositional Reasoning

The main problem with model checking is the state explosion problem — the state space grows

exponentially with system size. Two methods have some popularity in attacking this problem:

compositional methods and abstraction. While they cannot solve the problem in general, they

do offer significant improvements in performance.

Compositional reasoning is a critical aspect of program verification. The following advan-

tages are stated in [5]:
4‘Weakest’ is defined in terms of the partial order.
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� Modularity: if a module of a system is replaced, only the module need be verified;

� In design or synthesis it is possible to have undefined parts of a system and still be able

to reason about it;

� By decomposing the verification task, verification can be made simpler;

� Re-use of verification results is promoted.

The difficulty of compositional reasoning is that often it is the case that a particular compo-

nent may not have a property that we desire of it when placed in a general environment. How-

ever, when placed in the context of the rest of the system, then it does display the property.

See [3] for some discussion of the issues involved in this type of reasoning.

For tableau-based methods, a number of approaches have been suggested. Andersen et al.

have proposed a proof system for determining the whether processes of a general process alge-

bra [5] satisfy a formula. They show that a set of 39 inference rules is sound, and – for a class

of finite-state systems – is complete. Although this is an important contribution, it is difficult

to assess the impact of this work without substantive examples. Furthermore, to be practical I

believe the proof system needs some form of mechanical assistance.

In related work, Berezine has proposed two model checking algorithms for fragments of

the �-calculus [11] (here model checking asks whether p j= � — does the process p satisfy �).

Both methods can be used to verify problems of the form p�q j= �, where p�q represents the

composition of processes p and q. The first takes the problem and constructs a formula �p such

that q j= �p iff p� q j= �. The second constructs two formulas �p and �q such that p� q j= �

iff q j= �p and p j= �q . As the work is preliminary, it is difficult to assess the applicability and

effectiveness of this approach.

Compositional techniques have been proposed for symbolic model checking. Clarke et al.

have proposed a method for systems of concurrent processes [40]. To model check PkE j= �

may not be computationally feasible (whereP represents a process of interest, andE represents
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the environment). They show how an interfaceprocess, A, can be constructed such that under

certain conditionsPkE j= � ifPkA j= �. The point of this is that the state graph ofPkA can be

considerably smaller that of PkE. Although this method has theoretical interest and there are

examples of systems for which it works, it has not been established how applicable this method

is, and how easy (in terms of human and computation cost) it is to establish the conditions for

correct application.

Another approach to compositional reasoning — modular verification — is based on defin-

ing a preorder relation,�, between models [72, 95]. This preorder is based on a simulation rela-

tionship between the models and has the property that ifM1 �M2 and M2 j= � then M1 j= �.

Suppose we wish to show that a process M when placed in its environment satisfies a property

�. While M may not in general satisfy �, it may satisfy it whenever its environment satisfies

another property  . Given the formula  , there exists a ‘tableau’ M which is the strongest

element in the preorder which satisfies  . If E � M and MkM j= �, then by the property

of the preorder, MkE j= �. The verification therefore includes proving the simulation relation

and performing model checking. Both of these steps are automatic, using symbolic algorithms.

This method is only applicable to finite state systems.

Aziz et al. propose a compositional method dependent on the formula being checked [6].

The model is represented as a composition of state machines. Given a formula to be checked,

an equivalence relation is computed for each machine which preserves the truth of the formula.

Using these equivalence relations, quotient machines are constructed and the composition of

these machines computed. This composition will have a smaller state space than the original

composition and can be used to determined the correctness of the formula.

Other compositional approaches exist too. Some of these focus on the question of the re-

finement of a specification into an implementation. They tend to use hand proofs. Examples of

other approaches include [3, 89, 93].
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2.6 Abstraction

The idea behind abstraction is that instead of verifying property f of modelM , we verify prop-

erty fA of modelMA and the answer we get helps us answer the original problem. The system

MA is an abstraction of the system M .

One possibility is for the abstractionMA to be equivalent (e.g. bisimilar) toM . This some-

times leads to performance advantages if the state space of MA is smaller than M , but usually

this type of abstraction is used in model comparison (e.g. as in [74]).

Typically, the behaviour of an abstraction is not equivalent to the underlying model. The ab-

stractions are conservativein thatMA satisfies fA implies thatM satisfies f (but not necessarily

the converse). Some examples of abstraction methods are [50, 70, 83, 95].

In hardware verification, abstraction is particularly needed in dealing with the data path of

circuits. A drawback of abstraction is that it takes effort to both come up with the suitable ab-

straction (see [37, 123]) and prove that the abstraction is conservative. For an example of this

type of proof see [28].

Clarke et al. define abstractions and approximations [39]. They show how an approximation

can be abstracted from the program text without having to construct the model of the system.

They provide a number of possible abstractions: congruence modulo an integer (the use of the

Chinese remainder theorem); representation by logarithm; single-bit and product abstraction;

and symbolic abstraction. They show how this is used on a number of examples.

2.7 Discussion

Although equivalence checking is also attractive, this thesis explores one model checking be-

cause of its success in verifying large state spaces. Moreover, in some situations it is not appro-

priate or possible to have a formal model to compare an implementation against (although work

such as [130] offers some ideas in how such a model could be built from a set of properties).
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Theorem provers and model checkers both have strong adherents because both methods

have had successes. However, they both have weaknesses. Automatic verification techniques

have the advantage of being automated, but have limitations on the size of the systems that they

can deal with, and theorem proving methods, while very powerful, are still computationally in-

tensive and require a great deal of skill. Work such as [77, 84, 93, 117] among others shows

that there is much to be gained from combining the approaches.

The vision adopted in this research is that symbolic model checking is used to prove low-

level properties of the system which would be very tedious for the theorem prover, while the

theorem prover — partly automated — is used to prove higher-level properties.

Efficient model checking is very important. Although tableau-based methods are powerful

and attractive in some situations, BDD-based methods are more appropriate for finite state sys-

tems, especially VLSI circuits. Although progress has been made, much work remains to be

done to improve performance by examining issues such as abstraction, composition and meth-

ods for state and transition relation representation.

There are many different criteria for evaluating verification methods, depending on appli-

cation and setting (for some discussion of this, see [119]). Three criteria for evaluating the ap-

proaches discussed above are:

1. Range of application;

2. Performance;

3. Degree of automation/ease of use.

For a fuller discussion of the use of verification methods in industry, see [119].

A problem with this area is that because verification is very difficult, methods tend to be

suited for particular applications. Often it is difficult to compare approaches because they solve

different problems. The types of properties to be checked for and the way in which the model

is represented are critical. For example, verifying multiplier circuitry modelled at the switch
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level where timing is critical is a very different proposition to dealing with a very high level

description of an algorithm where timing is not an issue.

Furthermore, because many of these problems are so difficult (i.e. are NP-hard) analytic

categorisations of different algorithms are not always very useful. Empirical results are also

difficult to analyse since verifications are run with systems on different hardware architectures

and written in different languages. Particularly difficult to measure is how easy the verification

method is to use (how automatic is an automatic verification method) for different classes of

user.

Many examples in the literature give a few examples but fail to give convincing evidence

that the method will work on a larger class of problems.

All of this is exacerbated by a lack of published empirical results. Work with detailed perfor-

mance figures is available (such as [26]) but important theoretical contributions such as [5, 72]

come with no performance results and only small examples to illustrate the applicability of the

method.

The importance of gaining more experimental results has been recognised ([26] is a good ex-

ample), and the IFIP working group on hardware verification has recently established a bench-

mark suite to help facilitate comparative work [91]. Chapter 7 presents some experimental data

in order to evaluate the methods proposed in this thesis.



Chapter 3

The Temporal Logic TL

This chapter introduces and defines the quaternary temporal logic at the core of the research.

Section 3.1 describes the model over which formulas of the logic are interpreted: a complete

lattice is used to represent the set of instantaneous states, and a monotonic next state function is

used to represent system behaviour. This gives a way of formally describing an implementation

of a system such as a VLSI design. Section 3.2 defines Q, a quaternary logic, and proves ele-

mentary properties of this logic. UsingQ as a base, the quaternary temporal logic TL is defined

in Section 3.3. The syntax of TL formulas is given; the truth of these formulas is defined with

respect to sequences of states of the model. TL gives a way of describing intended behaviour.

The primary application of the theory presented in this thesis is for circuit models. For con-

venience, and as these models have useful properties, it is appropriate to specialise the temporal

logic for circuit models. This is discussed in Section 3.4.

A critical question is whether the model satisfies the intended behaviour. Section 3.5 is a

precursor for the discussion of this question in Chapter 4 by presenting alternative semantics

for TL; these semantics illustrate the idea on which the model checking approach of Chapter 4

is based.

3.1 The Model Structure

The model structure(hS; v i;R;Y) represents the system under consideration.

41
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� S , a complete lattice under the information ordering v , represents the state space. Let

X be the least element in S . (When S = Cn, then X = Un.)

� R � S , the set of realisable states, represents those states which correspond to states

the system could actually attain — S � R are the ‘inconsistent’ states, which arise as

artifacts of the verification process. Which states are realisable and which are inconsistent

is entirely up to the intuition of the modeller; the entire state space could be realisable, or

only part of it.

Verification conditions will be of the form: do sequences that satisfy g also satisfy h?

Distinguishing unrealisable behaviour from realisable behaviour allows the detection of

cases where verification conditions are vacuously satisfied: if it is the case that no se-

quences with only realisable states satisfies g then the verification condition may indeed

by satisfied. However, it is likely that either the specification or implementation are wrong.

On the other hand, it may be that for all sequences of realisable states the verification

conditions are satisfied, but that some sequences with unrealisable behaviour satisfy g

but do not satisfy h. If we consider the set of all sequences, the verification condition

will fail; if we consider only the sequences of realisable states the verification conditions

succeed.

Thus, the concept of realisability allows the modeller to deal with inconsistent informa-

tion in a sensible way: detecting vacuous results and ignoring degenerate cases.

There is a technical requirement: R must be downward closed, so that if x 2 R, and

y v x then y 2 R. This makes computation much easier and has a sound intuitive basis.

Intuitively, if a state is not realisable, it is because it is ‘inconsistent’; any state above it

in the information ordering must be even more ‘inconsistent’ and thus also not realisable.

Conversely, if a state is ‘consistent’, then a state below it in the information ordering will
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Figure 3.1: Inverter Circuit

also be ‘consistent’.

� Y : S ! S is a monotonic next state function: if sv t then Y(s) vY(t).

Although the next state function is inherently deterministic, the partial-order structure of

the state space can model non-determinism to some extent. A useful analogy here is that

a non-deterministic finite state machine can be modelled by a deterministic one — in the

deterministic machine, a state represents a set of states of the non-deterministic machine.

In the same way, in our partial-order setting, a state represents all the states above it in

the partial order. By embedding a flat,1 non-deterministic model in a lattice, the model

becomes deterministic. The next state function Y can be thought of as a representation

of the next state relation

f(s; t) 2 S � S : Y(s)v tg:

Therefore, although technically we deal with a deterministic system, the deterministic

system models non-deterministic behaviour.

Example

For synchronous circuit models, the most important way in which non-determinism is used is

to model input non-determinism, that is the non-deterministic behaviour of inputs of a circuit.

One way of modelling the fact that inputs of the circuit are controlled by the environment, not by

1A set without any structure.



Chapter 3. The Temporal Logic TL 44

the circuit, is to have a non-deterministic next state relation. For example, consider the simple

inverter circuit of Figure 3.1.

If the model structure uses a flat state space, the state space and next state relation shown

in Figure 3.2 are likely candidates for the model structure. For the next state relation, for each

row there is a transition from the state in the first column to each state in the second column.

f(L; L); (L;H); (H; L); (H;H)g

(a) State space

From To
(L; L) (L;H); (H;H)
(L;H) (L;H); (H;H)

(H; L) (L; L); (H; L)
(H;H) (L; L); (H; L)

(b) Next state relation

Figure 3.2: Inverter Model Structure — Flat State Space

If a partial order state space is used, one way of constructing the model structure is shown in

Figure 3.3. Figure 3.3(a) shows the state space, and Figure 3.3(b) gives the next state function.

A c entry in the table means that this row holds for all c 2 C.

(U;U)
PP

PP
@@����

��
(L;U) (U; L)(U;H)(H;U)
��
�
HH

H
��
�
HH

H
��
�
HH

H
(L; L) (L;H)(H; L)(H;H)
��
�
HH

H
��
�
HH

H
��
�
HH

H
(L;Z) (Z; L)(Z;H)(H;Z)

(Z;Z)
���� ��@@
PPPP

(a) State space

From To
(Z; c) (U;Z)

(L; c) (U;H)
(H; c) (U; L)

(U; c) (U;U)

(b) Next state function

Figure 3.3: Lattice-based Model Structure
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Branching time versus linear time

One of the key issues of temporal logics is whether the logic is linear time or branching time.

Since the next state function of the model is deterministic, and since in practice all temporal

formulas used are finite, the question of whether the logic used is linear or branching time is

rather a fine point. Nevertheless, as trajectory evaluation has been described as a linear time

approach [26, p. 403], and as non-determinism can be represented by the model structure, the

topic should be discussed briefly.

‘Logically the difference between a linear and a branching time operator resides with the

possibility of path switching : : : ’ [120]. The model structure proposed here deals with non-

determinism by merging paths where necessary. If in the flat model structure there are non-

deterministic transitions from state s to states t1; : : : ; tj , in the lattice model structure there is

a state t, such that tv ti for i = 1; : : : ; j, and a single deterministic transition from s to t.

Consider the non-deterministic transition diagram shown in Figure 3.4. The difference between

linear time and branching time semantics is nicely illustrated here. Suppose an instantaneous

property g is true in states s1 and s3 and false in all other states. With a linear time semantics,

we can express the property that in all runs of the system, there exists a state from which time all

states in the run have the property g. This cannot be expressed in a branching time semantics:

for example, in the run s0s3s3s3 : : : , a branching time semantics always detects the possibility

of path-switching and takes into account the potential of a transition from s3 to s2.

Using a lattice structure, instead of using the set S = fs0; : : : ; s3g as the state space, we use

a subset of the power set of S . The state space shown in Figure 3.4 is embedded in the lattice

state space shown in Figure 3.5(a) (here, the partial order is shown by dotted lines). The next

state relation of Figure 3.4 is replaced with the next state function shown in Figure 3.5(b) (note,

only states reachable from s0 are shown in this transition diagram). Note how the two non-

deterministic transitions from s0 to s1 and s3 in Figure 3.4 are merged into one deterministic
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Figure 3.4: Non-deterministic state relation

transition from s0 to s4 shown in Figure 3.5(b).

fg

fs0g fs1g fs2g fs3g

fs1; s3g fs2; s3g

fs1; s2; s3g

fs0; s1; s2; s3g

(a) Partial order

fs0g

?
fs1; s3g

?
fs1; s2; s3g

� �

	?

(b) Transition function

Figure 3.5: Lattice State Space and Transition Function

By using the model structure adopted here, non-deterministic paths that exist in a flat model

structure are merged, losing information in the process. It is possible to ask the question whether

in all runs of the system property g holds; however, the answer returned will be ‘unknown.’ So,
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it would not be accurate to characterise the logic proposed here as either linear time or branch-

ing time, since the distinction between the two is blurred. As the expressiveness of the logic

and the type of non-determinism used in models is limited compared to many other verification

approaches, this question of branching versus linear time semantics is not nearly as important

as in other contexts.

In the inverter example above, consider the sequence � = (L;H)(U;H) : : : in the partial

order model. This represents both of the sequences

(L;H)(H;H) : : :

(L;H)(L;H) : : : :

in the flat model structure. Proving a property of � will take into account the branching structure

at each state in the sequence: but it does so in a trivial way by considering (at the same time)

both possible values of the input node of the inverter.

3.2 The Quaternary LogicQ

The four values ofQ, the quaternary propositional logic used as the basis of the temporal logic,

represent truth, falsity, undefined (or unknown) and overdefined (or inconsistent). Such a logic

was proposed by Belnap [10], and has since been elaborated upon and different application areas

discussed in a number of other works [59, 125]. This section first gives some mathematical

background, based on [58, 113], and then definitions are given and justified.

A bilattice is a set together with two partial orders, � and�, such that the set is a complete

lattice with respect to both partial orders. A bilattice is distributiveif for both partial orders the

meet distributes over the join and vice-versa. A bilattice is interlacedif the meets and joins of

both partial orders are monotonic with respect to the other partial order.

In our application domain, we are interested in the interlaced bilattice

Q = f?; f ; t;>g
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where the partial orders are shown in Figure 3.6. f and t represent the boolean values false and

true, ? represents an unknown value, and > represents an inconsistent value. B denotes the

set ff ; tg (so B � Q).

The partial order � represents an information ordering (on the truth domain), and the partial

order� represents a truth ordering. (Note, the ordering v is used for comparing statesand the

ordering � is used to compare truth values). It is very important to emphasise at this point that

differentlattices are used to represent truth information and state information.

?

>

f t

@
@

�
�

�
�

@
@

-

6

�

�

Figure 3.6: The BilatticeQ

Informally, the information ordering indicates how much information the truth value con-

tains: the minimal element ? contains no truth information; the mutually incommensurable

elements f and t contain sufficient information to determine truth exactly; and the maximal el-

ement > contains inconsistent truth information. The truth ordering indicates how true a value

is. The minimum element in the ordering is f (without question not true); and the maximum el-

ement is t (without question true). The two elements ? and > are intermediate in the ordering

— in the first case, the lack of information places it between f and t, and in the second case,

inconsistent information does.

Formally, the partial orders� and � are relations onQ (i.e., subsets ofQ�Q). It is useful

to consider the relations as mappings from pairs of elements to a truth domain (if two elements

are ordered by the relation we get a true value, if not a false value). Informally, therefore, we

can consider the partial orders as mappings fromQ�Q to B.



Chapter 3. The Temporal Logic TL 49

For representing and operating onQ as a set of truth values, there are natural definitions for

negation, conjunction and disjunction, namely the weak negation operation of the bilattice and

the meet and join of theQ with respect to the truth ordering [58].

These definitions are shown in Table 3.1, and have the following pleasant properties, which

makes it suitable for model-checking partially-ordered state spaces.

� The definitions are consistent with the definitions of conjunction, disjunction and nega-

tion on boolean values.

� These operations have their natural distributive laws, and also obey De Morgan’s laws

(so, the definition of disjunction was redundant).

� Efficiency of implementation. The quaternary logic is represented by a dual-rail encod-

ing, i.e. a value inQ is represented by a pair of boolean values, where:

– ?= (F;F ),

– f = (F; T ),

– t = (T;F ),

– > = (T; T ).

If a is represented by the pair (a1; a2) and b by the pair (b1; b2) then a ^ b is represented

by the pair (a1 ^ b1; a2 _ b2), a_ b by the pair (a1_ b1; a2^ b2) and :a = (a2; a1). These

operations onQ can be implemented as one or two boolean operations.

^ ? f t > _ ? f t > :
? ? f ? f ? ? ? t t ? ?
f f f f f f ? f t > f t
t ? f t > t t t t t t f
> f f > > > t > t > > >

Table 3.1: Conjunction, Disjunction and Negation Operators forQ
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Implication,), is defined as a derived operator a) b � :a _ b.

There is an intuitive explanation of the dual-rail encoding and the implementation of the

operators. If q is encoded by the pair (a; b), a is evidence for the truth of q, and b is evidence

againstq. To compute q1 ^ q2, we conjunct the evidence for q1 and q2 and take the disjunction

of the evidence against. The computation of q1 _ q2 is symmetric. And if a is the evidence for

q and b the evidence against q, then b is the evidence for :q and a is the evidence against :q.

However nice this intuition, the definition of Q is not without problem. In the context of a

temporal logic, it is hard to justify the definition that >^?= f . Similarly, since >_ ?= t, if

t = q1_ q2 it is not necessarily the case that either q1 or q2 is t. Nevertheless it is the ‘classical’

definition, and is convenient because the dual-rail encoding is efficient. Other definitions are

possible too (for example, defining the operations so that if > is an operand, the result of the

operation must be > too) and might simplify some of the proofs in later sections and chapters;

the particular definition adopted in this thesis is not fundamental.

The following properties of Q are used in subsequent proofs. The first lemma is a conse-

quence of the property that negating a value does not increase the information available.

Lemma 3.1.

1. If q 6= :q, then q 6� :q.

2. If q1 � q2, then :q1 � :q2.

Proof.

1. If q 2 f?;>g, then q = :q.

If q = t, then :q = f : t 6� f . Similarly, f 6� t.

2. (a) If q1 =?, :q1 =?. ? � q for all q.

(b) If q1 = t, then :q1 = f and q2 2 ft;>g.

Therefore, :q1 � :q2

(c) Similarly, if q1 = f , :q1 � :q2
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(d) If q1 = >, then q1 = :q1 = q2 = :q2.

Result follows by reflexivity of partial order.

The second lemma extracts some trivial properties ofQ from Table 3.1; these are useful when

trying to deduce values of sub-formulas from values of formulas.

Lemma 3.2.

1. If t� q1 _ q2, then t� qi for at least one of i = 1; 2.

2. If t = q1 ^ q2, then t = qi for both of i = 1; 2.

If t� q1 ^ q2, then t� qi for both of i = 1; 2.

3. If f � q1 ^ q2, then f � qi for at least one of i = 1; 2.

4. If f = q1 _ q2, then f = qi for both of i = 1; 2.

If f � q1 _ q2, then f � qi for both of i = 1; 2.

Proof.

Consider Table 3.1.

1. q1 = t or q2 = t, or q1 =? and q2 = >, or q1 = > and q2 =?.

2. Only when q1 = q2 = t is q1 ^ q2 = t.

Only for the four bottom, right entries of the table is q1 ^ q2 � t.

3. q1 = f or q2 = f ; or q1 =? or q2 = >; or q1 = > or q2 =?

4. Only when q1 = q2 = f is q1 _ q2 = f .

Only for the four upper, left entries of the table is f � q1 _ q2.
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3.3 An Extended Temporal Logic

The propositional logicQ is used as the base for the temporal logic TL. This section first presents

the scalar version of TL, the fragment of TL not containing variables, and then presents the sym-

bolic version of TL, which contains variables.

3.3.1 Scalar Version of TL

Given a model structure (hS; v i;R;Y), aQ-predicate overS is a function mapping fromS to

the bilattice Q. A Q-predicate, p is monotonic if sv t implies that p(s) � p(t) (monotonicity

is defined with respect to the information ordering ofQ). AQ-predicate is a generalised notion

of predicate, and to simplify notation, the term ‘predicate’ is used in the rest of this discussion.

Example 3.1.

Take, as an example, the state space S given in Figure 1.1 on page 9. Define g; h : S ! Q by:

g(s) =

8>>><
>>>:
? when s = s0

f when s 2 fs1; s2; s4; s5; s6g

t when s 2 fs3; s7; s8g

> when s = s9

and h(s) =

8>>>>>>>>><
>>>>>>>>>:

? when s 2 fs0; s2; s6g

f when s 2 fs1; s4; s5g

t when s 2 fs3; s7; s8g

> when s = s9

Figure 3.7 depicts these definitions graphically. g and h areQ-predicates. The same state space

and functions will be used in subsequent examples.

Note that in the example, s3 is the weakest state for which g(s) = t. In a sense, s3 partially

characterises g, and we use this idea as a building block for characterising predicates, motivat-

ing the next definition. Given a predicate p, we are interested in the pairs (sq; q) where sq is a

weakest state for which p(s) = q.
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Figure 3.7: Definition of g and h

Definition 3.1.

(sq; q) 2 S �Q is a defining pairfor a predicate g if g(sq) = q and 8s 2 S; g(s) = q implies

that sq v s.

In Example 3.1 (s3; t) is a defining pair for g. If g(s) = t then s3 v s. However, there is no

defining pair (sf ; f) for g since there is no unique weakest element in S for which g takes on

the value f . On the other hand (s1; f) is a defining pair for h.

Definition 3.2.

If g : S ! Q then D(g) = f(sq; q) 2 S � Q : (sq; q) is a defining pair for gg, is the defining

setof g.

Using this definition it is easy to compute the defining sets of the functions g and h that were

defined in Example 3.1.

D(g) = f(s0;?); (s3; t); (s9;>)g

D(h) = f(s0;?); (s1; f); (s3; t); (s9;>)g

If a monotonic predicate has a defining pair for every element in its range, then its defin-

ing set uniquely characterises it (see Lemma 3.3 below). Such monotonic predicates are called

simple predicates and form the basis of our temporal logic. The following notation is used in
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the next definition and elsewhere in the thesis: if g : A! B is a function then g(A) = fg(a) :

a 2 Ag is the rangeof g.

Definition 3.3.

A monotone predicate g : S ! Q is simpleif 8q 2 g(S);9(sq; q) 2 D(g).

In Example 3.1, h is simple since every element in the range of h has a defining pair. On the

other hand, g is not simple since there is no defining pair (sf ; f). Informally, g is not simple

since we cannot use a single element of S to characterise the values for which g(s) = f .

Definition 3.4.

Some of the important simple predicates are the constant predicates. For each q 2 Q, the con-

stant predicate Cq(s) = q has defining set D(Cq) = f(X; q)g and so is simple.

Note that simple predicates need not be surjective; the only requirement is that if q is in the range

of a simple predicate, there is a unique weakest element is S for which the predicate attains the

value q. A trivial result used a number of times here is that the bottom element of S must be

one of the defining values for every predicate: this has the consequence that every element in

S is ordered (by being at least as large as) with respect to one of the defining values of each

monotonic predicate.

Theorem 3.3.

If g; h : S ! Q are simple, then D(g) = D(h) implies that 8s 2 S , g(s) = h(s).

Proof. See Section A.1
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This result is used later to show the generality of the definitions.

Definition 3.5.

Let G be the set of simple predicates over S .

We now use G to construct the temporal logic.

Definition 3.6 (The Scalar Extended Logic — TL).

The set of scalar TL formulas is defined by the following abstract syntax

TL ::= G j TL ^̂̂TL j :::TL j NextTL j TL UntilTL

The semantics of a formula is given by the satisfaction relation Sat(Sat : S! � TL ! Q).

Given a sequence � and a TL formula g, Satreturns the degree to which � satisfies g.

Suppose g and h are TL formulas. Informally, if g is simple, a sequence satisfies it if g holds

of the initial state of the sequence. Conjunction has a natural definition. A sequence satisfies

:::g if it doesn’t satisfy g. A sequence satisfies Next g if the sequence obtained by removing the

first element of the sequence satisfies g. A sequence satisfies g Untilh if there is a k such that

the first k� 1 suffixes of the sequence satisfy g and the k-th suffix satisfies h.2 Note that in the

definitions below, ^̂̂ and ::: (bold face symbols) are operations on TL formulas, whereas ^ and

: are operations onQ.

Comment on notation: Sequences are ubiquitous throughout this thesis. There is extensive

need to refer to suffixes and individual elements of these sequences. Moreover, individual ele-

ments of sequences can be vectors, and on top of this, it is often useful to talk about different

sequences. It is plausible to use subscripts to describe all these, but, unfortunately, there is also

often a need to refer to these different concepts in close proximity to each other and so there is

2In the special case of g and h being simple, this is equivalent to saying that g is true of the first k� 1 states in
the sequence, and h is true of the k-th state.
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great opportunity for confusion. To avoid this confusion, a slightly more cumbersome notation

is used than might otherwise be desirable. This notation is summarised below.

1. Lower case Greek letters, �; �; : : : are used to refer to sequences.

2. If � = s0s1s2 : : : , then �i denotes si.

3. If � = s0s1s2 : : : is a sequence, ��i refers to the sequence sisi+1 : : : , which is a suffix of

�.

4. Superscripts are used to refer to different sequences, e.g. �1, �2. Although this conflicts

with the usual use of superscript in mathematical text, there is little chance of confusion

since ‘squaring’ states is not defined.

5. If s is a state which is a vector of elements, then s[k] refers to the k-th component of s.

For example, �3�i refers to the suffix of the sequence �3 obtained by removing first i elements

of �3. (�3�i)0[k] = �
3
i
[k] is the k-th component of the i-th element in the sequence �3.

Definition 3.7 (Semantics of TL).

Let � = s0s1s2 : : : 2 S
!:

1. If g 2 G then Sat(�; g) = g(s0).

2. Sat(�; g ^̂̂ h) = Sat(�; g) ^ Sat(�; h)

3. Sat(�;:::g) = :Sat(�; g)

4. Sat(�; Nextg) = Sat(��1; g)

5. Sat(�; g Untilh) =
1
_
i=0

((((
i�1
^
j=0

Sat(��j ; g)) ^ Sat(��i; h))))

Note that this is the strong version of the until operator: g need never hold, andhmust eventually

hold. The until operator is defined as an infinite disjunction of conjunctions. That this is well

defined comes fromQ being a complete lattice with respect to the truth ordering. Recall that ^
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is defined as the meet of the truth ordering, and _ is defined as the join. Moreover, in a complete

lattice, all sets have a meet and join. Therefore each conjunction is well defined, and thus the

disjunction of the conjunctions is too. An intuition to support that the definition is well behaved

is that the sequence ak =
k

_
i=0

((((
i�1
^
j=0

Sat(��j ; g)) ^ Sat(��i; h)))) is an increasing sequence inQ.

As Q is finite and bounded above, the sequence (ak) has a limit.

Using these operators we can define other operators as shorthand.

Definition 3.8 (Other operators).

Some that we shall use are:–

� Disjunction: g ___ h = :::((:::g) ^̂̂(:::h)).

� Implication: g ) h = (:::g) ___ h.

� Sometime:Existsg = t Untilg. (Some suffix of the sequence satisfies g.)

� Always:Globalg = :::(Exists:::g). (No suffix of the sequence does not satisfy g, hence

all must satisfy g).

� Weak until:g UntilWh = (g Untilh) ___ (Globalg). (This doesn’t demand that h ever

be satisfied.)

Using the operators defined above, other operators can be defined, including bounded versions

of Global , Exists , UntilW and Until and a periodic operator Periodic that can be used

to test the state of the system periodically. Other operators — for example, periodic versions

of the until operators etc. — are possible too. Two very useful derived operators are the gener-

alised version of Next and the bounded always operator.

� The generalised Next operator is defined by:

Next
0
g = g

Next
k+1

g = Next (Nextkg)
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� The bounded always operator, defined by

Global [(a0; b0); : : : ; (an; bn)] g =
n

^̂̂
j=0

(
bj

^̂̂
k=aj

Next
k
g);

asks whether g holds between aj and bj for j = 0; : : : ; n.

If q = Sat(�; g) then we say that � satisfies g with truth value q, and if q � Sat(�; g), then we

say that � satisfies g with truth value at least q.

One of the key properties of the satisfaction relation is that it is monotonic.

Lemma 3.4.

The satisfaction relation is monotonic: for all �1; �2 2 S!, if q = Sat(�1; g) and �1 v �2, then

q � Sat(�2; g)

Proof. If g is simple, this follows since g is monotonic. Since the operators ofQ (conjunction,

disjunction and negation) are all monotonic with respect to their operands, the monotonicity of

TL follows by structural induction. Again, for the until operator this relies on Q being a com-

plete lattice.

Although the basis of the logic is G, the set of simple predicates, Theorem 3.5 shows that all

monotonic predicates can be expressed in TL. If g is a TL formula not containing any temporal

operators, then its semantics with respect to a sequence is determined solely by the value of

the first element of the sequence. This implies that we can consider such a g to be a predicate

from S ! Q. Formally, overloading the symbol g, we can define g : S ! Q by g(s) =

Sat(sXX : : : ; g)
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Theorem 3.5.

For all monotonic predicates p : S ! Q, 9p0 2 TL such that 8s 2 S , p(s) = p
0(s).

Proof. See Section A.1.

Consider the functions defined in Example 3.1, and let

h
0(s) =

8>>><
>>>:
? when s 2 fs0; s1; s4; s5g

f when s 2 fs2; s6g

t when s 2 fs3; s7; s8g

> when s = s9

D(h0) = f(s0;?); (s2; f); (s3; t); (s9;>)g and so h0 is simple. Note that g = h ^̂̂ h0. So, al-

though g is not simple, it can be expressed as the conjunction of two simple predicates.

The depthof a TL formula is a measure of how far in the future it describes behaviour of

sequences; it shows how deeply nested next state operators are. Formally, if g is a TL formula,

its depth, d(g) is defined by:

d(g) = 0 for g 2 G d(g1 ^̂̂ g2) = maxfg1; g2g d(:::g) = d(g)

d(Next g) = d(g) + 1 d(g1 Untilg2) =1

3.3.2 Some Laws of TL

This section presents some of the algebraic laws of TL. These are used extensively in proofs

and are often used in practical situations. First, the equivalence of two TL formulas is defined.

Definition 3.9.

If g; h 2 TL, then g � h if 8� 2 S!;Sat(�; g1) = Sat(�; g2).

TL obeys most of the laws of a boolean algebra (Cf and Ct, two of the constant simple pred-

icates, are identities under disjunction and conjunction respectively). However, the inverse or
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complementary laws do not hold (since the law of the excluded middle does not hold). More-

over, if we do consider TL as an algebra, it has a more complex structure than a boolean algebra.

Lemma 3.6 (Some algebraic laws of TL).

1. Commutativity:

g1 ^̂̂ g2 � g2 ^̂̂ g1; g1 ___ g2 � g2 ___ g1.

2. Associativity:

(g1 ___ g2) ___ g3 � g1 ___ (g2 ___ g3); (g1 ^̂̂ g2) ^̂̂ g3 � g1 ^̂̂(g2 ^̂̂ g3)

3. De Morgan’s Law:

g1 ^̂̂ g2 � :::(:::g1 ___ :::g2); g1 ___ g2 � :::(:::g1 ^̂̂ :::g2).

4. Distributivity of ^̂̂ and ___ :

h ^̂̂(g1 ___ g2) � (h ^̂̂ g1) ___ (h ^̂̂ g2); h ___ (g1 ^̂̂ g2) � (h ___ g1) ^̂̂(h ___ g2)

5. Distributivity ofNext :

Next (g1 ^̂̂ g2) � (Next g1) ^̂̂(Next g2); Next (g1 ___ g2) � (Nextg1) ___ (Next g2).

6. Identity:

g ___ Cf � g; g ^̂̂ Ct � g.

7. Double negation:

::::::g � g

Proof. See Section A.1.3.

3.3.3 Symbolic Version

Describing the properties of a system explicitly by a set of scalar formulas of TL would be far

too tedious. Symbolic formulas allow a concise representation of a large set of scalar formulas.

A symbolic formula represents the set of all possible instantiations of that symbolic formula.

TL is extended to symbolic domains by allowing boolean variables to appear in the formu-

las. Let V be a set of variable names fv1; : : : ; vng. It would be possible to define the symbolic
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version of the logic by introducing quaternary variables. However, in practice, it is boolean vari-

ables which are needed, and introducing only boolean variables means that simpler and more

efficient implementations of the logic can be accomplished. Furthermore, the effect of a qua-

ternary variable can be created by introducing a pair of boolean variables.

Definition 3.10 (The Extended Logic — TL).

The syntax of the set of symbolic TL formulas, _TL, is defined by:–

_
TL ::= G j V j _

TL ^̂̂ _
TL j _::: _

TL j _Next _
TL j _

TL
_Until _

TL

The derived operators are defined in a similar way to Definition 3.8. For convenience, where

there is little chance of confusion, the dots on _TL formulas are omitted.

The satisfaction relation is now determined by a sequence, a formula, and an interpreta-

tion of the variables. An interpretation, �, is a mapping from variables to the set of constant

predicates ff ; tg, Let � = f� : � : V ! ff ; tgg be the set of all interpretations. Given an

interpretation � of the variables, there is a natural, inductively defined interpretation of TL for-

mulas. For a given � 2 �, we extend the definition from V to all of TL by defining:

�(g) = g if g 2 G

�(:::g) = :::�(g)

�(g1 ^̂̂ g2) = �(g1) ^̂̂ �(g2)

�(Nextg) = Next�(g)

�(g1 Untilg2) = �(g1) Until�(g2)

This can be expressed syntactically: if �(vi) = bi, replace each occurrence of vi with bi, written

as �(g) = g[b1=v1; : : : ; bn=vn].



Chapter 3. The Temporal Logic TL 62

Given a sequence and a symbolic formula, the symbolic satisfaction relations, SATq, deter-

mine for which interpretations of variables the sequence satisfies the formula with which de-

gree of truth. For example, we may be interested in the interpretations of variables for which a

sequence satisfies a formula with truth value t, or the interpretations for which a sequence sat-

isfies a formula with truth value at least t. By being able to determine for which interpretations

a property holds with a given degree of truth, we are able to construct appropriate verification

conditions. The scalar satisfaction relation, Sat, is used in the definition of the symbolic rela-

tions.

