
VideHoc: A Visualizer for Homogeneous Coordinates

Robert R. Lewis

bobl@cs.ubc.ca

University of British Columbia

Department of Computer Science

7 March, 1995

1 Introduction

VideHoc is an interactive graphical program that visu-
alizes two-dimensional homogeneous coordinates. Users
manipulate data in one of four views and all views are
dynamically updated to reect the change.

The program is a re-implementation of the program
Etch developed by Snoeyink [snoe88]. Hanrahan
[hanr84] describes a non-graphical tool with a similar
purpose. XYZ (Nievergelt, et al. [niev91]) is a similar
and in manyways more powerful tool, but withoutVide-
Hoc's intrinsic support for homogeneous coordinates.

VideHoc is intended to serve two roles: as an instruc-
tive tool for classes in computational geometry and as a
research framework for testing new algorithms in com-
putational geometry, particularly those exploiting ho-
mogeneous duality.

2 A VideHoc Overview

Figure 1 shows a typical VideHoc session. The canvas,
or drawing area, shows the data the user has entered as

elements: points, lines, chains (of line segments), and
wedges (swept angles). The canvas can show several
views: primal at (Cartesian), primal �sheye (projec-
tion of the entire Cartesian plane onto a hemisphere),
dual at, and dual �sheye, either individually or all at
the same time. When all views are shown, the same
data appears in all of them: any change made to one
window is reected immediately in the other three.

Figure 1: A typical VideHoc session

The control bar above the canvas lets the user see and

change VideHoc's current state, including:

mouse mode This is what the mouse is currently be-
ing used for: enter for entering points and lines,
view for altering the what the canvas is display-
ing, or select for selecting points and lines for use
in more complicated commands.

dual mapping This de�nes the kind of dual mapping
that takes place: (classical) homogeneous, Edels-
brunner, or Brown.

gridding Whether or not points and lines (the two
points de�ning them, actually) entered are to be
constrained to lie on integer grid points.

1



All canvas input is done with the mouse. The left button
is for single clicks: enter a point, pan to a new center,
select a nearby element, etc. The middle button is for
\down-drag-up" operations: area-related or two-point
commands such as: enter a line, zoom in or out around
the center, or select points within a given rectangle. The
right button brings up a pop-up menu of commands
relevant to the mouse mode.

3 Commands

Non-trivial commands the user can invoke from the se-
lect mouse mode include:

sort ... brings up a dialog box that allows the user to
sort the selected points by x, y, or their selection

order. The points are labelled with their result-
ing sort order, which is maintained until something
(like adding or deleting a point) occurs that could
possibly change the order.

join if two lines are selected, adds their intersection
point or, if two points are selected, adds the line
that passes through them. The result is dynamic,
so that if either or both of the two lines or points
are moved later, the result gets moved accordingly.

chain constructs a line segment going through all se-
lected points (in selection order). This chain is dy-
namic: it will change if any of the points along it
get moved and will vanish if any of the points get
deleted.

convex hull constructs the convex hull of the selected
points. This hull is dynamic: it may change if any

of the points that de�ne it get moved so as to rede-
�ne the hull and it will go away if any of the points
that it was de�ned over get deleted.

4 Implementation Lessons

Implementing VideHoc has been instructive in itself.
The distinction between an algorithms's conceptual
form and its robust implementation was abundantly
clear on several occasions. It was challenging, for exam-
ple, to make the Graham convex hull algorithm work
with both for points at in�nity and for multiple points
with the same coordinates1!

1Since VideHoc allows gridding, this situation was easy to cre-

ate.

5 Conclusions

The goals of VideHoc are to support computational ge-
ometry education and research. The purpose of this
communication is, therefore, to release it and elicit a
response from the computational geometry community.

VideHoc is far from complete. Possible improvements
include on-line help, commands to save and restore a
user's con�guration, hard copy output (including, op-
tionally, color), support for oriented projective geometry
(as speci�ed in Stol� [stol91]), an \undo" command, an
application language for constructing (and debugging)
algorithms interactively, support for 3 (or more?) di-
mensions (possibly making use of stereo viewing), and
ports of VideHoc to more generally-available platforms.

6 Availability

A Silicon Graphics executable version of VideHoc is
available via ftp from the node ftp.cs.ubc.ca in the
directory /pub/local/bobl/VideHoc. It is also avail-
able as a download via the UBC Imager Web (URL:

http://www.cs.ubc.ca/nest/imager/imager.html).

References

[hanr84] Pat Hanrahan. \A Homogeneous Geometry
Calculator". 3-D Technical Memo 7, NYIT,
1984.

[niev91] J�urg Nievergelt, Peter Schorn, Michele
de Lorenzi, Christoph Ammann, and Adrian
Br�ungger. \XYZ: A project in experimen-
tal geometric computation". Computational

Geometry | Methods, Algorithms and Ap-

plications: Proc. Internat. Workshop Com-

put. Geom. CG '91, Vol. 553 of Lecture Notes
in Computer Science, pp. 171{186. Springer-
Verlag, 1991.

[snoe88] Jack Snoeyink. \Etch: A Drawing Program
That Illustrates Geometric Duality". unpub-
lished article, Xerox PARC, Palo Alto, CA,
1988.

[stol91] Jorge Stol�. Oriented Projective Geometry: A

Framework for Geometric Computations. Aca-
demic Press, 1991.

2


