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CANADA

Abstract: The aspect of purity versus impurity that we address involves the absence

versus presence of mutation: the use of primitives (RPLACA and RPLACD in Lisp, set-car!

and set-cdr! in Scheme) that change the state of pairs without creating new pairs. It

is well known that cyclic list structures can be created by impure programs, but not by

pure ones. In this sense, impure Lisp is \more powerful" than pure Lisp. If the inputs

and outputs of programs are restricted to be sequences of atomic symbols, however, this

di�erence in computability disappears. We shall show that if the temporal sequence of

input and output operations must be maintained (that is, if computations must be \on-

line"), then a di�erence in complexity remains: for a pure program to do what an impure

program does in n steps, O(n log n) steps are su�cient, and in some cases 
(n logn) steps

are necessary.

* This research was partially supported by an NSERC Operating Grant.



1. Introduction

The programming language Lisp (see McCarthy [7] and McCarthy et al. [8]) was

inspired by the �-calculus (see Church [2]), and most of its basic features are frank imi-

tations of aspects of the �-calculus (with the most essential di�erences being in the rules

for order of evaluation). In this way Lisp became the �rst signi�cant programming lan-

guage to allow the computation of all partial recursive functions by purely applicative|or

functional|programs, without side-e�ects.

One feature of Lisp that goes beyond the applicative realm is the inclusion of primitives

for what is now usually called \mutation". These primitive have semantics rooted in the

von Neumann architecture of the machines on which Lisp was implemented, rather than

in the �-calculus. The main primitives for mutation in Lisp are RPLACA and RPLACD, which

mutate the components of an existing pair (in contrast with CONS, which creates a new

pair). We shall refer to Lisp with or without these mutation primitives as pure or impure

Lisp, respectively. (This usage is fairly common, but it must be admitted that these terms

are often used with reference to other features of programming languages|indeed, for any

features that happen not to �t conveniently within the writer's conceptual framework.)

Our goal in this paper is to assess the extent to which mutation primitives add some-

thing essential to the language, and the extent to which they can be simulated|or elimi-

nated in favor of|the purely applicative primitives of the language. As is often the case,

the question can be formulated in several ways; our immediate goal is to describe the

formulation we have in mind, and to explain why we have chosen it in preference to others.

We begin with a trivial observation. If pairs, once created, can never be mutated,

then their components can only be references to previously existing objects: all the arrows

in box-and-arrow diagrams point backward in time, and thus these diagrams are acyclic.

It follows that if we allow the outputs of programs to be the data structures represented

by such diagrams, then RPLACA and RPLACD do indeed add something essential, for they

make possible the creation of structures whose diagrams contain cycles. This answer is

not completely satisfying, however, because it assumes we want our programs to produce

a particular representation of the answer, and it is the representation|rather than the

answer|that is beyond the power of pure Lisp.

When we redirect our attention from representations of answers to the answers them-

selves, we are led to the observation that, when the inputs and outputs of programs are

words over a �nite alphabet (or, alternatively, natural numbers) both pure and impure

Lisp compute all and only the partial recursive functions, and thus are equivalent in power.
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This answer is also not completely satisfying: while it describes what computations can

be performed, it ignores the issues of the e�ciency of these computations.

When we redirect our attention from computability theory to complexity theory we

obtain a crisp formulation of our problem. Consider computational problems that have

as input a word over a �nite alphabet (say a sequence of Boolean values) and have as

output a yes/no answer (another Boolean value). Can every impure Lisp program solving

such a problem be transformed into a pure Lisp program with the same input/output

behavior, in such a way that number of primitives executed by the pure program exceeds

the number performed by the impure programby at most a constant factor? Unfortunately,

we are unable to answer this question. Only after putting two additional restrictions on

computations will we be able to delineate precisely the additional computational power

conferred by the impure primitives.