Definition 3.11 (Satisfaction relations for _TL).

A number of satisfaction relations are defined.

� For q = f ; t;>,

SATq(�; g) = f� 2 � : q = Sat(�; �(g))g.

� For q = f ; t;>,

SATq"(�; g) = f� 2 � : q � Sat(�; �(g))g.

Note that if g is a (symbolic) formula and � an interpretation, then SATq(�; g) � �, while

Sat(�; �(g)) 2 Q. Informally,

� SAT>"(�; g) is the set of interpretations for which g and :g hold. Such results are unde-

sirable and verification algorithms should detect and flag them.

SAT>"(�; g) = SAT>(�; g).

� SATt(�; g) is the set of interpretations for which g is (sensibly) true.

SATt"(�; g) = SAT>(�; g) [ SATt(�; g).

� SATf (�; g) is the set of mappings for which g is (sensibly) false.

SATf"(�; g) = SAT>(�; g) [ SATf (�; g).
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Thus each satisfaction relation defines a set of interpretations for which a desired relation-

ship holds. Sets of interpretations can be represented efficiently using BDDs, as is discussed in

Chapter 6.

3.4 Circuit Models as State Spaces

In practice, the model-checking algorithms described in this thesis are applied to circuit models.

The state space for such a model represents the values which the nodes in the circuit take on, and

the next state function can be represented implicitly by symbolic simulation of the circuit. The

nodes in a circuit take on high (H) and low (L) voltage values. It is useful, both computationally

and mathematically, to allow nodes to take on unknown (U) and inconsistent or over-defined (Z)

values. The set C = fU; L;H;Zg forms the lattice defined in Figure 1.2 on page 10.

The special case of the state space being a cross-product of quaternary sets need be treated

no differently than the general case (when the state space is an arbitrary lattice) as all the above

definitions apply. However, it is convenient to establish some additional notation. Let S = Cn

for some n. Typically in this case R = fU; L;Hgn (node values can be unknown or have well-

defined values, but cannot be in an inconsistent state).

Let Gn be the smallest set with the following predicates:–

� The constant predicates: f ; t;?;> 2 Gn;

� 8i 2 f1; : : : ; ng; [i] 2 G.

Here [i] refers to the i-th component of the state space. A formula g is evaluated with respect to

a state by substituting for each [i] which appears in the formula the value of the i-th component

of the state. Formally,
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� [i](s) =

8>>><
>>>:
? when s[i] � U

f when s[i] � L

t when s[i] � H

> when s[i] � Z

� f(s) = f ;

� t(s) = t;

� ? (s) =?;

� >(s) = >;

Note that all members ofGn are simple and hence monotonic. The definition below of the TLn

is based on that of TL, replacing G with Gn. The set of scalar TLn formulas is defined by the

following abstract syntax:

TLn ::= Gn j TLn ^̂̂ TLn j :::TLn j NextTLn j TLn UntilTLn

The semantics of TLn is patterned on Definition 3.7, replacingGwithGn; this is reproduced

below for completeness.

Definition 3.12 (Semantics of TLn).

The semantics of TLn formulas is defined by the following:

1. If g 2 Gn then Sat(�; g) = g(s0);

2. Sat(�; g ^̂̂ h) = Sat(�; g) ^ Sat(�; h);

3. Sat(�;:::g) = :Sat(�; g);

4. Sat(�; Nextg) = Sat(��1; g);

5. Sat(�; g Untilh) =
1
_
i=0

((((
i�1
^
j=0

Sat(��j ; g)) ^ Sat(��i; h))))).
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These definitions are useful because in practice properties of interest are built up from the set of

predicates that say things about individual state components. Lemma 3.7 shows that restricting

the basis of TLn toGn is not a real restriction as any simple predicate can be constructed using

the operators such as conjunction.

Lemma 3.7 (Power of G).

If p is a simple predicate over Cn, then there is a predicate gp 2 TLn such that p � gp.

Proof. See Section A.1.

The combined impact of Theorem 3.5 and Lemma 3.7 is that the logic TLn is powerful enough

to describe all interesting (monotonic) state predicates overQ.

The definition of the symbolic version of TLn is exactly the same as the general definitions

(Definitions 3.10 and 3.11), substituting Gn forG.

The set of TLn formulas in which> does not syntactically appear is known as the realisable

fragmentof TLn. If g is a formula in the realisable fragment of TLn, then Sat(�; g) = > only if

there exists i; j such that �i[j] = Z. Thus, if g is a formula with this restriction, and Z does not

appear in � then SATt"(�; g) = SATt(�; g). This result is important since we are most interested

in the SATt relation. As shown in the next chapter, there is a good decision procedure for the

relation SATt": we check whether SATt"(�; g) = SATt(�; g), and thereby extend the decision

procedure to formulas in the realisable fragment of TLn to determine the SATt relation too.

Other Application Areas

Although Q is proposed here as the basis of a temporal logic, it may have other applications

in computer science. In a widely quoted and influential logic text, the White Knight says (the

quote is taken from an extract dealing with names and reference):
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‘It’s long,’ said the Knight, ‘but it’s very, verybeautiful. Everybody that hears me
sing it — either it brings tearsinto their eyes, or else —’

: : :

‘Or else it doesn’t you know : : : ’ — [31]

In his commentary on this, Heath says [79]: ‘An essentially vacuous claim, since it merely

sets forth the logical truism, p or not-p, embodied in the “law of the excluded middle.”’ In the

light of the preceding discussion, the White Knight’s claim, and particularly Heath’s critique

can be seen to be problematic. While it will be the case that hearing the White Knight sing the

song makes everyone cry or not cry, as computer scientists, we are interested in making predic-

tions about the behaviour of a system under study. Thus the analyses of the White Knight and

Heath are somewhat simplistic, and do not take into account lack of information or inconsistent

information which often occur when reasoning about the world.

A far more serious instance of the same error can be found in [51] where in The Beryl Coro-

net, Sherlock Holmes says: ‘It is an old maxim of mine that when you have excluded the im-

possible, whatever remains, however improbable, must be the truth.’ In this context, Holmes

is using logic to reason about a system that inherently has partial and inconsistent information.

Our knowledge about such a system must reflect this: the characterisation of propositions about

the world into ‘impossible’ and ‘truth’ is, as argued earlier, an inadequate logical framework for

reasoning. Given the influence of this work on an important branch of logic and deduction, it is

important to show the limits of a two-valued logic. And, the notion that simple characterisations

may not be appropriate was recognised in work contemporaneous with [51], in an approach that

is to be preferred: ‘Truth is rarely pure, and never simple’ [126].
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3.5 Alternative Definition of Semantics

Although in this chapter the semantics of TL formulas was given through the definition of the

satisfaction relations, there are alternative ways in which the semantics could be given.3 A

method that is useful to consider here because its underlying motivation leads to an effective

verification method defines the semantics by giving for each temporal logic formula the set of

sequences that satisfy it. For TL the same pattern could be used, adjusting for the fact that TL

is quaternary. Definition 3.13 suggests how this could be done for TL (based on [120, p. 523]).

Definition 3.13 (Alternative definition of semantics).

kgkt = f� : t = g(s0)g if g 2 G.

kg1 ^̂̂ g2kt = kg1kt \ kg2kt:

k:::gkt = kgkf :

kg1 Untilg2kt =
1
[
i=0
f� 2 ST : 8j : 0 � j < i; ��j 2 kg1kt and ��i 2 kg2ktg:

The definition of kgkq for values ofQ other than t is similar.

If this definition were used to give the semantics, then to ask whether � satisfies g with degree

q is to ask whether � 2 kgkq. Similar definitions could be given for satisfaction ‘with degree at

least q’. Practically speaking, this definition is not useful since these sets are so large that even

if only finite subsequences were considered (which is often reasonable to do) the sets would be

too large to compute and represent explicitly.

However, the partial order representation of the state space is extremely useful. Take as an

example simple predicates. If g is a simple predicate, in general, the set of sequences for which

Sat(�; g) = t will be too large to compute. However, we have seen that the defining set of

g, D(g), essentially captures this information: if, for example, (st; t) and (s>;>) are defining

pairs, and if � is an arbitrary sequence, then � 2 kgkt if st � �0 � s>.

3The semantics are the same; it is the way that the semantics is giventhat differs.
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In the same way as the defining sets of a simple predicates characterise the simple predicates,

there are analogous structures for other TL formulas that characterise them. And in the same

way the defining sets can be considered to give semantics to simple predicates when viewed as

TL formulas, these analogous structures give semantics to more complicated TL formulas, and

can therefore be used to test satisfaction of sequences. This is the subject of the next chapter.



Chapter 4

Symbolic Trajectory Evaluation

This chapter develops a model checking algorithm for TL. It is based on the idea raised in the

last part of Chapter 3 that formulas of TL can be characterised by the set of sequences or tra-

jectories which satisfy them.

Initially, only the scalar version of TL is examined. Extension to the symbolic case is straight-

forward; however, there is enough extra notation and detail to make an exposition of the scalar

case clearer, which overcomes the disadvantage of a little repetition to present the symbolic

case.

Let the model structure of the system beM = (hS; v i;R;Y). S! is the set of sequences

of the state space. The partial order on S is extended point-wise to sequences. Informally, the

trajectoriesare all the possible runs of the system; formally, a trajectory, �, is a sequence com-

patible with the next state function:

8i � 0;Y(�i)v �i+1:

Let ST be the set of trajectories and, RT = R! \ ST is the set of realisable trajectories.

RT represents those trajectories corresponding to real behaviours of a system. RT (m) =

f�0�1 : : : �m�1 : � 2 RT g is the set of prefixes ofRT of length m.

Section 4.1 explores the style of verification adopted; this introduces some useful notation

and definitions and guides the rest of this discussion. Section 4.2 shows that a formula of TL can

be characterised by the sets of minimal trajectories that satisfy it, and furthermore shows that

these sets can be used to accomplish verification. The computation of such sets is not directly

69
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possible, but Section 4.3 shows that computing approximations of the sets is feasible (and as

later experimental evidence will show, forms a good basis for practical verification). Finally,

Section 4.4 generalises the work to the full symbolic logic.

4.1 Verification with Symbolic Trajectory Evaluation

The style of verification used in symbolic trajectory evaluation (STE) is to ask questions of the

form:

Do all trajectories that satisfy g also satisfy h?

The formula g is known as the antecedent, and the formula h is known as the consequent.

‘Satisfy’ is a broad term — there are a number of satisfaction relations that can be used. Which

one matches our notion of correctness? There are a number of possible ways of modelling cor-

rectness, and the key issue is how to deal with inconsistent information. How correctness is

modelled depends on choices the verifier makes — although guided by technical considerations,

the verifier has considerable flexibility. There are two obvious ways to formalise the notion of

‘trajectory � (successfully) satisfies g’.

t = Sat(�; g) (4.1)

t� Sat(�; g) (4.2)

Relation (4.1) captures a more precise notion — successful satisfaction describes a situation

where inconsistency has not caused a predicate to be true of a trajectory. Intuitively, it is a better

model of satisfaction than Relation (4.2). However, the latter definition has some advantages:

it does capture some useful information; most importantly, as shown later, there is an efficient

model checking algorithm using Relation (4.2); and it is often practical to infer the former rela-

tion from the latter one. For this reason, we concentrate, for the moment, on the second choice.
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Corresponding to these two definitions, there are two ways of asserting correctness with

respect to a formula.

Definition 4.1.

g==�h if and only if 8� 2 RT ; t = Sat(�; g) implies that t = Sat(�; h).

and

Definition 4.2.

g==�h iff 8� 2 ST ; t� Sat(�; �(g)) implies that t� Sat(�; �(h)).

The first definition takes a very precise view of realisability. First, we only consider realisable

trajectories — if there are unrealisable trajectories with strange behaviour, then these are ig-

nored. Moreover, by this definition a sequence satisfying a formula with degree of truth greater

than t (i.e. with degree>) is undesirable. In practice, the model checking algorithm will check

in addition that there are some realisable trajectories which satisfy the antecedent (i.e. that the

verification assertion is not satisfied vacuously). I submit that this definition best captures the

notion of correctness.

The second definition takes a more relaxed view of inconsistent behaviour. We consider the

behaviour of all trajectories, whether realisable or not, and treat the truth values t and> as sat-

isfying the notion of correctness. Although, this definition is not as good a model of correctness

as the first, it has the advantage that there is an efficient verification method for it.

Therefore, for pragmatic reasons, we concentrate at first on Definition 4.2, which will be

central in the development of the next three sections. These sections show how an efficient

verification methodology for correctness assertions based on this definition can be developed.

The last part of Section 4.4 shows that for circuit models, this methodology can be used to infer

correctness assertions based on Definition 4.1.
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4.2 Minimal Sequences and Verification

This section first formalises the notion of the sets of minimal trajectories satisfying formulas,

and then shows how these sets can be used in verification.

The first definition is an auxiliary one: given a subset of a partially-ordered set, it is useful

to be able to determine the minimal elements of the set. If B is a subset of A, then b 2 B is a

minimal element of B if no other element in B is smaller than b (i.e. all elements of A smaller

than b do not lie in B).

Definition 4.3.

If A is a set, B � A, and v a partial order on A, then

minB = fb 2 B : if 9a 2 A 3 av b; either a = b or a 62 Bg:

Definition 4.4.

If g is a (scalar) TL formula, then min g is the set of minimal trajectories satisfying g, where

min g is defined by: min g = minf� 2 ST : t�Sat(�; g)g

Note that ifming � minh, then every trajectory that satisfies g also satisfies h. For suppose

� satisfies g: then there must exist �0 2 ming such that t� Sat(�0; g) and �0 v �; but since

min g � minh, �0 2 minh and hence t� Sat(�0; h); hence by monotonicity t� Sat(�; h).

This gives some indication that manipulating and comparing the sets of minimal trajectories

that satisfy formulas can be useful in verification.

Although we will be comparing sets of sequences, containment is too restrictive, motivating

a more general method of set comparison. The statement ‘every trajectory that satisfies g also

satisfies h’ implies that the requirements for g to hold are stricter than the requirements for h to

hold. Thus, if � is a minimal trajectory satisfying g, � must satisfy h. Since the requirements
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for g are stricter than the requirements on h, � need not be a minimaltrajectory satisfying h, but

there must be a minimal trajectory, �0, satisfying h where �0 v �. This is the intuition behind

the following definition, which defines a relation over P(S), the power set of S .

Definition 4.5.

If S is a lattice with partial order v and A;B � S , then

AvP B if 8b 2 B;9a 2 A such that av b.

To illustrate this definition, consider the example of Figure 4.1. AssumeA andB are subsets of

some partially ordered set, S . Note that in this example that both A and B are upward closed.

Although the definitions given here do not require this, we will be dealing with upward closed

sets.1 Figure 4.1(a) depicts A. Let Am = minA = f�; �; ; �g be the set of minimal elements

of A. Then A consists of all the elements above the dotted line. Similarly, Figure 4.1(b), de-

picts B. Let Bm = minB = f�; g be the set of minimal elements of B. Figure 4.1(c) is the

superposition of Figures 4.1(a) and (b).

Note thatAm vP Bm. For each element ofBm there is an element ofAm less than or equal

to it: � v � and  v .

Suppose A is the set of elements with property g, and that B is the set of elements with

property h. Then min g = Am and minh = Bm. By examining the figure it is easy to see

that all elements of S that have property h also have property g (h implies g). But, note that

minh 6� min g. However, it is the case that ming vP minh, which motivates exploring the

vP relation further.

1We will be manipulating sets of trajectories and sequences that satisfy formulas; that these are upward closed
follows from the monotonicity of the satisfaction relation (Lemma 3.4).
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Figure 4.1: The Preorder vP

Lemma 4.1.

If S is a lattice with partial order v , then vP is a preorder (i.e., it is reflexive and transitive).

Proof.

Reflexivity follows directly from the reflexivity of v .

Suppose that AvP B and B vP C , and let c 2 C .

(1) 9b 2 B 3 bv c B vP C: 8c 2 C; 9b 2 B 3 bv c

(2) 9a 2 A 3 av b AvP B: 8b 2 B; 9a 2 A 3 av b

(3) av c v is transitive

(4) AvP C Since c was arbitrary.

Note that if B � A, then AvP B. The following theorem shows the importance of the defini-

tion of vP .

Theorem 4.2.

If g and h are TL formulas, then g==�h if and only if minh vP min g.
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Proof.

By the definition of minimal sets, if t� Sat(�; g), there exists �0 2 min g with �0 v �.

g==�h () 8� 2 ST ; t� Sat(�; g) implies that t� Sat(�; h)

() 8�0 2 ming implies that t� Sat(�0; h)

() 8�0 2 ming implies 9�00 2 minh; with �00 v �

() minhvP min g

Although computing the minimal sets directly is often not practical, it is possible to find ap-

proximations of the minimal sets (they are approximations because they may contain some re-

dundant sequences). The next section shows how to construct two types of approximations to

the minimal sets. �t(h) is an approximation of the set of minimal sequencesthat satisfy h,

and T t(g) is an approximation of ming. The importance of these approximations are that (i)

�t(h)vP T
t(g) exactly when g==�h (an analogue of Theorem 4.2), and (ii) there is an effi-

cient method for computing these approximations, which we now turn to.

4.3 Scalar Trajectory Evaluation

The method of computing the approximations to the minimal sets of formulas is based on sym-

bolic trajectory evaluation (STE), a model checking algorithm for checking partially-ordered

state spaces. The original version of STE was first presented in [25] and a full description of

STE can be found in [116]. In these presentations, the algorithm is applied only to trajectory

formulas, a restricted, two-valued temporal logic. This chapter generalises earlier work in two

important respects.

1. It presents the theory for applying STE to the quaternary logic.

2. It presents the theory for the full class of TL. In particular it deals with disjunction and

negation.
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This section examines the scalar version of TL and shows how given a TL formula, a set of

sequences characterising the formula can be constructed. Recall the definition of defining pair

and defining set from Section 3.3.1. The defining set of a simple predicate characterises that

predicate; this can be used as a building block to find a characterisation of all temporal predi-

cates. By using the partial order representation, an approximation of the minimal sequences that

satisfy a formula can be used to characterise a formula. These sets are called defining sequence

sets. Practical experience with verification using STE has shown that there are many formulas

that have small defining sequence sets.

This section shows how to construct defining sequence sets using the defining pairs of sim-

ple predicates as the starting point. The defining sequence sets of a formula are a pair of sets

where the first set of the pair contains those sequences, �, for which t� Sat(�; g), and the sec-

ond set contains those sequences for which f � Sat(�; g). These sets are constructed using the

syntactic structure of TL formulas. If a formula is simple its defining sequence sets are con-

structed directly from the defining set of the formula. For compound formulas, these sets are

constructed by performing set manipulation described below.

As manipulating sets of sequences is very important, first we build up some notation for

manipulating and referring to such sets.

Definition 4.6 (Notation).

If A and B are subsets of a lattice L on which a partial order v is defined, then A q B =

fa t b : a 2 A; b 2 Bg. If g : L ! L, g(A) continues to represent the range of g, and

similarly, g(hA;Bi) = hg(A); g(B)i.

Note that we writeAqB rather thanAtB since althoughAqB is a least upper bound (with

respect to vP ) of A and B it is not the least upper-bound (this reflects the fact that vP is a

preorder not a partial order).
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The two fundamental operations used are join and union, and it is worth discussing how

they are used. First, if we know how to characterise sequences that satisfy g1 and those that

satisfy g2, how do we characterise sequences that satisfy g1 ^̂̂ g2? Let q 2 Q and suppose that

�
1 and �2 are the weakest sequences such that q � Sat(�i; gi). Let �J = �

1 t �2. Clearly,

q � Sat(�J ; g1 ^̂̂ g2). Moreover, suppose q �Sat(�0; g1 ^̂̂ g2), then it must be that q � Sat(�0; g1)

and q � Sat(�0; g2). Thus �1 v �0 and �2 v �0 since the �i are the weakest sequences such that

q � Sat(�i; gi). But, since �J = �
1 t �2, �J v �0. Thus �J is the weakest sequence satisfying

g1 ^̂̂ g2.

What about characterising sequences that satisfy g1 ___ g2? At first it may seem that this is

analogous, and we should just use meet instead of join. However, this is not symmetric: since

we are characterising a predicate by the weakestsequences that satisfy it, taking the meets will

lose information. While it will be the case that if q �Sat(�0; g1 ___ g2) then �1 u �2 � �0, the

converse does not hold in general. This means that to characterise g1 ___ g2 we need to use both

�
1 and �2.

Since the law of the excluded middle does not hold in the quaternary logic, we need to char-

acterise both the sequences that satisfy a predicate with value at least t and those that satisfy a

predicate with value at least f .

Definition 4.7 (Defining sequence set).

Let g 2 TL. Define the defining sequence setsof g as �(g) = h�t(g);�f (g)i, where the�q(g)

are defined recursively by:

1.If g is simple, �q(g) = fsXX : : : : (s; q) 2 Dg; or (s;>) 2 Dgg. This says that provided

a sequence has as its first element a value at least as big as s then it will satisfy g with

truth value at least q. Note that �q(g) could be empty.

2.�(g1 ___ g2) = h�
t(g1) [�t(g2);�

f (g1)q�f (g2)i
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Informally, if a sequence satisfies g ___ h with a truth value at least t then it must satisfy

either g or h with truth value at least t. Similarly if it satisfies g ___ h with a truth value at

least f then it must satisfy both g and h with a truth value at least f .

3.�(g1 ^̂̂ g2) = h�
t(g1)q�t(g2);�

f (g1) [�f (g2)i

This case is symmetric to the preceding one.

4.�(:::g) = h�f (g);�t(g)i

This is motivated by the fact that for q = f ; t, � satisfies g with truth value at least q if

and only if it satisfies :::g with truth value at least :q.

5.�(Nextg) = shift�(g), where shift(s0s1 : : : ) = Xs0s1 : : :

s0s1s2 : : : satisfies Next g with truth value at least q if and only if s1s2 : : : satisfies g with

at least value q.

6.�(g1 Untilg2) = h�
t(g1 Until g2);�

f (g1 Until g2)i, where

��t(g1 Until g2) = [
1
i=0(�

t(Next0g1)q : : :q�t(Next(i�1)g1)q�t(Nextig2))

��f (g1 Untilg2) = q
1
i=0(�

f (Next0g1) [ : : : [�f (Next(i�1)g1) [�f (Nextig2))

Recall that Nextkg = g if k = 0 and Next
k
g = NextNext

k�1
g otherwise. Here we

consider the until operator as a series of disjunctions and conjunctions and apply the mo-

tivation above when constructing the defining sequence sets.

Note that it may be that �1; �2 2 �q(g) where �1 v �2. As a practical matter it would be prefer-

able for only �1 to be a member of �q(g). However, this redundancy does not affect what is

presented below.
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An important consequence of Definition 4.7 is that for each formula g of TL, �(g) charac-

terises g: all sequences that satisfy g must be greater than one of the sequences in �t(g). The

lemma below formalises this (the proof is in Section A.2).

Lemma 4.3.

Let g 2 TL, and let � 2 S!. For q = t; f , q � Sat(�; g) iff 9�g 2 �q(g) with �g v �.

4.3.1 Examples

The constant predicates have very simple defining sequence sets.

�(t) = hfXX : : : g; ;i �(?) = h;; ;i

�(f) = h;; fXX : : : gi �(>) = hfXX : : : g; fXX : : : gi

Every sequence satisfies the predicate t with truth value t, and no sequence satisfies the pred-

icate t with truth value f or >. Similarly, no sequence satisfies f with truth value at least t,

while all sequences satisfy f with truth value f . Note that �(t) = �(:::f) (indeed, it would be

disconcerting if this were not the case).

Example 4.1.

Suppose that �(g) = hAg; Bgi and �(h) = hAh; Bhi. Then,

�(g ___ h) = �(:::(:::g ^̂̂ :::h)). To facilitate the proof, let rev hA;Bi = hB;Ai.

�(:::(:::g ^̂̂ :::h)) = rev �(:::g ^̂̂ :::h)

= revh�t(:::g)q�t(:::h);�f (:::g) [�f (:::h)i

= revh�f (g)q�f (h);�t(g) [�t(h)i

= h�t(g) [�t(h);�f (g)q�f (h)i

= �(g ___ h)
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Example 4.2.

x = y is short for (x ^̂̂ y) ___ ((:::x) ^̂̂(:::y)).

�(x = y) = h�t(x ^̂̂ y ___ (:::x ^̂̂ :::y));

�f (x ^̂̂ y ___ (:::x ^̂̂ :::y))i

= h�t(x ^̂̂ y) [�t((:::x ^̂̂ :::y));

�f (x ^̂̂ y)q�f (:::x ^̂̂ :::y)i

= h(�t(x)q�t(y)) [ (�t(:::x)q�t(:::y));

(�f (x) [�f (y))q (�f (:::x) [�f (:::y))i

= h(�t(x)q�t(y)) [ (�f (x)q�f (y));

(�f (x) [�f (y))q (�t(x) [�t(y))i

Example 4.3.

Let S = C3; this models a circuit with three state holding components. The formula g =

(([1] ___ [2]) = f) asks whether it is true that neither component 1 nor component 2 has the H

value.

�(f) = h;; f(U;U;U) : : : gi

�([1]) = h f(H;U;U)(U;U;U) : : : g; f(L;U;U)(U;U;U) : : : gi

�([2]) = h f(U;H;U)(U;U;U) : : : g; f(U; L;U)(U;U;U) : : : gi

�([1] ___ [2]) = h f(H;U;U)(U;U;U) : : : ; (U;H;U)(U;U;U) : : : g;

f(L; L;U)(U;U;U) : : : gi

�t([1] ___ [2]) = f) = �t([1] ___ [2])q ; [ �f ([1] ___ [2])q f(U;U;U) : : : g

= �f ([1] ___ [2])

= f(L; L;U)(U;U;U) : : : g
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�f ([1] ___ [2]) = f) = (�f ([1] ___ [2]) [ f(U;U;U) : : : g) q (�t([1] ___ [2]) [ ;)

= (�f ([1] ___ [2]) [ f(U;U;U) : : : g) q (�t([1] ___ [2]))

= (f(L; L;U)(U;U;U) : : : g [ f(U;U;U) : : : g)

q f(H;U;U)(U;U;U) : : : ; (U;H;U)(U;U;U) : : : g

= f(L; L;U)(U;U;U) : : : ; (U;U;U) : : : g

q f(H;U;U)(U;U;U) : : : ; (U;H;U)(U;U;U) : : : g

= f(Z; L;U)(U;U;U) : : : ; (L;Z;U)(U;U;U) : : : ;

(H;U;U)(U;U;U) : : : ; (U;H;U)(U;U;U) : : : g

Note that �t([1] ___ [2]) vP (�f ([1] ___ [2]) [ f(U;U;U) : : : g) q (�t([1] ___ [2])) showing the

redundancy in defining sequence sets.

4.3.2 Defining Trajectory Sets

The defining sequence sets contain the set of the minimal sequences that satisfy the formula.

It is possible to find the analogous structures for trajectories — we can find an approximation

of the set of minimal trajectories that satisfy a formula. This section first shows how, given an

arbitrary sequence, to find the weakest trajectory larger than it. Using this, the defining trajec-

tory setsof a formula are defined. Finally, Theorem 4.5 is presented, which provides the basis

for using defining sequence sets and defining trajectory sets to accomplish verification based on

Definition 4.2.

Definition 4.8.

Let � = s0s1s2 : : : . Let � (�) = t0t1t2 : : : where:

ti =

8>><
>>:
s0 when i = 0

Y(ti�1) t si otherwise
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t0t1t2 : : : is the smallest trajectory larger than �. s0 is a possible starting point of a trajectory,

so t0 = s0. Any run of the machine that starts in s0 must be in a state at least as large as Y(s0)

after one time unit. So t1 must be the smallest state larger than both s1 and Y(s0). By definition

of join, t1 = Y(s0) t s1 = Y(t0) t s1. This can be generalised to ti = Y(ti�1) t si.

In the same way that there is a set of minimal sequences that satisfy a formula, there is a set of

minimal trajectories that satisfy a formula. A set that contains this set of minimal trajectories

can be computed from the defining sequence sets. The defining trajectory sets are computed by

finding for each sequence in the defining sequence sets the smallest trajectory bigger than the

sequence.

Definition 4.9 (Defining trajectory set).

T (g) = hT t(g); T f(g)i, where T q(g) = f� (�) : � 2 �q(g)g.

Note that by construction, if � g 2 T q(g) then there is a �g 2 �q(g) with �g v � g. T (g) char-

acterises g by characterising the trajectories that satisfy g. This is formalised in the following

lemma which is proved in Section A.2.

Lemma 4.4.

Let g 2 TL, and let � be a trajectory. For q = t; f , q � Sat(�; g) if and only if 9�g 2 T
q(g)

with � g v �.

The existence of defining sequence sets and defining trajectory sets provides a potentially effi-

cient method for verification of assertions such as g==�h. The formula g, the antecedent, can

be used to describe initial conditions or ‘input’ to the system. The consequent, h, describes

the ‘output’. This method is particularly efficient when the cardinalities of the defining sets are

small. This verification approach is formalised in Theorem 4.5 (which is proved in Section A.2).

Section 4.1 showed how this result is used in practice. Recall that these antecedent, consequent
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pairs are called assertions.

Theorem 4.5.

If g and h are TL formulas, then �t(h) vP T
t(g) if and only if g==�h.

Some formulas have small defining sequence sets with simple structure.

Definition 4.10.

If g 2 TL, and 9�g 2 �t(g) such that 8� 2 �t(g); �g v �, then �g is known as the defining

sequenceof g. If the �g is the defining sequence of g, then �g = � (�g) is known as the defining

trajectoryof g.

Finite formulas with defining sequences are known as trajectory formulas. Seger and Bryant

characterised these syntactically (see Section 2.4).

Two useful special cases of Theorem 4.5 should be noted. First, ifA is a formula of TL with

a well-defined defining sequence �A, and h 2 TL, then 8� 2 �t(h); � v �A if and only if, for

every trajectory � for which t� Sat(�;A) it is the case that t� Sat(�; h).

Second, let A and C be formulas of TL with well-defined defining sequences �A and �C .

Then �C v �A if and only if, for every trajectory � for which q �Sat(�;A) it is the case that

q � Sat(�;C). This is essentially the result of Seger and Bryant generalised to the four valued

logic.

4.4 Symbolic Trajectory Evaluation

The results of Section 4.3 can easily be generalised to the symbolic version of TL. The con-

structs used in the previous section such as defining set and so on all have symbolic extensions.

Each symbolic TL formula is a concise encoding of a number of scalar formulas; each inter-

pretation of the variables yields a (possibly) different scalar formula. To extend the theory of
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trajectory evaluation, symbolic sets are introduced; these can be considered as concise encod-

ings of a number of scalar sets. Symbolic sets can be manipulated in an analogous way to scalar

sets. Using this approach, the key results presented above extend to the symbolic case.

This section first presents some preliminary mathematical definitions and generalisations

and then presents symbolic trajectory evaluation.

The verification conditions are extended to the symbolic case. Given two symbolic formulas

g and h we are interested in for which interpretations, �, it is the case that for all trajectories, �,

if � satisfies g, then � also satisfies h. Again, both the ==� and ==� relations are considered.

4.4.1 Preliminaries

Definition 4.11.

hj g==�h ji = f� 2 � : 8� 2 RT ; t = Sat(�; �(g)) implies that t = Sat(�; �(h))g.

Ideally such verification assertionsshould hold for all interpretations of variables.

Definition 4.12.

j= hj g==�h ji denotes hj g==�h ji= �.

Note that j= hj g==�h ji if and only if 8� 2 RT ;SATt(�; g) � SATt(�; h). An alternative

approach is to treat inconsistency more robustly (which is what happens in STE defined on a

two-valued logic). We could use these definitions.

Definition 4.13.

hj g==�h ji = f� 2 � : 8� 2 ST ; t� Sat(�; �(g)) implies that t�Sat(�; �(h))g

and
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Definition 4.14.

j= hj g==�h ji denotes hj g==�h ji= �.

Note that j= hj g==�h ji if and only if 8� 2 ST ;SATt"(�; g) � SATt"(�; h)).

Symbolic sets are now introduced.

Definition 4.15.

Define E , the boolean subset of TL, by

E ::= t j f j V j E ^̂̂ E j :::E

This definition is used in this chapter and Chapter 5.

Recall that an interpretation of variables can be considered as a function mapping a symbolic

TL formula to a scalar one. In particular, if� is an interpretation of variables, and a 2 E , �(a) 2

ff ; tg.

In what follows, let S be a lattice over a partial order v ; this induces a lattice structure on

S!; in turn, vP is the induced preorder on P(S!) defined earlier.

Definition 4.16.

A symbolic set over a domain P(S!) is one of

1. A 2 P(S!);

2. a! _
A where a 2 E;

3. _
A1 _[ _

A2, where _
A1;

_
A2 are symbolic sets;

4. _
A1 _\ _

A2, where _
A1;

_
A2 are symbolic sets; or

5. _
A1

_q _
A2, where _

A1;
_
A2 are symbolic sets.
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Each symbolic set represents a number of sets. Each interpretation of variables, yields a

scalar set contained in P(S!). Given an interpretation of variables, there is a natural interpre-

tation of symbolic sets, given below.

Definition 4.17.

Let � 2 � be given.

1. �(A) = A for all A 2 P(S!);

2. �(a ! _
A) = fx 2 _

A : �(a) = tg. Thus if a evaluates to t, then a ! _
A is the set _

A,

otherwise it is the empty set.

3. _
A

_q _
B is defined by �( _A _q _

B) = �( _
A) q �( _B).

4. If f : P(S!)m ! P(S!), then the symbolic version of f is defined by

�( _f( _
A1; : : : ;

_
An)) = f(�( _

A1); : : : ; �( _
An)).

These definitions can be used in extending set operations such as set union, as well as for

more general functions, for example in extending Definition 4.9 to give a definition of

symbolic defining trajectory sets.

5. _
A

_vP _
B = f� 2 � : �( _

A)vP �( _B)g.

The following lemma shows that these definitions are sensible.

Lemma 4.6.

Let _
A;

_
B;

_
C be symbolic sets over domain P(S!).

1. ( _A _v _
A
_q _
B) = �.

2. If ( _
A

_v _
C) = � and ( _B _v _

C) = �, then ( _A _q _
B

_v _
C) = �.
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Proof.

Let � be arbitrary.

(1) �( _
A)v �( _

A)q �( _B) Property of q.

(2) �( _
A)v �( _

A
_q _
B) Definition.

Since � is arbitrary part 1 follows.

(3) �( _
A); �( _B)v �( _C) Hypothesis 2.

(4) �( _
A)q �( _B)v �( _C) From (3), by property of join.

(5) �( _
A

_q _
B)v �( _C) Definition.

Since � is arbitrary, part 2 follows.

4.4.2 Symbolic Defining Sequence Sets

Given this mathematical machinery, symbolic defining sequence sets can now be defined. The

definition of defining sequence sets (Definition 4.7) must be extended by using the symbolic

versions of set union and join etc. In addition, one more part must be added to the definition

to take into account formulas of TL containing variables. For completeness, this definition is

given below.

Definition 4.18 (Extension to Definition 4.7).

Let _g 2 TL. Define the symbolic defining sequence setsof _g as _�( _g) = h _�t( _g); _�f ( _g)i, where

the _�q( _g) are defined recursively by:

1. If _g is simple, _�q( _g) = fsXX : : : : (s; q) 2 D _g , or (s;>) 2 D _gg.

2. _�( _g1 ___ _g2) = h _�
t( _g1) _[ _�t( _g2); _�

f ( _g1) _q _�f ( _g2)i

3. _�( _g1 ^̂̂ _g2) = h _�
t( _g1) _q _�t( _g2); _�

f ( _g1) _[ _�f ( _g2)i

4. _�(::: _g) = h _�f ( _g); _�t( _g)i

5. _�(Next _g) = _shift _�( _g)

6. _�( _g1 Until _g2) = h _�
t( _g1 Until _g2); _�

f ( _g1 Until _g2)i, where
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� _�t( _g1 Until _g2) = _[
1

i=0(
_�t(Next0 _g1) _q : : : _q _�t(Next(i�1) _g1) _q _�t(Nexti _g2))

� _�f ( _g1 Until _g2) = _q
1

i=0(
_�f (Next0 _g1) _[ : : : _[ _�f (Next(i�1) _g1) _[ _�f (Nexti _g2))

7. If v 2 V , _�(v) = hv! fXX : : : g;:v ! fXX : : : gi.

If �(v) = t, then �( _�(v)) = �(t), and if �(v) = f , then �( _�(v)) = �(f).

