
1

XTP Application Programming Interface1

Roland Mechler and Gerald W. Neufeld
Department of Computer Science
University of British Columbia

Vancouver, B.C., V6T 1Z4
Canada

Abstract

The Xpress Transport Protocol (XTP) is a lightweight transport protocol intended for high-
speed networks. High-speed networks provide bandwidths of 100 Mbps and beyond, enabling
a new class of applications (e.g., multimedia). So as not to be a bottleneck in the delivery of
data, a transport protocol must provide high performance. Features of XTP which enhance
performance include implicit connection setup, sender driven acknowledgement, selective
retransmission, fixed format word aligned packet structures and suitability for parallel
implementation. Since the new generation of applications may require a variety of services
from the transport layer, a transport protocol designed for high-speed networks should also be
flexible enough to provide these services. XTP provides the mechanisms to allow
applications to tailor the functionality of the protocol to their individual needs. In particular,
XTP provides flow control, rate control and error control, the use of each being optional and
orthogonal to the others. This report describes an Application Programming Interface
designed for a multi-threaded implementation of XTP. The API allows all XTP parameters to
be set from the application level, and addresses the issue of performance by providing a
mechanism for zero copy transmission and reception of data.

1. This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada
and the Canadian Institute for Telecommunications Research.

2

Table Of Contents

1.0 Introduction 3

2.0 XTP Background 3

2.1 Packet Types . 6

2.2 Services . 6

2.3 Command Options . 7

2.4 Modes . 7

3.0 API Reference Guide 7

3.1 API Routines . 8

3.2 Service Structure . 11

3.3 Configuration Structure . 13

4.0 Programming Guide 14

4.1 XTP Initialization . 15

4.2 Contexts . 15

4.3 Connection Establishment . 16

4.4 Data Transmission . 17

4.5 Closing Procedures . 18

4.6 XTP Modes . 19

5.0 Addressing 21

6.0 Packet Encapsulation 21

7.0 Example 22

7.1 Sender Program . 22

7.2 Receiver Program . 23

References 24

3

1 Introduction

This is a brief guide to the Application Programming Interface (API) for a multithreaded
implementation of XTP (Xpress Transport Protocol), Revision 4.0 [4]. The API is loosely based
on the one outlined in the XTP Definition, Revision 3.6 [3]. Henceforth in this document, XTP
will refer to the XTP Definition, Revision 4.0.

This implementation of XTP was originally designed to run in the r-kernel1 multiprocessor
operating system environment, but now runs in the RT Threads [6] environment as a
multithreaded user level UNIX process. The multicast features of XTP are not included in this
implementation.

Some background on XTP is given in section 2 to provide a better understanding of how to use
the interface2. Section 3 is a reference guide for the API, describing the interface features. Section
4 is a programming guide, giving a better idea of how to use the interface routines. Sections 5 and
6 give some extra information on addressing and encapsulation. Section 7 shows an example
program.

2 XTP Background

The Xpress Transport Protocol (XTP) is a lightweight transport protocol intended for high-speed
networks.

XTP is a connection oriented protocol which allows bi-directional data transfer. Because implicit
connection setup is possible with XTP, it can also provide connectionless semantics. At each
endpoint of an XTP connection, a context maintains all state information for the connection. Each
context is identified by a key, which is unique at a given endpoint.

XTP seeks to provide both better performance and greater functionality than traditional transport
protocols like TCP/IP: better performance because protocols can become a major bottleneck as
network bandwidth increases; greater functionality because new applications making use of high-
speed networks (e.g., multimedia) require services which protocols like TCP do not provide.

The features of XTP which are intended to improve performance include:

• implicit connection setup

• efficient indexed context lookup (key exchange)

• sender driven acknowledgement scheme which can reduce timer overhead and

acknowledgment traffic

1. The r-kernel is a lightweight multiprocessor kernel with user-level threads. It currently runs in the Motorola MVME188
Hypermodule hardware environment.
2. Because much of the functionality of the XTP protocol can be controlled by the application, knowledge of how the
protocol works is an asset when using the interface. Reading the XTP 4.0 specification [4] is recommended.