We shall say that a computation is symbolic if its input and output each consist of

sequences of atomic symbols. These symbols can be incorporated as the components of

pairs, and can be distinguished from pairs by a predicate ATOM, but the only other operation

that can be performed on them is the two-place predicate EQ, which tests for equality of

atomic symbols. The crucial property of atomic symbols is that there is an unlimited

supply of distinct symbols, so that a single symbol can carry an unbounded number of bits

of information. The fact that equality is the only predicate de�ned on symbols makes it

very ine�cient to convert the information they carry into any other form. Nevertheless,

atomic symbols are a very natural part of the Lisp world-view, and insisting that they

be treated as such seems less arti�cial that allowing primitives (such as the EXPLODE and

IMPLODE in some dialects of Lisp) that allow them to be treated as composites.

We shall say that a computation is on-line if its input and output each comprise an

unbounded sequence of symbols and if, for every n, the n-th output is produced by the

computation before the (n + 1)-st input is received. This notion refers to an unending

computation, and some convention is necessary to reconcile it with the customary view

of Lisp programs as functions with �nitely many arguments and a single value. We shall

regard on-line computations as being performed by non-terminating programs with no

arguments, which receive their inputs using a primitive READ operation and produce their

outputs using a primitive WRITE operation. These new primitives have side-e�ects, of

course; it should be borne in mind that \purity" refers to the absence of RPLACA and RPLACD

operations, rather than to an absence of side-e�ects. On-line computation is not part of

the classical Lisp world-view, but it is a natural component of interactive transaction-

processing systems.
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With these notions we can now state our main result.

Theorem 1.1: There is a symbolic on-line computation that can be performed by an impure

Lisp program in such a way that at most O(n) primitive operations are needed to produce

the �rst n outputs, but for which every pure Lisp programmust perform at least 
(n logn)

primitive operations (for some inputs sequences, and for in�nitely many values of n) to

produce the �rst n outputs.

(Here 

�
f(n)

�
represents a function of n bounded below by a positive constant mul-

tiple of f(n).) That this result is the best possible, to within constant factors, is shown by

our second result.

Theorem 1.2: Every symbolic on-line computation that can be performed by an impure

Lisp program in such a way that at most T (n) primitive operations are needed to produce

the �rst n outputs, can be performed by a pure Lisp program that performs at most

O
�
T (n) log T (n)

�
primitive operations (for all inputs sequences, and for all values of n) to

produce the �rst n outputs.

To the objection that the e�ciency of mutation is too well known or obvious to war-

rant proof, we o�er the following argument. It is well known that a last-in-�rst-out stack

discipline is easily implemented in pure Lisp, but the obvious implementation of a �rst-in-

�rst-out queue relies on mutation to add items at the tail of the queue. But Fischer, Meyer

and Rosenberg [3] have shown by an ingenious construction that a queue (or even a de-

queue, where items can be added or removed from either end) can be implemented in pure

Lisp with O(1) primitive Lisp operations being performed for each queue (or dequeue) op-

eration. In the face of this highly non-obvious implementation, it is unconvincing to claim

without proof that there is not an even more ingenious and non-obvious implementation

of a full interpreter for impure Lisp in pure Lisp, with O(1) primitive pure Lisp operations

being performed for each primitive impure Lisp operation. Indeed, after rediscovering a

special case of the Fischer, Meyer and Rosenberg result, Hood and Melville [5] conclude:

\It would be interesting to exhibit a problem for which the lower bound in Pure LISP is

worse that some implementation using rplaca and rplacd."

2. Discussion

The question we address seems implicit in much of the Lisp literature, but the �rst

explicit formulation we have found is due to Ben-Amram and Galil [1], who mention the

cyclic/acyclic distinction, then go on to ask about the complexity of simulation. The use of

input values to which only certain restricted operations can be applied is well established
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in the comparison of programming languages according to \schematology", as introduced

by Paterson and Hewitt [9]. The �rst use of schematology for a comparison based on

complexity rather than computability is due to Pippenger [10]. The special case of atomic

symbols, in the sense used here, was considered by Tarjan [13]. The restriction to on-line

computation is well established in the literature of automata theory; see Hennie [4].