The extension of the definition of defining trajectory set is straightforward.

Definition 4.19 (Symbolic defining trajectory set).

_
T
q( _g) = _� ( _�( _g)).

The main result of symbolic trajectory evaluation is based on Theorem 4.5. It says that the set

of interpretations hj _g==� _
h ji (those interpretations, �, such that �(g)==��(h). is exactly the

same as the set of interpretations for which _�t( _h) _vP _
T

t( _g). So, if we can compute one, then

we can compute the other.

Theorem 4.7.

Let _g; _h be TL formulas. hj _g==�_
h ji= ( _�t( _h) _vP _

T
t( _g))

Proof.

hj _g==� _
h ji = f� 2 � : 8� 2 ST ; t� Sat(�; �( _g)) implies that t� Sat(�; �( _h))g

= f� 2 � : �t(�( _h))vP T
t(�( _g))g (Theorem 4.5)

= _�t( _h) _vP _
T

t( _g) (By definition.)

This is an important result, because efficient methods of computing these symbolic sets and per-

forming the trajectory evaluation exist, and have been implemented in the Voss tool discussed

in Chapter 6. This forms the basis of the verification presented here.
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4.4.3 Circuit Models

When S = Cn and R = fU; L;Hgn, and only the realisable fragment of TLn (those TLn for-

mulas not syntactically containing >) are considered, computing these verification results is

simplified. In the rest of this section we only consider the realisable fragment of TLn. Two

important properties of the realisable fragment of TLn are given in the next lemma.

Lemma 4.8.
1. � 2 RT if and only if Z does not appear in � (for all i; j, �i[j] 6= Z).

2. If � 2 RT and g is in the realisable fragment of TLn,

SAT>(�; g) = ; and SATt(�; g) = SATt"(�; g)

Proof.

The proof of (1) comes from the definition ofR. For (2), recall from Section 3.4 that Sat(�; g) =

> only if g contains a subformula g0 2 Gn which is either the constant predicate > or if Z

appears in �.

We compute j= hj g==�h ji as follows. First, compute T t(g). It is easy to determine whether

T
t(g) � RT using Lemma 4.8(1). If not, then there are inconsistencies in the antecedent which

should be flagged for the user to deal with before verification continues. Thus we may assume

that T t(g) � RT .

j= hj g==�h ji =

8� 2 ST ; (SATt"(�; g) � SATt"(�; h)) (By definition)

=)8� 2 RT ; (SATt"(�; g) � SATt"(�; h)) (since RT � ST )

=)8� 2 RT ; (SATt(�; g) � SATt(�; h)) (By Lemma 4.8(2).)

= j= hj g==�h ji

This result is useful because in this important special case, efficient STE-based algorithms can
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be used. The rest of this thesis uses this result implicitly. The main computational task is to

determine j= hj g==�h ji. By placing sensible restrictions on the logic used and checking for

inconsistency in the defining trajectory set of the antecedent, we can then deduce j= hj g==�h ji

from j= hj g==�h ji.



Chapter 5

A Compositional Theory for TL

5.1 Motivation

Although STE is an efficient method of model checking, it suffers from the same inherent per-

formance problems that other model checking algorithms do. Enriching the logic that STE sup-

ports, as is proposed in previous chapters, potentially exacerbates the problem. A primary thesis

of this research is that a compositional theory for TL can overcome performance limitations of

automatic model checking. Compositionality provides a method of divide-and-conquer: the

problem can be broken into smaller sub-problems, the sub-problems solved using automatic

model checking, and the overall result proved using the compositionality theory. This chapter

presents the compositional theory for trajectory evaluation, which is a set of sound inference

rules for deducing the correctness of verification assertions. Chapter 6 discusses the develop-

ment of a practical tool that can use this compositional theory — this allows the use of an inte-

grated theorem prover/model checker with useful practical implementations.

As discussed in Chapter 1, the focus of this theory is property composition: Section 5.2

presents compositional rules for TL; Section 5.3 presents additional compositional rules for

TLn; and practical considerations are presented in Section 5.4. Structural composition is briefly

discussed in Section B.1.

91



Chapter 5. A Compositional Theory for TL 92

5.2 Compositional Rules for the Logic

This section presents the main compositional theory with each rule being presented and proved

in turn. The compositional theory is developed for the ==� relation. In general, the theory does

not apply to the ==� relation since the disjunction, consequence, transitivity and until rules do

not hold for this relation. However, the other composition rules do apply for ==� (in the related

theorems below, replacing ==� with ==� and � with =, and considering only trajectories in

RT will yield the desired result). Moreover, as shown in Section 5.3, the full compositional

theory does hold for the ==� relation for the important realisable class of TLn

The circuit shown in Figure 5.1 will be used in the rest of this section to illustrate the use

of the inference rules. The circuit is very simple and can easily be dealt with directly by STE,

but the smallness of the circuit helps the clarity of the example. A unit-delay model is used for

inverter and gate delays. Notation: [B] is the simple predicate which evaluates to > when the

state component B has the value Z, t when B has the value H, f when B has the value L, ?

when B has the value U.

Note that except for the Specialisation Rule, all of the proofs are for the scalar case only as

this simplifies the proof. However, as a symbolic formula is merely shorthand for a set of scalar

formulas, the rules for the symbolic case follow directly in all cases.

A 

B 

C 

D 
E F 

Figure 5.1: Example
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5.2.1 Identity Rule

This rule is a trivial technical rule. However, it turns out to be useful in practice where a se-

quence of inference rules will be used to perform a verification. In the practical system which

implements this theory, the proofs are written as a program script, and this rule is useful to ini-

tialise the process. Its advantage is that it makes the program slightly more elegant.

Theorem 5.1.

For all g 2 TL; g==�g.

Proof. Let t� Sat(�; g). Clearly then t� Sat(�; g). Hence g==�g.

5.2.2 Time-shift Rule

The time-shift rule is important because it allows abstraction from the exact times things happen

at. This may reduce the amount of detail that the human verifier will have to deal with, and more

importantly, allows verification results to be reused a number of times. In practice this is very

important in making verification efficient.

Lemma 5.2.

Suppose g==�h. Then Nextg==�Nexth

Proof. Let � = s0s1s2 : : : be a sequence such that t� Sat(�; Next g).

(1) t � Sat(��1; g) By definition of the satisfaction relation.

(2) t � Sat(��1; h) Since g==�h.

(3) t � Sat(��0; Nexth) Definition of satisfaction of Next .

(4) Thus Next g==�Nexth.

Theorem 5.3 follows directly from Lemma 5.2 by induction.
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Theorem 5.3.

Suppose g==�h. Then 8t � 0; Nexttg==�Next
t
h.

Example 5.1.

In the circuit of Figure 5.1, using STE, it can be shown that [B]==�Next (:::[D]). Using The-

orem 5.3, we can deduce that 8t � 0, Nextt[B]==�Next
(t+1) (:::[D]).

The requirement of Theorem 5.3 that t � 0 is necessary: in general it does not hold when t < 0.

For example, in our circuit we can prove that Next1[D]==�Next
2[E]. However, it is not the

case that Next0[D]==�Next
1[E]. In the former case, the node C has the value H at time 1

because A is connected to ground; at time 0 we know nothing of the value of C .

5.2.3 Conjunction Rule

Conjunction and disjunction allow the combination of separately proved results. This is partic-

ularly useful where properties of different parts of the system being verified have been proved

and need to be combined. Given two results g1==�h1 and g2==�h2, the two antecedents are

combined into one antecedent and the two consequents are combined into one consequent. Us-

ing the conjunction rule, combination is done using the ^̂̂ operator, and using the disjunction

rule, combination is done using the ___ operator. There is no need for the gi and hi to be ‘inde-

pendent’, i.e. they can share common sub-formulas.

Theorem 5.4.

Suppose g1==�h1 and g2==�h2.

Then g1 ^̂̂ g2==�h1 ^̂̂ h2.
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Proof. Let � 2 S! and suppose t � Sat(�; g1 ^̂̂ g2).

(1) t � Sat(�; g1) ^ Sat(�; g2) Definition of Sat(�; g1 ^̂̂ g2).

(2) t � Sat(�; gi); i = 1; 2 Lemma 3.2(2).

(3) t � Sat(�; hi); i = 1; 2 Since gi==�hi; i = 1; 2.

(4) t � Sat(�; h1) ^̂̂ Sat(�; h2) Lemma 3.2(2).

(5) t � Sat(�; h1 ^̂̂ h2) Definition of Sat(�; h1 ^̂̂ h2).
As � is arbitrary, g1 ^̂̂ g2==�h1 ^̂̂ h2.

Example 5.2.

In the circuit shown in Figure 5.1, we can show using STE that

:::[B]==�Next [D]

:::[A]==�Next [C].
Using Theorem 5.4 we have that:

:::[A] ^̂̂ :::[B] ==�Next [C] ^̂̂ Next [D]:

5.2.4 Disjunction Rule

Theorem 5.5.

Suppose g1==�h1 and g2==�h2.

Then g1 ___ g2==�h1 ___ h2.

Proof. Let � 2 S! and suppose t � Sat(�; g1 ___ g2).

(1) t � Sat(�; g1) _ Sat(�; g2) Definition of Sat(�; g1 ___ g2).

(2) t � Sat(�; gi); for i = 1 or i = 2 Lemma 3.2(1).

(3) t � Sat(�; hi); for i = 1 or i = 2 Since gi==�hi; i = 1; 2.

(4) t � Sat(�; h1) _ Sat(�; h2) Lemma 3.2(1).

(4) t � Sat(�; h1 ___ h2) Definition of Sat(�; h1 ___ h2).
As � is arbitrary, g1 ___ g2==�h1 ___ h2.
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Example 5.3.

In the circuit in Figure 5.1, we can use STE to show that

:::[D]==�Next:::[E]

:::[C]==�Next:::[E].
Using Theorem 5.5, we have that

(:::[D] ___ :::[C])==�Next:::[E]:

Although the consequents of both premisses used here in the disjunct rule are the same, in gen-

eral they may be different.

5.2.5 Rules of Consequence

The rules of consequence have two main purposes:

� Rewriting antecedents and consequents into syntactically different but semantically equiv-

alent forms (see Example 5.4);

� Removing information which is not needed for subsequent steps in the proof so as to re-

duce clutter (see Example 5.5).

The next lemma is an auxiliary result. Informally it says that if the defining sequence sets of

g and h are ordered with respect to each other, then every sequence that satisfies h also satisfies

g.

Lemma 5.6.

Suppose �t(g)vP �t(h) and t�Sat(�; h).

Then t�Sat(�; g).
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Proof.

(1) 9� 2 �t(h) 3 � v � and t � Sat(�; h) Lemma 4.3.

(2) 9�0 2 �t(g) 3 �0 v � Definition of vP .

(3) t � Sat(�0; g) Lemma 4.3.

(4) �
0 v � Transitivity of (1) and (2).

(5) t � Sat(�; g) From (3) and (4) by Lemma 4.3.

The intuition behind this is that if �t(g) vP �t(h), then any sequence that satisfies h will also

satisfy g. Given this result, the rules of consequence are easy to prove.

Theorem 5.7.

Suppose g==�h and �t(g)vP �t(g1) and �t(h1)vP �t(h).

Then g1==�h1.

Proof. Suppose � is a trajectory such that t� Sat(�; g1).

(1) t � Sat(�; g) Lemma 5.6.

(2) t � Sat(�; h) g==�h.

(3) t � Sat(�; h1) Lemma 5.6.

(4) g1==�h1 Since � is arbitrary.

Example 5.4.

Using this theorem to rewrite one assertion into a semantically equivalent one can be illustrated

by examining the result of Example 5.2:

(:::[A] ^̂̂ :::[B])==�(Next [C] ^̂̂ Next [D]):

Since conjunction can be distributed over the next-time operator, as Next [C] ^̂̂ Next [D] �

Next ([C] ^̂̂[D]), this can be rewritten as:

(:::[A] ^̂̂ :::[B])==�Next ([C] ^̂̂[D]):
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Example 5.5.

In the circuit of Figure 5.1, we can show using STE that

([B] ^̂̂ Next [B])==�Next
1(:::D) ^̂̂ Next2(:::D):

Using Theorem 5.7, we can refine this to

([B] ^̂̂ Next [B])==�Next
1(:::D):

5.2.6 Transitivity

The rule of transitivity is an analogue of the transitivity rule of logic: it gives the condition for

deducing from g1==�h1 and g2==�h2 that g1==�h2. This condition is that�t(g2)vP �t(g1)q

�t(h1). Note that this is a weaker condition than showing that �t(g2)vP �t(h1).

Theorem 5.8.

Suppose g1==�h1 and g2==�h2 and that �t(g2)vP �t(g1) t�t(h1).

Then g1==�h2.

Proof. Suppose � is a trajectory such that t � Sat(�; g1).

(1) t � Sat(�; h1) g1==�h1

(2) t � Sat(�; g1 ^̂̂ h1) Definition of Sat(�; g1 ^̂̂ h1).

(3) 9� 2 �t(g1 ^̂̂ h1) 3 � v � Lemma 4.3.

(4) �t(g1 ^̂̂ h1) = �t(g1)q�t(h1) By definition of �t.

(5) 9�0 2 �t(g2) 3 �
0 v � �t(g2)vP �t(g1)q�t(h1).

(6) �
0 v � Applying transitivity to (3) and (5).

(7) t � Sat(�0; g2) From (5) by Lemma 4.3.

(8) t � Sat(�; g2) From (6), (7) by monotonicity.
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(9) t � Sat(�; h2) g2==�h2.

(10) g1==�h2 Since � was arbitrary.

Example 5.6.

Using STE, we can prove the following about the circuit of Figure 5.1:

� :::[B]==�Next
2[E]

� Next2[E]==�Next
3(:::[F ])

Then, using Theorem 5.8, we can deduce :::[B]==�Next
3(:::[F ]).

5.2.7 Specialisation

Specialisation is one of the key inference rules. By using specialisation it is possible to generate

a large number of specific results from one general result. With STE, it is often cheaper to prove

a more general result than a more specialised result. Thus in some cases, it may be cheaper to

generate a more general result than needed and then to specialise this general result than to use

STE to obtain the result directly. Specialisation also promotes the re-use of results. It is often

used together with transitivity: before applying transitivity to combine two assertions, one or

both of the assertions are first specialised.

For example, a general proof of the correctness of an adder is straightforward to obtain us-

ing trajectory evaluation, even for large bit widths. Such a proof may show that if bit vectors

representing the numbers a and b are given as inputs to the circuit, then a few time steps later

the bit-vector representing a+ b emerges as output. There are two reasons why one might want

to specialise such a proof:

� If the adder is part of a large circuit the actual inputs may be bit-vectors representing com-

plex mathematical expressions. Since STE relies on representing bit-vectors with BDDs,

if the BDDs needed to represent these mathematical expressions are very large, it may not
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be possible to use STE to prove that the adder works correctly for the particular inputs.

The solution is to prove that the adder works correctly for the general case, and then to

specialise the result appropriately.

� The adder may be used a number of times in a computation, each with different input

values. Instead of proving the correctness of the circuit for each set of inputs, the proof

can be done once and then the specific results needed can be obtained by specialisation

(and, probably, time-shifting).

Recall the definition of the boolean subset of TL presented as Definition 4.15.

Definition 5.1.

Define E , a subset of TL, by

E ::= t j f j V j E ^̂̂ E j :::E

Definition 5.2.

1. � : V ! E is a substitution.

2. A substitution � : V ! E can be extended to map from TL to TL:

� �(g1 ^̂̂ g2) = �(g1) ^̂̂ �(g2)

� �(:::g) = :::�(g)

� �(Next g) = Next (�(g))

� �(g Untilh) = �(g) Until �(h)

� Otherwise, if g is not a variable, �(g) = g

If T is the assertion j= hj g==�h ji then �(T ) is the assertion j= hj �(g)==��(h) ji.
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Lemma 5.9 (Substitution Lemma).

Suppose j= hj g==�h ji and let � be a substitution.

Then j= hj �(g)==��(h) ji.

Proof. Let � by an arbitrary interpretation of variables and � be an arbitrary trajectory such that

t � Sat(�; �(�(g))).

(1) Let �0 = � � �

(2) t � Sat(�; �0(g)) Rewriting supposition.

(3) �
0 is an interpretation of variables By construction.

(4) t � Sat(�; �0(h)) j= hj g==�h ji.

(5) t � Sat(�; �(�(h))) Rewriting (4).

(6) j= hj �(g)==��(h) ji � and � were arbitrary.

Example 5.7.

Suppose that part of a circuit multiplies two 64-bit numbers together and then compares the

result to some 128-bit number. Let c be the boolean expression that this part of the circuit com-

putes — in general it will not be possible to represent c efficiently since the BDD needed to

represent c will be extremely large. Now suppose that the next step in the circuit is to invert c.

We may wish to prove that

T1 = j= hj [B] = c==� Next ([D] = :c) ji is true.

Given that c is so large, it will not be possible to use STE directly to do this. But, let

T2 = j= hj [B] = a==� Next ([D] = :a) ji

where a is a variable (an element of V).

Proving that T2 holds using STE is trivial. Having proved T2, we can easily prove T1 using
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Lemma 5.9. Let

�(v) =

8>><
>>:
c when v = a

v otherwise

be a substitution. Note that T1 = �(T2). As T2 holds, and as � is a substitution, by Lemma 5.9,

T1 holds too.

Although substitution is useful, in practice sometimes a more sophisticated transformation is

also desirable. Lemma 5.10 shows that it is possible to perform a type of conditional substitu-

tion. A specialisationis a conjunction of conditional substitutions which allows us to perform

different substitutions in different circumstances. An example of the use of specialisation is

given in Chapter 7.

Definition 5.3.

� = [(e1; �1); : : : ; (en; �n)] where each � is a substitution and each ei 2 E , is a specialisation.

If g 2 TL, then �(g) = ^̂̂n
i=1(ei ) �i(g)).

Lemma 5.10 (Guard lemma).

Suppose e 2 E and j= hj g==�h ji.

Then j= hj (e) g)==�(e) h) ji.

Proof.

Suppose t � Sat(�; e) g). By the definition of the satisfaction relation, either:

(i) t � Sat(�;:::e). In this case, by the definition of the satisfaction relation,

t� Sat(�; e) h).

(ii) t� Sat(�; g). In this case, by assumption Sat(�; h). Thus, by definition of the satisfaction

relation, t� Sat(�; e) h).

As � was arbitrary the result follows.
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Theorem 5.11 (Specialisation Theorem).

Let � = [(e1; �1); : : : ; (en; �n)] be a specialisation, and suppose that j= hj g==�h ji.

Then j= hj�(g)==��(h) ji.

Proof.

(1) For i = 1; : : : ; n, j= hj �i(g)==��i(h) ji By Lemma 5.9.

(2) j= hj (ei) �i(g))==�(ei ) �i(h)) ji By Lemma 5.10.

(3) j= hj ^̂̂n
i=1(ei) �i(g))==�^̂̂

n

i=1(ei ) �i(h)) ji Repeated application of Theorem 5.4.

(4) j= hj�(g)==��(h) ji By definition.

5.2.8 Until Rule

Theorem 5.12.

Suppose g1==�h1 and g2==�h2. Then g1 Untilg2==�h1 Untilh2.

Proof. Let � = s0s1s2 : : : be a trajectory such that t� Sat(�; g1 Untilg2).

(1) 9i 3

t � ^i�1
j=0 Sat(�; Nextjg1) ^ Sat(�; Nextig2) By definition of Sat.

(2) t � Sat(�; Nextig2) and

t � Sat(j�; Nextjg1); j = 0; : : : ; i� 1 Definition of conjunction.

(3) t � Sat(�; Nextih2) and

t � Sat(�; Nextjh1); j = 0; : : : ; i� 1 Assumptions and Theorem 5.3.

(4) t � ^i�1
j=0 Sat(�; Nextjh1) ^ Sat(�; Nextih2) Definition of Sat.

(5) t�Sat(�; h1 Untilh2) Definition of Sat.

(6) g1 Until g2==�h1 Untilh2 Since � was arbitrary.

Corollary 5.13.

Suppose g==�h: then Existsg==�Existsh and Globalg==�Globalh.
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Proof.

The first result follows directly from the theorem using the definition of the Exists operator

and the fact that t==�t.

Let � be an arbitrary trajectory such that t� Sat(�; Globalg).

(1) f � Sat(�; Exists(:::g)) Expanding the definition of Global .

(2) 8i, f � Sat(��i;:::g) Definition of Satfor Exists .

(3) 8i, t� Sat(��i; g) Definition of Satfor:::, Lemma 3.1.

(4) 8i, t� Sat(��i; h) g==�h

(5) 8i, f � Sat(��i;:::h) Definition of Satfor:::.

(6) f � Sat(�; Exists(:::h)) Definition of Satfor Exists .

(7) t� Sat(�; Globalg) Definition of Satfor Global .
Which concludes the proof since � was arbitrary.

Example 5.8.

Consider again the circuit in Figure 5.1. Using STE, it is easy to prove

[B]==�Next (:::[D]).

Using Corollary 5.13, we can deduce that Global [B]==�Global (Next (:::[D])).

5.3 Compositional Rules for TLn

For the realisable fragment of TLn, the compositional theory above applies to the ==� relation

as well as the ==� relation. A key result used is Lemma 4.8. The remainder of the section

assumes that we are dealing solely with the realisable fragment of TLn.

Only the statements of theorems are given as the proofs are very similar to or use the proofs

in the previous section so the proofs are deferred to Section A.3. Table 5.2 summarises the rules.
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Theorem 5.14 (Identity).

For all g 2 TLn; g==�g.

Theorem 5.15 (Time-shift).

Suppose g==�h. Then 8t � 0, Nexttg==�Nextth.

Theorem 5.16 (Conjunction).

Suppose g1==�h1 and g2==�h2. Then g1 ^̂̂ g2==�h1 ^̂̂ h2.

Theorem 5.17 (Disjunction).

Suppose g1==�h1 and g2==�h2. Then g1 ___ g2==�h1 ___ h2.

Theorem 5.18 (Consequence).

Suppose g==�h and �t(g)vP �t(g1) and �t(h1)vP �t(h). Then g1==�h1.

Theorem 5.19 (Transitivity).

Suppose g1==�h1 and g2==�h2 and that �t(g2)vP �t(g1)q�t(h1).

Then g1==�h2.

Theorem 5.20 (Specialisation).

Let � = [(e1; �1); : : : ; (en; �n)] be specialisation, and suppose that j= hj g==�h ji. Then j=

hj�(g)==��(h) ji.

Theorem 5.21 (Until).

Suppose g1==�h1 and g2==�h2. Then g1 Untilg2==�h1 Untilh2.

Other rules, like Corollary 5.13 are possible too. To illustrate this, and because the result is

useful, a finite version of Corollary 5.13 follows.

Lemma 5.22.

If g==�h, then for all t, then Global [(0; t)] g==�Global [(0; t)] h.
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Proof. (By induction ont)

(1) Global [(0; 0)] g==�Global [(0; 0)] h By hypothesis.

(2) Assume as induction hypothesis:

Global [(0; t� 1)] g==�Global [(0; t� 1)] h

(3) Next
t
g==�Nextth Time shift of hypothesis.

(4) Global [(0; t)] g==�Global [(0; t)] h Conjunction of (2) and (3)
This concludes the induction.

Corollary 5.23.

If g==�h, then for all s; t, t � s, Global [(s; t)] g ==� Global [(s; t)] h.

Proof.

(1) Global [(0; t� s)] g==�Global [(0; t� s)] h Lemma 5.22

(2) Global [(s; t)] g==�Global [(s; t)] h Time-shift (1).

5.4 Practical Considerations

5.4.1 Determining the Ordering Relation: is �t(g)vP �t(h)?

To apply the rules of consequence and transitivity, it is necessary to answer questions such as

�t(g)vP �t(h)? One way of testing this is to compute the sets and perform the comparison

directly. However, for practical reasons we often wish to avoid the computation of the sets,

and to use syntactic and other semantic information to determine the set ordering. Typically

formulas like g and h share common sub-formulas and even some structure, which makes the

tests explored in this section practical.

Lemma 5.24 is the starting point of these tests, and although very simple, it is important in
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Name Rule Side condition

Identity
g==�g

Time-shift
g==�h

Next
t
g==�Nextth

t > 0

Conjunction
g1==�h1 g2==�h2

g1 ^̂̂ g2==�h1 ^̂̂ h2

Disjunction
g1==�h1 g2==�h2

g1 ___ g2==�h1 ___ h2

Consequence
g==�h

g1==�h1
�t(g)vP �t(g1);�

t(h1)vP �t(h)

Transitivity
g1==�h1 g2==�h2

g1==�h2
�t(g2)vP �t(g1)q�t(h1)

Specialisation
j= hj g==�h ji

j= hj�(g)==��(h) ji
� a specialisation.

Until
g1==�h1 g2==�h2

g1 Untilg2==�h1 Untilh2

Table 5.2: Summary of TLn Inference Rules

practice. One effect of this lemma is that if two formulas are syntactically different but seman-

tically equivalent, then they are interchangeable in formulas.

Lemma 5.24.

If g and h are simple then the question whether �t(g)vP �t(h) is whether for 8(s; q) 2 Dh

with q = t or q = >, 9(s0; q) 2 Dg with s0 v s.

Proof. This is a restatement of the definition of �t.

Given this starting point, the ordering relation can be determined by examining the structure of

formulas and applying the following lemmas.
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Lemma 5.25.

If g = g1 ___ g2, then �t(g)vP �t(g1).

Proof.

(1) Let � 2 �t(g1)

(2) �t(g) = �t(g1) [�t(g2) By definition of �t

(3) � 2 �t(g) Set theory

(4) � v � Reflexivity of partial order

(5) �t(g)vP �t(g1) Definition of vP

Corollary 5.26.

For e 2 E , �t(e) g) vP �t(g).

Proof. Straight from the definition of implication.

Lemma 5.27.

If g = g1 ^̂̂ g2, then �t(g1)vP �t(g).

Proof.

(1) Let � 2 �t(g)

(2) 9�1 2 �t(g1); �
2 2 �t(g2) 3 � = �

1 t �2 Definition of �t.

(3) �
1 v � Definition of join.

(4) �t(g1)vP �t(g) Definition of vP

Lemma 5.28.

Suppose �t(g)vP �t(h): then 8i � 0;�t(Nextig)vP �t(Nextih).

Proof. By induction on i. The base case of i = 0 follows directly from the assumption.

Suppose �t(Nextig)vP �t(Nextih).
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Then shift(�t(Nextig))vP shift(�t(Nextih))1.

Thus �t(Next(i+1)g)vP �t(Next(i+1)h).

Lemma 5.29.

Suppose �t(g1)vP �t(h1) and �t(g2)vP �t(h2).

Then �t(g1 Untilg2)vP �t(h1 Untilh2).

Proof.

(1) 8i � 0;�t(Nextig1)vP �t(Nextih1) By Lemma 5.28

(2) 8i � 0;�t(Nextig2)vP �t(Nextih2) By Lemma 5.28

(3) �t(g1 Untilg2) = [
1
i=0(�

t(Next0g1)q : : :q�t(Next(i�1)g1)q�t(Nextig2))

By definition

(4) vP [
1
i=0 (�

t(Next0h1)q : : :q�t(Next(i�1)h1) q�t(Nextih2))

From (1) and (2)

(5) = �t(h1 Untilh2) By definition

Lemma 5.30.

For all i, �t(Nextig)vP �t(Globalg).

Proof. Let � 2 �t(Globalg).

(1) t� Sat(�; Globalg) Lemma A.6

(2) = :Sat(�; Exists:::g) Definition of Global

(3) = :Sat(�; t Until:::g) Definition of Exists

(4) = : _1
i=0 (Sat(��i;:::Nextig)) Definition of satisfaction

(5) = : _1
i=0 :(Sat(��i; Nextig)) Definition of satisfaction

(6) = ^1
i=0Sat(��i; Nextig) De Morgan’s law

(7) 8i; t� Sat(��i; Nextig) Definition of conjunction

1Recall that shift(s0s1s2 : : : ) = Xs0s1s2 : : :
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(8) 8i;9�0 2 �t(Nextig) 3 �0 v � Lemma 4.3

(9) 8i;�t(Nextig)vP �t(Globalg) Definition of vP

Similar rules can be developed for �f ; the two sets of rules are tied together by the definition

of the satisfaction of negation. These tests seem very simple and obvious, but in practice they

allow the development of efficient algorithms to test whether �t(g)vP �t(h).

5.4.2 Restriction to TLn

The restrictions on the logic TLn make it much easier reason about. Recall that the basis of the

logic is the set of predicates Gn. In practice, many TLn formulas are of the form

r

^̂̂
i=0

Next
i(

si

^̂̂
j=0

[ni;j] = ei;j)

where the ei;j 2 E . Given

g = ^̂̂r
0

i=0 Next
i(^̂̂

s
0
i

j=0[n
0
i;j
] = e

0
i;j
)

h = ^̂̂r
k=0 Next

k(^̂̂sk
l=0[nk;l] = ek;l);

from Lemma 5.27 it follows that to determine whether �t(g)vP �t(h), we need to check

whether

8i; j;9l 3 n0
i;j

= ni;l ^ e
0
i;j

= ei;l:

This can largely be done syntactically. Depending on the representation used, testing whether

ei;l = e
0
i;j

may either be done syntactically or using other semantic information. Particularly

when the level of abstraction is raised, it is often the case that other semantic information must

be used.

Of course, there are important cases where formulas are not of this form, and we need to have

other ways of reasoning about them. A more general and typical case is verifying an assertion

of the form hj g==�h ji, where g is an arbitrary TLn formulas and h = Next
j( ^̂̂k

i=0([ni] = ei) ).
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Definition 5.4.

Strict dependence: Informally, g 2 TLn is strictly dependent on the state components R =

fr1; : : : ; rlg at time t if g being true at time t implies that the components r1; : : : ; rl have defined

values, and g is not dependent on any other state components. The formal condition for strict

dependence is: g is strictly dependent on the state components R if

8� 2 �t(g) : 8r 2 R; U @ �t[r]; 8s 62 R; �t[s] = U:

In practice, strict dependence can often be checked syntactically. For example [B] = e where

e 2 E is strictly dependent onB. This comes from the property of exclusive-or — if a� b 2 B,

where exclusive-or, a� b, is defined as a ^̂̂(:::b) ___ (:::a) ^̂̂ b— then a; b 2 B). Moreover, strict

dependence can be checked relatively efficiently (as will be seen later).

Theorem 5.31 (Generalised Transitivity).

Let A1 be a trajectory formula such that � = �
A1 2 RT (t), and let h1 = Next

t
h be a TLn

formula strictly dependent on state components fr1; : : : ; rlg at time twhere h contains no tem-

poral operators. Let A2 = Next
t(^̂̂l

j=1[rj] = vj) where the vj 2 V .

Suppose j= hjA1==�h1 ji and j= hjA2==�h2 ji. Then,

(1) There is a substitution � such that j= hjA1==��(h2) ji; and

(2) h(�A1

t
) = t.

Proof.

(1) For i = 1; : : : ; l; 9ei 2 E 3 ei = �
A1 [ri] j= hjA1==�h1 ji, strict dependence of h1.

(2) Let C = Next
t ^̂̂l

j=1[ri] = ei

(3) j= hjA1==�C ji By construction of C .

(4) j= hjA1==�h1 ^̂̂ C ji Conjunction.

(5) For v 2 fv1; : : : ; vlg let �(vj) = ej

For v 62 fv1; : : : ; vlg let �(v) = v

(6) j= hjA2==�h2 ji Given.
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(7) j= hj �(A2)==��(h2) ji Substitution (Lemma A.18).

(8) j= hj h1 ^̂̂ �(A2)==��(h2) ji Rule of consequence.

(9) C = �(A2) By construction.

(10) j= hjA1==��(h2) ji From (4), (8) by transitivity.

This concludes the proof of (1)

(11) h(�A1

t
) = t j= hjA1==�Next

t
h ji and �A1 2 RT (t)

This concludes the proof of (2)

Although the proof of this theorem is relatively complex, the theorem itself is not, and very

importantly many important side-conditions can be checked automatically. The seeming com-

plexity of the theorem comes from having to relateA1 toA2. But, this turns out to be the virtue

of the theorem. The difficulty with trying to use transitivity between two results j= hjA1==�h1 ji

and j= hjA2==�h2 ji is to find the appropriate specialisation for the latter result. This theorem

provides a method for doing this: the first part of the theorem says that a specialisation exists,

and the second part helps find it. The example below illustrates the use of the theorem.

Example 5.9.

Figure 5.2 shows two cascaded carry-save adders (CSAs). There are four inputs to the entire

circuit, and two outputs. Three of the inputs get fed into one of the CSAs; the other CSA gets

the fourth of the inputs and the two outputs of the first CSA. Assuming each CSA takes one

unit of time to compute its results, if four values get entered at J;K;L andM , two units of time

later, the sum of these four values will be the same as the sum on nodes P and Q.

Let
A1 = ([J ] = j) ^̂̂([K] = k) ^̂̂([L] = l) ^̂̂(Next [M ] = m)

h1 = Next ([N ] + [O] = j + k + l ^̂̂ [M ] = m)

A2 = Next ([M ] = m) ^̂̂([N ] = n) ^̂̂([O] = o)
h2 = Next

2([P ] + [Q] = m+ n+ o)
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Then
j= hjA1==�h1 ji
j= hjA2==�h2 ji.

These two results can be proved using trajectory evaluation. The process of performing tra-

jectory evaluation also checks that �A1 2 RT (d(h1)). A2 and h1 are of the correct form for

Theorem 5.31. Furthermore the strict dependence of h1 on components M , N and O can be

checked syntactically. By the theorem we have that there is a specialisation � such that

j= hjA1==�Next
2([P ] + [Q] = �(m + n+ o)) ji

and

([N ] + [O] = j + k + l ^̂̂ [M ] = m)(�A1

2 ) = t

which means that

(�A1

2 [N ] + �
A1

2 [O] = j + k + l) = t:

But, by the structure of h1 we know that

�

A1

2 [N ] = �(n) and �A1

2 [O] = �(o) and �A1

2 [M ] = �(m)

and so, as by the properties of substitution �(x+ y) = �(x) + �(y),

(�(n + o) = j + k + l ^ �(m) = m) = t:

This result has given us sufficient information about �. Thus,

j= hjA1==�Next
2([P ] + [Q] = j + k + l+m) ji:

5.5 Summary

This chapter presented a compositional theory for TL; this theory is very important in overcom-

ing the computational bottlenecks of automatic model checking. The focus of the compositional

theory is property composition, which is particularly suitable for STE-based model checking.

The general compositional theory for TL was presented, followed by additional rules for TLn.
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J
K
L
M

N
O

P

Q

Figure 5.2: Two Cascaded Carry-Save Adders

Section 5.4 discussed some issues that are important in the practical implementation of the the-

ory.

Chapter 6 shows how the compositional theory can be implemented in a practical tool.



Chapter 6

Developing a Practical Tool

This chapter discusses how to put the ideas presented in the previous chapters into practice. A

number of prototype verification systems using these ideas have been implemented to test how

effectively the verification methodology can be used. Although these prototypes have been used

to verify substantial circuits, they are prototypes, and the purpose of the chapter is to show how

a practical verification system using TL can be developed, rather than to describe a particular

system.

Section 6.1 discusses the Voss system, developed to support the restricted form of trajectory

evaluation. Voss is important because the algorithms that it implements form the core of the

prototype verification systems. This section also discusses the important issues of how boolean

expressions, sets of interpretations, and sets of states are represented. Section 6.2 examines

higher-level representational issues, in particular efficient ways of representing TL formulas so

that they can be efficiently stored and manipulated. It is important that appropriate representa-

tional schemes be used since different methods are appropriate at different stages. By convert-

ing (automatically) from one scheme to another, the strengths of the different methods can be

combined. Section 6.3 shows how trajectory evaluation and theorem proving can be combined

into one, integrated system. The motivation for this is to provide the user with a tool which pro-

vides the appropriate proof methods at the right level of abstraction — model checking at the

low level, theorem proving at the high level where human insight is most productively used. The

theorem prover component is the implementation of the compositional theory, which is critical

115
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for the practicality of the approach. One of the key issues here is how to provide as much assis-

tance to the human verifier as possible. The final section, Section 6.4 extends existing trajectory

evaluation algorithms so they can be used to support a richer logic.