4

• selective retransmission (or no retransmissions)

• fixed format, word-aligned packet structures for efficient processing

• suitability for parallel implementation.

Each byte of data in a stream is represented by a sequence number. XTP uses a 64-bit sequence
space in anticipation of sequence number aliasing problems which could occur with 32-bit
sequence numbers in networks with a high bandwidth-delay product.

XTP allows protocol parameters to be set at the application level so the functionality of the
protocol can be tailored to individual application needs. Central to this idea of parameterized
functionality is the orthogonality of the following functions: rate control, flow control and error
control.

The two streams of a bi-directional XTP connection are independent and may have different
parameter values. For example, the stream in one direction might be flow controlled and error
controlled, but not rate controlled, while the stream in the opposite direction might be rate
controlled but not flow controlled or error controlled.

A short description of the parameterized functions follows:

rate control - Rate control is used to set the maximum rate at which the sender will transmit

data. There is no guaranteed minimum rate. The current policy for rate control negotiation

is to use the lower one of each parameter value (i.e., whichever one will lead to a lower

rate). The parameters for rate control are

rate - This is the maximum rate, in bytes/sec, at which the sender will transmit data. A rate

value of zero will halt transmission.

burst - This is the maximum number of bytes that will be transmitted in a single burst. The

interval between bursts, known as the RTIMER value, is calculated as rate/burst. A

burst value of zero will allow unrestrained transmission (i.e., no rate control). A burst

value of zero takes precedence over a rate value of zero.

flow control - Flow control specifies the maximum amount of outstanding unacknowledged

data which may be transmitted by the sender. A sliding window mechanism is used,

whereby the receiver transmits alloc values to the sender (at the XTP level), where alloc is

one greater than the highest sequence number which the sender is allowed to transmit.

Flow control may turned off (i.e., infinite window size) by using NOFLOW mode. Flow

control has the following parameter:

rwindow - This is the size of the window, in bytes, as set by the receiver. If the sender

wants to transmit data before receiving any acknowledgements (i.e., control packets)

5

from the receiver, it needs to set its own initial window size, using the swindow

parameter.

error control - Checksums1 are used for both the header and the data payload of XTP

packets. The use of checksums for data can be turned off by using NOCHECK mode.

XTP allows selective retransmission, meaning that only lost or corrupted packets are
retransmitted. This implementation uses selective retransmission. Retransmission can be turned
off by using NOERR mode.

Other features of XTP which are parameterized include:

addressing - Rather than defining a new addressing scheme, or using a single existing one,

XTP allows the use of a variety of addressing formats.

timers - Timers are specified by their timeout values, currently measured in microseconds.

The following timers are used by XTP, some of whose values can be set by the user:

WTIMER, retry_count - WTIMER is the wait timer for a response to a status request. Its

value is calculated by XTP based on measured round trip times. An initial value can be

specified by the user. retry_count (which can be set by the user) specifies the number

of retries which will be attempted before the connection aborts. The WTIMER value is

doubled for each retry. A successful request/acknowledgement is called a

synchronizing handshake.

CTIMEOUT - This timer puts a limit on the overall time for the WTIMER retry sequence

(synchronizing handshake). Its value can be set by the user.

CTIMER - This is the connection keepalive timer. Its value can be set by the user. If no

packets at all are received on a connection within this interval, a synchronizing

handshake is initiated. CTIMER is intended to be a long term timer, typically an hour

or more in duration. At the very minimum it should be longer than CTIMEOUT.

RTIMER - This is the rate control burst interval. Its value is determined by the rate and

burst parameters (which can be set by the user).

packet size - The maxdata parameter can be used to set the maximum packet data size for

transmission.

1. The IP checksumming algorithm is used.

6

2.1 Packet Types

The XTP packet types which are of concern are:

FIRST - These packets are sent by the initiating context to establish a connection. The FIRST

packet contains an Address Segment (used to locate a listening context at the receiving

endpoint) and a Traffic Segment (used to establish rate control parameters and a maximum

data size). The FIRST packet may carry data as well.

DATA - These are data bearing packets and may travel in either direction since XTP

connections are bi-directional.

CNTL - These contain control information. A receiver (i.e., for a given direction of data

transfer) will usually only send CNTL packets in response to requests from the sender.