We should say a few words about the models we use to embody the powers of pure

and impure Lisp. These models will be the pure and impure Lisp machines. Such a

machine will be furnished with a built-in program which takes the form of a 
owchart, with

recursion being implemented by explicit manipulation of a pushdown stack. Speci�cally,

we consider programs that manipulate values (which may be atomic symbols or pairs) in

a �xed number of registers; these registers contain mutable values, even in the pure case.

The primitive operations are the predicates ATOM and EQ (which appear in the decision

lozenges of 
owcharts) and the operations READ, WRITE, CONS, CAR and CDR (which also

take their arguments from and deliver their values to registers) and, in the impure case,

the mutation operations RPLACA and RPLACD.

The use of 
owchartmodels allows us to ignore questions of variable binding and scope,

since the primitives of even the pure model allow any of the common scoping conventions

to be simulated e�ciently. (We are assuming here that a particular program, including

any attendant subprograms, involves just a �xed number of variable names, whose current

bindings can be kept in a �xed number of registers. There is no consideration here of

mechanisms such a EVAL that would allow symbols from the input to be used as variable

names and bound to values.) Flowchart models also allow us to ignore questions of control

structures: as mentioned above, recursion can be simulated by manipulation of a pushdown

stack; many other control structures, such as explicit use of current continuations, could

similarly be simulated.

We have not allowed for constants (such as NIL) to be incorporated into programs, or

for other uses of QUOTE. Our justi�cation for this is as follows. Any program will involve

only a �xed number of constants, and their only use is to be compared (via EQ) to other

atomic symbols. If k such constants are needed, we may assume that the input sequence

begins by presenting them in some agreed upon order, and that they are to be echoed back

as the �rst k outputs. The program should test that they are in fact pairwise distinct; if

so it can then proceed with the original computation; if not it can substitute some agreed

upon dummy computation (such as eternally echoing back inputs and outputs).
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If we overlook the presence of atomic symbols, the impure model is very similar to

the Storage Modi�cation Machines introduced by Sch�onhage [12] (which in turn have have

the model of Kolmogorov and Uspenski�� [6] as a precursor).

3. The Upper Bound

We reformulate Theorem 1.2 in terms of machines as follows.

Theorem 3.1: Every on-line symbolic impure Lisp machine M can be simulated by a pure

Lisp machine M 0 in such a way that all outputs produced by M within the �rst n steps

are produced by M
0 within the �rst O(n logn) steps.

This theorem is established by the construction of a trite simulation, which will not be

given in detail here. It can be obtained by modi�cation of arguments given by Ben-Amram

and Galil [1], but it is just as easy to describe the construction from scratch.

The key idea is to represent the state of the store in the impure machine by a balanced

tree. The construction of new pairs by CONS is accomplished by allocating new paths in

the tree, and the allocator issues new paths in order of increasing length, so that the tree

is kept balanced. The fetches from store implicit in CAR and CDR operations, as well as

the updates implicit in RPLACA and RPLACD operations, are performed by following paths

in the tree from the root to the nodes containing the relevant information and, in the case

of RPLACA and RPLACD, in rebuilding a modi�ed version of the path while backtracking to

the root. We observe that the constant implicit in the O-notation is independent of the

machine M .

The \path copying" technique just described was applied by Sarnak and Tarjan [11]

to the implementation of \persistent" data structures, in which old versions of the data

structure can always be copied and updated independently. One of the bene�ts of a pure

programming style (in the sense used here) is that all data structures are automatically

persistent.

4. The Lower Bound

In this section we shall concoct a computation that separates the power of pure and

impure Lisp machines. The proof that producing the �rst n outputs can be accomplished

with O(n) operations in impure Lisp will be easy. The proof that pure Lisp requires


(n logn) operations, which we shall just sketch here, is the heart of the result. At a

super�cial level, this proof is an information-theoretic counting argument analogous, for

example, to the one used to show that 
(n log n) comparisons are needed to sort n items.