6.1 The Voss System

In order to verify realistic systems, any theory of verification needs a good tool to support it.

Seger developed the Voss system [115] as a formal verification system (primarily for hardware

verification) that uses symbolic trajectory evaluation extensively.

There are two core parts of Voss. The user interface to Voss is through the functional lan-

guage FL, a lazy, strongly typed language, which can be considered a dialect of ML [107]. One

of the key features of FL is that BDDs are built into the language, as boolean objects are by de-

fault represented by BDDs. Since BDDs are an efficient method of representing boolean func-

tions, data structures based on BDDs, such as bit vectors representing integers, are conveniently

and efficiently manipulated. Of course, as previously discussed, the limitations of BDDs mean

that there are limitations on what can be represented and manipulated efficiently; how these

limitations are overcome is an important topic of this chapter.

The second component of Voss is a symbolic simulation engine with comprehensive delay

modelling capabilities. This simulation engine, which is invoked by an FL command, provides

the underlying trajectory evaluation mechanism for trajectory formulas.

Trajectory formulas are converted into an internal representations (the ‘quintuple lists’) and

passed to the simulation engine; these quintuple lists essentially are representations of the defin-

ing sequences of the antecedent and consequent formulas comprising the assertions. The an-

tecedent formula is used to initialise the circuit model, and the simulation engine then com-

putes the defining trajectory for the antecedent. As this evaluation proceeds, Voss will flag any

antecedent failures, viz. a Z appearing in the antecedent, and compares the defining trajectory
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with the defining sequence of the consequent. Two types of errors are reported if the comparison

fails: a weak consequent failure occurs if Us appearing in the defining trajectory are the cause

of the failure1; a strong consequent failure is reported if the defining trajectory of the antecedent

is not commensurable with the defining sequence of the consequent.2 Using the terminology of

TL and Q, a weak failure corresponds to the satisfaction relation returning ?, a strong failure

corresponds to a f .

Circuit models can be described in a number of formats. Interacting through FL, the user

sees models as abstract data types (ADTs) of type fsm. FL provides a library (called the EXE

library) which allows the user to construct gate level descriptions of circuits. Once a circuit is

constructed as an EXE object, the model can be converted into an fsm model. There are also

tools provided for converting other formats (both gate level and switch level models) into fsm

objects; among others, VHDL and SILOS circuit descriptions can be accepted.

Representing Sets of Interpretations

Since STE-based verification computes the sets of interpretations of variables for which a given

relation holds, efficient methods for representing and manipulating these sets is important. Voss

represents a set of interpretations by a boolean expression (i.e., by a BDD). If ' is a boolean

expression, then ' represents the set f� 2 � : �(') = tg. This representation relies on the

power of BDDs, so although usually a good method, it breaks down sometimes. One advantage

of this representation is that set manipulation can easily be accomplished as boolean operations.

If '1 represents the set of mappings �1 and '2 the set of mappings �2, then '1 _ '2 is the

representation of �1 [ �2, '1 ^ '2 the representation of �1 \ �2, :'1 is the representation of

�n�1, and set containment can be tested by computing for logical implication.

1This happens if the defining trajectory of the antecedent is less than the defining sequence of the consequent;
the verification might succeed with a stronger antecedent.

2A stronger antecedent will only make things worse.
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A more general point about representing interpretations also needs to be made. Suppose that

b 2 E is a boolean expression (and so represented as a BDD). Let v1; : : : ; vm be the variables

appearing in b.3 To ask whether there is an interpretation � such that �(b) = t is the same as

asking whether 9v1; : : : ; vm:b (are there boolean values that can replace the variables so that the

expression evaluates to true?). Since existential quantification is a standard BDD operation, this

can be computed in FL through the construction and manipulation of BDDs.

Representing Sets of States

Voss manipulates and analyses circuit models, viz.models where the state space is naturally rep-

resented by Cn for some n. A state in Cn is thus a vector hc1; : : : ; cni, where each ci 2 C. Voss

uses a variant of the dual-rail encoding system discussed in Section 3.2 for representing ele-

ments of Cn, which means that each state in Voss is represented by a vector h(a1; b1); : : : ; (an; bn)i,

where the ai; bi 2 B.

The use of boolean variables allows one symbolic state to represent a large number of states.

The vector

s = h(a1; b1); : : : ; (an; bn)i

(where the ai; bi 2 E) represents the set of states f�(s) : � 2 �g where

�(s) = h(�(a1); �(b1)); : : : ; (�(an); �(bn))i:

Note that the ai and bi need not contain any variables. This idea can be extended so that sets of

sequences can be represented by symbolic sequences.

This type of representation is known as a parametric representation. The alternative repre-

sentation is the characteristic representation. (For discussion of these representations, see [43,

3This is a simple syntactic test; since quantification does not exist in E , we do not have to ask whether variables
are free or bound.
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87].) � : Cn ! B represents the set

fs : �(s) = tg:

Note the similarity to the way in which interpretations are represented. This indicates that � can

be represented as a BDD — the mechanics of this are presented now. Let s = hs1; : : : ; sni be

a symbolic state representing the set of states S, and let v1; : : : ; vm be the variables appearing

in s. Let r = hr1; : : : ; rni, where each ri is a pair of boolean variables (ri;1; ri;2) not appearing

in fv1; : : : ; vmg.

�(r) = t () 9� 2 � 3 r = �(s)

() 9� 2 � 3 ^n
i=1(ri = �(si))

() 9v1; : : : ; vn 3 ^
n

i=1(ri = si)

Thus �(r) can be represented a boolean expression (BDD) containing the ri;j variables only.

To determine whether a particular state is in the set, the ri are instantiated in �(r); the value

obtained is t if and only if the state is the set.

The advantage of the characteristic representation is that it is convenient to perform union

and intersection operations on sets of states. Moreover, as each set is represented by one BDD,

set representations are canonical, which is extremely useful. However, this monolithic repre-

sentation of sets of states can be very expensive.

The primary advantage of the parametric representation is that it is very compact. n inde-

pendent BDDs represent a set of states, which increases the size of the state space that can be

manipulated. Moreover, this representation is particularly suitable for the symbolic simulation

of the state space, and for the computation of defining sequences. It is the representation method

on which STE is based.
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6.2 Data Representation

Although exploiting the power of BDDs to implement the underlying trajectory evaluation ef-

ficiently is essential, there needs to be complementary ways of representing and manipulating

data.

One way of doing this is to represent TL formulas and associated data structures symboli-

cally. This is best explained by the following example. Suppose the circuit being verified is an

integer adder. Formally, the circuit model represents the integers as bit vectors of appropriate

size, and addition of integers is formally represented as bit vector manipulation. The TL for-

mulas used to specify correctness will formally describe the behaviour of the circuit at the bit

level.

In our prototype tools, integer types like this are represented and manipulated in the follow-

ing way.

� An abstract data type representing integers is declared. See Figure 6.1 which gives an ex-

ample declaration: integers are constants, variables, or the addition, subtraction, multipli-

cation, division, or exponentiation of two integers; integer predicates are the comparison

of two integers.

� A routine which converts integer objects into bit vectors, and integer predicates into an

equivalent predicate over bit vectors is written. For convenience, this routine is referred

to as bv . Typically, the bit vectors are finite and can be represented in standard ways (e.g.

twos complement). However, it is also possible to have representations of infinite bit vec-

tors (the lazy semantics of FL is useful here).

� A set of bit vector operations giving the formal semantics of the objects is implemented.

Addition, for example, is modelled by operations on two bit vectors.

� A set of ADT operations corresponding to the vector operations is implemented. This

means that the FL program can manipulate integer-related objects without converting them
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into the associated bit vectors.

lettype N = // Natural number expressions
Nvar string

| Nconst int
| Nadd N N
| Nsub N N
| Nmult N N
| Ndiv N N
| Npow N N

Figure 6.1: An FL Data Type Representing Integers

Although the formal semantics of integer objects is given by bit vectors and the operations

on bit vectors, the higher-level representation is useful for two reasons. First, it has the effect of

raising the level of abstraction, which makes the verification task for the user easier since it en-

ables the user to deal with higher-level, composite objects. Second, and more importantly, it has

significant performance advantages; BDDs can be used where appropriate and other methods

where BDDs fail.

This situation is depicted in Figure 6.2. The FL program stores the object d; by applying

the conversion routine, bv , the bit vector which represents d can be computed. Applying the

operation fadt to d is the same as applying the operation fbdd to dbdd , which is illustrated by the

commutative diagram in Figure 6.2.

d

f
adt ! d

0??ybv

??ybv

dbdd

f
bdd ! d

0
bdd

Figure 6.2: Data Representation

Thus, even if d or d0 cannot be represented efficiently as BDDs, there is an effective way
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of representing and manipulating them through the abstract data type representation. As will

be seen, using this method of representation is an effective way of going beyond the limits of

BDDs.

It is critical that both the conversion routine bv and the ADT operations are implemented

correctly so that the diagram in Figure 6.2 is commutative. In the HOL-Voss system correctness

was formally proved [90]. Although I did not go through this exercise in the prototype imple-

mentations, this is a critical step in the production of a tool. However, one should note that there

may be a trade-off between degree of rigour and performance. For example, in an interesting

paper showing how BDDs can be implemented as a HOL derived rule [75], Harrison reports

that a HOL implementation of BDDs as being fifty times slower than a Standard ML imple-

mentation. Although this work is cited as being ‘superior to any existing tautology-checkers

implemented in HOL’, Harrison points out that other approaches to ensuring correctness can be

adopted.

The ADT routines that implement the operations on the data objects constitute domain knowl-

edge, representing the verification system’s higher level semantic knowledge of what bit-level

operations mean. There are different ways in which domain knowledge can be provided. One

method is to have a canonical representation for data objects, or to have a set of decision proce-

dures for the type (for example, to tell whether two syntactically different objects have the same

semantics — whether if they are both converted into BDD structures, the structures will be the

same). There is a limit to how far this can go; for example, with the integer representations

used, no canonical forms exist, and decision procedures have limitations and can be expensive.

However, as will be seen this can be effective and, since it is automatically implemented, user-

friendly, reducing the load of the human verifier.

Another method — which can be implemented as an alternative or as a complement to the

decision procedure method — is to provide an interface to an external source of knowledge. One
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likely such source is a trusted theorem prover such as HOL, allowing the verifier to prove results

in HOL, and then to import these results into the verification system. Although approach is very

flexible and very powerful, it increases the level of expertise needed by the verifier considerably.

6.3 Combining STE and Theorem Proving

The practical importance of the compositional theory presented in Chapter 5 is that it provides

a powerful way of combining STE and theorem proving. The inference rules of the composi-

tional theory are implemented as proof rules of a theorem prover. The combination of theorem

proving and STE creates a tool which provides the appropriate proof mechanism at the appro-

priate level. For a human to reason at the individual gate level, while conceptually simple and

straightforward, is often too onerous and tedious. A single trajectory evaluation can often deal

with the behaviour of hundreds or thousands of gates, depending on the application. The the-

orem prover allows the human verifier to use insight into the problem to combine lower-level

results using the compositional theory. By using the representation method discussed above,

and the compositional theory, the computational bottle-neck of automatic model checking al-

gorithms can be widened considerably.

The prototype verification systems built implement proof systems based on STE and the

compositional theory for STE. The object of verification is to prove properties of the form j=

hj g==�h ji. The proof system does this by using STE as a primitive rule for proving assertions;

the compositional theory is implemented as set of proof rules that can be used to infer other

results.

From a practical point of view, the Voss system provides a good basis for this. The user in-

teracts with the proof system using FL. By using the appropriate FL library routines, trajectory

evaluation and the compositional theory can be used. There are different ways in which this

could be done and packaged.
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For example, in the first prototype tool, the verification library consisted of the following

rules, implemented as FL functions, each function either invoking trajectory evaluation or one

of the compositional inference rules.

� VOSS: This performs trajectory evaluation.

� IDENTITY implements the identity rule.

� CONJUNCT implements conjunction.

� SHIFT allows assertions to be time-shifted.

� PRESTRONG implements part of the rule of consequence, allowing the antecedent of an

assertion to be strengthened.

POSTWEAK implements the other part of the rule of consequence, allowing the conse-

quent of an assertion to be weakened. Both of these rules use domain knowledge to check

the correctness of the use of the rule.

� TRANS takes two assertions, checks whether transitivity can be applied between the first

and second (i.e., the correct relationship holds between the two assertions), and if it can

be, applies the rule of transitivity.

� SPECIAL allows the user to specialise an assertion.

� SPTRANS takes two assertions, T1 and T2, and attempts to find a specialisation � such

that transitivity can be applied between T1 and �(T2). The heuristic used to find the spe-

cialisation (discussed later) does not compromise the safety of the verification since if it

fails and no specialisation is found, no result is deduced. Moreover, if a putative special-

isation is found, the correctness of the specialisation is checked by testing whether the

conditions for transitivity to apply do hold once the specialisation is applied.

� AUTOTIME takes two assertions, T1 and T2, and attempts to find an appropriate time-shift

t for one of the assertions so that transitivity can be applied. Recall that the time-shift rule



Chapter 6. Developing a Practical Tool 125

only applies if t � 0. If t < 0 is found, then the verification system shifts T1 forward by

�t time steps and attempts to apply transitivity between the shifted T1 and T2; if t � 0,

then T2 is shifted forward by t time units, and then the verification system attempts to

apply transitivity between T1 and the shifted T2.

� ALIGNSUB combines the ideas of the above two rules. Given two assertions it attempts

to find a time-shift and specialisation so that when both are applied, transitivity can be

used.

� PRETEND allows a desired result to be assumed without proof. When deciding whether

an overall proof structure is correct, it may be useful to assume some of the sub-results

and then see whether combining the sub-results will obtain the overall goal, before putting

effort into proving the sub-results. Furthermore, in a long proof built up over some pe-

riod of time it may be desirable at different stages in proof development to replace some

calls of VOSS with PRETEND. Having proved a property of the circuit using STE it may

take too much time in proof development to always perform all STE verifications when

the proof script is run. Although at the end, the entire verification script should be run

completely, it is not necessary to always perform all trajectory evaluations in proof de-

velopment.

An important part of implementing this verification methodology was to integrate the trajec-

tory evaluation and theorem proving aspects into one tool. Not only does this make the method-

ology easier for the user (since the quirks of only one system have to be learned and only one

conceptual framework and set of notations have to be learned), the practical soundness of the

system is maintained (the user does not have to translate from one formalism to another).

Moreover, using FL as the interface is very beneficial. Although this requires the user to be

familiar with FL, once learned it provides a flexible and powerful proof tool. Using the basic

verification library provided by the tool, the user can package the routines in different ways.
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The proof is written as an FL program that invokes the proof rules appropriately. This allows

the proof to be built up in parts and combined. The use of a fully programmable proof script

language — FL — removes much drudgery and tedium.

A critical factor in trajectory evaluation, affecting both the performance and the automatic

nature of STE, is the choice of the BDD variable orderings used in the trajectory evaluation. A

poor choice of variable ordering can make trajectory evaluation impossible or slow [44]. Al-

though the use of dynamic variable ordering techniques (one of which has been implemented in

Voss) ameliorates the situation, the compositional method means that dynamic variable ordering

is not a panacea. In many cases, there is simply not onevariable ordering that can be used. The

strength of the compositional theory is that it allows different variable orderings to be used for

different trajectory evaluations. If different variable orderings must be used for each of many

trajectory evaluations (for some proofs hundreds of trajectory evaluations could be done), using

dynamic variable ordering alone might significantly degrade performance.

On other hand, in many applications, good heuristics exist for choosing variable ordering

automatically based on the structure of the TL formulas. One of the advantages of representing

data at a high level (an integer ADT) is that knowledge of the type and operations on the type

can be used to determine appropriate variable orderings. A useful technique is to provide as

part of the FL library implementing a particular ADT, a function which takes an expression of

the type and produces a ‘good’ variable ordering.

This particular example illustrates the advantages of incorporating heuristics into a system

to aid the user. Other examples of heuristics which proved to be useful are the heuristics which

takes two assertions and try to find appropriate specialisations and time-shifts so that transitivity

can be used between the two assertions. The algorithms that implement these heuristics are

straightforward. Although there are a number of possible heuristics and algorithms that could

be used, experience showed that simple implementations are quite flexible.
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Finding a time-shift: This algorithm takes the consequent of one assertion and the antecedent

of another and determines whether if one of the formulas is time-shifted, the two formulas are

related to each other (in that their defining sequences are ordered by the information ordering).

String matching is the core of the algorithm, and although the extremely large ‘alphabet’ re-

stricts the sophistication of the string matching algorithms that can be applied, in practice the

simple structure of the formulas means that simple string matching algorithms are quite ade-

quate.

Finding a specialisation: This heuristic performs a restricted unification between two for-

mulas to discover whether if one of the formulas is specialised, it is implied by the other (in that

the defining sequence of one is ordered with respect to that of the specialised formula). A simi-

lar approach is used in implementing Generalised Transitivity (Theorem 5.31). Since semantic

information must be used as well as syntactic (two syntactically different expressions may be

semantically equivalent), the effectiveness of the algorithm is limited by the power of the do-

main knowledge incorporated into the tool. However, the simple structure of most antecedents

means that a simple heuristic works well.

It is also possible to incorporate both heuristics into one heuristic so that candidate time-

shifts and specialisations are sought at the same time. To implement this completely is much

more difficult since there may be a number of different time-shift and specialisation combina-

tions that can be applied. It can also be computationally more expensive, since for each possible

time-shift it may be necessary to use different domain knowledge. However, in practice, since

formulas tend not be very large, this can be useful and practical. Here, the representation of

data at the ADT level is very important practically since high-level information can be used to

find whether time-shifts and specialisations will be appropriate; if a lower level representation

were used, much more work would need to be done.

In all cases, once a transformation is found, it is automatically applied and checked; this also
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shows that heuristics can be incorporated without compromising the soundness of the proof sys-

tem. The core inference rules are always used for deducing results; the heuristics provided by

the user or the verification system as FL functions are there to automate the proof (at least par-

tially) in determining how the inference rules are to be used, and at no stage is the safety of the

result compromised. Moreover, if a transformation cannot be found, suitable error messages

can be printed indicating why such a transformation could not be found, helping the user to

determine whether the attempted use of the rule was wrong (e.g. because the desired result is

false), whether more information is needed (e.g. perhaps the rule of consequence must be ap-

plied to one of the assertions first), or more domain knowledge must be provided by the user.

6.4 Extending Trajectory Evaluation Algorithms

The core of the practical tool proposed here is the ability to perform trajectory evaluation to

check assertions of the form j= hj g==�h ji, where g and h are TL formulas (actually TLn for-

mulas since we are dealing with circuit models). The basis of these algorithms is the trajectory

evaluation facility of Voss, which can compute results of the form j= hjA==�C ji, whereA and

C are trajectory formulas.

There is a trade-off between how efficiently trajectory evaluation can be done, and the class

of assertions that can be checked. This section first describes and justifies the restrictions placed

on assertions, and then outlines three possible algorithms that can be used to extend Voss’s STE

facility. (The advantages and disadvantages of these algorithms are discussed in Section 7.6

after the presentation of experimental evidence.)

6.4.1 Restrictions

What are the problems in determining whether j= hj g==�h ji?
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First, STE computes the ==� relation, rather than the ==� relation. However, as shown in

Section 4.4.3, if only the realisable fragment of TLn is used, there is an efficient way to deduce

the ==� relation from the ==� relation. The limitation to the realisable fragment means that

users cannot explicitly check whether a component of the circuit takes on an overconstrained

value. But, the nature of the circuit model means that this is checked for implicitly in any tra-

jectory evaluation. The underlying trajectory evaluation engine can easily check for antecedent

failures by testing whether a Z appears in the defining trajectory of the antecedent. Thus, I argue

that this limitation is not a severe restriction, and worth the price.

Second, allowing a general TLn formula in the antecedent can be very costly since it may

require numerous trajectory evaluations to be done. Recall from Chapter 4 that computing the

defining sequence sets of a disjunction is done by taking the union of the defining sequence

sets of the disjuncts. Thus, the cardinality of the defining sequence sets is proportional to the

number of disjuncts. At first sight, it may seem that in practice that the structure of formulas

is such that this will not be a real problem. For circuit verification, how many formulas have

more than a dozen disjuncts (a number of sequences that could probably easily be dealt with)?

However, this is misleading since while disjuncts may not appear explicitly in a formula, they

may actually be there, particularly when dealing with non-boolean data types. For example, a

predicate on an integer data type such as [I] + [J ] = k + l +m can translate into a very large

number of disjuncts, even for moderate sized bit-widths.

Thus, for performance reasons, one restriction placed on formulas is that trajectory evalu-

ation is only done for assertions that have trajectory formulas as antecedents, i.e. for formulas

g such that the cardinality of �t(g) is one. Besides the performance justification, experience

with STE verification has shown that the main need for enriching the logic is to enrich the con-

sequents rather than the antecedents. Moreover, the use of the compositional theory allows the
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enriching of antecedents indirectly (for example through the disjunction, until, and general tran-

sitivity rules). Nevertheless, even though experience so far with STE has not shown this to be

a significant restriction, this is an undesirable restriction, and more work needs to be done here.

The final restriction is made with respect to the infinite operators such as Global . Since

the state space being modelled is finite, all trajectories must have repeated states; thus, in prin-

ciple, it is only necessary to investigate a prefix of a trajectory. However, this requires knowing

when a state in a trajectory has been repeated. Since, in the tool, symbolic sequences represent

a number of sequences or trajectories, given a symbolic sequence we have to know for which

element in the sequence it is the case that for all interpretations of variables there have been re-

peated states. The parametric representation of state is unsuitable for this computation, which

requires the characteristic representation to be used. However, if the characteristic representa-

tion is to be used, then the advantages of STE over other model checking approaches is reduced.

If infinite formulas must be tested, other approaches may well be more suitable. Moreover, for

hardware verification, infinite operators are less important than in more general situations since

timing becomes more critical. We are not interested that after a given stimulus, output happens

some time in the future; we want to know that output happens within x ns of input. Trajectory

evaluation’s good model of time and its ability to support verifications where precise timing is

important is one of its great advantages. Finally, in the same way the compositional rules can

be used to enrich the antecedent, they can be used to allow the infinite operators to be expressed

usefully (the until rule and its corollaries are good examples here).

In summary, the STE-based algorithms proposed here check assertions of the form j= hjA==�h ji,

where

1. A and h are in the realisable fragment of TLn;

2. A is a trajectory formula; and

3. h does not contain any infinite operators.
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Through the use of the compositional rules, the limitations of (2) and (3) can be partially over-

come.

The rest of this chapter examines how Voss’s ability to check formulas j= hjA==�C ji can

be used effectively. Three algorithms are presented.

6.4.2 Direct Method

If A and C are trajectory formulas, the standard use of STE for model checking trajectory as-

sertion of the form hjA==�C ji is straight-forward since the cardinality of �t(A) (and hence

T
t(A)) and �t(C) are one. �A and �C are constructed, and �A is computed from �

A. The last

part of the verification is to check whether �C v �A.

Where we choose the consequent to be a general formula g of TLn, we need to consider the

entire set �t(g). However, the basic idea is the same: construct �A and compute �A, and then

check whether 8� 2 �t(g); � v �A. How this is done is sketched in the pseudo-code below:

Compute(g, j)=
case g of
[i] : �

A

j
[i] = H

g0 ^̂̂ g1 : Compute(g0, j) ^ Compute(g1, j)
Next g : Compute(g, j + 1)
:::g : : Compute(g,j)
t : t

f : f

This algorithm is simple and straight-forward, although care must be taken in implementa-

tions to ensure efficiency, particularly when dealing with ADTs such as vectors and integers,

and derived operators such as the bounded versions of Global . First, only necessary informa-

tion must be extracted from �
A. Second, a very important optimisation in the Voss tool is event

scheduling — usually from one time step to the next only a few state holding elements change

their values. By detecting that components are stable for long periods of time, much work can

be saved. Any modifications to the STE algorithm must not interfere with this.
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The way this was implemented in the prototype tool was to (i) determine from the conse-

quent which state components are important, (ii) use Voss’s trace facility to obtain the values of

those components at relevant times, and (iii) compute whether the necessary relationship holds.

All of this can be done in FL on top of Voss, obviating the need to make any changes to the un-

derlying trajectory evaluation algorithm. Not only did this choice of implementation make de-

veloping the prototype much easier, but more fundamentally it means that the event scheduling

capacity of Voss is not impaired in any way.

As a side note, modifications to this approach to deal with the infinite operators is, in princi-

ple, straightforward. At each step in the trajectory evaluation the set of reachable states is added

to. Once a fix-point is reached, the trajectory evaluation can stop. The use of partial information

might improve the performance of the modification (in some cases — but not all — once a state

s has been explored, we need not visit any state above s in the information ordering). Provided

we are prepared to pay the cost of computing the characteristic representation of the state space,

this is feasible, although care must be taken not to conflict with the event scheduling feature of

Voss.

6.4.3 Using Testing Machines

An alternative way of extending STE is through the use of testing machines. The goal is to

determine, given a model M, whether j=M hjA==�g ji. The idea behind testing machines

is to answer this question by constructing a modelM0 and a trajectory formula Cg such that

j=M0 hjA==�Cg ji if and only if j=M hjA==�g ji. An analogous approach is the one adopted

by Clarke et al. in extending their CTL model checking tool by using tableaux so that LTL for-

mulas can be checked [38]. Other verification techniques also use this idea of using ‘satellite’

or observer processes to capture properties of systems [9].

As an example, using only trajectory formulas STE can check whether a node always takes
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on a certain value, y, say; it cannot check that a node nevertakes on the value y since the corre-

sponding predicate is not simple and thus the question cannot be phrased as a trajectory formula.

However, suppose the circuit were to have added to it comparator circuitry that compares the

value on the node to y and sets a new node N with H if the node doesn’t have the value y and

L if it does. To check whether the node takes on the value can now be phrased as a trajectory

formula. This section gives a brief outline of this, and detail can be found in Appendix B.

As presented, model checking takes a model and a formula and then performs some compu-

tation to check whether the model satisfies the formula. The basic motivation behind testing ma-

chines is that some of the computation task can be simplified by moving the computation within

the model itself. In essence what we do is construct a circuit that performs the model checking,

compose this circuit with the existing circuit and then do straightforward model checking on

the new circuit. This task is simplified by the close relationship between Q and C.

There are thus two steps in the model checking algorithm. The first is to take the formula and

to construct the testing machine; the second is to compose the testing machine with the original

circuit and to perform model checking.

The construction of the testing machine is done recursively based on the structure of the

formula. An important part of the algorithm is constructing the testing machines for the basic

predicates. For predicates dealing with boolean nodes, the construction is straightforward, es-

sentially doing a type conversion. For other types — especially integers — it is somewhat more

complex; for example, integer comparator and arithmetic circuits are needed. Given the test-

ing machines for the basic predicates, there is a suite of standard ways in which these testing

machines are composed, depending on the structure of the formula.

One of the complexities is dealing with timing information. For example, in the formula

g ___ h, g and h may be referring to instants in time far apart. This will mean that the testing

machines that compute g and h will probably produce their results in time instants far apart,
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which in turn means that some sort of memory may be necessary. If the formula g ___ h is nested

within a temporal operator such as the bounded always operator, it may be necessary to compute

the values of g ___ h for many instants in time, which means that a large number of results may

need to be stored temporarily. This will affect the computation and memory costs of model

checking.

The testing circuitry does not deal with the unbounded operators Global and Exists . The

method of Section 6.4.2 could deal with these operators by recording the set of states already

examined and other information. Testing circuitry could be built that duplicates that. As the

state space is finite, we know that at some finite time all states will have been examined, but

since the operators are unbounded it cannot be determined a priori at which instant in time all

states will have been examined. Thus the scheme for examining the testing circuit at a particular

moment fails. It seems that this can only be dealt with by modifying the STE algorithm.

6.4.4 Using Mapping Information

Suppose thatA and C are trajectory formulas which have the property that no boolean variable

in C appears in A. Let �1 = hjA==�C ji. This is the set of assignments of boolean variables

to values for which A==�C . In particular, it describes the relationship between the variables

in the antecedent formula and the variables in the consequent formula which must hold for the

trajectory evaluation to succeed.

C essentially extracts relevant components of �A, so by making C general enough, enough

useful mapping informationcan be used to make model checking TLn feasible. Provided enough

information is extracted, we can use �1 to determine whether j= hjA==�g ji holds: if for all in-

terpretations in �1, g holds (this is formalised later), and provided some side conditions hold,

then so does j= hjA==�g ji.

An example will illustrate the method.
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Figure 6.3: A CSA Adder

The Carry-Save adder (CSA) shown in Figure 6.3 is used in a number of arithmetic circuits.

An n-bit CSA adder consists of n independent single-bit full adders. For simplicity in the ex-

ample, we consider a one-bit adder. Suppose that at time 0, the state of the circuit is such that

node J has the value j, node K has the value k, and L has the value l. Then at time 1, the state

of the circuit should be such that M has the value j � k � l (� representing exclusive or) and

N has the value j ^ k _ j ^ l _ k _ l.

This is easy enough to verify using a trajectory formula. However, there are verifications in

which what we are interested in is not what the particular values of nodesM andN are, but that

the sum of the values of nodes J , K and L at time 0 is equal to the sum of the nodes M and N

at time 1. (This is exactly what we are interested in when verifying a Wallace-tree multiplier).

In STE, this property can not be verified directly.

Define the trajectory formulas A and C by:

A = (J = j) ^̂̂(K = k) ^̂̂(L = l)

C = Next (M = m) ^̂̂(N = n)

and then compute �1 = hjA==�C ji.

�1 gives the constraints which must hold for the trajectory evaluation to hold. In particular

it gives the constraints relating j; k and l with m and n. Suppose 8� 2 �1; �(g) = t where

g = (j+k+ l = m+n) (assuming here two-bit addition). If this is the case then we know that

for each mapping of boolean variables to values for which the STE holds, (j+k+ l = m+n).

Or putting this in terms of an expression in TLn, that h = Next (j + k+ l = [M ] + [N ]) holds.
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Essentially g is h where we substitute the variables m and n into h to act as place-holders for

the state components M and N . C is a way of extracting appropriate values out of �A. So, if

8� 2 �1; �(g) = t and �1 = hjA==�C ji then hjA==�h ji.

One important check needs to be made – we must ensure that the above condition is not

satisfied vacuously by �1 being empty or only containing very few interpretations. What we

want to ensure is that �1 covers all the interesting cases: that for every possible assignment of

values to the boolean variables j; k and l, there is an assignment to the boolean variablesm and

n such that the trajectory evaluation holds. This is formalised now.

Definition 6.1.

Let U be a set of variables, and � : V ! B be an interpretation of variables. The set of exten-

sions of � with respect to U is Ext (�;U) = f 2 � : 8v 2 V � U; �(v) =  (v)g

The condition that �1 is non-trivial can be expressed as: for every interpretation� 2 �,

there is an interpretation 2 Ext(�; v(A))wherev(A) is the set of variables inA, and 2 �1.

In other words for every interpretation of variables of A there is an extension of that interpre-

tation to include variables in C , such that the extension is an element of �1.

Note: If h0 is a TLn formula not containing temporal operators, then by the remarks preced-

ing Theorem 3.5, then we can consider h0 as a predicate from Cn to Q. For convenience, if h0

is strictly dependent on nodes fn1; : : : ; nrg, then we write h0(x1; : : : ; xr).

Theorem 6.1.

Let A be a trajectory formula, and h = Nexth
0 be a TLn formula such that h0 contains no

temporal operators. Let h0 be strictly dependent on N = fn1; : : : ; nrg.

Let C = Next (^̂̂r1[nj] = wj) where the wj are distinct and disjoint from the variables in A; let

W = fw1; : : : ; wrg. Suppose:

1. �1 = hjA==�C ji;



Chapter 6. Developing a Practical Tool 137

2. 8 2 �1;  (h
0(w1; : : : ; wr)) = t;

3. 8� 2 �;9 2 Ext (�;W ), and  2 �1; and

4. 8 2 �1; i = 0; 1; j = 1; : : : ; n : �
 (A)

i
[j] 6= Z.

Then j= hjA==�h ji.

Proof.

(1) 8� 2 �;9 2 Ext (�;W );  2 �1 Hyp. 3.

(2) 8� 2 �;9 2 Ext (�;W );  (A)==� (C) (1), Hyp. 1.

(3) 8� 2 �;9 2 Ext (�;W ); �
 (C)
1 v �

 (A)
1 (2), Theorem 4.5.

(4) 8� 2 �;9 2 Ext (�;W ); �
 (C)

1 [k]v �
 (A)

1 [i]; k = 1; : : : ; n

(3), structure of Cn.

(5) 8� 2 �;9 2 Ext (�;W );  (wj)v �
 (A)
1 [nj]; j = 1; : : : ; r

(4), structure of C .

(6) 8� 2 �;9 2 Ext (�;W );  (wj) = �

 (A)

1 [nj]; j = 1; : : : ; r

(5), Hyp. 4.

(7) h
0( (w1); : : : ;  (wr)) = t Hyp. 2, definition of  (h0).

(8) 8� 2 �;9 2 Ext (�;W ); h0(�
 (A)

1 [n1]; : : : ; �
 (A)

1 [nr]) = t

(6), (7).

(9) 8� 2 �; h0(�
�(A)

1 [n1]; : : : ; �
�(A)

1 [nr]) = t (8), wj not in A.

(10) 8� 2 �;Sat(� �(A); �(h)) = t (9).

(11) 8� 2 �; �(A)==��(h) (10), Lemma 4.4, Hyp. 4.

This theorem can be generalised to deal with assertions such as

j= hjA==�(
d

^̂̂
j=1

Next
j
hj) ji

and implemented.
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Examples

This chapter shows that the ideas presented in this thesis can be used in practice. The verifica-

tion of the examples done in this chapter requires a relatively rich temporal logic — trajectory

formulas are often not rich enough — and efficient methods of model checking. Efficient al-

gorithms for performing STE are essential, but in themselves not enough; the compositional

theory for TL is necessary.

Section 7.1 presents the verification of a number of simple examples performed using the

first prototype verification tool. These examples are used as illustrations of the use of the in-

ference rules. Section 7.2 presents an example verification of a circuit that is well suited for

verification by traditional BDD-based model checkers such as SMV. The B8ZS encoder chip

verified has a small state space which is easily tractable by the traditional methods. While the

circuit can easily be represented as a partially ordered model, it is difficult to use the methods

proposed by this thesis to verify this circuit completely. This example shows some interesting

points about the need for expressive logics, and shows some limitations of the approach pro-

posed in this thesis.

Section 7.3 describes the verification of more substantial circuits, multipliers, which can

have up to 20 000 gates. These are circuits that are beyond BDD-based automatic model check-

ers and require the use of methods such as composition and abstraction. The verification of a

number of different multipliers are described and analysed.

One of the verified multipliers is Benchmark 17 of the IFIP WG10.5 Hardware Verification

Benchmark Suite. Section 7.4 builds on the verification of this multiplier and shows how its

138
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verification is used in the verification of a parallel matrix multiplier circuit (Benchmark 22 of

the suite); the largest version of this circuit verified contains over 100 000 gates.

The examples mentioned here all show that these methods are well suited to examples where

detailed timings at which events happen is known. Section 7.5 shows how time can be dealt with

in a more generalised way. Although this section is more speculative in nature (the verification

has not been mechanised) it shows that using the inference rules and inducting over time, allows

the practical use of TL in a more expressive way.

Finally, Section 7.6 summarises the results of this chapter and evaluates the methods pro-

posed.

7.1 Simple Example

7.1.1 Simple Example 1

For the first example, consider the circuit shown in Figure 7.1 which takes in three numbersm,

n and o on nodes M , N andO, and produces o+max(m;n) on R. There are three parts to the

circuit: a comparator compares the value on M with the value on N and produces H on P if

the number atM is bigger than the number onN and produces 0 otherwise; a selector takes the

values at M , N and O and produces at node Q the value at M if P is set to H, and the value at

N otherwise; the third part of the circuit takes the values at node Q and O, and produces their

sum at nodeR. This example is one which could be verified using STE alone, but its small size

makes it useful as an example.

Verification starts by checking the correctness of the individual components. The verifica-

tion of each component is done in the presence of the rest of the system, which means that any

unintended interference will be detected. These individual proofs are put together using spe-

cialisation, time-shifting and transitivity. An outline of the formal proof follows. To simplify

notation, a! bjc is used as shorthand for (a) b) ^̂̂((:::a)) c).
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Figure 7.1: Simple Example 1

Let A0 = ([M ]=m) ^̂̂([N ]=n) ^̂̂([O]=o).