CNTL packets are used mostly for flow control. ECNTL and TCNTL packets contain

extra information for error control and rate control.

ECNTL - These error control packets contain the same information as CNTL packets, plus a

list of sequence number spans for data to be retransmitted.

TCNTL - These traffic control packets contain the same information as CNTL packets, plus a

Traffic Segment to indicate changes in rate control parameters.

DIAG - Diagnostic packet, returns error information to a sending context (e.g., non-existent

context at receiver).

2.2 Services

Implicit connection setup together with parameterization allows XTP to provide a variety of
connection-oriented and connectionless service semantics. Standard service types are listed
below.

XTPUNSPECIFIED - unspecified
XTPUNACKDG - traditional unacknowledged datagram service
XTPACKDG - acknowledged datagram service
XTPTRANS - transaction service
XTPSTREAM - traditional reliable unicast stream service
XTPUMULTISTREAM - unacknowledged multicast stream service
XTPRMULTISTREAM - reliable multicast stream service

Service types are currently not interpreted by the XTP implementation (except for the purpose of
matching incoming requests). It is up to the application to provide these semantics using the
parameterized features of XTP.

7

2.3 Command Options

There is an options bitfield present in every XTP packet. These option bits are used internally by
XTP, but the following options may also be set at the application level using the options parameter
of XtpWrite() (see section 4.1).

XTPBTAG Packet contains out-of-band data (first 8 bytes of data).
XTPEND Cease further communication.
XTPWCLOSE Local writer is closed. No new data will be sent.
XTPDREQ Request CNTL packet response from receiver after all queued data has been

delivered to user.
XTPSREQ Request CNTL packet response from receiver immediately upon receiving packet.

Note that an application is not required to request CNTL packet responses using XTPDREQ and
XTPSREQ, as the necessary status requests will be handled internally by XTP. These features are
included in the interface to provide flexibilty, but it is not anticipated that they will be used often
in practice.

2.4 Modes

There are a number of modes under which XTP can operate (on a per connection basis). These
may be used in combination, although when FASTNAK mode is used with NOERR mode,
FASTNAK is ignored. The modes are described as follows:

FASTNAK The receiver should send an acknowledgement (i.e., ECNTL packet)
immediately when a misordered packet is encountered.

NOFLOW Flow control is turned off.
RES Reservation mode. The receiver will only accept data for which buffer space

has been reserved at the application level (using XtpReserve).
NOERR Error control is turned off (i.e., no retransmissions).
NOCHECK Checksum calculations are not performed on data.

The two streams of a bi-directional XTP connection may operate under different modes. The
mode for a particular stream is determined by the sending endpoint.

3 API Reference Guide

The API is defined by routines for context creation, connection establishment and reading and
writing data. Service parameters are passed to XTP using the service structure (type
XtpService), which can be passed to the protocol at context creation (thus they apply per
context).

8

3.1 API Routines

The following routines are available. All routines return either XTPOK or XTPFAILED unless
otherwise noted. Contexts are referenced by context identifiers (of type XtpCtxtId):

(1) int XtpInit(u_int ipAddr, u_int portNo) initializes XTP and should be called only

once per threads environment (UNIX process). The argument ipAddr is used to

specify the local IP address, as an unsigned integer value. If 0 is specified for ipAddr,

XTP will determine the IP address to use1. The argument portNo is used to specify

the local port number for the XTP engine, which must be unique among active XTP

engines using the same IP address. If 0 is specified for portNo, XTP will choose a

port number. The IP address and port number chosen by XTP can be determined

after the call to XtpInit() with the routines XtpMyIP() and XtpMyPort().

(2) int XtpMyIP(u_int *ipAddr) and int XtpMyPort(u_int *portNo) return, by reference,

the IP address and port number, respectively, being used by the local XTP engine.

Both routines return XTPFAILED if called before either XtpInit() or RttNetInit()

have been called.