5



It is not at all obvious, however, how such an argument can distinguish between creation

and mutation. The key to the argument is to bring about a situation in which certain

information, which can be measured by a counting argument, can be retrieved by impure

operations at a rate of 
(logn) bits/operation, but by pure operations only at a rate of

O(1) bits/operation.

Consider a set of s \records" R1; : : : ; Rs, each of which comprises an atomic symbol

together with two pointers that are used to link the records into two linear chains. The

�rst chain, which we call the A-chain, will link the records in the order

A�!R1�!� � ��!Rs�!NIL:

The second chain, which we call the B-chain, will link the records in the order

B�!R�(1)�!� � � �!R�(s)�!NIL:

where � is a permutation on f1; : : : ; sg.

We shall now describe the computational problem by describing how an impure Lisp

machine solves it. The problem consists of a prolog comprising s
2 steps, followed by an

unbounded sequence of phases, each comprising 2s steps.

The prolog takes place as follows. After checking that it has received two distinct

input symbols to use as Boolean values, the impure machine M reads a tally notation for

s (as s� 1 trues follows by a false), and constructs as it does so the s records linked in the

A-chain. (The B-chain links and atomic symbols are left unspeci�ed.) Then, for each r

from 1 to s, M reads a tally notation for �(r), and �lls in as it does so the B-chain links.

(The atomic symbols are still left unspeci�ed.) The prolog �nishes by reading enough

additional inputs to bring the number of steps up to s
2. (This is done just to make the

number of steps in the prolog independent of the permutation �.)

The remainder of the computation is divided into phases of 2s steps each. During the

�rst s steps of each phase, M reads in s atomic symbols and stores them in the records in

their order according to the A-chain. During the last s steps of each phase, M writes out

these s atomic symbols from the records in their order according to the B-chain. We have

not speci�ed what symbolsM writes out during the prolog, or during the �rst half of each

phase; we shall stipulate that it echos the last symbol read at each such step. (The output

does not depend on the symbols M reads during the second half of each phase.) It is clear

that M can perform this computation using O(1) primitive operations between each READ

and WRITE operation.
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We shall restrict our attention at this point to input sequences for which all the

atomic symbols read and written in all of the phases are distinct. This will allow us to

ascribe each symbol produced by a WRITE operation during a phase to a well de�ned READ

operation earlier in that phase. We observe that for any value of s, there are just s! possible

permutations � that might be described during the prolog.

It remains to show that any pure Lisp machineM 0 requires at least 
(s log s) primitive

operations in each phase, for most choices of �, say for all but (s�1)!=2 choices of �. Since

M performs just O(s2) operations in the prolog, and just O(s) operations in each phase,

we can then obtain Theorem 1.1 by considering the �rst s phases, for then M will produce

O(s2) outputs using O(s2) operations, while M 0 will require 
(s2 log s) operations for all

but at most s(s � 1)!=2 = s!=2 choices of �.

Consider an interval [a; b] of steps. Let us say that a set of input sequences is (a; b)-

coherent for the pure Lisp machine M 0 if, from the processing of the a-th input xa to the

b-th output yb, all test operations (that is ATOM and EQ operations) have the same outcome.

The operation of M 0, restricted to such an interval of operations and to a set of coherent

inputs, corresponds to that of a \straight-line program", in which a �xed sequence of the

primitive operations CAR, CDR, CONS, READ and WRITE is performed.

Let us say that an input sequence is (a; b)-psittacine for M 0 if each of the outputs

ya; : : : ; yb is equal to one of the inputs xa; : : : ; xb.

Lemma 4.1: Let C be any (a; b)-coherent set of inputs for a pure Lisp machine M 0, and

suppose that the inputs in C are (a; b)-psittacine for M
0. Then there exists a map h :

fa; : : : ; bg ! fa; : : : ; bg such that, for every input sequence x1; x2; : : : in C, M
0 produces

the output yi = xh(i) for i 2 fa; : : : ; bg.