Let A = A0 ^̂̂ NextA0 ^̂̂ Next2A0.

Let C = Next
3(m>n ! [R]=m+ o j [R]=n+ o).

We wish to show that j= hj A==�C ji.

(1) j= hjA==�Next ([P ]=(m>n)) ji By STE

(2) j= hjA0 ^̂̂[P ]=x ==� Next (x! [Q]=m j [Q]=n) ji By STE

(3) j= hj ([O]=y) ^̂̂([Q]=z)==�Next ([R]=y+ z) ji By STE

(4) j= hj Next (A0 ^̂̂([P ]=m>n))==�Next2(m>n ! [Q]=m j [Q]=n) ji

Time-shift, specialise (2)

(5) j= hjA==�Next2(m>n ! [Q]=m j [Q]=n) ji (1), (4), transitivity.

(6) j= hj Next2([O]=o) ^̂̂(m>n ! [Q]=m j [Q]=n)==�C ji

Time-shift, specialise (3)

(7) hjA==�C ji (5), (6), transitivity.

Perhaps the most interesting part of this proof is how specialisation and transitivity are used.

Consider how (1) and (2) are combined. Note thatA contains all the information that NextA0

does; and note the similarity in structure between [P ]= (m>n) and [P ]=x. By time-shifting

(2) as well as substituting m>n for x transforms (2) into (4), which can be combined with (1)
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using transitivity.

The other place in which specialisation was used was in line (6). Here, using only substi-

tution on line 3 is inadequate; a much richer transformation is needed. Rather than just substi-

tuting one expression for z in (3), two different substitutions are made, which are qualified and

combined (one substitution is made when m > n, and the other when m � n).

This proof was done in the first verification tool, where it is easier to do than manually be-

cause the time-shifts and specialisations are found automatically. Steps 4 and 5 are done with

a call to one of the automated rules; and steps 6 and 7 with another call to the same rule. A full

description can be found in [76], and the FL proof script can be found in Section C.1.

7.1.2 Hidden Weighted Bit

The hidden weighted bit problem was one of the first to be proved to need exponential space

to verify using traditional BDD-based methods [21]. A circuit for an 8-bit version is shown in

Figure 7.2. The verification of this was done in the first prototype tool; the proof is outlined here,

and a full description including the one page proof script is described in a technical report [76].
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Figure 7.2: Circuit for the 8-bit Hidden Weighted Bit Problem

In this version, the global input x1; : : : ; xn is copied to two buffers. The Counterpart of

the circuit computes the number of 1’s on the input (i.e. �n1xi). The Chooserpart of the circuit
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takes the number j output on CountNode(the number is in binary form, hence if there are n

input lines, CountNodecomprises blg nc + 1 lines), and outputs the value xj on Resultand on

Error when j > 0. If j = 0 then Error is set to 1.

Intuitively, a verification of this circuit as a wholetakes exponential time and space (in n)

because the output value on CountNodeis so complicated, in terms of the boolean variables, that

no suitable variable ordering can be found so that the Chooserpart of the circuit can be verified

efficiently. The virtue of the compositional approach is clearly illustrated: by decoupling the

verification of the two parts of the circuit, we can choose suitable individual variable orderings

for both parts of the circuit; moreover, it is more efficient to verify the chooser circuit for an

arbitrary input j (which only needs very simple BDDs to represent it), and then substitute for

j the actual input, than to verify for the actual input (which needs more complicated BDDs to

represent it).

There are five steps in the proof, in which all the time-shifts and specialisations are found

automatically.

� The proof that the copying of the input to the buffer is correct — BufferTheorem.

� The verification Counterpart of the circuit — CounterTheorem.

� The composition of BufferTheoremand CounterTheorem. This is done in two steps: first,

CounterTheoremis time-shifted along so that transitivity between BufferTheoremand

CounterTheoremcan be used to produce BufferCounterTheorem. BufferCounterTheorem

is conjoined with BufferTheoremso that we can use the value of Buffer2at a later stage.

Call the result of this stage1Theorem.

� Verification of the Chooserpart of the circuitry — ChooserTheorem.

� Composition of stage1Theoremand ChooserTheoremby time-shifting ChooserTheorem

by an appropriate amount and specialising this so that transitivity can be used between
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stage1and ChooserTheorem.

Results: We verified the circuit for different values of n (4, 8, 16, 32, 64, 128). For these values,

verification takes roughly cubic time (and importantly, space was not an issue). The verification

of the 128 bit problem took just under 27 minutes on a Sun 10/51. Compared to this, verification

of the system as one unit was not possible for n = 64 or larger. The FL script for the verification

is shown in Section C.2

7.1.3 Carry-save Adder

The carry save adder (CSA) shown in Figure 6.3 was verified using all three extensions to the

STE algorithm described in Chapter 6. Table 7.3 summarises the computational cost of verifi-

cation of a 64 bit CSA.

Algorithm Time (s)

1 Direct 3.8
2 Testing Machine 3.6
3 Mapping information 2.6

Table 7.3: CSA Verification: Experimental Results

The experiments were run on a DEC Alpha 3000, and show that for all three approaches,

verification is easily accomplished. The FL script for this is shown in Section C.3. Note that

the compositional theory is not used to verify this circuit.

7.2 B8ZS Encoder/Decoder

This example shows the verification of a B8ZS encoder, a very simple circuit but one which

would be very difficult to do in traditional STE and illustrates some points about the style of

verification. Note that the compositional theory is not used to verify this circuit.
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7.2.1 Description of Circuit

Bipolar with eight zero substitution coding (B8ZS) is a method of coding data transmission used

in certain networks. Some digital networks use Alternate Mark Inversion: zeros are encoded

by ‘0’, and ones are encoded alternately by ‘+’ and ‘�’. The alternation of pluses and minuses

is used to help resynchronise the network. If there are too many zeros in a row (over fifteen

– something common in data transmission) the clock may wander. B8ZS encoding is used to

encode any sequence of eight zeros by a code word. If the preceding 1 was encoded by ‘+’, then

the code word ‘000+–0–+’ is substituted; if the preceding 1 was encoded with a ‘�’, then the

code word is ‘000–+0+–’. Using this encoding, the maximum allowable number of consecutive

zeros is seven.

The implementation of the circuit is taken from the design of a CMOS ZPAL implementa-

tion of the encoder (and corresponding decoder) by Advanced Micro Devices [4]. The encoder

comprises two parts. One PAL detects strings of eight zeros and delays the input stream to en-

sure alignment. If the first PAL detects eight zeros, the second PAL encodes the data depending

on whether eight zeros have been detected or not. Figure 7.3 given an external view of the chip.

The inputs are a reset line (active low), and NRZ IN which provides the input. There are two

outputs, PPO and NPO which as a pair represent the encoding: (1,0) is the ‘+’ encoding of a

one, (0, 1) is the ‘�’ encoding of a one, (0; 0) encodes a zero, and (1, 1) is not used. Output

emerges six clock cycles after input.

7.2.2 Verification

There are two questions one could ask in verification:

1. Does the implementation meet its specification? Here we want to check that the output

we see on NPO and PPO is consistent with the input.
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RST

NRZ IN NPO

PPO

Figure 7.3: B8ZS Encoder

2. Does the implementation have the properties that we expect? (Specification validation)

In particular is it the case that:

� At no stage are there eight consecutive (PPO, NPO) pairs which encode a zero;

� At no stage are there fifteen or more consecutive zeros on the PPO output; and

� At no stage are there fifteen or more consecutive zeros on the NPO output.

Checking that the implementation meets the specification is a bit tricky, and shows the need

for a richer logic than the set of trajectory formulas. With trajectory formulas, the obvious way

to perform verification is to examine the output and check to see that the output produced is

determined by the finite state machine which the PALs implement. However, the equations of

the FSM are complicated and non-intuitive. Verification that the implementation is ‘correct’

doesn’t give us information about the specification. Worse, essentially the verification condi-

tions would be a duplicate of the implementation, increasing the likelihood of an error being

duplicated. And there don’t seem to be easier, higher level ways of expressing correctness us-

ing trajectory formulas since the circuit has the property that the n-th output bit is dependent on

the first input bit.

Using the richer logic, a far better way of verifying the circuit is to show that the input can

be inferred from the output. Suppose that we want to check the output bit pair at time k (recall
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that the output is encoded as the (PPO, NPO) pair). If this bit pair is in the middle of one of the

code words then the input bit at time k � 6 must be a zero; otherwise the (k � 6)-th input bit

can be inferred directly from the value of the bit pair.

The testing machine method was used in verification. To test that the bits are correctly trans-

lated, the proof first shows that after being reset the encoder enters a set of reachable states, and

that once in a reachable state the encoder remains in this set of states. Next, the proof shows

that if the encoder starts in the reachable set then the output of the encoder is correct. The com-

putational cost of all of this is approximately 30s on a Sun 10/51.

The second step is to check that the implementation has properties that cannot be directly

inferred from the design. In particular we want to show that at no stage are there eight or more

zeros consecutively produced by the encoding of PPO and NPO and also that if we look at PPO

and NPO individually that at no stage are there fifteen or more zeros consecutively. These con-

ditions can be expressed succinctly in TL, while they could not be expressed as trajectory for-

mulas. The major restriction here is that using testing machines, the antecedent can only be a

finite formula. We cannot check that this result holds for arbitrary input. What we can show

is that given arbitrary input of length n the circuit has the properties we expect. Using testing

machines, verification for n = 100 presents no problem (10s on a Sun 10/51). In principle, the

direct method could verify the general case.

The final verification that was done was to implement the complementary B8ZS decoder and

to check that when the output of the encoder is given as input to the decoder, then the output

of the decoder is just the input of the encoder, suitably delayed. Again, it was possible using

the testing machine method to check this for finite input prefixes. An error was detected: the

initial states of the encoder and decoder are not synchronised. If the first eight input bits given

the encoder are zero, the code word used by the encoder is ‘000+-0-+’; however, the decoder

expects the other code word to be used if the first eight bits are zero. This error only occurs when
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the first eight bits are zero as the state transition table of the decoder has the pleasant property

that the first encoded 1 (either a ‘+’ or ‘�’) emitted by the encoder synchronises the decoder.

This example illustrates some interesting points about verification. However, it is not a good

example for trajectory evaluation; since the state space of the circuit is quite small (fewer than

20 state holding components), other verification methods work well.

7.3 Multipliers

Since BDDs are not able to represent the multiplication of two numbers efficiently [21], auto-

matic model checking algorithms find the verification of multipliers very challenging. For this

reason, multipliers have received much attention in the literature. The methods proposed in this

thesis have been used successfully to verify a number of multipliers: three of these examples

are briefly discussed, and then one case is presented in great detail. The section concludes by

comparing these verification studies to other work.

7.3.1 Preliminary Work

The first multiplier verified using a compositional theory for STE was a simple n-bit multiplier

consisting of n full adders. The verification is accomplished by using STE to prove that each

adder works correctly, and then by applying the inference rules to show that the collection of

adders performs multiplication. The key inference rules used were time-shifting, specialisation,

transitivity, and rules of consequence.

Of immense practical importance in the prototype tool used to perform the verification was

the ability to use a simple theorem prover coupled with some decision procedures to reason

about integers. This enabled the tool to break the limitation of BDDs. Also important for ease

of use of the system is that specialisations and time-shifts were all found automatically by the

tool.
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The complete verification of this 64 bit multiplier took just less than 15 minutes of CPU time

on a Sun 10/51. For this verification, trajectory formulas were sufficient to express all needed

properties. A full description of the verification, including the proof script can be found in a

technical report [76].

The next step — the verification of a Wallace tree multiplier [66] — showed the need for a

richer logic. A Wallace tree multiplier uses Carry-Save adders (CSA) as its basic components.

Example 5.9 indicated that what is important in the verification of a CSA is to show that the

sum of the two outputs is the sum of the three inputs. This cannot be represented as a trajectory

formula. What trajectory formulas can represent is the particular values of each output, which

is not helpful.

As a preliminary test, the mapping method was used to extend the expressiveness of tra-

jectory evaluation based verification, and the verification completed. The implementation of

the prototype algorithm was not particularly efficient, but the need for a richer logic, and the

feasibility of the approach was demonstrated.

7.3.2 IEEE Floating Point Multiplier

One of the largest verifications done using the theory presented in this thesis is the verification

of an IEEE compliant floating point multiplier by Aagaard and Seger [2]. The multiplier, im-

plemented in structural VHDL, includes the following features:

� double precision floating point;

� radix eight multiplier array with carry-save adders;

� four stage pipeline; and

� three 56-bit carry-select adders.

The circuit verified is approximately 33 000 gates in size.
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The verification was done using the VossProver, a proof system built by Seger on top of

Voss. Based on the first prototype tool discussed here, this implements the theory presented

in [78], augmented by using the mapping approach to allow a more expressive logic than tra-

jectory formulas. The VossProver contains extensive integer rewriting routines, which are very

important in verification proofs.

Aagaard and Seger estimate that verifying the circuit took approximately twenty days of

work. The computational cost of the verification was reasonable (a few hours on a DEC Alpha

3000).

7.3.3 IFIP WG10.5 Benchmark Example

Description of Circuit

Benchmark 17 of the IFIP WG10.5 Benchmark Suite is a multiplier which takes two n-bit num-

bers and returns a 2n bit number representing their multiplication. This description is heavily

dependent on the IFIP documentation.1

Let A = an�1 : : : a1a0 and B = bn�1 : : : b1b0. Then A � B =
P

n�1

i=0 2i(
P

n�1

j=0 2
j
aibj).

Implementing this is straightforward: the basic operation is multiplying one bit ofAwith one bit

of B and adding this to the partial sum. The component that accomplishes this basic operation

takes four inputs:

a One bit of the multiplicand,

b One bit of the multiplier,

c One bit of the partial sum previously computed,

CIN A one bit carry from the partial sum previously computed;

and computes a � b+ c+ CIN producing two outputs:

S One bit partial sum, and

1ftp://goethe.ira.uka.de/pub/benchmarks/Multiplier/
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COUT One bit carry.

The equations for the output are:

S = a ^ b � (c� CIN)

COUT= a ^ b ^ c _ a ^ b ^ CIN _ c ^ CIN

The implementation of the equations (as given in the IFIP documentation) and the graphical

symbol used to represent these components is presented in Figure 7.4.

a

b

�



q

c

CIN

S

q

q

q

q
�


e

�


e

�


e

�


e COUT

c

b

a

S

CIN

COUT

Figure 7.4: Base Module for Multiplier

A vector of these components multiplies one bit of B with the whole of A and adds in any

partial answer already computed. It might seem appropriate rather than just having a vector of

these components to also have an adder which added in carries from less significant columns

to the results of more significant bits. The problem with doing that is that each stage would be

limited by the need for possible carries from the least significant bit to be propagated to the most

significant bit, with concomitant increases in the time and number of gates needed.

The approach used in the implementation is to produce two outputs: the first output is the

sum of the bit-wise addition of the two inputs, ignoring the carries; and the second output is the
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carries of the bit-wise addition. Both of these outputs are forwarded to the next stage; here the

carries are added in and new carries generated. We can consider the vector of S outputs as one

n-bit number and the vector of COUToutputs as another n-bit number. If we consider stage k

by itself, if the vector of a inputs is ~x, if the b inputs are all the bit y, and if the vector of c inputs

is ~z, then we shall have that S+2k+1COUT = ~xy+ z. (This is something that must be proved

in the verification.)

These components are arranged in a grid (Figure 7.5 shows how a 4 bit multiplier is ar-

ranged). The multiplier contains n stages, each of which multiplies one bit of B with A and

adds it to the partial result computed so far. After k stages, n+k bits of the partial answer have

been computed. The components making up each stage are arranged in columns in the figure.

The components making up a row compute one bit of the final answer; carries from less signifi-

cant bits are added in, and any generated carries are output for the more significant rows to take

care of.

In the Figure 7.5, each of the base components is labelled with indices: i : j indicates that

the component is the j-th component of the i-th stage.

Having passed through n stages, the full multiplication has been computed. However, as

the final stage still outputs two numbers, the carries must now all be added in. Therefore the

final step in the multiplier is a row of n � 1 full adders that adds in carries. These full adders

are labelled FA in Figure 7.5.

The implementation of the circuit was done in Voss’s EXE format as a detailed gate-level

description of the circuit. A unit-delay model was used, although this is essential neither to the

implementation nor the verification.
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Figure 7.5: Schematic of Multiplier
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Verification

This section presents a detailed description of the verification of the four bit multiplier presented

in Figure 7.5. This example is small enough that the complete proof can be described, and this is

useful to show how the inference rules are used. However, the example is big enough that there

is some tedium involved too; it must be emphasised that in practice the verification is done using

FL as the proof script language, which alleviates much of the tedium.

It is also worth mentioning that the verification of a four bit multiplier is well within the

capacity of trajectory evaluation. Although the proof is not independent of data path width since

issues of timing are important, it may be useful to do the verification for a small bit width first

using trajectory evaluation by itself.

Identifying structure Using the inference rules relies on using the properties of integers to

break the limitations of BDDs. Therefore, the first step in the proof is to identify some structure,

in particular to identify which collections of nodes should be treated as integers.

Notation: BM(i : j)(x) refers to node x in the basic module i : j; FAi(x) refers to node x

of the full adder FAi. For each stage, we consider the collection of a inputs as an integer, the

collection of b inputs as an integer, and so on : : : Similarly, the collection of S outputs and

COUToutputs are both considered as integers. Table 7.4 presents the correspondences.

The following bit vector variablesare used:

a stands for the bit vector ha3; : : : ; a0i;

b stands for the bit vector hb3; : : : ; b0i (a and b are the inputs to the circuit);

c stands for the bit vector hc7; : : : ; c0i;

d stands for the bit vector hd2; : : : ; d0i.

If N is a bit vector, then Nhii refers to the i-th least significant bit (so Nh0i is the least

significant bit), and Nhi::ji refers to the (sub)bit vector hNhii; : : : ; Nhjii. We also use the
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Integer node Vector of bit nodes
A The four bit integer input
B The four bit integer input
O Output of the or gate
RSi S output of stage i for i = 0; : : : ; 3

hBM(i : 3)(S); : : : ;BM(i : 0)(S);BM(i� 1 : 0)(S); : : : ;BM(0 : 0)(S)i
RCi COUToutput of stage i for i = 0; : : : ; 3

hBM(i : 3)(COUT); : : : ;BM(i : 0)(COUT)
RS4 The output Out

hO;FA2; : : : ;FA0;BM(3 : 0)(S); : : : ;BM(0 : 0)(S)i

Table 7.4: Benchmark 17: Correspondence Between Integer and Bit Nodes

short hand thatRCi = d is short forRCih2::0i = d (RCi is four bits wide, d is three bits wide).

Defining this correspondence has two advantages: the level of abstraction is raised since the

verifier can think in terms of integers rather than bit vectors; and the verifier can use properties

of integers to prove theorems without having to convert everything into BDDs.

Anomalies in circuit implementation There are a number of aspects of the circuit that can

be criticised and improved. The most obvious is that BM(i : 3)(COUT) = 0 for all i. In turn,

this means that one of the inputs to the or gate is always 0, i.e. RS4h7i depends entirely on

FA2(COUT). The only advantage of this implementation is that it makes the circuit description

(slightly) more regular. The cost is the extra circuitry and time required to perform the computa-

tion. Furthermore, this implementation makes the proof more complicated. The final step in the

proof below will be to show that since RS3 + 24RC3 = ab that RS4 = ab; this is only true be-

cause the one input to the or gate is zero. Therefore, as the proof is constructed, we shall prove

that BM(i; 3)(COUT) = 0, complicating the proof slightly. A better implementation would

have meant a simpler proof.
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The Proof

Stage 0 The first step is to show the first stage performs the correct multiplication/addition.

j= By STE

hj Global [(0; 100)] ([A]=a ^̂̂ [B]h0i=b0)

==� Global [(3; 100)] ([RS0] + 21[RC0]=abh0i ^̂̂ [RC0]h3i=0) ji

(7.1)

To make STE as efficient as possible, we use as little information as possible by considering

only one bit of b. However, at a later stage we shall want to use all the bits of b, so the next

step is to include the rest of b in the result. There are a number ways of doing this. One would

be to use the identity rule to show that B has any value imposed on it and then use conjunc-

tion with Result 7.1. However, in this case it is easier to use one of the rules of consequence

(Theorem 5.18) and strengthen the antecedent.

j= By rule of consequence from Result 7.1

hj Global [(0; 100)] ([A]=a ^̂̂ [B]=b)

==� Global [(3; 100)] ([RS0] + 21[RC0]=abh0i ^̂̂ [RC0]h3i=0) ji

(7.2)

This use of the rule of consequence relies on Lemma 5.27, and is motivated by the fact that the

antecedent of Result 7.2 uses more information than that of Result 7.1

Stage 1 The first step is to show Stage 1 performs the correct multiplication/addition. Note,

the proof is done for arbitrary input for RS0 and RC0 rather than the actual input. This is im-

portant because STE is used to do the proof; if the actual input (which is a function of A and

B) were used, in general STE would not be able to cope.
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j= By STE

hj Global [(3; 100)]

[A]=a ^̂̂ [B]h1i=b1 ^̂̂ [RS0]=ch3::0i ^̂̂ [RC0]=d ^̂̂ [RC0]h3i=0

==� Global [(6; 100)]

[RS1] + 22[RC1]=ch3::0i+ 21d + 21abh1i ^̂̂ [RC1]h3i=0 ji

(7.3)

In proving this result, STE is used; this implies that BDDs are used to represent data as this

is necessary for STE. However, once the proof is done, the result is only stored symbolically,

and the BDDs used to represent Result 7.3 are garbage collected.

Having proved this, we now combine Results 7.2 and 7.3 using a combination of transitivity

and specialisation. This is useful to do since we know something about the values of RS0 and

RC0; it is feasible to do since the consequent of Result 7.3 is strictly dependent on the nodes

RS0 and RC0 — this means that Generalised Transitivity — Theorem 5.31 — can be used.

Informally, Theorem 5.31 says that ch3::0i + 21d = abh0i.

j= By Generalised Transitivity

hj Global [(0; 100)] ([A]=a ^̂̂ [B]=b)

==� Global [(6; 100)]

[RS1] + 22[RC1]=abh0i+ 21abh1i ^̂̂ [RC1]h3i=0 ji

(7.4)

Now we have the output of stage 1 solely in terms of a and b. This can be rewritten into a

more elegant form. The proving system has integer rewriting procedures which automatically

rewrites abhn�1::0i+ 2nabhni as abhn::0i. Thus applying Lemma 5.24 and the rule of conse-

quence, Theorem 5.18, yields the next result:
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j= By rule of consequence

hj Global [(0; 100)] ([A]=a ^̂̂ [B]=b)

==� Global [(6; 100)]

[RS1] + 22[RC1]=abh1::0i ^̂̂ [RC1]h3i=0 ji

(7.5)

Stages 2 and 3 The steps are exactly the same as stage 1.

j= By STE

hj Global [(6; 100)]

[A]=a ^̂̂ [Bh2i]=b2 ^̂̂ [RS1]=ch4::0i ^̂̂ [RC1]=d ^̂̂ [RC1]h3i=0)

==� Global [(9; 100)]

[RS2] + 23[RC2]=ch4::0i+ 22d + 22abh2i ^̂̂ [RC2]h3i=0 ji

(7.6)

j= By Generalised Transitivity (Results 7.5 and 7.6)

hj Global [(0; 100)] ([A]=a ^̂̂ [B]=b)

==� Global [(9; 100)]

[RS2] + 23[RC2]=abh1::0i+ 22abh2i ^̂̂ [RC2]h3i=0 ji

(7.7)

j= By rule of consequence from Result 7.7

hj Global [(0; 100)] ([A]=a ^̂̂ [B]=b)

==� Global [(9; 100)]

[RS2] + 23[RC2]=abh2::0i ^̂̂ [RC2]h3i=0 ji

(7.8)
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j= By STE

hj Global [(9; 100)]

[A]=a ^̂̂ [B]h3i=b3 ^̂̂ [RS2]=ch5::0i ^̂̂ [RC2]=d ^̂̂ [RC2]h3i=0

==� Global [(12; 100)]

[RS3] + 24[RC3]=ch5::0i+ 23d+ 23abh3i ^̂̂ [RC3]h3i=0 ji

(7.9)

j= By Generalised Transitivity (Results 7.8 and 7.9)

hj Global [(0; 100)] ([A]=a ^̂̂[B]=b)

==� Global [(12; 100)]

[RS3] + 24[RC3]=abh2::0i+ 23abh3i ^̂̂ [RC3]h3i=0 ji

(7.10)

j= By rule of consequence from Result 7.10

hj Global [(0; 100)] ([A]=a ^̂̂ [B]=b)

==� Global [(12; 100)]

[RS3] + 24[RC3]=ab ^̂̂ [RC3]h3i=0 ji

(7.11)

The adder stage The final step in the proof is to ensure that the last, adder stage, adds in

the carries correctly. Here possible carries in the least significant bit must be passed to the most

significant bit. For large bit widths, this adder stage may take tens or hundreds of nanoseconds,

so timing may be important here.

j= By STE

hj Global [(12; 100)] ([RS3]=ch6::0i ^̂̂ [RC3]=d ^̂̂ [RC3]h3i=0)

==� Global [(22; 100)] ([RS4]=(ch6::0i+ 24d)h7::0i) ji

(7.12)

Now, using general transitivity, we have:
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Bit width Number of gates D Time (s) T Time (s)
4 135 3:9 5:4

8 473 9:8 15:0
16 1841 36:0 60:8

32 7265 168:7 371:4
64 28865 1081:9 > 6000

Table 7.5: Verification Times for Benchmark 17 Multiplier

j= By Generalised Transitivity (Results 7.11 and 7.12)

hj Global [(0; 100)] ([A]=a ^̂̂ [B]=b)

==� Global [(22; 100)] ([RS4]=a � b) ji

(7.13)

Again, the automatic rewrite systems recognises that ab is an eight bit number, and so rewrites

a � bh7::0i as a � b. This concludes the proof.

Appendix C has the FL proof script for the multiplier example.

Experimental results and comments This IFIP WG10.5 Benchmark 17 multiplier was veri-

fied for a number of bit widths (the n bit width case multiplies two n-bit numbers and produces

a 2n bit number). The time taken to perform the verification on a DEC Alpha 3000 is shown in

Table 7.5: the column labelled ‘D Time’ shows the time taken using the direct method, and the

column labelled ‘T Time’ shows the time taken using the testing machine approach (all times

shown in seconds). These results are useful for evaluating the testing machine approach, and

are used in the discussion on testing machines in Section 7.4.4.

The proof script itself is short (less than 200 lines, about 50 of which are declarations) and

straightforward to write, relying only on simple properties of integers. The full script can be

found in Section C.4. Once structure in the circuit is identified by associating integers with

collections of bit valued nodes, the verification no longer has to deal with bits, and at no stage
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does the verification have to concern itself with how the full adders or the base components are

actually implemented.

The reason why STE cannot deal with the verification by itself is not because of the size of

the circuit; the problem is that there is no good variable ordering for the multiplication of two bit

vectors. However, good variable orderings are definitely possible for verifying the individual

components of the multiplier with STE, and good heuristics to find good ordering can easily be

automated.

7.3.4 Other Multiplier Verification

One of the main examples used in this thesis is the verification of a multiplier circuit. To put the

thesis work in context, other work on multipliers is surveyed. Multipliers represent an important

class of circuit, because arithmetic circuits are in themselves important, and because they are

particularly challenging for BDD-based approaches.

Simonis uses a simple proof checker to verify a multiplier in [118]. The circuit description

is represented in a Prolog-like language, and the correctness proof simulates a hand proof: nine

correctness conditions are identified and checked (although it is not proved that these nine con-

ditions imply that the multiplier works correctly). Each of the conditions is checked by a Prolog

routine. Although the computational costs of verification were low, the correctness of the proof

relies on the correctness of the nine conditions and the correctness of the Prolog routines. Tim-

ing is not checked.

Pierre presents the verification of the WG 10.5 multiplier in [108, 109]. The proof is done in

the Boyer-Moore prover Nqthm. The work presented is not completely automated in that man-

ual work is needed to translate the behavioural description from VHDL into the first-order logic

used by Nqthm. The proof itself is based on a methodology supporting induction developed by

Pierre for the verification of replicated structures. Provided certain design criteria are met, the
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proof can be automatically done by the system. Using replication and induction a general proof

can be done for an n-bit multiplier rather than having to do individual proofs for individual bit-

widths. Moreover, the approach is computationally efficient so duplicated work can be avoided.

The disadvantage of this approach is that it relies on the VHDL programs being written in a

certain way. This is probably not too critical since the restrictions are not unreasonable. More

seriously, timing issues are not dealt with. This may be a problem since while the functional-

ity is independent of the bit width, timing is not. As timing is an important part of low-level

verification, this approach needs further development.

Equivalence methods have also been used to verify multipliers. Van Eijk and Janssen use

a BDD-based tool to show equivalence between different implementations of multipliers [30].

Their method relies on (automatically) finding structural and functional equivalences between

different implementations of the circuit. For some circuits they get excellent experimental re-

sults. However, they too do not consider timing. Typically, one of the circuits is derived from

the other through a number of design steps; thus, the confidence in the verification depends on

the confidence on the correctness of the original circuit.

Although the compositional method proposed in this thesis relies on some structure of the

circuit being identified, it is not necessary to decompose the circuit, or that clearly defined gross

structure be determined. To be useful, it is only important to be able to identify circuit nodes

with ‘interesting values’; this makes it relatively robust to circuit optimisation.

An advantage of the compositional theory is that it incorporates a good model of time, which

may be important in many applications. This advantage outweighs the disadvantage of having

to verify circuit designs for each bit-width, which theorem proving approaches may obviate.

As discussed in Section 2.3.3, Kurshan and Lamport also explored combining theorem prov-

ing and model checking, and have applied their technique to verifying multipliers [93]. The

work was not fully mechanised, and the implementation of the multiplier given at a high level.
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However, although exploratory, their work suggested that combining different approaches would

be successful.

7.4 Matrix Multiplier

A filter circuit based on a design of Mead and Conway is Benchmark 22 of the IFIP WG10.5

suite [100]. The filter is a matrix multiplication circuit for band matrices. A band matrix of

band widthw is a matrix in which zeros must be in certain positions (the matrices contain natu-

ral numbers), and the maximum number of non-zero items in a row or column isw. This circuit

is called 2Syst. Section 7.4.1 discusses the specification of the circuit; Section 7.4.2 discusses

its implementation; Section 7.4.3 presents its verification; and Section 7.4.4 analyses and com-

ments on the verification in which a significant timing error was discovered. Sections 7.4.1

and 7.4.2 rely heavily on the benchmark documentation.2

7.4.1 Specification

The suite documentation does not give a general specification of the circuit (it does give a gen-

eral implementation), but presents the case of w = 4. A circuit implemented for a band-width

ofw can be used to multiply matrices of any size — larger matrices just take longer to multiply;

the documentation does not consider the general case, and gives only a specification for 4 � 4

matrices.

Let A and B be the two 4 � 4 matrices given below:

2The URL for the documentation is ftp://goethe.ira.uka.de/pub/benchmarks/2Syst/. This
section is based on the documentation of this benchmark dated 16 November 1994. As a result of this research,
the documentation has been revised, and the new version will be released shortly.
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A =

2
66666664

a11 a12 0 0

a21 a22 a23 0

a31 a32 a33 a34

0 a42 a43 a44

3
77777775

B =

2
66666664

b11 b12 b13 0

b21 b22 b23 b24

0 b32 b33 b34

0 0 b43 b44

3
77777775
;

and let C = A�B be the matrix:

C =

2
66666664

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

3
77777775

The external interface of the 2Syst circuit is shown in Figure 7.6. The coefficients of matrix

A are input on the inputs a0, : : : , a3, the coefficients of B are input on b0, : : : , b3, and the

coefficients of C , the result, is output on outputs c0 to c6. (What this picture, taken from the

documentation, does not show is that the circuit is clocked and there should be a pin for clock

input too.)

b3
b2
b1
b0
a3
a2
a1
a0

-
-
-
-
-
-
-
-

-
-
-
-
-
-
-

c6
c5
c4
c3
c2
c1
c0

2Syst

Figure 7.6: Black Box View of 2Syst
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Timing

The timing of when and where the inputs must be applied and the outputs become available

is critical. The timing for the inputs is presented in Table 7.6. In clock cycles 0 to 3, all the

inputs are initialised by having zero applied to them. Then, for the next ten cycles the matrix

coefficients are input to the circuit. For example, in cycle 9, the coefficients a23, a42, b32 and

b42 are input on pins a0, a3, b0, and b3 respectively, while all other pins have zero applied to

them.

clock a0 a1 a2 a3 b0 b1 b2 b3
0 � 3 0 0 0 0 0 0 0 0
4 0 a11 0 0 0 b11 0 0
5 0 0 a21 0 0 0 b12 0
6 a12 0 0 a31 b21 0 0 b13

7 0 a22 0 0 0 b22 0 0

8 0 0 a32 0 0 0 b23 0
9 a23 0 0 a42 b32 0 0 b24

10 0 a33 0 0 0 b33 0 0
11 0 0 a43 0 0 0 b34 0
12 a34 0 0 0 b43 0 0 0

13 0 a44 0 0 0 b44 0 0

Table 7.6: Inputs for the 2Syst Circuit

Table 7.7 shows when and where the coefficients of the output matrix can be found. The

specification gives some freedom in timing here. It requires that the output be given in clock

cycles t0; : : : ; t6, but does not specify values for the tj; and, while t0 < t1 : : : < t6, the tj need

not be consecutive clock cycles. This gives some latitude in the implementation of the circuit.

7.4.2 Implementation

The matrix multiplicationC = A�B can be defined in different ways. Assuming for simplicity

that A and B are both r � r matrices, the usual definition of C is through defining each cij =
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cycle c0 c1 c2 c3 c4 c5 c6
t0 c11

t1 c12 c21

t2 c13 c22 c31

t3 c14 c23 c32 c41

t4 c24 c33 c42

t5 c34 c43

t6 c44

Table 7.7: Outputs of the 2Syst Circuit

P
r

k=1 aikbki. An alternative definition is useful in implementing parallel hardware to perform

the multiplication: matrix multiplication can also be defined by the recursive equation 7.14.

c

(1)

ij
= 0

c

(k+1)

ij
= c

(k)

ij
+ aikbkj

cij = c

(r+1)

ij

(7.14)

The entries in arraysA andB are n-bit numbers. If the band-width of the matrices is w, the

maximum number of non-zero terms in any cij is w, which means that each entry in cij is of

bit-widthm = 2n + r � 1.

The basic operation of Equation 7.14 is performing an addition and a multiplication; this

is modelled in the implementation, where the basic cell has an integer multiplier and adder to

perform this. The external interface of these cells is shown in Figure 7.7. The cell has three

inputs: C In is an m bit number, containing a partial sum; and A In and B In are n bit data

which are either zero or coefficients of the A and B matrices. A Out, B Out are two n-bit

output values and C Out is an m-bit output. If in one clock cycle A In, B In and C In have

the values a, b and c respectively, then at the start of the next cycle: A Out = a; B Out =

b; C Out = ab+ c.

Thus, the cell has two purposes: it acts as a one clock-cycle delay buffer for coefficients of

the matrices (which are passed on to neighbouring cells), and performs the basic operation of
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�
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@
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�	
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@R

A Inhn::1� 0i

C Outhm::1� 0i

B Inhn::1� 0i

B Outhn::1� 0i

C Inhm::1� 0i

6 A Outhn::1� 0i

Figure 7.7: Cell Representation

an addition and multiplication.

Figure 7.8 shows how the cells are implemented. Each cell contains a multiplier, an adder,

and three registers. The multiplier is the one discussed and verified in the previous section,

and the adder is a conventional 2n-bit adder. Each register has an input, an output, and a clock

and select pin. By connecting the select and clock pins to the same global clock, the registers

become positive-edge triggered: when the clock rises the value at the register’s input is latched,

output, and maintained until the clock rises again.

These cells are connected in a systolic array: each clock cycle cells performs an addition

and multiplication and then passes its results to its neighbours for use in the next cycle. The

cells are arranged as presented in Figure 7.9, and the timings given in Table 7.6 are designed so

that cells get the right inputs at the right time. A simple example will illustrate how this works.

To help the description, each cell in the systolic array has been labelled by i : j.