(3) int XtpConfiguration(int command, XtpConfig *config, XtpService *svc) allows the

default configuration for the local XTP engine to be set at the application level. The

command argument indicates whether the parameters are to be set or retrieved, by

specifying either XTPSET or XTPGET. The config argument is used to access the

configuration parameters (see section 3.3) for the XTP engine. The svc argument is

used to access the default context parameters (see section 3.2), used to initialize

contexts (unless overridden at context creation). If XTPNULL is used to specify

either config or svc, that argument will be ignored. XtpConfiguration() will fail if

called using the XTPSET command after calling XtpInit() (the configuration may not

be changed once the XTP engine is started).

(4) int XtpCreateContext(XtpCtxtId *ctxtId, XtpService *svc) creates a new context,

returning a context identifier ctxtId by reference. It takes pointer to service structure

svc as argument, allowing default values of context parameters to be overridden. If

XTPNULL is used to specify svc, the argument will be ignored and the context will

be initialized using the default values.

(5) int XtpCloseContext(XtpCtxtId ctxtId) closes the given context, freeing all of its

resources2. If the context is an endpoint of an active connection, XtpCloseContext()

1. If the local machine has more than one IP address, then specifying 0 for ipAddr may result in any one of these being
used.

9

will block until the connection has closed gracefully (i.e., all data has been

transmitted reliably, if not in NOERR mode). After the call, ctxtId becomes an

invalid context identifier.

(6) int XtpAbortContext(XtpCtxtId ctxtId) is similar to XtpCloseContext(), except it

forces an abortive close (untransmitted data will be discarded). XtpAbortContext()

will not block.

(7) int XtpEntry(XtpCtxtId ctxtId, int command, XtpService *svc) is used to access the

context parameters. The following commands are available:

XTPGET - Returns context parameters using svc, as requested using the field flags.

XTPSET - Sets context parameters using svc, as requested using the field flags.

(8) int XtpListen(XtpCtxtId ctxtId, int mode, u_int localXtpPort,) allows context ctxtId

to listen for a connection establishment request from a remote endpoint. Parameter

localXtpPort specifies the XTP port number (32-bit unsigned integer) which acts as

a filter for incoming FIRST packets. Parameter mode is used to indicate the desired

blocking semantics, and can take on the following values:

XTPBLOCK - Block until connection is established (FIRST packet received).

XTPNOBLOCK - Don’t block.

(9) int XtpConnect(XtpCtxtId ctxtId, int mode, u_int remoteAddr, u_int remotePort,

u_int remoteXtpPort) establishes a connection. Parameter mode specifies whether it

is an XTPIMPLICIT or an XTPEXPLICIT connection establishment. If

XTPEXPLICIT is used, a FIRST packet is sent and the call will block until a

response is received. If XTPIMPLICIT is used, the call will not block, and the

FIRST packet will be sent as a result of the first XtpWrite() call. Parameter

remoteAddr specifies the remote IP address, which can be determined using the

XtpHostnameToIP() routine, see section 4. Parameter remotePort specifies the

remote port number that the destination XTP engine was initialized with. Parameter

remoteXtpPort specifies the XTP port number at which the remote context should be

listening.

(10) int XtpWrite(XtpCtxtId ctxtId, char *data, int len, int options, void (*func)(void *),

void *arg) writes a message of length len bytes from buffer data to the connection,

without copying the data. Option flags specified in options (e.g., XTPWCLOSE) will

2. If XtpCloseContext() or XtpAbortContext() are called by the initiating endpoint of communication, the resources for the
context may not actually be freed until a period of CTIMEOUT elapses. See [4].

10

be set in the XTP packet used to transmit the message. If len is greater than the

maximum data size for an XTP packet (maxdata), the message will be segmented

into multiple XTP packets and options will only cause bits to be set in the last packet

of the message1 (with the exception of XTPBTAG, which is set in the first packet of

the message). More than one option can be specified using a logical OR (e.g.,

XTPWCLOSE | XTPSREQ). XTPBTAG is used to tag the first 8 bytes of a message

as out of band data2. XTP does not interpret the XTPBTAG, it merely passes it to the

receiving application.

Function func is called with argument arg when the data is no longer needed by the

XTP implementation, i.e., when it has been successfully transmitted (and

acknowledged when not in NOERR mode). The most common uses are for passing

in a freeing routine to free the data, or for passing in a semaphore and signal routine

so the calling thread can be blocked until the write is complete. If XTPNULL is used

to specify func, this feature will be ignored.