Sketch of Proof: For i 2 fa; : : : ; bg, start with the WRITE operation that produces yi and

trace back through the computation to the READ operation that received corresponding

input xj such that yi = xj . For each input sequence, we have that j is a well de�ned value

in fa; : : : ; bg, and we must show that j is the same value h(i) for all input sequences in C.

We trace back in the following way. The WRITE operation that produces yi takes the

output value from some register. We trace back to the operation that put this value into

the register. If this operation was a READ operation, we are done. Otherwise, it was a CONS,

CAR or CDR operation. In this case we trace back to the operation that put the relevant

argument into a register. We continue until we reach the appropriate READ operation. (The
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process of tracing back must terminate with a READ operation, since we have disallowed

the use of QUOTE to introduce constants.)

Since M 0 is a pure Lisp machine, any pairs involved in the process above must have

been constructed during the interval [a; b] (we are starting from an output in the interval

[a; b], following pointers that point backward in time, and ending with an input in the

interval [a; b]). It follows that all the operations involved in the process take place in the

interval [a; b], during which M
0 executes a straight-line program. Consequently, the same

input xj is reached from the output yi, for every input sequence in C, which is what was

to be shown. 4

It is worth observing that this lemma breaks down for impure Lisp machines for two

reasons: (1) the value produced by a CAR or CDR operation might trace back to a RPLACA

or RPLACD rather than a CONS, and (2) pointers do not necessarily point backward in time,

so we cannot conclude that all relevant operations take place in the interval [a; b].

Now suppose that during some phase, corresponding to an interval [a; b], M 0 performs

at most t test operations for each of at least (s�1)!=2 choices of �. The outcomes of these

operations partition a set of (s�1)!=2 input sequences into at most 2t (a; b)-coherent classes.

During each phase, M 0 writes out only symbols read in during the same phase, so each of

these classes is (a; b)-psittacine for M 0. Thus, by Lemma 4.1, the outputs produced by M 0

are speci�ed by one of at most 2t maps. But the behavior of the impure Lisp machine M

calls for at least (s� 1)!=2 di�erent maps, since there are (s� 1)!=2 di�erent permutations

�. Thus we have 2t � (s � 1)!=2 or, by taking logarithms, t = 
(s log s). (Since each of

the s phases needs 
(s log s) comparisons for all but the easy permutations (where \easy"

means that fewer comparisons are needed), and since there are at most (s � 1)!=2 easy

permutations for each phases and s phases, ther are at most s(s� 1)!=2 permutations that

are easy for some phase. Hence at least half of the permutations (s!=2) are not easy during

any phase. Hence at least one permutation is not easy during any phase.)

We can see at this juncture the roles played by our two special restrictions. The sym-

bolic inputs and outputs allow each step of a phase to involve 
(log s) bits of information

(since there are s distinct symbols in each phase), while allowing the impure machine to

process these bits using O(1) operations. Thus, the lower bound would break down if

we required the input sequence to be over a �nite rather than an in�nite set of symbols

(and the upper bound would break down if we charged logarithmically for pointer ma-

nipulation operations, re
ecting their implementation using a �nite set of symbols). The

on-line assumption allows the basic arguments to be repeated in s disjoint phases; without
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this assumption a pure machine could read the inputs for s phases before writing all the

outputs for these phases, all using O(s2) operations.

5. Conclusion

We have shown that mutation can reduce the complexity of computations, at least

when the computations are required to be performed on-line and when their inputs and

outputs may be sequences of atomic values (rather than sequences of symbols drawn from

a �nite alphabet). We have further shown that this reduction is sometimes by as much as

a logarithmic factor, but can never exceed a logarithmic factor.

Naturally it would be of interest to lift either or both of the special assumptions we

have made. We would conjecture that a reduction in complexity can occur even for o�-line

computations and even for computations in which the inputs and outputs are words over

a �nite alphabet. Such a result, however, seems far beyond the reach of currently available

methods in computational complexity theory.
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