The circuit is implemented in Voss’s EXE format as a detailed gate level description, using a

unit delay model. The implementation is based on the VHDL program given in the benchmark

suite documentation.
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��
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C Out

B Out

A Out

m

n

n

Figure 7.8: Implementation of Cell

Example 7.1.

Consider the computation of c21 = a21b11 + a22b21. In the first three clock cycles the circuit is

initialised so that at the start of the fourth cycle, all inputs have value zero.

Cycle 4: b11 is input on b1 (input B In of Cell 1:0). (a11 is also input in this cycle, but in the

example, we only consider values contributing to c21).

Cycle 5: Cell 1:0 will have passed b11 to its neighbour, so that b11 now becomes an input for Cell

1:1. a21 is input on a2 (the A In input of Cell 0:2).

Cycle 6: Cell 1:1 will have passed b11 to the B In input of Cell 1:2, and Cell 0:2 will have passed

a11 to the A In input of Cell 1:2. At this stage, the C In input of Cell 1:2 has the value 0.

Cell 1:2 therefore computes a11b11. At the same time, b21 appears as input on b0, which

is input B In of Cell 0:0.
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Cycle 7: Cell 1:2 will have passed a11b11 to Cell 0:1 as its C In input. Cell 0:0 will have passed

on b21 to Cell 0:1 as its B In input. a22 appears on a1, which is the A In input of Cell

0:1. Cell 0:1 computes a11b11 + a22b21.

Cycle 8: Cell 0:1 outputs a11b11 + a22b21 on its C Out port (which is c4).
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c6
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a3

b0

b1

b2

b3

Figure 7.9: Systolic Array

7.4.3 Verification

The verification task can be divided into two parts, the verification of the individual components,

and using the verification of the components to show that whole array is correct.
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Verifying the Cells

The verification of a cell must show the multiplier, adder and registers all work correctly. Each

cell must be verified individually. This section describes the verification of Cell u:v, and as-

sumes for the sake of this exposition that the clock cycle is 200ns, and the bit-width is 4.

In the discussion below, the A Inuv and B Inuv are four-bit nodes, while all variables are 12

bit values. To simplify notation, in all the discussion below, a and b are short hands for ah3::0i

and bh3::0i respectively.

It turns out that it useful to divide this proof into three parts:

� Given value a on A Inuv , b on B Inuv , and c on C Inuv , one clock cycle later a � b + c

appears on C Outuv;

� Given value a on A Inuv , one cycle later a appears on A Outuv; and

� Given value b on B Inuv , one cycle later b appears on B Outuv .

When the cells are connected together, port C Inuv is connected to C Out(u+1)(v+1), port A Outuv

is connected to A Inu(v+1), and B Outuv is connected to B In(u+1)v. Therefore, the above veri-

fication conditions are rewritten as:

� Given value a on A Inuv , b on B Inuv , and c on C Out(u+1)(v+1), one clock cycle later

a � b+ c appears on C Outuv;

� Given value a on A Inuv , one cycle later a appears on A Inu(v+1); and

� Given value b on B Inuv , one cycle later b appears on B In(u+1)v .

Of course, it is possible to combine all three into one, stronger result. However, having three

weaker results makes the proof more flexible since at some stages the proof needs only the

weaker result, and using a stronger result would clutter things up and be more inefficient.

The costliest part of the proof is to show the multiplier works correctly. As Section 7.3.3

showed how the Benchmark 17 multiplier can be verified, for the purpose of this section, Re-

sult 7.15 is assumed (in the actual verification, the multiplier for each cell is reverified).
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j= By various rules

hj Global [(0; 100)] ([A Inuv]=a ^̂̂ [B Inuv]=b)

==� Global [(22; 100)] ([Ouv]=a � b) ji

(7.15)

In the cell, the clock has an important effect; to include information of when clocking happens,

the rule of consequence is often used to strengthen the antecedent of a result. For convenience,

let

Clockk = Global [(200k; 200k + 99); (200(k + 1); 200(k + 1) + 99)] ([clock]= f) ^̂̂

Global [(200k + 100; 200k + 199)] ([clock]=t)

which is the information about clocking which is needed in the proof of the k-th cycle. This

formula says that the clock is low from time 200k to time 200k+99, then high from time 200k+

100 to 200k + 199, and then low again from time 200k + 200 to 200k + 299.

Using this idea, Result 7.15 is transformed strengthening the antecedent, as well as taking

into account the input on C In. Although, this is not useful for its own sake, it is useful in using

the essence of Result 7.15.

j= By Theorem 5.7

hj Global [(0; 100)] [A Inuv]=a ^̂̂ [B Inuv]=b ^̂̂ [C Out(u+1)(v+1)]=c ^̂̂ Clock0

==� Global [(22; 100)] ([Ouv]=a � b) ji

(7.16)

In the next step we show that the adder works correctly and that the output of the adder is latched

for the appropriate time. This can be done with one trajectory evaluation. Note that the time
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interval in the consequent could be made bigger, but the one given suffices.

j= By STE

hj Global [(22; 100)] ([Ouv]=dh7::0i ^̂̂ [C Out(u+1)(v+1)]=c ^̂̂ Clock0)

==� Global [(200; 300)] ([C Outuv]=c+ dh7::0i) ji

(7.17)

Results 7.16 and 7.17 are now combined by specialising the latter result (substituting ab for d),

and using transitivity. Note that this is just a special case of General Transitivity (Theorem 5.31).

j= By Theorem 5.31

hj Global [(0; 100)] ([A Inuv]=a ^̂̂ [B Inuv]=b ^̂̂ [C Out(u+1)(v+1)]=c ^̂̂ Clock0)

==� Global [(200; 300)] ([C Outuv]=c+ a � b) ji

(7.18)

Result 7.18 is the core result that has to be proved about the cell. The next two results show that

the cell also acts as one cycle delay buffers for values of the A and B matrices. Both of these

results can easily be done using STE alone.

j= By STE

hj Global [(0; 100)] ([A Inuv]=a ^̂̂ Clock0)

==� Global [(200; 300)] ([A Inu(v+1)]=a) ji

(7.19)

j= By STE

hj Global [(0; 100)] ([B Inuv]=b ^̂̂ Clock0)

==� Global [(200; 300)] ([B In(u+1)v]=b) ji

(7.20)

Overall Verification

Once each of the cells has been individually verified, the proofs about the individual cells must

be combined to prove that the systolic array as a whole works correctly.

The proof is modelled on how the systolic array computes its results; in its development the
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proof traces the behaviour of the circuit as it uses its inputs, computes results, and outputs the

answers.

Consider the operation of one cell, Cell u:v. It has three inputneighbours from which it gets

values (the boundary cells are special cases and easily taken care of):

� Cell u:(v � 1), its A-left-neighbour from which it gets a value of the A matrix,

� Cell (u� 1):v, its B-right-neighbour from which it gets a value of the B matrix, and

� Cell (u+ 1):(v + 1) its C-down-neighbour from which it gets a partial sum;

and three outputneighbours to which it gives values:

� Cell u:(v + 1), its A-right-neighbour, to which it gives a value of the A matrix,

� Cell (u+ 1):v, its B-left-neighbour, to which it gives a value of the B matrix, and

� Cell (u� 1):(v � 1) its C-up-neighbour, to which it gives a partial sum;

At the beginning of clock cycle k, none, some, or all of the following will be known about

Cell u:v’s input neighbours (recall that a clock cycle is 200 time units long), where the Ij are

antecedent TL formulas, and the �x are integer expressions:

j= hj I1==�Global [(200k; 200k + 100)] [A Inuv]=�a ji (7.21)

j= hj I2==�Global [(200k; 200k + 100)] [B Inuv]=�b ji (7.22)

j= hj I1==�Global [(200k; 200k + 100)] [C Out(u+1)(v+1)]=�c ji (7.23)

If all three results are known, then we use conjunction on Results 7.21–7.23, and introduce new

clocking information. For convenience, let

I4 = I1 ^̂̂ I2 ^̂̂ I3 ^̂̂ Clockk:

This is the conjunction of I1, I2 and I3 and contains necessary clocking information for the k-th
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cycle. Then we have:

j= By Conjunction and Rule of Consequence

hj I4

==� Global [(200k; 200k + 100)]

[A Inuv]=�a ^̂̂ [B Inuv]=�b ^̂̂ [C Outuv]=�c: ji

(7.24)

Then Result 7.18 is time-shifted forward by k-clock cycles to get:

j= By time-shifting

hj Global [(200k; 200k + 100)]

([A Inuv]=a ^̂̂ [B Inuv]=b ^̂̂ [C Out(u+1)(v+1)]=c ^̂̂ Clockk)

==� Global [(200(k + 1); 200(k + 1) + 100)] ([C Outuv]=c+ a � b) ji

(7.25)

Using General Transitivity on Results 7.24 and 7.25 leads to:

j= By Theorem 5.31

hj I4

==� Global [(200(k + 1); 200(k + 1) + 100)] ([C Outuv]=�c + �a � �b) ji

(7.26)

This is a proof of what Cell u:v computes in the k-th cycle. In proving what happens in the

(k+1)-th cycle, Result 7.26 is used in the proof of the behaviour of Cell (u+1):(v+1), which

is Cell u:v’s up-C-neighbour.

Similarly, if Result 7.21 is known, then precondition strengthening is used to introduce new

clocking information to get:

j= By Theorem 5.7

hj I1 ^̂̂ Clockk

==� Global [(200k; 200k + 100)] [A Inuv]=�a ji

(7.27)

Then Result 7.19 is time-shifted by k clock cycles to get:
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j= By STE

hj Global [(200k; 200k + 100)] ([A Inuv]=a) ^̂̂ Clockk

==� Global [(200(k + 1); 200(k + 1) + 100)] ([A Inu(v+1)]=a) ji

(7.28)

General Transitivity between Results 7.27 and 7.28 then yields:

j= By Theorem 5.7

hj I1 ^̂̂ Clockk

==� Global [(200(k + 1); 200(k + 1) + 100)] ([A Inu(v+1)]=�a) ji

(7.29)

This shows what Cell u:v passes to its A-right neighbour at the end of the k-th cycle, and this

result will be used to prove properties of Cell u : (v+1) in the (k+1)-th cycle. A similar result

shows that in the k-th Cell u:v also passes on the value input on its B In port,

j= By various rules

hj I2 ^̂̂ Clockk

==� Global [(200(k + 1); 200(k + 1) + 100] ([B In(u+1)v)]=�b) ji

(7.30)

FL Proof script The FL proof script that performs the proof uses the approach outlined above.

First, the behaviour of each cell is individually verified. Then, the proof proceeds by proving

properties of the circuit in each clock cycle.

A two dimensional array of proofs is kept: at the start of the k-th cycle, the array’s (u; v)

entry contains proofs of what the output of Cell u:v input neighbour’s are at the end of the (k�

1)-th cycle. The proof then uses this information to infer as much as possible about the output

of Cell u:v at the end of the k-th cycle, and this information is then used to update the array of

proofs so that Cell u:v’s output neighbours can use this information in the (k + 1)-th cycle.
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Start of
cycle

c 0
Cell 3:0

c 1
Cell 2:0

c 2
Cell 1:0

c 3
Cell 0:0

c 4
Cell 0:1

c 5
Cell 0:2

c 4
Cell 0:3

7 c11

8 c12 c21

9 c13 c31

10 c14 c22 c41

11 c23 c32

12 c24 c42

13 c33

14 c34 c43

15
16 c44

Table 7.8: Benchmark 22: Actual Output Times

7.4.4 Analysis and Comments

The FL proof script uses STE and the inference rules to prove what the output of the circuit is

at different stages – this is summarised in Table 7.8.

Comparison between Tables 7.7 and 7.8 shows that even given the ability for the designer

to choose the values of t1; : : : ; t6, the implementation does not meet the specification.

There are two possibilities. The easier and probably better solution would be to change the

specification, in accordance with the results shown in Table 7.8. However, another solution

would be to place one cycle delay buffers on the outputs c 0, c 1, c 5 and c 6; the amount

of extra circuitry is small, would not slow down the circuit, and would lead to a more elegant

specification.

The proof script, including the proof of the correctness of all the multipliers and declara-

tions, is approximately 500 lines long, of which about 100 lines are declarations. The proof

script can be found in Section C.5. The program itself is straightforward, although the use of a

two dimensional array does not show off a functional, interpreted language at its best. The com-

plete verification of a 4 � 4 systolic array of 32 bit multipliers (roughly 110 000 gates) takes

just over 10 hours of CPU time on a DEC Alpha 3000 using the testing machine approach, and
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just under three hours using the direct method.

This verification uses the testing machine algorithm for STE, showing the weakness of us-

ing testing machines. The data structure needed to represent the model of the circuit is approx-

imately 4M in size, making composition of circuit and testing machines difficult. While other

implementations of machine composition are possible, the sheer size of the circuits remains an

inherent problem. A similar problem can be seen in the verification of the multiplier (Table 7.5).

Since both the size of the circuitry and the number of trajectory evaluations is quadratic in the

bit-width, if every time trajectory evaluation must be done, circuit composition must be too, the

resulting algorithm will be at least quartic. This explains why the verification of large bit widths

becomes so expensive for testing machines.

The second part of the verification — showing that when connected together the multipliers

produce the correct answer — is essentially performing symbolic simulation. Zhu and Seger

have shown that given a set of trajectory assertion results, there is a weakest machine which

satisfies these assertions [130]; this weakest machine is a conservative approximation of the

circuit as any assertion that is true of the approximation is also true of the circuit.

This suggests an alternative verification methodology. The verification of the correctness of

each of the multipliers extracts the essence of the behaviour of the circuit. From these assertions

it should be possible to automatically generate a conservative approximation of the entire sys-

tolic array. This representation of this approximation would not use BDDs; in fact it would be

at a higher level of abstraction. STE could then be used on the verification of the entire systolic

array.
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7.5 Single Pulser

This example shows how the fundamental compositional theory introduced in Chapter 5 can be

built on; particularly through the use of induction on time, composite, problem-specific infer-

ence rules can be developed.

7.5.1 The Problem

Johnson has used the Single Pulser — a textbook example circuit — to study different verifica-

tion methods [88]. The original problem statement for the circuit is:

We have a debounced pushbutton, on (true) in the down position, off (false) in
the up position. Devise a circuit to sense the depression of the button and assert an
output signal for one clock pulse. The system should not allow additional assertions
of the output until after the output has released the button.

Johnson reformulates this into:

� the pulser emits a single unit-time pulse on its output for each pulse received on i,

� there is exactly one output pulse for every input pulse, and

� the output pulse is in the neighbourhood of the input.

Figure 7.10 illustrates the external interface of the pulser. The port In is the button to be

pressed (if it has the value H, the button is pressed, if L then it is not), and Out is the output.

In Out

Figure 7.10: Single Pulser
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Johnson presents the verification of this circuit in a number of different systems. This sec-

tion attempts the verification using the compositional theory of STE. This attempt is not as gen-

eral as some of Johnson’s approaches since the specification is very specific about the timing of

the output with relation to the button being pressed.

7.5.2 An Example Composite Compositional Rule

The motivation for the lemma below is that the essence of the behaviour of the pulser can be

described by three assertions that show how the pulser reacts immediately to stimulation. By

using induction over time, these results can be combined and generalised.

Lemma 7.1.

Let s; t; and u be arbitrary integers such that 0 � s � t < u. Suppose:

1. j= hj:::g1==�Nexth1 ji,

2. j= hj (:::g1 ^̂̂ Next g1)==�(Next2h2) ji; and

3. j= hj g1==�Next2h1 ji;

then

1: j= hj Global [(s; t)] (:::g1)==�Global [(s+ 1; t+ 1)] h1 ji:

2: j= hj (Global [(s; t)] (:::g1) ^̂̂ Global [(t+ 1; u)] g1)

==�

(Global [(s+ 1; t+ 1)] h1) ^̂̂ (Next(t+2)h2) ^̂̂ (Global [(t+ 3; u+ 2)] h2) ji

Proof. The proof of 1 comes straight from Corollary 5.23. For 2, let s; t; and u be arbitrary

natural numbers such that s � t < u.
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(1) j= hj Global [(s; t)] (:::g1)==� Global [(s+ 1; t+ 1)] h1 ji

From hypothesis (1) by Lemma 5.22

(2) j= hj Nextt(:::g1) ^̂̂ Next
(t+1)

g1==� Next
(t+2)

h2 ji

Time-shifting hypothesis (2)

(3) j= hj Global [t+ 1; u)] g1==� Global [(t+ 3; u+ 2)] h1 ji

From hypothesis 3, by Lemma 5.22

(4) j= hj(Global [(s; t)] (:::g1) ^̂̂ Global [(t+ 1; u)] g1)

==� (Global [(s+ 1; t+ 1)] h1 ^̂̂ Next
(t+2)

h2 ^̂̂

Global [(t+ 3; u + 2)] h2)ji

Conjunction of (1), (2), (3)

7.5.3 Application to Single Pulser

Given a candidate circuit, it should be possible to use STE to verify the following three prop-

erties:

1. j= hj (:::[In])==�Next (:::[Out]) ji;

2. j= hj (:::[In] ^̂̂ Next [In])==� (Next2[Out]) ji, and

3. j= hj [In]==�Next2(:::[Out]) ji.

Using these results, the above lemma can be invoked to show that

1: j= hj Global [(s; t)] (:::[In])==�Global [(s+ 1; t+ 1)] :::[Out] ji, and

2: j= hj (Global [(s; t)] (:::[In]) ^̂̂ Global [(t+ 1; u)] [In])

==�

(Global [(s+ 1; t+ 1)] (:::[Out]) ^̂̂ Next
(t+2)[Out] ^̂̂

Global [(t+ 3; u+ 2)] (:::[Out]))ji
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The first result says that if the input does not go high (the button is not pushed), then the

output does not go high. The second result says when the button is pushed (input goes from

low to high), the output goes high for exactly one pulse and then goes low and stays low at least

as long as the button is still pushed.

I argue that these two properties capture the intuitive specification of Johnson. However, the

specification is more restrictive; there are valid implementations that satisfy Johnson’s specifi-

cation which would not pass this specification, showing the limitations of our current methods.

It is possible to give a more general specification based on Johnson’s SMV specification3, but

currently there are not efficient model checking algorithms for these specification.

7.6 Evaluation

The experiments reported in this chapter showed that the compositional theory can be success-

fully implemented in a combined theorem prover-trajectoryevaluation system, thereby enabling

circuits with extremely large state spaces to be fully verified with reasonable human and com-

putational costs. The following table summarises the examples verified (in the size column, n

refers to the bit-width).

Description of circuit How verified Approx. size (gates)

Simple comparator STE/Compositional Theory O(n2)

Hidden weighted bit STE/Compositional Theory O(n2)

Carry-save adder STE 200

B8ZS encoder STE 75
IEEE floating point multiplier STE/Compositional Theory 33 000
Simple 64-bit multiplier STE/Compositional Theory 25 000
Benchmark 17 multiplier STE/Compositional Theory 28 000

Benchmark 22 systolic array STE/Compositional Theory 115 000

3Note that although the timing constraints in the SMV specification are more general, this SMV specification
is also implementation dependent — in particular, it requires some knowledge of the internal structure of the im-
plementation, which this proof does not.
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In using the verification system, a key issue is the user interface to the system. Both the STE

and the other inference rules are provided in one common, integrated framework. This not only

makes it easier for the human verifier to use, but reduces the chance of error. Providing STE as

an inference rule for the theorem prover to use proved useful. The ability to use FL as a script

language was extremely important for increasing flexibility and ease of use.

The method of data representation proved to be very successful. It allowed BDDs to be used

where appropriate, and other representations where BDDs are inappropriate. Decision proce-

dures and other domain knowledge are critical for the success of the approach.

The results presented show that the increased expressiveness of TL not only allows a richer

set of properties to be expressed, but can make specification cleaner too.

This chapter also shows that all three extensions to STE are feasible and can be applied suc-

cessfully. However, both the testing machines and the mapping method have significant draw-

backs in different circumstances.

Testing machines are not appropriate to use when the circuit being verified is very large,

and when a number of trajectory evaluations will be run requiring different testing machines.

Although the cost of automatically constructing testing machines is reasonable, the overhead

of performing circuit composition repeatedly can be very large. On the other hand, once the

new circuit is constructed, trajectory evaluation is efficient, and therefore the method may be

appropriate where only a few trajectory evaluations will be done, and where the consequents

are complicated.

The mapping method suffers from the need to introduce extra boolean variables. This is

particularly the case when wishing to show that a state predicate holds for a sequence of states,

where although the individual states are different, the relationship between state components

stays constant. For example, we may wish to show that for a sequence of n states, at any time

exactly one of m of the state’s components have a H value. Using the mapping method would
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require the introduction of nm variables. A different example is the B8ZS verification, where

we wish to show that too many zeros do not appear consecutively. The testing machine and

direct methods require no new boolean variables; the mapping method would require two new

boolean variables for each time step.
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Conclusion

Verification of large circuits is feasible using the appropriate logical framework. Chapters 3, 4

and 5 presented such a framework. Chapters 6 and 7 showed how this theory can be success-

fully implemented and illustrated the method by verifying a number of circuits. A summary

of the research findings is given in Section 8.1, and some issues for future research is given in

Section 8.2.

8.1 Summary of Research Findings

8.1.1 Lattice-based Models and the Quaternary logicQ

The motivation of model checking is to use a logic to describe properties of the model of the

system under study, and to verify the behaviour of the model by checking whether the properties

(written as logic formulas) are satisfied by the model. The key questions are: how the model is

represented; which logic is used; and how satisfaction is checked.

Using a lattice model structure has significant advantages for automatic model checking.

By using a partial order to represent an information ordering, much larger state spaces can be

modelled directly than with more traditional representation schemes. Previous work described

earlier showed the advantage of this method of model representation.

This information ordering has a direct effect on what can be known about the model. A two-

valued propositional logic is too crude a tool to use — it must conflate lack of knowledge with

falseness. This is not only wrong in principle; the technical properties of a two-valued logic

183
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make it impossible to support negation fully.

The quaternary logic Q is suitable for describing the state of lattice-based models since it

can describe systems with incomplete or inconsistent information. This makes it possible to

distinguish clearly between truth and inconsistency, and falseness and incomplete information.

Moreover, it supports a much richer temporal logic.

On the whole, the use ofQ has been very successful. However, there are some minor points

which need some attention. As discussed in Chapter 3 the definition ofQ given in Table 3.1 on

page 49 is not the only one possible. For example, in the definition given here,? _> = t. This

definition is not without its problems — although it does have the advantage of very efficient

implementation, it complicates some of the proofs and, notwithstanding the usual intuitive mo-

tivation, seems difficult to justify in the context of a temporal logic. ? _> = >, would seem

to be a better definition. In order to keep monotonicity constraints this would necessitate defin-

ing t _ > = > too. These redefinitions would mean that disjunction in Q would not be the

meet with respect to the truth ordering ofQ. Which would be the better definition is not clear;

more theoretical and practical work must be done.

8.1.2 The Temporal Logic TL

Q can only describe the instantaneous state of a model. The temporal logic TL uses Q as its

base, and can describe the evolving behaviour of the model over time. Note that the choice of

Q as the base of the temporal logic leaves much freedom in choosing the temporal operators of

a temporal logic, and other temporal logics could be built on top ofQ.

Previous temporal logics proposed for model checking partially ordered state space could

not be as expressive as TL because they were based on a two valued logic. In particular TL

supports negation and disjunction fully. In the examples explored in this thesis, the expressive-

ness of the logic was quite sufficient (the problems encountered with some of the verifications
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were caused by limitations in the shortcomings of the model checking algorithms). Neverthe-

less, whether introducing new temporal operators is worthwhile is an interesting one, especially

if the model structure were extended (see Section 8.2.1).

8.1.3 Symbolic Trajectory Evaluation

STE has been used successfully in the past for model checking partially ordered state spaces.

However, previous work only supported a restricted temporal logic. The thesis showed that

the theory of STE could be generalised to deal with the whole of TL, and a number of practical

algorithms were proposed for model checking a significant subset of TL. In particular, the four-

valued logic ofQ proved a good technical framework for STE-based algorithms.

8.1.4 Compositional Theory

The increase in expressiveness makes the need to overcome the performance bottlenecks of

model checking more alluring and more important computationally. One of the primary con-

tributions of the research is the development of a sound compositional theory for STE-based

model checking using TL formulas. A set of sound inference rules can be used to deduce re-

sults: the base rule uses STE to verify a property of a model; the other rules can be used to

combine properties previously proved.

At a practical level, the compositional theory can be used to implement a hybrid verification

system that uses both theorem proving and model checking for verification. BDD-based model

checking algorithms are extremely effective in proving many properties. However, there are

inherent computational limits in what these methods can do; by using a theorem prover which

implements the compositional theory, these limits can be overcome to a great extent. By pro-

viding automatic assistance, increasing the level of abstraction, and, most importantly, by pro-

viding a powerful and flexible user interface to the theorem prover (through FL), the task of the
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human verifier using the theorem prover can be made easier.

Features of this approach are:

� An appropriate verification methodology can be applied at the appropriate level — model

checking at the low level, theorem proving at a higher level.

� STE supports a good model of time. This makes it suitable to verify not only functional

correctness, but many timing properties.

� In the verification, although the implementation is given at a low level (e.g. at the gate or

switch level), the correctness specification (viz. the TL formulas used) is, through the use

of data abstraction, at a fairly high level.

� User intervention is necessary. Low level verification through STE, and important heuris-

tics in the theorem proving component are important in alleviating the burden the verifier

might otherwise encounter.

To illustrate the effectiveness of the approach, a number of circuits were completely ver-

ified. The largest of these circuits is one of the circuits in the IFIP WG10.5 Benchmark suite

and contains over 100 000 gates. A serious timing error was discovered in the verification. This

experimental work showed that increasing the expressiveness of the temporal logics that STE

supports not only means that more properties can be expressed, but that through the use of the

compositional theory, is computationally feasible.

8.2 Future Research

The research has raised a number of research issues, and left some questions only partially an-

swered.
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8.2.1 Non-determinism

The lattice structure of the state space means that although the next state function is determinis-

tic, non-determinism can be implicitly represented through the use of X values. Although suit-

able for dealing with non-deterministic behaviour of inputs of circuit models, this treatment of

non-determinism is not very sophisticated. One avenue of research would be to investigate the

possibility of incorporating non-determinism explicitly within the model structure by replacing

the next state function Y with a next state relation. Whether the semantics would be linear or

branching time needs exploration, although I conjecture that a branching time semantics would

be more suitable. Trees, rather than sequences or trajectories, would be used to model behaviour

(and properties verified using symbolic trajectree evaluation). This would clearly raise the issue

of the expressiveness of TL, and the need for operators that express path switching.

8.2.2 Completeness and Model Synthesis

The work of Zhu and Seger [130] showed that the compositionality theory for trajectory formu-

las [78] with minor modification is complete in the following sense. IfK is a set of assertions,

there is a weakest modelM such that each assertion in K holds of the model. Moreover, any

assertion that is true ofM can be derived fromK using the compositional theory. Whether the

same thing is true of the compositional theory for TL needs further investigation.

This question is important from a practical point of view. Being able to construct such a

weakest model from a set of assertions can be very useful for specification validation. It can also

be used for verification, as discussed in Section 7.4.4, where a possible verification strategy for

the verification of systolic array multiplier was outlined. After proving that the individual base

modules of the circuit work correctly, it should be possible to construct a model (the extracted

model) of the circuit from the set of assertions proved of the base modules; these assertions

extract out the essential behaviour of the circuit. Then, the overall behaviour of the circuit can
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be verified by performing STE on the extracted model.

This raises the question of how to execute temporal logics efficiently, which involves inter-

esting theoretical and practical questions (see [57] for an introduction). The key in making this

efficient is, I conjecture, that the appropriate data structures should be used for representing the

extracted model. In particular, given that BDDs are a very good representation of bit-level de-

scriptions of the circuit, it is unlikely that using a BDD representation for the extracted model

will gain significant improvement in performance, and for a multiplier circuit, it will certainly

fail. Rather, the extracted model should be used as a method for finding a higher-level descrip-

tion of the circuit. For example, in the case of the array multiplier, an integer level description

would be suitable. Even using a non-canonical representation of integers would allow STE to be

accomplished in this particular case. What is important is that it should be easy to apply domain

information to the problem. Note that from a practical point of view, it may not be necessary for

the compositional theory to be complete, provided that all, or most, interesting properties can

be derived. If the compositional theory is not complete, then the usefulness of this approach

must be determined experimentally.

8.2.3 Improving STE Algorithms

Although the STE-based algorithms presented here were shown to be effective, they are not

capable of model checking all assertions. There are two major aspects that need research.

� Enriching the antecedent

So far the STE-based algorithms require that the antecedents be trajectory formulas. Al-

though the use of the compositional theory ameliorates this restriction, it would be desir-

able to support richer antecedents. The key question is how sets of sequences can effi-

ciently be represented. Through the introduction of fresh boolean variables it is possible
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to represent the union of two sets, thereby increasing the types of formulas for which rel-

atively simple representations exist for their defining sequence sets. How efficiently can

this be implemented? Are there alternative representation techniques?

� Supporting the infinite temporal operator

At present there are no general algorithms for supporting the until operator and the derived

infinite temporal operators. To do this requires not only an efficient way to represent a set

of states, but also efficient methods of performing operations such as set union and com-

parison. STE uses parametric representation of state, which allows extremely large state

spaces to be represented. This representation does not yet support efficient set manipu-

lation operations. Thus, an important research question is how these operations can be

implemented efficiently.

8.2.4 Other Model Checking Algorithms

This leads on to the question of whether model checking algorithms other than those based on

symbolic trajectory evaluation would be effective. It appears that adapting the traditional BDD-

style model checking algorithms such as those described in [26] to deal with partially-ordered

state spaces would be possible. The logical framework developed here — Q, TL and the vari-

ous satisfaction relations — would form the basis of such adaptation. The research question is

how these model checking algorithms could be adapted to make use of partial information in

an effective way. Particularly if extended to deal with non-determinism, an advantage of these

model checking algorithms is that they would support model checking of properties requiring

more expressive formulas than those of the style of verification supported by STE.



Chapter 8. Conclusion 190

8.2.5 Tool Development

The prototypes developed in the course of this research have showed that efficient, usable tools

can be developed to support the compositional theory. The key components are supporting pow-

erful, easy use of domain knowledge, and the provision of a flexible user interface through FL.

Although the prototypes were successful, they were prototypes and contained a number of ad

hoc features. Not only is a cleaner implementation required, but there are some issues which

need further attention.

� Forward or backward style of proof. The prototypes used the forward style of proof,

whereas Seger’s VossProver used the backward style of proof. While I believe that the

forward style of proof is more appropriate for hardware verifications using this approach,

the issue is not clear.

� Incorporating new domain knowledge. The use of decision procedures and the incorpo-

ration of domain knowledge in other ways (e.g. through decision procedures) is impor-

tant. Standard packages for types such as bit vectors and integers must be provided, and

it would be desirable to have a clean way for users to integrate new theories or extend old

ones.

� Partial automation of theorem proving. Although using STE for much of the verification

alleviates much of the tedium traditionally associated with low-level of verification using

theorem provers, it is desirable to automate as much as possible. The use of heuristics for

finding time-shifts and specialisations needs to be extended.

� Debugging facilities. When errors are detected it is important that meaningful error mes-

sages be provided. One issue is relating higher-level concepts (e.g. an equation involving

integers) to lower-level concepts (e.g. values on bit-valued nodes). Another issue is intel-

ligent intervention when errors occur — determining what information is needed for the
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user to correct the proof and presenting it in a meaningful way. This is a general lesson

for verification systems [105].

Epilogue

Verification is a central theoretical and practical problem of computer science, and much re-

search is being done on different facets of the problem.

Systems with very large state spaces pose a particular challenge for verification, especially

when a detailed account of timing is important. For these types of state space, partial order

representations can be very effective. The three major contributions of this thesis have been:

� Developing a suitable theoretical framework for a temporal logic used to describe the be-

haviour of finite state systems with lattice-structured state spaces;

� Extending symbolic trajectory evaluation techniques to provide effective model checking

for an important class of assertions about these systems; and

� Developing and implementing a compositional theory for model checking, which allows

the successful integration of theorem proving and automatic model checking approaches

in a practical tool that can successfully verify large circuits.
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Appendix A

Proofs

A.1 Proof of Properties of TL

A.1.1 Proof of Lemma 3.3

Lemma A.1 (Lemma 3.3).

If g; h : S ! Q are simple, then D(g) = D(h) implies that 8s 2 S; g(s) = h(s).

Proof. To emphasise that D(g) = D(h), we set D = D(g). Let s 2 S . Let E = fq 2 Q :

(sq; q) 2 D ^ sq v sg and let e = tE. The proof first shows that g(s) = e.

(a) g(s) � e

(1) 9sp 2 S 3 (sp; g(s)) 2 D g is simple.

(2) sp v s Definition of defining pair.

(3) g(s) 2 E Definition of E, (1), (2).

(4) g(s)� t E Definition of join.

(b) e� g(s)

(1) 8(sq; q) 2 D; q � g(s) q = g(sq),sq v s, g is monotone.

(2) g(s) is an upperbound of E (1)

(3) tE � g(s) Property of join.

Thus g(s) = e.

Similarly, h(s) = e.

Therefore, g(s) = h(s). As s was arbitrary 8s 2 S; g(s) = h(s).

Note that the proof does not rely on the particular structure of Q; it only relies on Q being

202
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a complete lattice.

A.1.2 Proof of Theorem 3.5

The idea behind the proof is to partition the domain of an arbitrary p : S ! Q depending on the

value of p(s). Then, we construct a function which enables us to determine which partition an

element falls in. We can now use this information in reverse — once we know which partition an

element falls into, we can return the value of the function for that element. The complication of

the proof is to use the properties ofQ to combine all this information together. As an analogy

suppose that g : S ! f�10; 10g. Suppose we know that g�(s) = 1 if g(s) = �10 and

g�(s) = 0 otherwise; and g+(s) = 1 if g(s) = 10 and g+(s) = 0 otherwise. Then we can

write g(s) = �10g�(s) + 10g+(s). The two steps in doing this were to find the g� and g+

functions, and then to determine how to combine them. The proof of Theorem 3.5 follows a

similar pattern: first the functions that are the equivalent of g� and g+ are given; after that it

is shown that these functions can be combined to simulate p, and that they can be constructed

from simple predicates.

The functions given in the next definition are the analogues to the g� and g+ functions.

Definition A.1.
Suppose that we have an arbitrary monotonic function p : S ! Q. Define the following:

�f (u) =

(
> 9s 2 S; sv u; p(s) = f

t otherwise.

�t(u) =

(
t 9s 2 S; sv u; p(s) = t

? otherwise.

�>(u) =

(
> 9s 2 S; sv u; p(s) = >

t otherwise.

The proof of Theorem 3.5 comes in two parts: first, Lemma A.2 demonstrates how to combine
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the �q functions to construct a function p0 that is equivalent to p; and Theorem A.3 concludes

by showing that the functions �f , �t and �> can be defined from the simple predicates using

TL operators.

Lemma A.2.

Let p : S ! Q be a monotonic predicate. Define p0(u) by

p
0(u) = �t(u) ^̂̂ �f (u) ^̂̂ �>(u) ___ :::�>(u):

Then, 8s 2 S; p(s) = p
0(s).

Proof.

(a) Supposep(u) =?

(1) �f (u) = �>(u) = t, �t(u) =? By definition and monotonicity of p.

(2) p
0(u) = t^ ? ^ t _ f =?= p(u) (1)

(b) Supposep(u) = f

(1) �f (u) = >, �t(u) =?, �>(u) = t By definition and monotonicity of p.

(2) p
0(u) =? ^>^ t _ f = f = p(u) (1)

(c) Supposep(u) = t

(1) �t(u) = t, �f (u) = �>(u) = t. By definition and monotonicity of p.

(2) p
0(u) = t ^ t ^ t _ f = t = p(u) (1)
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(d) Supposep(>) = >

(1) �>(u) = >, ? � �t(u),

t� �f (u)

By definition and monotonicity of p.

(2) p
0(u) �? ^t ^ > _ >

= f _ > = >

= p(u)

(1) and monotonicity of ^ and _.

(3) p
0(u) = p(u). Since > = tQ.

The final part of the proof is to show that the �q functions can be constructed from the simple

predicates.

Theorem A.3 (Theorem 3.5).

For all monotonic predicates p : S ! Q, 9p0 2 TL such that 8s 2 S , p(s) = p
0(s).

Proof.