(11) int XtpReadBuf(XtpCtxtId ctxtId, char **data, int *bytes, int *flags, int *options)

returns the data buffer from one XTP packet in data, and returns the number of bytes

read via reference parameter bytes. This data buffer must be freed by the application

using XtpFreeBuf(). Parameter options contains the option bits from the packet. One

or more of the following flags may be returned in flags:

XTPEOC - End-of-context, meaning there will be no more data to read.

XTPNULLDATA - There is no data. Parameter bytes represents the gap of missing

data (for NOERR mode).

(12) int XtpFreeBuf(char *buf) frees a buffer which was obtained from XtpReadBuf().

(13) int XtpBufAvailable(XtpCtxtId ctxtId) returns XTPOK if there is a buffer available for

reading with XtpReadBuf(), and XTPFAILED otherwise.

(14) int XtpRead(XtpCtxtId ctxtId, char *data, int len, int *bytes, int *flags, int *options)

reads (copies) len bytes into buffer data from the connection and returns number of

bytes read via reference parameter bytes. Parameters flags and options are as above.

XTPNULLDATA indicates only that at least some of the data is missing, but no

indication is given as to which data is missing.

1. Option bits may also be set by the XTP implementation itself, irrespective of those set by the user.
2. Out of band simply means that the data is tagged for the application to use as it wishes. This data is sequenced with the
rest of the data, XTP does not provide a facility for expedited data within a given connection.

11

(15) int XtpDiagnostic(XtpCtxtId ctxtId, int *code, int *val) returns XTPOK if a DIAG

packet was received by the context, and XTPFAILED otherwise. If XTPOK is

returned, reference parameters code and val will be set to the code and value of the

DIAG packet.

(16) int XtpPrintDiagnostic(char *message, int code, int val) is a convenience routine

which prints a message giving the meaning of the code and val parameters passed in.

This routine will commonly be used in conjunction with the XtpDiagnostic() routine.

(17) int XtpError(XtpCtxtId ctxtId, char *message) when called upon failure of an XTP

interface service routine, prints given message, followed by a message describing

the error.

3.2 Service Structure

The service structure (type XtpService) defines the parameter interface to XTP. A reference to
such a structure can passed as an argument to XtpConfiguration(), XtpCreateContext() and
XtpEntry(). The structure is defined as follows:

typedef struct {
unsigned long fieldFlags; /* bitwise OR of selected fields */
unsigned long modes; /* XTPMODES */
unsigned int reserveSize; /* XTPRESERVESIZE */
char wservice; /* XTPWSERVICE */
char rservice; /* XTPRSERVICE */
unsigned int maxdata; /* XTPMAXDATA */
unsigned int rwindow; /* XTPRWINDOW */
unsigned int swindow; /* XTPSWINDOW */
long inrate; /* XTPINRATE */
long inburst; /* XTPINBURST */
long outrate; /* XTPOUTRATE */
long outburst; /* XTPOUTBURST */
unsigned int ctimer; /* XTPCTIMER */
unsigned int ctimeout; /* XTPCTIMEOUT */
unsigned int wtimer; /* XTPWTIMER */
unsigned int retryCount; /* XTPRETRYCOUINT */
XtpAddress address; /* XTPADDRESS */
XtpTraffic traffic; /* XTPTRAFFIC */
unsigned long diagCode; /* XTPDIAGCODE */
unsigned long diagValue; /* XTPDIAGVALUE */

} XtpService;

The fieldFlags field is a bitmap of the parameters which the user wishes to select at runtime. The
user should set this field as a bitwise OR of the appropriate constants (as listed in comments

12

beside the fields), and set the actual fields to their desired values (each constant corresponds to
one of the fields of the service structure). Any parameters (fields) not specified by fieldFlags will
take on default values.

The modes field is a bitmap used to select the mode(s) (see section 3.4) under which XTP is to
operate. The modes can be selected independently for the stream in either direction, and are set by
the sender in each case. The user should set this field as a bitwise OR of the appropriate
constants from those listed below.