Partition S according to the value of p:

S? = fs 2 S : p(s) =?g Sf = fs 2 S : p(s) = fg

St = fs 2 S : p(s) = tg S> = fs 2 S : p(s) = >g:

Some of these sets may be empty. Now, for each s 2 S we define �0
s
: S ! Q (each �0

s
char-

acterises all elements at least as big as s) as follows:

�
0
s
(u) =

8>><
>>:
t sv t

? s 6v t

Note that each �0
s

is simple. For the purpose of this lemma, define ___ ; =?. The �0 have the

following two properties.
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Suppose9s 2 S 3 sv u; p(s) = q for someq 2 Q.

(1) �
0
s
(u) = t Definition of �0.

(2) ___ f�0
v
(u) : v 2 Sqg = t s 2 Sq by supposition.

Suppose6 9s 2 S 3 sv u; p(s) = q for someq 2 Q.

(1) 8v 2 Sq; v 6v u Supposition.

(2) ___ f�0
v
(u) : v 2 Sqg =? Either Sq is empty or follows from (1).

Now, define:

�f (u) = :::( ___ f�
0
s
(u) : s 2 Sfg) ___ >

�t(u) = ___ f�
0
s
(u) : s 2 Stg

�>(u) = :::( ___ f�
0
s
(u) : s 2 S>g) ___ >

Using the properties of �0 proved above, we have that:

�f (u) =

8>><
>>:
> 9s 2 S; sv u; p(s) = f

t otherwise.

�t(u) =

8>><
>>:
t 9s 2 S; sv u; p(s) = t

? otherwise.

�>(u) =

8>><
>>:
> 9s 2 S; sv u; p(s) = >

t otherwise.

Note that we have constructed from simple predicates the functions �s given in Definition A.1.

Thus, by Lemma A.2, given an arbitrary monotonic predicate p, we are able to define it from

simple predicates using conjunction, disjunction and negation – showing we can consider any

monotonic state predicate as a short-hand for a formula of TL.
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A.1.3 Proof of Lemma 3.6

Lemma A.4 (Lemma 3.6).

1. Commutativity:

g1 ^̂̂ g2 � g2 ^̂̂ g1; g1 ___ g2 � g2 ___ g1.

2. Associativity:

(g1 ___ g2) ___ g3 � g1 ___ (g2 ___ g3); (g1 ^̂̂ g2) ^̂̂ g3 � g1 ^̂̂(g2 ^̂̂ g3)

3. De Morgan’s Law:

g1 ^̂̂ g2 � :::(:::g1 ___ :::g2), g1 ___ g2 � :::(:::g1 ^̂̂ :::g2).

4. Distributivity of ^̂̂ and ___ :

h ^̂̂(g1 ___ g2) � (h ^̂̂ g1) ___ (h ^̂̂ g2); h ___ (g1 ^̂̂ g2) � (h ___ g1) ^̂̂(h ___ g2)

5. Distributivity ofNext :

Next (g1 ^̂̂ g2) � (Next g1) ^̂̂(Next g2); Next (g1 ___ g2) � (Nextg1) ___ (Next g2).

6. Identity:

g ___ Cf � g; g ^̂̂ Ct � g.

7. Double negation:

::::::g � g

Proof. The proofs all rely on the application of the definition of satisfaction and the properties

ofQ. Let � 2 S! be given.

1. Follows from the commutativity ofQ.

2. Follows from the associativity ofQ.

3. Sat(�; g1 ^̂̂ g2) = Sat(�; g1) ^ Sat(�; g2)

= :(:Sat(�; g1) _ :Sat(�; g2)) = :Sat(�;:::g1 ___ :::g2)

= Sat(�;:::(:::g1 ___ :::g2)):

Similarly, g1 ___ g2 � :::(:::g1 ^̂̂ :::g2).
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4. Follows from the distributivity ofQ.

5. Sat(�; Next (g1 ^̂̂ g2)) = Sat(��1; g1 ^̂̂ g2)

= Sat(��1; g1) ^ Sat(��1; g2).

= Sat(�; Next g1) ^ Sat(�; Nextg2).

= Sat(�; (Next g1) ^̂̂(Next g2)).

The proof for disjunction is similar.

6. Follows since t is the identity for ^ with respect to Q and f is the identity for _ with

respect to Q.

7. Sat(�;::::::g) = :Sat(�;:::g) = ::Sat(�; g) = Sat(�; g)

Since � is arbitrary the result follows.

A.1.4 Proof of Lemma 3.7

Lemma A.5 (Lemma 3.7).

If p is a simple predicate over Cn, then there is a predicate gp 2 TLn such that p � gp.

Proof.

Consider (sq; q) 2 D(p), and suppose that p(u) = q. Then, since p is simple, for all i =

1; : : : ; n, sq[i]v u[i]. What we will do is construct functions that enable us to check whether

for all i = 1; : : : ; n, sq[i]v u[i]. This will be enough of a building block to complete the proof.

We define the functions �0
q

so that �0
q
(i; v) = t if sq[i]v v[i] and �0

q
(i; v) =? if sq[i] 6v v[i].

Formally, the �0
i
s are defined as:

�
0
q
(i; v) =

8>>>>><
>>>>>:

? ___ :::[i] when sq[i] = L.

? ___ [i] when sq[i] = H.

? ___ (:::[i] ^̂̂[i]) when sq[i] = Z.
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Informally, this means that �0(q; v) indicates whether v is greater than the i-th component of p’s

defining value for q. Extending this, we get that ^̂̂n
i=1(�

0
q
(i; v)) returns t if sq v v and returns

? otherwise. Extend this further by defining:

�f (s) = :::(
n

^̂̂
i=1

(�0
f
(i; s))) ___ >; if 9(sf ; f) 2 D(p)

=?; otherwise.

�t(s) =
n

^̂̂
i=1

(�0
t
(i; s)); if 9(st; t) 2 D(p)

=?; otherwise.

�>(s) = :::(
n

^̂̂
i=1

(�0>(i; s))) ___ >; if 9(s>; f) 2 D(p)

=?; otherwise.

Consider�t. Suppose 9s such that sv v and p(s) = t. Since p is simple, st v s. By transitivity

st v v. Hence by the remarks above, �t(v) = t. On the other hand, if 6 9s such that sv v and

p(s) = t, then either t is not in the range of p or st 6v v. In either case �t(v) =?.

For the case of q = f ;>, suppose 9s such that sv v and p(s) = q. Since p is simple, sq v s.

By transitivity sq v v. Hence by the remarks above, �q(v) = >. On the other hand, if 6 9s such

that sv v and p(s) = q, then either q is not in the range of p or sq 6v v. In either case �q(v) = t.

This implies that the definitions given of �q here are equivalent to those of Definition A.1,

and thus we can apply Lemma A.2. As the�q are constructed here as formulas of TLn, the proof

is complete.

A.2 Proofs of Properties of STE

This section contains proofs of theorems and lemmas stated in Chapter 4.

Proof of Lemma 4.3

First, an auxiliary result.
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Lemma A.6.

If g 2 TL; q = f ; t; � 2 �q(g), then q � Sat(�; g).

Proof. Let g 2 TL; � = s0s1s2 : : : 2 �q(g). Proof by structural induction.

If g is simple (base case of induction):

(1) Either (s0; q) 2 D(g) or (s0;>) 2 D(g) Definition of �q

(2) Sat(�; g) 2 fq;>g Definition of Sat.

(3) q � Sat(�; g) Definition of � .

Letg = g1 ^̂̂ g2.

(1) Sat(�; g) = Sat(�; g1) ^ Sat(�; g2) By definition.

Supposeq = t, i.e. � 2 �t(g).

(2a) 9�1 2 �q(g1), �2 2 �q(g2) 3 � = �
1 t �2 Construction of �

(3a) q � Sat(�1; g1); q � Sat(�2; g2) Inductive assumption.

(4a) q � Sat(�; g1); q �Sat(�; g2) Monotonicity.

(5a) q � Sat(�; g) (1), (4a), monotonicity of ^.

Supposeq = f , i.e. � 2 �f (g).

(2b) Either (or both) � 2 �q(g1) or � 2 �q(g2) Construction of �

Suppose (without loss of generality) that � 2 �q(g1).

(3b) f � Sat(�1; g1) Inductive assumption.

(4b) Trivially, ? �Sat(�2; g2)

(5b) f ^ ? � Sat(�1; g1) ^ Sat(�2; g2) = Sat(�; g). (3b), (4b)

(6b) But f ^ ?= f which concludes the proof.
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Letg = :::g1.

(1) � 2 �:q(g1) Construction of �.

(2) :q � Sat(�; g1) Inductive assumption.

(3) :q � :Sat(�; g) Sat(�; g) = :Sat(�; g1).

(4) Hence q � Sat(�; g). Lemma 3.1(2).

Letg = Next g1.

(1) s0 = X and s1s2 : : : 2 �q(g1) Construction of �.

(2) q � Sat(s1s2 : : : ; g1) Inductive assumption.

(3) q � Sat(Xs1s2 : : : ; Next g1) From (2), definition of Sat.

(4) q � Sat(�; g) Monotonicity of Sat.

Supposeg = g1 Untilg2.

By definition,

Sat(�; g1 Untilg2) = _1
i=0(Sat(��0; g1) ^ : : : ^ Sat(��i�1; g1) ^ Sat(��i; g2)).

Let � 2 �q(g) be given.

Supposeq = t, i.e. � 2 �t(g1 Untilg2)

(1) 9i 3 � 2 �t(Next0g1)q : : :q�t(Next(i�1)g1)q�t(Nextig2)

Construction of �

(2) 8j = 0; : : : ; i; 9�j 2 �t(Nextjg1) such that tf�j : j = 0; : : : ; ig = �

Definition of q.

(3) �
j v �; j = 0; : : : ; i (2), property of join
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(4) t� Sat(�j; Nextjg1); j = 0; : : : ; i� 1 Inductive assumption.

(5) t� Sat(�; Nextjg1) (4), monotonicity.

(6) Similarly t� Sat(�; Nextig2)

(7) t� Sat(�; (Next0g1) ^ : : : ^ (Next(i�1)g1) ^ (Nextig2))

(5) and (6).

(8) t� Sat(�; g1 Until g2) Definition of Sat.

Supposeq = f , i.e. � 2 �f (g1 Untilg2).

(1) 8i = 0; : : : ; 9�i with �i v � and

�
i 2 �f (Next0g1) [ : : : [�f (Next(i�1)g1) [�f (Nextig2)

Construction of �.

(2) 8i = 0; : : : ; �i 2 �f (Next0g1 ^̂̂ : : : ^̂̂ Next
(i�1)

g1) ^̂̂ Next
i
g2

Definition of �f

(3) f � Sat(�i; Next0g1 ^̂̂ : : : ^̂̂ Next(i�1)g1 ^̂̂ Next
i
g2) Inductive assumption.

(4) f � Sat(�; g1 Untilg2) Definition of g1 Until g2.

Lemma A.7 (Lemma 4.3).

Let g 2 TL, and let � 2 S!. For q = t; f , q � Sat(�; g) iff 9�g 2 �q(g) with �g v �.

Proof. (=)) Assume that q � Sat(�; g). The proof is by structural induction.

Supposeg is simple (base case of induction).

(1) q � g(�0) and 9q0 2 fq;>g with (sq0; q
0) 2 D(g) and sq0 v �0

g is simple.

(2) sq0XX : : : v � From (1).

(3) But sq0XX : : : 2 �q(g) Definition of �q(g).

Supposeg = g1 ^̂̂ g2.
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Supposeq = t.

(1) t� Sat(�; g1); t� Sat(�; g2) Lemma 3.2(2).

(2) 9�1 2 �t(g1); �
2 2 �t(g2) with �1; �2 v � Inductive assumption.

(3) Let � = �
1 t �2

(4) � v � From (2).

(5) � 2 �t(g) Definition of �(g)

Supposeq = f .

(1) Either (or both) f �Sat(�; g1) or f � Sat(�; g2) Lemma 3.2(3)

Without loss of generality assume f �Sat(�; g1).

(2) 9�1 2 �f (g1) with �1 v � Inductive assumption.

(3) �
1 2 �f (g) Definition of �(g).

Supposeg = :::g1.

(1) q v :Sat(�; g1) Definition of Sat

(2) :q �Sat(�; g1) Lemma 3.1.

(3) 9� 2 �:q(g1) 3 � v � Inductive assumption.

(4) � 2 �q(g) Definition of �(g).

Supposeg = Next g1.

(1) q � Sat(��1; g1) Definition of Sat.

(2) 9� 2 �q(g1) 3 � v ��1 Inductive assumption.

(3) X� 2 �q(g) Construction of �(g).

(4) X� v � Xv �0

Supposeg = g1 Untilg2.
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Supposeq = t.

(1) 9i 3 t� Sat(�; Next0g1) ^ : : : ^ Sat(�; Next(i�1)g1) ^ Sat(�; Nextig2)

Lemma 3.2(1)

(2) t� Sat(�; Nextig2) and

8j = 0; : : : ; i� 1; t� Sat(�; Nextjg1)

From (1), Lemma 3.2(2) .

(3) 9�i 2 �t(Nextig2) 3 �
i v � Inductive assumption

8j = 0; : : : ; i� 1;9�j 2 �t(Nextjg1) 3 �
j v �

(4) Let � = �
0 t : : : t �i

(5) � 2 �t(Next0g1)q : : :q�t(Next(i�1)g1)q�t(Nextig2)

Construction of �

(6) � v � (3) and (4).

(7) � 2 �t(g1 Until g2) (5), construction of �.

Supposeq = f .

(1) 8i; f � Sat(�; Next0g1) ^ : : : ^ Sat(�; Next(i�1)g1) ^ Sat(�; Nextig2)

Lemma 3.2(4)

(2) Either f � Sat(�; Nextig2) or 9j 2 0; : : : ; i� 1 3 f �Sat(�; Nextjg1).

Lemma 3.2(3)

(3) Either 9�
0
i 3 �

0
i 2 �f (Nextig2) with �

0
i v �, or

9�j 2 �f (Nextjg1) and �j v �:

Inductive assumption.

(4) In either case, 8i, by construction

9�i 2 �f (Next0g1) [ : : : [�f (Next(i�1)g1) [�f (Nextig2) with �i v �

(5) Let � = t1
i=0�

i.

(6) � 2 �f (g1 Untilg2) Construction of �f .

(7) � v � S is a complete lattice.
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((=) Let g 2 TL; � 2 S!, and assume that 9�g 2 �q(g) such that �g v �.

By Lemma A.6, q � Sat(�g; g). By the monotonicity of Sat, q � Sat(�; g).

A.2.1 Proof of Lemma 4.4

Lemma A.8 (Lemma 4.4).

Let g 2 TL, and let � be a trajectory. For q = t; f , q � Sat(�; g) if and only if 9�g 2 T
q(g)

with � g v �.

Proof. (=)) Suppose q � Sat(�; g).

By Lemma 4.3, 9�g 2 �q(g) such that �g v �.

Let � g = � (�g). Note that � g 2 T q(g) by construction and that �g v � g.

�
g v �: the proof is by induction.

1. � g0 = �

g

0 v �0.

2. Assume �g
i
v �i.

3. Since � is a trajectory,

Y(� g
i
) vY(�i) Monotonicity of Y

v �i+1 � is a trajectory.

�

g

i+1 v �i+1 Since �g v �.

�

g

i+1 = �

g

i+1 tY(� g
i
) Definition of � g.

v �i+1 Property of join.

((=) Suppose 9� g 2 T q(g) such that � g v �.

As � g 2 T q(g);9�g 2 �q(g) such that �g v � g.

By transitivity, �g v �. By Lemma 4.3, q � Sat(�g; g).

By monotonicity q � Sat(�; g).
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A.2.2 Proof of Theorem 4.5

Theorem A.9 (Theorem 4.5).

If g and h are TL formulas, then �t(h) vP T
t(g) if and only if g==�h.

Proof. (=)) Recalling the definition of ==� on page 71, suppose 8�g 2 T t(g);9�h 2 �t(h)

with �h v � g.

Suppose t� Sat(�; g).

By Lemma 4.4, 9�g 2 T q(g) such that � g v �.

By assumption then, 9�h 2 �q(h), with �h v � g. By transitivity, �h v �.

By Lemma 4.3, q � Sat(�; h).

((=) Suppose for all trajectories �, t� Sat(�; g) implies that t� Sat(�; h).

Let � g 2 T t(g).

Then by Lemma 4.4, t� Sat(�g; g).

By the assumption that g==�h, t� Sat(�g; h).

By Lemma 4.3, 9�h 2 �q(h) such that �h v � g.

As � g was arbitrary, the proof follows.
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A.3 Proofs of Compositional Rules for TLn

Recall that in this section we are dealing solely with the realisable fragment of TLn.

Theorem A.10 (Identity – Theorem 5.14).

For all g 2 TLn; g==�g.

Proof. Let t = Sat(�; g). Clearly then t = Sat(�; g). Hence g==�g.

Lemma A.11.

Suppose g==�h. Then Nextg==�Nexth

Proof.

Let � 2 RT 3 t = Sat(�; Nextg).

(1) t = Sat(��1; g) Definition of Sat.

(2) t = Sat(��1; h) g==�h.

(3) t = Sat(X��1; Nexth) Definition of Sat.

(4) t = Sat(�; Nexth) (3), monotonicity of Sat, Lemma 4.8.

(5) Next g==�Nexth.

Corollary A.12 (Time-shift – Theorem 5.15).

Suppose g==�h. Then 8t � 0, Nexttg==�Nextth.

Proof. Follows from Lemma A.11 by induction.

Theorem A.13 (Conjunction – Theorem 5.16).

Suppose g1==�h1 and g2==�h2.

Then g1 ^̂̂ g2==�h1 ^̂̂ h2.

Proof.

Let � 2 RT and suppose t = Sat(�; g1 ^̂̂ g2).
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(1) t = Sat(�; g1) ^ Sat(�; g2) Definition of Sat(�; g1 ^̂̂ g2).

(2) t = Sat(�; gi); i = 1; 2 Lemma 3.2(2).

(3) t = Sat(�; hi); i = 1; 2 Since gi==�hi; i = 1; 2.

(4) t = Sat(�; h1) ^ Sat(�; h2) (3)

(5) t = Sat(�; h1 ^̂̂ h2) Definition of Sat(�; h1 ^̂̂ h2).
As � is arbitrary, g1 ^̂̂ g2==�h1 ^̂̂ h2.

Theorem A.14 (Disjunction – Theorem 5.17).

Suppose g1==�h1 and g2==�h2. Then g1 ___ g2==�h1 ___ h2.

Proof.

Let � 2 RT and suppose t = Sat(�; g1 ___ g2).

(1) t = Sat(�; g1) _ Sat(�; g2) Definition of Sat(�; g1 ___ g2).

(2) t = Sat(�; gi); for i = 1 or i = 2 Lemma 3.2(1), Lemma 4.8.

(3) t = Sat(�; hi); for i = 1 or i = 2 Since gi==�hi; i = 1; 2.

(4) t = Sat(�; h1) _ Sat(�; h2) (3)

(5) t = Sat(�; h1 ___ h2) Definition of Sat(�; h1 ___ h2).
As � is arbitrary, g1 ___ g2==�h1 ___ h2.

Lemma A.15.

Suppose �t(g)vP �t(h), � 2 RT and t = Sat(�; h).

Then t = Sat(�; g).

Proof.

(1) t� Sat(�; h) t = Sat(�; h).

(2) 9� 2 �t(h) 3 � v � and t � Sat(�; h) (1), Lemma 4.3.

(3) 9�0 2 �t(g) 3 �0 v � Definition of vP .

(4) t � Sat(�0; g) Lemma 4.3.
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(5) �
0 v � Transitivity of (2) and (3).

(6) t � Sat(�; g) From (4) and (5) by Lemma 4.3.

(7) t = Sat(�; g) (1), Lemma 4.8.

Theorem A.16 (Consequence – Theorem 5.18).

Suppose g==�h and �t(g)vP �t(g1) and �t(h1)vP �t(h).

Then g1==�h1.

Proof.

Suppose � 2 RT is a trajectory such that t = Sat(�; g1).

(1) t = Sat(�; g) Lemma A.15.

(2) t = Sat(�; h) g==�h.

(3) t = Sat(�; h1) Lemma A.15.

(4) g1==�h1 Since � is arbitrary.

Theorem A.17 (Transitivity – Theorem 5.19).

Suppose g1==�h1 and g2==�h2 and that �t(g2)vP �t(g1)q�t(h1).

Then g1==�h2.

Proof.

Suppose � 2 RT is a trajectory such that t = Sat(�; g1).

(1) t = Sat(�; h1) g1==�h1

(2) t = Sat(�; g1 ^̂̂ h1) Definition of Sat(�; g1 ^̂̂ h1).

(3) 9� 2 �t(g1 ^̂̂ h1) 3 � v � Lemma 4.3.

(4) �t(g1 ^̂̂ h1) = �t(g1)q�t(h1) By definition of �t.

(5) 9�0 2 �t(g2) 3 �
0 v � �t(g2)vP �t(g1)q�t(h1).
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(6) �
0 v � Applying transitivity to (3) and (5).

(7) t � Sat(�; g2) From (6) by Lemma 4.3.

(8) t = Sat(�; g2) From (7) by Lemma 4.8.

(9) t = Sat(�; h2) g2==�h2.

(10) g1==�h2 Since � was arbitrary.

Lemma A.18 (Substitution Lemma).

Suppose j= hj g==�h ji and let � be a substitution: then j= hj �(g)==��(h) ji.

Proof.

Let � be an arbitrary interpretation of variables and � 2 RT be an arbitrary trajectory such that

t = Sat(�; �(�(g))).

(1) Let �0 = � � �

(2) t = Sat(�; �0(g)) Rewriting supposition.

(3) �
0 is an interpretation of variables By construction.

(4) t = Sat(�; �0(h)) j= hj g==�h ji.

(5) t = Sat(�; �(�(h))) Rewriting (4).

(6) j= hj �(g)==��(h) ji � and � were arbitrary.

Lemma A.19 (Guard lemma).

Suppose e 2 E and j= hj g==�h ji: then j= hj (e) g)==�(e) h) ji.

Proof.

Suppose t = Sat(�; e) g) for some � 2 RT . Recall that e) g � (:::e) ___ g, and note that

Sat(�;:::e) 2 B. By the definition of the satisfaction relation, either:

(i) t = Sat(�;:::e). In this case, by definition of satisfaction, t = Sat(�; e) h).
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(ii) t = Sat(�; g). In this case, by assumption Sat(�; h). So, by definition of satisfaction,

t = Sat(�; e) h).

As � was arbitrary the result follows.

Theorem A.20 (Specialisation Theorem — Theorem 5.20).

Let � = [(e1; �1); : : : ; (en; �n)] be specialisation, and suppose that j= hj g==�h ji.

Then j= hj�(g)==��(h) ji.

Proof.

(1) For i = 1; : : : ; n, j= hj �i(g)==��i(h) ji By Lemma A.18.

(2) j= hj (ei) �i(g))==�(ei ) �i(h)) ji By Lemma A.19.

(3) j= hj ^̂̂n
i=1(ei) �i(g))==� ^̂̂

n

i=1(ei ) �i(h)) ji Repeated application of Theorem A.13.

(4) j= hj�(g)==��(h) ji By definition.

Theorem A.21 (Until Theorem — Theorem 5.21).

Suppose g1==�h1 and g2==�h2. Then g1 Untilg2==�h1 Untilh2.

Proof. Let � 2 RT be a trajectory such that t = Sat(�; g1 Untilg2).

(1) 9i 3 Definition of Sat,

t = ^̂̂i�1
j=0 Sat(�; Nextjg1) ^ Sat(�; Nextig2) Lemma 3.2(1), Lemma 4.8.

(2) t = Sat(�; Nextig2) and

t = Sat(�; Nextjg1); j = 0; : : : ; i� 1 Lemma 3.2(2).

(3) t = Sat(�; Nextih2) and g2==�h2, Corollary A.12.

t = Sat(�; Nextjh1); j = 0; : : : ; i� 1 g1==�h1, Corollary A.12.

(4) t = ^̂̂ i�1
j=0 Sat(�j; Nextjh1) ^ Sat(�i; Nextih2) Definition of Sat.

(5) t = Sat(�; h1 Untilh2) Definition of Sat.

(6) g1 Until g2==�h1 Untilh2 Since � was arbitrary.



Appendix B

Detail of testing machines

This chapter presents the details of testing machines. Section B.1 formally defines composi-

tion of machines. Subsequent sections build on this by showing how testing machines can be

constructed and composed with the circuit under test: Section B.2 presents some notation used;

Section B.3 presents the building blocks from which testing machines are constructed; and Sec-

tion B.4 shows how model checking is accomplished.

B.1 Structural Composition

The focus of the research on composition is the property composition described in Chapter 5.

However, sometimes it is also desirable to reason about different models and use partial results

to describe the behaviour of the composition of the models. A full exploration of composing

models of partially ordered state spaces is beyond the scope of this thesis — there are important

considerations which need attention [129]. A partial exploration of the area is useful though for

two reasons: (1) it gives a flavour of how structural composition could be used; and (2) some

of the definitions given are needed in justifying the details of testing machines.

The content of this section is very technical. Although conceptually the composition of sys-

tems is very simple, the notation needed to keep track of the detail is not. This section is included

for completeness and the details of this section are not needed in understanding the thesis.

This section has three parts. First, composition of models is defined formally. Second, in-

ference rules for reasoning about a composed model is given. The third part elaborates on com-

position for circuit models, where the definition of composition has natural instantiation.

222
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B.1.1 Composition of Models

Definition B.1.

Let M1 = (hS1; v 1i;R1;Y1), M2 = (hS2; v 2i;R2;Y2), andM = (hS; v i;R;Y) be

models. Let X1;X2 and X be the bottom elements of S1, S2 and S; Z1;Z2; and Z be their top

elements; and let G1, G2 and G be the simple predicates of S1, S2 and S respectively.

If � : S1 �S2! S , �1 : G1 ! G and �2 : G2 ! G thenM is a �-composition ofM1 and

M2 if

1. � is monotonic;

2. �(X1;X2) = X and �(Z1;Z2) = Z;

3. q = g1(s1) =) q = �1(g1)(�(s1;X2));

4. q = g2(s2) =) q = �2(g2)(�(X1; s2));

5. �(Y1(s1);Y2(s2))vY(�(s1; s2)).

The required properties on � may seem onerous, and indeed in general they may be too restric-

tive. However, for the application of composition needed in this thesis they are sufficient. In

particular, for compositions where the ‘outputs’ of one circuit are connected to the ‘inputs’ of

another, these conditions will be met.

Definition B.2.

We inductively extend the domain of the �i by defining

� �i(g ^̂̂ h) = �i(g) ^̂̂ �i(h);

� �i(:::g) = :::(�i(g));

� �i(Next g) = Next�i(g);

� �i(g Untilh) = �i(g) Until�i(h).
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Definition B.3.

LetM1;M2 and be models andM a �-composition ofM1 andM2. Let �1 2 S!1 , �2 2 S!2 .

�(�1; �2) = �(�10; �
2
0)�(�

1
1; �

2
1) : : :

Since we are dealing with different models, we modify the notation for the satisfaction relation

and use the notation SatMj
(�; g) to refer to whether the sequence � of the modelMj satisfies

g.

Lemma B.1.

LetM1 andM2 be models andM a �-composition ofM1 andM2. Let �i 2 S!
i
; j = 1; 2.

Suppose g 2 TL(Sj) and q = SatMj
(�j; g). Then q � SatM(�(�1; �2); �j(g)).

Proof. The proof is by induction on the structure of g. We assume without loss of generality

that j = 1.

Supposeq = SatM1
(�1; g) whereg is simple

(1) q = g(�j0) Definition of satisfaction.

(2) q = �1(g)(�(�
1
0;X2)) Definition B.1(3).

(3) q � �1(g)(�(�
1
0; �

2
0)) Monotonicity.

(4) q � SatM(�(�1; �2); �1(g)) Definition of satisfaction.

Supposeq = SatM1
(�1; ga ^̂̂ gb)

(1) Let qw = SatM1
(�1; gw); w = a; b

(2) q = qa ^ qb Definition of satisfaction.

(3) qw � SatM(�(�1; �2); �1(gw)); w = a; b Inductive assumption.

(4) q � SatM(�(�1; �2); �1(ga ^̂̂ gb)) Definition B.2 and satisfaction.

Supposeq = SatM1
(�1;:::h)

(1) :q = SatM1
(�1; h) Sat(�1;:::f) = :Sat(�1; f)
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(2) :q � SatM(�(�1; �2); �1(h)) Inductive assumption.

(3) q � SatM(�(�1; �2); �1(:::h)) Definition B.2 and satisfaction.

Supposeq = SatM1
(�1; Nexth)

(1) q = SatM1
(�1�1; h) Sat(�1; Nexth) = Sat(�1�1; h)

(2) q � SatM(�(�1�1; �
2
�1); �1(h)) Inductive assumption.

(3) q � Sat(�(�1
; �

2); �1(Nexth)) Definition B.2 and satisfaction.

Supposeq = SatM1
(�1; h1 Untilh2)

(1) Let qj = SatM1
(�1�0; h1) ^ : : : ^ SatM1

(�1�j�1; h1) ^ SatM1
(�1�j ; h2)

(2) q = _1
j=0qj Definition of satisfaction.

(3) qj � SatM(�(�1�0; �
2
�0); �1(h1)) ^ : : : ^ SatM(�(�1�j�1; �

2
�j�1); �1(h1))^

SatM(�(�1�j ; �
2
�j); �1(h2)) From (1) by induction assumption.

(4) q � _1
j=0 (SatM(�(�1�0; �

2
�0); �i(h1)) ^ : : : ^ SatM(�(�1�j�1; �

2
�j�1); �1(h1))^

SatM(�(�1�j; �
2
�j); �1(h2))) (2) and (3)

(5) q � SatM(�(�1; �2); h1 Untilh2) Definition of satisfaction.

Lemma B.2.

Let M1;M2 and be models and M a �-composition of M1 and M2. Let i 2 f1; 2g, and

suppose that:

(1) � is a surjection;

(2) � = �(�1
; �

2), and t� SatM(�; �i(gi)) implies that t� SatMi
(�i; gi).

Then j=
M
hj �i(gi)==��i(h) ji iff j=

Mi
hj gi==�hi ji.
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Proof.

Supposej=
Mi
hj gi==�hi ji

(1) Suppose t� SatM(�; �i(gi))

(2) 9�1
; �

2 3 � = �(�1; �2) � is a surjection.

(3) t� SatMi
(�i; gi) By hypothesis (2).

(4) t� SatMi
(�i; hi) Since j=

Mi
hj gi==�hi ji.

(5) t� SatM(�; �i(hi)) By Lemma B.1.

(6) Therefore j=
M
hj �i(gi)==��i(hi) ji

Supposej=
Mi
hj �i(gi)==��i(hi) ji

(1) Suppose t� SatMi
(�i; gi)

(2) t�SatM(�; �i(gi)) Lemma B.1

(3) t�SatM(�; �i(hi)) t� SatMi
(�i; gi).

(4) t�SatM(�; hi) By hypothesis 2.

B.1.2 Composition of Circuit Models

For circuit models, there are several natural definitions of composition that have useful proper-

ties. There are, of course, other ways of composing circuits, but the one discussed here is simple

and useful.

Let M1 = (hCm1
; v i;Am1

;Y1) andM2 = (hCm2
; v i;Am2

;Y2) be two models. For

circuit models, the next state function Y : Cn ! Cn is represented as a vector of next state

function hY[1]; : : : ;Y[n]i where each Y[j] : Cn ! C and Y(s) = hY[1](s); : : : ;Y[n](s)i.

To compose two circuit models, we identify r pairs of nodes (each pair comprising one node

of both circuits) and ‘join’ the pairs (i.e., informally, think of these pairs as being soldered to-

gether, or physically identical). The state space of the composed circuit consists ofm1+m2�r

components. The first m1 � r components are the components ofM1 that are not shared with
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M2. The nextm2�r components are the components ofM2 that are not shared withM1. The

final r components are the r components shared by bothM1 andM2.

The formal definition of composition is a little intricate since it identifies state components

by indices. The difficult part of the definition is identifying for each state component in the

composed circuit the component or components inM1 andM2 that make it up.1 The idea is

simple — the book-keeping is unfortunately off-putting.

Let I1 = ha1; : : : ; ari, and J1 = ha01; : : : ; a
0
m1�r
i be lists of state components ofM1. If

s 2 S1, then the s[aj] are the components of the state space that are shared withM2 and the s[a0
j
]

are the components of the state space that are not. We place the natural restriction that I1 and J1

are disjoint, and that their elements are arranged in strictly ascending order. I2 = hb1; : : : ; bri

and J2 = hb01; : : : ; b
0
m2�r
i are the corresponding of lists forM2. Each (aj; bj) pair is a pair of

state components that must be ‘joined’.

Let conv1(j) be the component ofM to which the j-th component ofM1 contributes. For-

mally, define

conv1(j) =

8>><
>>:
k when 9a0

k
2 J1 3 a

0
k
= j

m1 +m2 � r + k when 9ak 2 I1 3 ak = j

Similarly, define

conv2(j) =

8>><
>>:
m1 � r + k when 9b0

k
2 J2 3 b

0
k
= j

m1 +m2 � r + k when 9bk 2 I2 3 bk = j

Since the Ii and Ji are distinct, we can define an inverse to convi. Define indexi(j) = k where

convi(k) = j. Note that indexi is not defined on all of f1; : : : ;m1 + m2 � rg, but that where

it is defined, indexi(j) is the component of the state space ofMi which contributes to the j-th

component ofM. With this technical framework, composition can be defined easily. If s1 2

1In practice, composition is a lot easier. Nodes are labelled by names drawn from a global space. We use the
convention that if the same name appears in both circuits, then the nodes they label are actually the same physical
node. Thus, the pairs that must be connected are implicit and do not have to be given.
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Cm1 and s2 2 Cm2 , define ~%(s1; s2) by

~%(s1; s2) = hs1[index1(1)]; : : : ; s1[index1(m1 � r)];

s2[index2(m1 � r + 1)]; : : : ; s2[index2(m1 +m2 � 2r)];

s1[index1(m1 +m2 � 2r + 1)] t s2[index2(m1 +m2 � 2r + 1)]; : : : ;

s1[index1(r)] t s2[index2(m1 +m2� r)] i

Part of defining the composition is to define the mapping from simple predicates inM1 and

M2 toM. For TLn, this is easy since it is only for predicates of the form [j] that a non-trivial

mapping has to be defined.

Define

~%i(g) =

8>><
>>:
[convi(j)] when g = [j] for some j

g when g a constant predicates.

Then define

M = (hSm1+m2�r
; v i;Y)

where

Y[j](s) =

8>>>>>>>>><
>>>>>>>>>:

Y1[index1(j)](hs[conv1(1)]; : : : ; s[conv1(m1)]i); j � m1 � r

Y2[index2(j)](hs[conv2(1)]; : : : ; s[conv2(m2)]i); m1 � r < j � m1 +m2 � 2r

Y1[index1(j)](hs[conv1(1)]; : : : ; s[conv1(m1)]i) t

Y2[index2(j)](hs[conv2(1)]; : : : ; s[conv2(m2)]i); m1 +m2 � 2r � j

ThenM is a ~%-composition ofM1 andM2, denoted ~%(M1;M2).
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Lemma B.3.

~% meets all the criteria given in Definition B.1.

Proof.

(1) ~% is monotonic.

~% is defined component-wise.

Each component is constructed from the identity and join functions.

Since both of these are monotonic, monotonicity follows.

(2) ~%(Um1
;Um2) = Um1+m2�r and ~%(Zm1

;Zm2) = Zm1+m2�r

Follows straight from the definition of ~%.

(3) q = g1(s1) implies that q � �1(g1)(�1(s1;Um2

2 ))

a. Suppose q = g1(s1), let s = ~%(s1;U
m2) .

b. s1[j] = s[conv1(j)] From definition of ~%(s1;Um2).

c. Let g1 2 G1.

Suppose g1 = [j] for some j.

d. ~%1([j]) = [conv1(j)]. Definition of ~%1.

e. ~%1(g1)(s) = g1(s1) (b) and (d).

f. ~%1(g1)(s) = q By assumption and (e).

Otherwise g1 must be one of the constant predicates f?; f ; t;>g.

g. ~%1(g1) = g1 Definition of ~%.

h. q = ~%1(g1)(s) ~%1(g1) is constant.

(4) Similarly q = g2(s2) =) q � %2(g2)(%(U1; s2)).

(5) ~%(Y1(s1);Y2(s2))�Y(~%(s1; s2)). Proved by showing for all j,
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~%(Y1(s1);Y2(s2))[j]�Y[j](~%(s1; s2)).

Suppose j � m1 � r.

~%(Y1(s1);Y2(s2))[j]

= Y1(s1)[index1(j)]

= Y1[index1(j)](s1)

= Y1[index1(j)]

= (hs[conv1(1)]; : : : ; s[conv1(m1)]i)

= Y[j](s)

Similarly if m1 � r < j � m1 +m2 � 2r,

~%(Y1(s1);Y2(s2))[j] = Y2[index2(j)](s2) = Y[j](s)

Suppose m1 +m2 � 2r � j

~%(Y1(s1);Y2(s2))[j]

= Y1(s1)[index1(j)] tY2(s2)[index2(j)]

= Y1[index1(j)](s1) tY2[index2(j)](s2)

= Y[j](s)

Lemma B.3 is important because it means that Lemma B.1 can be used. Furthermore, where

composition of machines is done is such a way that the ‘outputs’ of one machine are connected

to the ‘inputs’ of the other (so there is no ‘feedback’ — signals go from one machine to the

other, but not vice versa.), Lemma B.2 applies too (to the circuit that provides the outputs).

This definition is dependent on I1; I2; J1 and J2; for convenience, the following short-hand

is used: ~%(A;B)hr1; : : : ; rki refers to the composition of A and B where the r1; : : : ; rk com-

ponents of A are shared with the first k components of B; formally I1 = hr1; : : : ; rki, J1 =

h1; : : : ; r1 � 1; r1 + 1; : : : ; rk � 1; rk + 1; : : : ; ki, I2 = h1; : : : ; ki and J2 = hk + 1; : : : ; ki.
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B.2 Mathematical Preliminaries for Testing Machines

This section assumes the state space of the system is Cn for some n. There is nothing inherent

in the method which limits the state space to this. However, from a notational point of view it is

easier to explain the method with this simple case; furthermore, this is the important, practical

case. The method generalises easily to an arbitrary complete lattice.

Suppose that M1 and M2 have both been derived from a common machine, M , using a

sequence of compositions. (Assume that M = hCn;Y�i, M1 = hCn+m1
;Y1i and M2 =

hCn+m2
;Y2i.) By the definition of composition the two next state functions Y1 and Y2 re-

stricted to Cn are identical and the same as Y�.

Mi (i = 1; 2) consists of M and a tester Ti. The relative composition of M1 and M2 with

respect toM is the composition ofM , T1 and T2. All of this could be described by composition,

but it is convenient to define a specific notation. Formally, rel comp
M
(M1;M2) = hCn

0

;Yi,

where n0 = n+m1 +m2 and if the current state is s, ht1; : : : ; tn0i = Y(s) is defined by:

tj =

8>><
>>:
Y1(hs1; : : : ; sn+m1

i)[j] when 1 � j � n+m1

Y2(hs1; : : : ; sn; sn+m1+1; : : : ; sn0i)[j] when n+m1 < j � n0

B.3 Building Blocks

Basic Block BBA

Some predicates may depend (in some way) on the value of node 1 at a time t1 and node 2 at

time t2. (Formally, a ‘node’ is a component of the state space; informally since we are reasoning

about physical circuits nodes are wires in the circuit.) The purpose of BBA is to provide delay

slots so that both values of interest are available at the same ‘time’. BBA takes two parameters:

a function g : C ! C which is used to combine the values, and n which indicates how many

delay slots need to be constructed. Figure B.1 depicts BBA(g; 4).
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Figure B.1: BBA(g; 3): a Three Delay-Slot Combiner

BBA(g; n) consists of two nodes which act as input nodes, n delay slots, and one node which

is the output value of the machine. The two inputs nodes are typically part of the original circuit,

which is why BBA’s next state function does not affect the first two components. Formally,

BBA(g; n) = hC
n+3

;Yi where if t = Y(s), then tj =

8>>>>><
>>>>>:

?; when j = 1; 2;

sj�1; when j = 3; : : : n + 2;

g(s1; sn�1); when j = n+ 3.

The comp test operator adds the BBA circuit to an existing circuit. Given a machine M

and a predicate g which depends on the value of i1 at time t1 and i2 at time t2, the composite

machine (M plus the testing circuit) is defined by:

comp test(M;g; (t1; i1); (t2; i2)) =

8>><
>>:
~%(M;BBA(g; t1 � t2))hi1; i2i if t1 � t2

~%(M;BBA(g; t2 � t1))hi2; i1i otherwise.
(B.1)

The problem with the BBA testing machine is that if the two defining times are far apart,

the testing circuit could be large due to the need to retain and propagate values, which has both

space and computation costs associated.

There is an alternative approach – build a memory into the circuit which keeps the needed

information. Define BBA(g) = hC
5
;Yi. If the state of the machine is hs1; : : : ; s5i, think of s1

and s2 as the inputs, and s5 as the output. s4 is used as the memory, and s3 indicates whether
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the memory’s value should be reset or maintained. Formally,

Y(sj) =

8>>>>>>>>><
>>>>>>>>>:

?; when j = 1; 2; 3

s2; when j = 4 and s3 = 0

s4; whenj = 4 and s3 = 1

g(s1; s4); when j = 5

(B.2)

Define

comp test (M;g; (t1; i1); (t2; i2)) =

8>><
>>:
~%(M;BBA(g))hi1; i2i if t1 � t2

~%(M;BBA(g))hi2; i1i otherwise.
(B.3)

Although in general the definition of equation B.3 will be more efficient, it cannot always be

used. To see why consider this example. Let g and h be two predicates containing no temporal

operators, where the result of g can be found at node i1 and the value of h at node i2. Suppose

we want to evaluate the predicate g ^̂̂ Next3h. Implicit in this is that we are interested in i1 at

time 0 and i2 at time 3. For this we could use the second implementation of comp test and get

the new machine

comp test(M; (�x; y:x ^ y); (0; i1); (3; i2)).

Now suppose that we are interested in the predicate Exists [(0; 10)] (g ^̂̂ Next3h). This

asks whether there is a time t between 0 and 10 such that g holds at time t and h holds at time

t+ 3. For this predicate, the second implementation will not work since it only remembers the

value of g at one particular time, and we need to have the value of g at a sequence of times.

The general rule in choosing between the implementations is that if the predicate for which

the tester being constructed is within the scope of temporal operators such as Exists and

Global , then the first implementation must be used; otherwise the second, more efficient im-

plementation can be used.
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Basic Block BBB

BBB is used when we need to combine the value of a predicate at a number of different times.

For example, Globalg and Existsg depend on the value of g at a sequence of times. Define

BBB(g; k) = hC
k+2

;Yi where if t = Y(s) then:

tj =

8>>>>><
>>>>>:

? when j = 1

s1 when j = 2

f(sj ; sj�1) otherwise.

Figure B.2 depicts this graphically.
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Figure B.2: BBB(g; 4)

Basic Block BBC

This is just a simple latch with a comparator. BBC = hC3;Yi where Y(hs1; s2; s3i) = h?

; s2; s1 = s2i.

Inverter

Define I = hC2;Yi where Y(hs1; s2i) = h?;:s1i.

B.4 Model Checking

This section shows how to accomplish the following:
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Given a machine M and an assertion of the form j= hjA==�g ji, construct a ma-

chine M 0 and trajectory formulae A0; C such that j= hjA==�g ji () j=M 0

A ^̂̂A0==�C .

Every temporal formula, g, has an associated tuple (i; t; A;M0): i indicates that the formula

can be evaluated by examining the i-th component of the state space of the new machine; t indi-

cates the time at which the component should be examined;A0 gives a set of trajectory formulas

which are used as auxiliary antecedents for the new machine; and M0 is the new machine. The

tuple is defined recursively on the structure of the temporal formula.2

1. g is ([i] = v). The tester which checks this compares the value of node i to v. The asso-

ciated tuple is (n+ 2; 1; A0;M 0), where

� A0 = ([n+ 2] = v)

� M 0 = ~%(M;BBC)hii:

2. g is Nextjg0. This does not require any extra circuitry — the tester that tests g0 is already

built in, and the only difference is that the result is checked at a different time. If the tuple

associated with g is (i; t; A;M 0), the tuple associated with Next jg is (i; t+ j;A;M
0).

3. g is:::g0. If the tester for g0 is already built, an inverter will compute the answer for g. So,

if the tuple associated with g is (i; t; A;M 0), the tuple associated with :f is (jM00j; t +

1; A;M 00), where M 00 = ~%(M; I)hii.

4. g is g0(g1; g2). Typically g0 would be conjunction or disjunction. The tester takes as its

input the results of g1 and g2 and applies g0 to them. Let the tuple associated with g1 be

(i1; t1; A1;M1) and the tuple associated with g2 be (i2; t2; A2;M2). Assume that jM1j =

n+m1 and jM2j = n+m2.

2Note that in this discussion M refers to the original machine, and n = jM j.



Appendix B. Detail of testing machines 236

The tuple associated with g(g1; g2) is (jM 0j;max(t1; t2) + 1; A1 ^̂̂A2;M
0) where

M
0 = comp test (M 00

; g; (t1; n+m1); (t2; n+m1+m2)) andM 00 = rel comp
M
(M1;M2).3

5. g is Global [(i; j)] g0. This can be computed as Next
i(Next0g0 ^̂̂ : : : ^̂̂(Next(j�i)g0)).

Evaluating this directly is too inefficient (since lots of redundant work will be done). The

following approach computes g0 exactly once and then provides appropriate circuitry to

combine this value produced at various times.

If the tuple associated with g0 is (i1; t; A1;M1), where jM1j = m1 then the new tuple

associated with g is (jM 0j; t+ 1; A0;M 0) where:

� M 0 = ~%(M;BBB((�x; y:x^ y); (j � i)))hi1i

A smaller, more efficient testing machine can be built provided that Global operator is

not nested within another temporal operator. In this case, suppose the tuple associated

with g is (i1; t1; A1;M1), where jM1j = m1. The new tuple is (jM 0j; t1 + 1; A0;M 0)

where:

� M 0 = ~%(M;M
00)hi1i

� M 00 = hC2;Yi

� if t = Y(s) then:

tj =

8>><
>>:
? when j = 1.

s1 ^ s2 when j = 2.

� A0 = A1 ^̂̂(Next
t

1[m1 + 1] = 1).

6. g = Exists [(i; j)] g0. This is analogous to the Global case, and can be computed as

Next
i(Next0g0 ___ : : : ___ (Next(j�i)g0)). All the remarks pertaining to the Global oper-

ator apply to the Exists operator – the difference is that instead of conjunction being

3Recall that M is the underlying machine.
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applied, disjunction is applied. This shows that De Morgan’s laws have a direct corre-

spondence in the testing machines.

7. The bounded strong until, weak until, and periodic operators are all derived operators (see

Definition 3.8). A straight-forwardapproach to model-checking these operators is model-

check their more primitive definitions. For all three, smaller and more efficient machines

are possible too.

There are competing threads here—the more operators the easier it is for a verifier to express

properties, but with the wider choice comes the cost of greater complexity for the verifier. Con-

structing testing machines for the derived operators using the primitive definitions is not the

most efficient approach: if the operators are going to be used, optimised testing machines should

be constructed; but, if they are not going to be used the verification system will be more com-

plicated that it needs to be.

There are two further types of optimisations which could be done. Testing machines are not

canonical—there are different ways with different complexities of evaluation. The rewriting of

formulas could yield improvement. The other issue has been discussed already: in some cases

the testing machine needed for a formula depends on whether that formula is embedded within

other temporal operators. If a formula stands by itself, then its satisfaction can checked by ex-

amining one component of the testing circuit at one instant in time. However, if the formula is

embedded within some of the temporal operators, then we need to know the satisfaction of the

formula at a number of instants in time.
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Program listing

C.1 FL Code for Simple Example 1

let c_size = bit_width;
let bwidth = ’ c_size;
let i = IVar "i"; let j = IVar "j"; let k = IVar "k";
let l = IVar "l";
let GND = "GND";

let a = Var "a";

let A = "a"; let B = "b"; let C = "c";
let D = "d"; let E = "e"; let FNode = "f";

let GlobalInput = ((A ISINT i)_&_(B ISINT j)_&_(C ISINT k)) FROM 0 TO 100;
let list1 = [("i", 1 upto 8), ("j", 9 upto 16), ("k", 17 upto 24)];
let varmap1 = BVARS list1;
let varmap2 = BVARS (("a", [25]):list1);

let A1 = GlobalInput;
let C1 = D ISBOOL (i ’> j) FROM 10 TO 100;
let T1 = VOSS varmap1 (A1 ==>> C1);

let A2 = GlobalInput _&_ ((D ISBOOL a) FROM 10 TO 100);
let C2 = GlobalInput _&_

((E ISINT i WHEN a) _&_ (E ISINT j WHEN (Not a)) FROM 20 TO 100);
let T2 = VOSS varmap2 (A2 ==>> C2);

let A3 = E ISINT l _&_ C ISINT k FROM 20 TO 100;
let C3 = FNode ISINT (l ’+ k) FROM 50 TO 100;
let T3 = VOSS varmap1 (A3 ==>> C3);

let proof =
let G1 = SPTRANS [] T1 T2 in
let G2 = SPTRANS [] G1 T3 in
G2;

238
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C.2 FL Code for Hidden Weighted Bit

let N = bit_width;
let x = IVar "x"; let j = IVar "j";
let InputNode = "InputNode"; let CountNode = "CountNode";
let BufferNode1= "buffer1"; let BufferNode2= "buffer2";
let Chooser = "chooser"; let Result = "result";
let Error = "error";

let varmap1 = BVARS([("x",1 upto N)]);

let BufferTheorem = VOSS varmap1
((InputNode ISINT x FROM 0 TO 1000)

==>> ((BufferNode1 ISINT x) _&_
(BufferNode2 ISINT x) FROM 5 TO 1000));

letrec add_bits x num = x = N => BIT2 (’N) num
| (BIT2 (’x) num) ’+ (add_bits (x+1) num);

letrec count_of num = add_bits 1 num;
let CounterGoal = (BufferNode1 ISINT x FROM 0 TO 990) ==>>

(CountNode ISINT (count_of x) FROM 400 TO 990);
let CounterTheorem = VOSS varmap1 CounterGoal;

let stage1 = CONJUNCT BufferTheorem
(AUTOTIME [] BufferTheorem CounterTheorem);

let seg x = BWID (’Nbit) x;
let kthBit k var = (BIT2 (’k) var) ’= (BIT2 (’1) (’1));

letrec case_analysis var j =
letrec case k =
k=1 => Result ISBOOL (kthBit k var) WHEN (j ’= (seg (’k)))

| (Result ISBOOL (kthBit k var) WHEN (j ’= (seg (’k)))) _&_
(case (k-1) ) in

case N;

infix 3 ISBOOL_VEC;
letrec ISBOOL_VEC [x] [y] = x ISBOOL y /\

ISBOOL_VEC (x:rx) (y:ry) = (x ISBOOL y) _&_
(rx ISBOOL_VEC ry);

let ChooserGoal=
((CountNode ISINT j FROM 0 TO 400) _&_
(BufferNode2 ISINT x FROM 0 TO 400))

==>>
(((case_analysis x j) _&_
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(Error ISBOOL (seg(’0) ’= j)))
FROM 300 TO 400);

let ChooserTheorem = VOSS varmap2 ChooserGoal;

let Proof = ALIGNSUB [] stage1 ChooserTheorem;

C.3 FL Code for Carry-Save Adder

let A = Nnode "A"; let B = Nnode "B"; let C = Nnode "C";
let D = Nnode "D"; let E = Nnode "E";

let a = Nvar "a"; let b = Nvar "b"; let c = Nvar "c";

let bdd_order = order_int_1 [b, c, a];

let range = (bit_width-1)--0;

let sum_lhs = (D+E)<<range>>;
let sum_rhs = (a+b+c)<<range>>;

let Ant1 = ((A == a)??) and ((B == b) ??) and ((C == c)??);
let Con1 = NextG 3 ( (sum_lhs == sum_rhs) ??);

let T1 = prove_voss bdd_order adder Ant1 Con1;

C.4 FL Code for Multiplier

// miscellaneous
let high_bit = entry_width - 1; // 0..entry_width-1
let max_time = 800;
let out_time = 3;

//---------------- Node, variable declarations

let A = Nnode AINP;
let B = Nnode BINP;
let RS i = Nnode (R_S i);
let RC i = Nnode (R_C i)<<(high_bit-1)--0>>;
let TopBit i = Nnode (R_C i)<<high_bit>>;

let a = (Nvar "a")<<(entry_width-1)--0>>;
let b = (Nvar "b")<<(entry_width-1)--0>>;
let c = Nvar "c";
let d = (Nvar "d")<<(high_bit-1)--0>>;
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let partial {n :: int} = c <<(n+high_bit)--0>>;

// BDD variable ordering for each stage of multiplier

let m_bdd_order {n::int} =
n = 0
=> order_int_1 [b, a]
| n=entry_width

=> order_int_1 [partial n, d]
| order_int_1 [b<<n>>, a, partial n, d];

let zero_cond i = ((TopBit i)==(’0))??;

let interval n =
n <= entry_width
=> [(’(n*out_time), ’max_time)]
| [(’(n*out_time+2*entry_width), ’max_time)];

let InputAnts = Always (interval 0)
(( (A == a) ?? ) and ( (B == b) ??));

let OutputCons =
let lhs = RS entry_width in
let rhs = (a * b)<<(2*entry_width-1)--0>> in

Always (interval (entry_width+1)) ((lhs==rhs)??);

// Antecedent for row n of the multiplier
let MAnt {n::int} =

n = 0
=> Always (interval 0)

( ( (A == a)??) and
( (B<<n>> == b<<n>>)?? )

)
| Always (interval n)

(( (A == a)??) and
( (B<<n>> == b<<n>>)?? ) and
( (RS (n-1) == (partial (n-1)))??) and
( (RC (n-1) == d)??) and
( zero_cond (n-1)) );

// Consequent of row n of the multiplier
let res_of_row n =

let power n = Npow (’2) (’n) in
let lhs = (RS n) + (power (n+1))*(RC n) in
let rhs =
n=0
=> a * b <<0>>
| ((partial (n-1))+(power n) * d) + (power n)*a *(b <<n>>) in
((lhs == rhs)??);
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let Con_of_stage n =
let power n = Npow (’2) (’n) in
let lhs = (RS n) + (power (n+1))*(RC n) in
let rhs = a * b<<n--0>> in

Always (interval (n+1))
((lhs == rhs)?? and (zero_cond n));

let MCon {n::int} = Always (interval (n+1))
((res_of_row n ) and (zero_cond n));

let Mthm n =
let bdd_order = (m_bdd_order n) in
let ant = MAnt n in
let con = MCon n in
prove_voss bdd_order multiplier ant con;

let preamble_thm =
let start = Mthm 0 in
Precondition InputAnts start;

letrec do_proof_main_stage n m previous_step =
let curr = Mthm n in
let curr’ = GenTransThm previous_step curr in
let current = Postcondition (Con_of_stage n) curr’ in

n = m
=> current
| do_proof_main_stage (n+1) m current;

let main_stage = do_proof_main_stage 1 high_bit preamble_thm;

let adder_proof =
let post_ant_cond =
(( (RS high_bit) == (partial high_bit))??) and
(( (RC high_bit) == d)??) and
(( (TopBit high_bit) == (’0))??)
in

let post_ant = Always (interval entry_width) post_ant_cond
in

let power = Npow (’2) (’entry_width) in
let rhs = ((partial high_bit) + power * d)<<(bit_width-1)--0>> in
let post_con_cond = ((RS entry_width) == rhs)?? in
let post_con = Always (interval (entry_width+1))

post_con_cond in
prove_voss (m_bdd_order entry_width) multiplier post_ant post_con;

let proof = GenTransThm main_stage adder_proof;
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C.5 FL Code for Matrix Multiplier Proof

// miscelleneous

let high_bit = entry_width - 1; // 0..entry_width-1
let max_time = entry_width < 10 => 100 | 10*entry_width;
let clock_time = max_time; // half a clock cycle
let out_time = 3;
//----------------
let prove_result = prove_voss_fsm;
let prove_result_static = prove_voss_static;
//---------------- Node, variable declarations
//----- global
let Clock = Bnode CLK;

//----- individual cells
let A u v = Nnode (AINP u v); let B u v = Nnode (BINP u v);
let IN_C u v = Nnode (C_Inp u v); let OUT_C u v = Nnode (C_Out u v);

let M = make_fsm sys_array;
let RS u v i = Nnode (R_S u v i);
let RC u v i = Nnode (R_C u v i)<<(high_bit-1)--0>>;
let TopBit u v i = Nnode (R_C u v i)<<high_bit>>;

let a = (Nvar "a")<<(entry_width-1)--0>>;
let b = (Nvar "b")<<(entry_width-1)--0>>; let c = Nvar "c";
let d = (Nvar "d")<<(high_bit-1)--0>>; let e = Nvar "e";

let partial {n :: int} = e <<(n+high_bit)--0>>;

// BDD variable ordering for each stage of multiplier
let m_bdd_order {n::int} =

n = 0
=> order_int_1 [b, a]
| n=entry_width
=> order_int_1 [partial n, d]

| order_int_1 [b<<n>>, a, partial n, d];

// timings
let DuringInterval n f = During (n*out_time, max_time) f;

letrec ClockAnt n =
let range = 0 upto (n-1) in
let false_range = map (\x.((’(2*x*clock_time),

’(2*x*clock_time+clock_time-1))))
range in

let true_range = map (\x.(’(2*x*clock_time+clock_time),
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’(2*(x+1)*clock_time-1)))
(butlast range) in

(Always false_range ((Clock == Bfalse)??)) and
(Always true_range ((Clock == Btrue )??));

let InputAnts u v = DuringInterval 0
((A u v ’= a) and (B u v ’= b));

let zero_cond u v i = TopBit u v i ’= (’0);

// Antecedent for row n of the multiplier
let MAnt u v {n::int} =

n = 0
=> DuringInterval 0

( ( A u v ’= a ) and
( (B u v)<<n>> ’= b<<n>>))

| DuringInterval n
(( A u v ’= a) and
( (B u v)<<n>> ’= b<<n>>) and
( RS u v (n-1) ’= (partial (n-1))) and
( RC u v (n-1) ’= d) and
( zero_cond u v (n-1));

// Consequent of row n of the multiplier
let res_of_row u v n =

let power n = Npow (’2) (’n) in
let lhs = (RS u v n) + (power (n+1))*(RC u v n) in
let rhs = n=0

=> a * b <<0>>
| ((partial (n-1))+(power n)* d) + (power n)*a*(b <<n>>)in
lhs ’= rhs;

let Con_of_stage u v n =
let power n = Npow (’2) (’n) in
let lhs = (RS u v n) + (power (n+1))*(RC u v n) in
let rhs = a * b<<n--0>> in

DuringInterval (n+1)
((lhs ’= rhs) and (zero_cond u v n));

let MCon u v {n::int} = DuringInterval (n+1)
((res_of_row u v n ) and (zero_cond u v n));

let Mthm u v n =
let bdd_order = (m_bdd_order n) in
let ant = MAnt u v n in
let con = MCon u v n in

prove_result bdd_order M ant con;

let preamble_thm u v =
print (nlˆ"Doing preamble"ˆnl) seq
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let start = Mthm u v 0 in
(start catch start) seq
Precondition (InputAnts u v) start;

letrec do_proof_main_stage u v n m previous_step =
let curr = Mthm u v n in
let curr’ = GenTransThm previous_step curr in
let current = Postcondition (Con_of_stage u v n) curr’ in
(print (nlˆ" Doing M["ˆ(int2str u)ˆ", "ˆ(int2str v)ˆ

"]("ˆ(int2str n)ˆ")"ˆnlˆnl) seq
(current catch current))
seq
( n = m

=> current
| do_proof_main_stage u v (n+1) m current);

let main_stage u v =
do_proof_main_stage u v 1 high_bit (preamble_thm u v);

let adders_proof u v =
let post_ant_cond =

( (RS u v high_bit) ’= (partial high_bit)) and
( (RC u v high_bit) ’= d) and
( (TopBit u v high_bit) ’= (’0))
in

let post_ant = DuringInterval entry_width post_ant_cond in
let power = Npow (’2) (’entry_width) in
let rhs = ((partial high_bit)+ power*d)<<(bit_width-1)--0>> in
let post_con_cond = (RS u v entry_width) ’= rhs in
let post_con =

During (entry_width*(out_time+2), clock_time)
post_con_cond in

let bdd_order = m_bdd_order entry_width in
(print "Doing adder" seq (post_con catch post_con)) seq
prove_result bdd_order M post_ant post_con;

let cell_out_time = [(’(2*clock_time), ’(3*clock_time))];
let register_proof u v =

let c_ant = (((RS u v entry_width) ’= (partial entry_width))
and ((IN_C u v) ’= c)) in

let c_ant’ =
(ClockAnt 2) and
(During (entry_width*(out_time+2), clock_time)

c_ant) in
let c_rhs = (partial entry_width) + c in
let c_con = (OUT_C u v) ’= c_rhs in
let c_reg = prove_result

(order_int_1 [c, partial entry_width])
M
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c_ant’
(Always cell_out_time c_con)

in
((print "Doing register") seq c_con catch c_con)
seq

c_reg;

// one_proof u v: proves that the (u,v)-th cell works
// correctly
let one_proof u v =

// Prove that multiplier parts work (unclocked)
let m_stage = main_stage u v in
(m_stage catch m_stage) seq
// take into account clocking and the partial sum input
let new_ants= InputAnts u v and

(ClockAnt 2) and
(DuringInterval 0 (IN_C u v ’= c)) in

let new_thm = Precondition new_ants m_stage in
// show the adder part of the ceol works
let a_proof = adders_proof u v in
(a_proof catch a_proof) seq
// Add clocking to the adder proof
let comp_proof = GenTransThm new_thm a_proof in
// Show that the registers work
let r_proof = register_proof u v in
((r_proof catch r_proof)
seq
// stick them all together

let result = (normaliseCon (GenTransThm comp_proof r_proof)) in
result);

letrec make_cell_row_list p_proc u v =
v=array_depth

=> []
| let res = p_proc u v in
print (snd (time res)) seq
(res seq (res:(make_cell_row_list p_proc u (v+1))));

letrec make_proof_list p_proc u =
u = array_width

=> []
| (make_cell_row_list p_proc u 0):

(make_proof_list p_proc (u+1));

let cell_proof_list = make_proof_list one_proof 0;

// Show that the cells also progate their A and B inputs
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let one_proof_propagateA u v =
let ants = (DuringInterval 0 (A u v ’= a)) and (ClockAnt 2) in
let ab_con = A u (v+1) ’= a in
let ab_reg =

prove_result (m_bdd_order 0) M ants
(Always cell_out_time ab_con) in

ab_reg;

let one_proof_propagateB u v =
let ants = (DuringInterval 0 ((B u v) ’= b)) and (ClockAnt 2) in
let ab_con = (B (u+1) v) ’= b in
let ab_reg =

prove_result (m_bdd_order 0) M ants
(Always cell_out_time ab_con) in

ab_reg;

let Apropagate_proof_list = make_proof_list one_proof_propagateA 0;
let Bpropagate_proof_list = make_proof_list one_proof_propagateB 0;

let cell_proof u v = el (v+1) (el (u+1) cell_proof_list);

let Apropagate_proof u v = el (v+1) (el (u+1) Apropagate_proof_list);
let Bpropagate_proof u v = el (v+1) (el (u+1) Bpropagate_proof_list);

let em_thm = ([],[],[]);

//-------------------------------------------------------------
// The *_proof_list contains all the proofs that the individual
// components of the hardware work correctly. The rest of the
// proof shows that when connected together they produce
// the right matrix multiplication result

letrec InsertActiveTheorem addfn
({u::int},{v::int},{new_thm::theorem}) [] =

[(u, [(v, addfn new_thm em_thm)])]
/\ InsertActiveTheorem addfn (u,v,new_thm)

((au, alist):brest) =
letrec PutActiveTheoremIn ({v::int}, {new_thm::theorem}) []
= [(v, addfn new_thm em_thm)]

/\ PutActiveTheoremIn (v, new_thm) ((av, avlist):vrest) =
v = av

=> (av, addfn new_thm avlist):vrest
| (av, avlist):
(PutActiveTheoremIn (v, new_thm) vrest)

in u = au
=> (au, PutActiveTheoremIn (v, new_thm) alist):brest
| (au, alist):

(InsertActiveTheorem addfn(u,v,new_thm) brest);
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letrec RetrieveTheorem {u::int} {v::int} [] = ([],[],[])
/\ RetrieveTheorem u v ((au, alist):brest) =

letrec GetActiveTheorem v [] = ([],[],[])
/\ GetActiveTheorem v ((av, avlist):vrest) =

v = av
=> avlist
| GetActiveTheorem v vrest in

u = au
=> GetActiveTheorem v alist
| RetrieveTheorem u v brest;

let InsertActiveList add_fn thm_list current =
itlist (\x.\y.InsertActiveTheorem add_fn x y) thm_list current;

// VERIFICATION CONDITION
///--------------------- Input specifications

let setInput InpNode {u :: int} {v :: int} {i::int} {n_val :: N} =
let input = During (i*2*clock_time, (i+1)*2*clock_time-1)

(InpNode u v ’= n_val)
in (u, v, Identity input);

let a11 = Nvar "a11"; let a12 = Nvar "a12"; let a13 = Nvar "a13";
let a14 = Nvar "a14"; let a21 = Nvar "a21"; let a22 = Nvar "a22";
let a23 = Nvar "a23"; let a24 = Nvar "a24"; let a31 = Nvar "a31";
let a32 = Nvar "a32"; let a33 = Nvar "a33"; let a34 = Nvar "a34";
let a41 = Nvar "a41"; let a42 = Nvar "a42"; let a43 = Nvar "a43";
let a44 = Nvar "a44"; let b11 = Nvar "b11"; let b12 = Nvar "b12";
let b13 = Nvar "b13"; let b14 = Nvar "b14"; let b21 = Nvar "b21";
let b22 = Nvar "b22"; let b23 = Nvar "b23"; let b24 = Nvar "b24";
let b31 = Nvar "b31"; let b32 = Nvar "b32"; let b33 = Nvar "b33";
let b34 = Nvar "b34"; let b41 = Nvar "b41"; let b42 = Nvar "b42";
let b43 = Nvar "b43"; let b44 = Nvar "b44";

let the_inputs =
// a0 a1 a2 a3 b0 b1 b2 b3
[ ([ ’0, ’0, ’0, ’0], [ ’0, ’0, ’0, ’0]), //0
([ ’0, ’0, ’0, ’0], [ ’0, ’0, ’0, ’0]), //1
([ ’0, ’0, ’0, ’0], [ ’0, ’0, ’0, ’0]), //2
([ ’0, ’0, ’0, ’0], [ ’0, ’0, ’0, ’0]), //3
([ ’0, a11, ’0, ’0], [ ’0, b11, ’0, ’0]), //4
([ ’0, ’0, a21, ’0], [ ’0, ’0, b12, ’0]), //5
([a12, ’0, ’0, a31], [b21, ’0, ’0, b13]), //6
([ ’0, a22, ’0, ’0], [ ’0, b22, ’0, ’0]), //7
([ ’0, ’0, a32, ’0], [ ’0, ’0, b23, ’0]), //8
([a23, ’0, ’0, a42], [b32, ’0, ’0, b24]), //9
([ ’0, a33, ’0, ’0], [ ’0, b33, ’0, ’0]), //10
([ ’0, ’0, a43, ’0], [ ’0, ’0, b34, ’0]), //11
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([a34, ’0, ’0, ’0], [b43, ’0, ’0, ’0]), //12
([ ’0, a44, ’0, ’0], [ ’0, b44, ’0, ’0]), //13
([ ’0, ’0, ’0, ’0], [ ’0, ’0, ’0, ’0]), //14
([ ’0, ’0, ’0, ’0], [ ’0, ’0, ’0, ’0])];//15;

//--------------- Output specifications
let timeForOutputs =

// 1 2 3 4
// ---------------
[ [ 6, 7, 8, 9], // 1
[ 7, 9, 10, 11], // 2
[ 8, 10, 12, 13], // 3
[ 9, 11, 13, 15] // 4

];

let outputFor row col = el col (el row timeForOutputs);

let InputForCells _ _ = [];
let addfirst x (a,b,c) = (x:a,b,c);
let addsecond x (a,b,c) = (a,x:b,c);
let addthird x (a,b,c) = (a,b,x:c);

let InputAtStage n the_lists =
val (avals, bvals) = el (n+1) the_inputs in
let left_list = map (\x.setInput A {x::int} 0 n (el (x+1) avals))

(0 upto (array_depth-1))
in

let right_list =
map (\x.setInput B 0 x n (el (x+1) bvals))

(0 upto (array_width-1)) in
let down_list =

(map (\x.setInput IN_C (array_depth-1) {x::int} n (’0))
(0 upto (array_width-1)))@

(map (\x.setInput IN_C x (array_width-1) {n::int} (’0))
(0 upto (array_depth-2))) in

let res1 = InsertActiveList addfirst left_list the_lists in
let res2 = InsertActiveList addsecond right_list res1 in

InsertActiveList addthird down_list res2;

let start_step = InputAtStage 0 [];
let this_step = start_step; let num_step = 0;

let PropagateVal addfn row col ok1 {ok2::bool} res old_list =
ok1 AND ok2

=> InsertActiveTheorem addfn (row, col, res) old_list
| old_list;

let PropagateRes row col all res res_l =
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let c_index = "C"ˆ(num2str(array_width-col-1+row)) in
all AND (row*col = 0)
=> (c_index, res, (row, col)): res_l
| res_l;

letrec ProcessStageRow n {row::int} [] so_far = so_far
/\ ProcessStageRow n row ((col, colthms):rest)

(prop_list, res_l) =
let make_step (a, b, c) =

let ok a n = length a > n in
let all_thms = (Identity(ClockAnt ((n+1)*2))):(a@b@c) in
let ab_inps = (a@b) in
let all = ok all_thms 3 in
let curr_gen = all

=> Conjunct [cell_proof row col, Apropagate_proof row col,
Bpropagate_proof row col] |

length ab_inps = 2
=> Conjunct

[Apropagate_proof row col,Bpropagate_proof row col] |
ok a 0
=> Apropagate_proof row col
| Bpropagate_proof row col in

let curr_thm = Transform (TimeShift (2*n*clock_time))
curr_gen in
let inps = Conjunct all_thms in
let res = normaliseCon (GenTransThm inps curr_thm) in
let new_l = PropagateVal addfirst

row (col+1) (col<(array_width-1))
(ok a 0) res prop_list in

let new_r = PropagateVal addsecond
(row+1) col (row<(array_depth-1))
(ok b 0) res new_l in
let new_d = PropagateVal addthird
(row-1) (col-1) ((row*col) > 0)
all res new_r in
let new_rl= PropagateRes row col all res res_l

in
empty ab_inps
=> (prop_list, res_l)
| (new_d, new_rl)
in

ProcessStageRow n row rest (make_step colthms);

letrec ProcessStageProof n [] so_far = so_far
/\ ProcessStageProof n ((row,rowthms):rest) so_far =

let current = ProcessStageRow n row rowthms so_far in
(print ("Doing row "ˆ(int2str row)ˆnl)) seq
(current catch current) seq
ProcessStageProof n rest current;
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let do_step n start_step =
letrec perform m curr_step =

let current = ProcessStageProof m (InputAtStage m curr_step)
([], []) in

(print ("Performing step "ˆ(int2str m)ˆnlˆnl)) seq
(current catch current) seq
m = n
=> [snd current]
| (snd current):(perform (m+1) (fst current)) in

perform 0 start_step;

let output_list = do_step 15 [];

// present results
let ShowRes t res_list = el (t+1) res_list;

let Show t node =
let res = ShowRes t output_list in

find (\(x,y,a,b).(x=node) AND ((a*{b::int}) = 0)) res;

let OutputOfArray row col =
let strip (Always r f) = f in
val (a, th, b, c) = Show (outputFor row col)

("C"ˆ(num2str(3+row-col))) in
strip (con_of th);

letrec PrintRowOutput row col =
(col = array_width+1)

=> nlˆnl
| ("("ˆ(int2str row)ˆ" ,"ˆ(int2str col)ˆ") :"ˆ

(el2str (OutputOfArray row col))ˆnl)
ˆ(PrintRowOutput row (col+1));

letrec PrintOutput row =
row = array_depth + 1

=> nl
| (PrintRowOutput row 1) ˆ (PrintOutput (row+1));
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