XTPFASTNAK - select FASTNAK mode
XTPNOFLOW - select NOFLOW mode
XTPRES - select RES mode
XTPNOERR - select NOERR mode
XTPNOCHECK - select NOCHECK mode
XTPRCLOSE - select simplex (unidirectional) connection from initiator to listener

The following table gives a description of each field of the XtpService structure, as well as its
default value:

Table 1: Service Fields

Field Name Description Default Value

modes Bitwise OR of modes selected for context. Will
only be set at context creation times.

0

reserveSize Size of reserved buffer space at receiver, in bytes,
used for RES mode.

448400

wservice Service type requested by the sender (connection
initiator).

XTPUNSPECIFIED

rservice Service type provided by receiver.
XTPUNSPECIFIED indicates that any type will
be accepted.

XTPUNSPECIFIED

maxdata Maximum data (in bytes) per XTP packet. 8968

rwindow Window size enforced by receiver for flow
control.

 15000

swindow Window size used by sender for flow control,
prior to any CNTL packets from receiver.

15000

inrate Maximum data rate (in bytes/second) enforced by
receiver for rate control.

 0

inburst Maximum burst size (in bytes) enforced by
receiver for rate control.

 0

13

3.3 Configuration Structure

The configuration structure (type XtpConfig) provides the means to set the default
configuration of the XTP engine from the application level. A reference to such a structure is
passed as an argument to XtpConfiguration(). The structure is defined as follows:

typedef struct {
int fieldFlags; /* bitwise OR of selected fields */
int numSysBufs; /* XTPNUMSYSBUFS */
int numRecvBufs; /* XTPNUMRECVBUFS */
int numXbufs; /* XTPNUMXBUFS */
int recvBufSize; /* XTPRECVBUFSIZE */
int timerInterval; /* XTPTIMERINTERVAL */
int timerPriority; /* XTPTIMERPRIORITY */
int senderPriority; /* XTPSENDERPRIORITY */

outrate Maximum data rate (in bytes/second) used by
sender for rate control, prior to any response from
receiver (for implicit connection establishment).

 0

outburst Maximum burst size (in bytes) used by sender for
rate control, prior to any response from receiver
(for implicit connection establishment).

 0

ctimer Keepalive timer (in microseconds). 3600000000

ctimeout Handshake timeout (in microseconds), puts an
overall limit on the time for a synchronizing
handshake.

 20000000

wtimer Initial value for wait timer (in microseconds).
Time to wait for response to SREQ. This value
will change dynamically according to round trip
time estimate calculations.

1000000

retryCount Number of retries for a synchronizing handshake. 4

address Address Segment N/A

traffic Traffic Segment N/A

diagCode DIAG packet code. XTPCONTEXTREFUSED

diagValue DIAG packet value. XTPUNSPECIFIEDVAL

Table 1: Service Fields

Field Name Description Default Value

14

int receiverPriority; /* XTPRECEIVERPRIORITY */
int maxConnections; /* XTPMAXCONNECTIONS */

} XtpConfig;

The fieldFlags field is a bitmap of the parameters which the user wishes to select at runtime. The
user should set this field as a bitwise OR of the appropriate constants (as listed in comments
beside the fields), and set the actual fields to their desired values (each constant corresponds to
one of the fields of the service structure). Any parameters (fields) not specified by fieldFlags will
take on default values.

The priority parameters (timerPriority, senderPriority and receiverPriority) are intended for XTP
debugging purposes and it is highly recommended that they not be modified by applications.

The following table gives a description of each field of the XtpConfig structure, as well as its
default value:

4 Programming Guide

This section gives a brief description how to use the XTP Application Programming Interface in
writing a program which uses XTP to transmit data between address spaces on the same or on

Table 2: Configuration Fields

Field Name Description
Default
Value

numSysBufs Number of receive buffers reserved for the system
(control packets).

10

numRecvBufs Number of receive buffers allocated for application data. 500

numXbufs Number XTP internal buffer descriptors allocated (used
for both sending and receiving).

2000

recvBufSize Size of XTP receive buffers (this value limits the useful
value of maxdata).

8968

timerInterval Resolution of XTP timer, in microseconds. 50000

timerPriority RT Threads priority of XTP timer thread. 0

senderPriority RT Threads priority of XTP sender thread. 5

receiverPriority RT Threads priority of XTP receiver thread. 4

maxConnections Maximum number of simultaneous XTP connections 1024

15

different machines. Refer to section 3 for details (parameters, return values, etc.) on the routines
mentioned in this section.

4.1 XTP Initialization

Using this implementation of XTP requires starting up an XTP engine, which is done by calling
XtpInit(). One XTP engine runs per address space (i.e., RT Threads environment), thus XtpInit()
should be called only once by an application. Alternately, RttNetInit() (see [6] for details) can be
used to initialize XTP, since it makes a call to XtpInit(). XtpInit() allocates the resources and
creates the threads used by XTP. Its other important function is to establish the engine as an
endpoint for communication by allowing the user to specify the IP address and port number by
which other address spaces can locate the local XTP engine. If 0 is specifed for the IP address,
XTP will determine the IP address to use, although if the local machine has more than one IP
address, it is not determined which will be chosen. The user can find out the IP address chosen
using the XtpMyIP() routine. The port number specified must be unique among XTP engines
using a given IP address. If 0 is specified, XTP will choose a unique port number. The chosen port
number can be determined using the XtpMyPort() routine.

A number of default values are used by XTP for resource allocation and for initializing the
parameters used when creating contexts. These defaults can be read and/or modified by the
application using the XtpConfiguration() routine. The default values can only be modified before
the call to XtpInit() (or RttNetInit()).

The following example shows how the above routines might be used to initialize XTP:

#define SERVER_PORT 6789
{

XtpConfig config;
u_int ipAddr, portNo;

config.recvBufSize = 8000;
config.fieldFlags = XTPRECVBUFSIZE;
if (XtpConfiguration(XTPSET, &config, XTPNULL) == XTPFAILED) {

printf(“XtpConfigure() failed.\n”);
}

if (XtpInit(0, SERVER_PORT) == XTPFAILED) {
printf(“RttNetInit() failed.\n”);
exit(0);

}

XtpMyIP(&ipAddr);
XtpMyPort(&portNo);
printf(“IP address = %u portNo = %u\n, ipAddr, portNo);

}

4.2 Contexts

A context maintains the state for an endpoint of communication by maintaining various context
variables. Before any XTP communication can take place at an endpoint, a context must be
created. When a context is created, its variables are initialized according to default values. The
values to which some of these variables, the context parameters, are initialized can also be set by

16

the user. This can be done in two ways. The default values can be modified before XTP
initialization using XtpConfiguration(). The default values can also be overridden by specifying
different values using the XtpService structure at context creation time (i.e., the svc parameter
to XtpCreateContext()).

See the example program in section 7 for an example of context creation.

4.3 Connection Establishment

There are a number of prerequisites for the establishment of a connection between two XTP
endpoints. First, each endpoint application needs to create a context to maintain connection state
for that endpoint. Then, one endpoint must listen for an incoming connection request, which it
does by calling XtpListen(). Once one endpoint is listening, the other endpoint can establish a
connection with it by calling XtpConnect().

4.3.1 Listening For a Connection

The localXtpPort parameter for XtpListen() is used to specify a local XTP port number used to
match incoming connection requests. More than one context may simultaneously listen on the
same XTP port number. When a FIRST packet arrives at the local XTP engine, the port number
specified in the packet will be compared to the port numbers for all listeners, until a match is
found, at which point a connection will be established.

There are two possible modes for listening, one of which is to be specified using the mode
parameter of XtpListen(). These modes are XTPBLOCK and XTPNOBLOCK, and are described as
follows.

Using XTPBLOCK mode, the XtpListen() call will block until an incoming connection request has
been accepted by the XTP engine. When XtpListen() returns, data may be read from and written to
the connection.

Using XTPNOBLOCK mode, XtpListen() will return immediately, regardless of whether a
connection has been established (it is very unlikely that a connection will have been established at
the point when XtpListen() returns). A subsequent call to XtpReadBuf() or XtpRead() will block
until a connection is established and there is data ready to be read. If XtpWrite() is called before a
connection is established, it will return XTPFAILED.

See the example program in section 7 for an example of context creation.

4.3.2 Initiating a Connection

An application wishing to initiate a connection with another endpoint (which is presumed to be
listening for the request) uses the XtpConnect() routine. The parameters remoteIp, remotePort and
remoteXtpPort allow the request to locate the listening context at the other endpoint: remoteIp and
remotePort specify the XTP engine at the other endpoint and remoteXtpPort specifies the port at
which the remote context is listening. The request is transmitted to the other endpoint by XTP

17

using a FIRST packet. There are two possible modes for XtpConnect(), as specified by the mode
parameter. These modes are XTPEXPLICIT and XTPIMPLICIT, and are described as follows.

Using XTPEXPLICIT mode, XtpConnect() establishes a connection explicitly. In this case
XtpConnect() will block until the connection is successfully established, in which case it returns
XTPOK, or until the request fails (because either the remote XTP engine could not be located,
there was no context listening on the given XTP port, or the request was refused by the listening
context) in which cast XtpConnect() returns XTPFAILED.

Using XTPIMPLICIT mode, XtpConnect() establishes a connection implicitly. In this case
XtpConnect() returns immediately, and the connection request (FIRST packet) is not sent by XTP
until the first call to XtpWrite(). This allows more than one packet’s worth of data to be sent before
the connection is established. Since at this point (i.e., before the connection is established) the
sender does not know the size of the receiver’s flow control window (alloc value), the swindow
service parameter (XtpService field) can be set at context creation time with an initial value to
use for flow controlling XtpWrite()s until the connection is established. Should the connection
request eventually fail, subsequent XtpWrite() calls will return XTPFAILED (previous XtpWrite()
calls will have returned XTPOK, but the data from these calls will not have been successfully
received).

If the connection request finds the target XTP engine, but fails because the request was refused,
the target XTP engine will send a DIAG packet back to the local context. The initiating
application can determine whether a DIAG packet was received, and if so determine the reason
for refusal, using the XtpDiagnostic() routine. XtpDiagnostic() returns XTPOK if a DIAG packet
was received, in which case its code and value parameters are set to the code and value of the
DIAG packet. XtpPrintDiagnostic() is a convenience routine which will print the meaning of
given code and value pairs. It is possible for a context to receive a DIAG packet at any time
during the life of a connection, generally causing the connection to abort. XtpDiagnostic() can be
called at any time to determine whether a DIAG packet was received (usually this would be done
when an XTP API routine fails).

See the example program in section 7 for an example of context creation.

4.4 Data Transmission

Data transmission is accomplished using the XtpWrite() routine. Transmitted data can be read at
the destination context using either XtpReadBuf() or XtpRead().

4.4.1 Writing Data

The XtpWrite() routine provides a zero copy data transmission service. Since XtpWrite() does not
block (except when flow controlled), and does not copy data, care must be taken not to free or
corrupt the data before it has been successfully transmitted. It is for this reason that the func and
arg parameters are provided, allowing a function to be passed in which will be called once the
data has been successfully transmitted. The most common use for this function would be to pass
in a routine to free the data, but other uses, such as synchronization, are possible.

18

If the data length (len) specified is greater than will fit in a single XTP packet, XtpWrite() will
segment the data over several packets, and set the EOM option bit in the final packet, signifying
end of message. Data from two successive calls to XtpWrite() will never be sent in the same
packet. Some XTP option bits may be set by the application using the options parameter to
XtpWrite(), in which case the specified option bits will be set in the last packet of the message
(with the exception of BTAG, which will be set in the first packet of the message).

The most common option bits to set are WCLOSE (using XTPWCLOSE), END (using XTPEND)
and BTAG (using XTPBTAG). XTPWCLOSE and XTPEND are used to indicate the final message is
being sent by the context (depending on how the connection is to be closed). Subsequent calls to
XtpWrite() will fail. XTPBTAG is used to indicate that the first eight bytes of data in the message
are to be interpreted (by the receiving application) as out of band data. A common use for
XTPBTAG is for encapsulation in higher level protocols.

4.4.2 Reading Data

XtpReadBuf() is the primary routine used for reading data from an XTP connection. XtpReadBuf()
returns (by reference) the data from exactly one XTP packet. XtpReadBuf() blocks until at least
one buffer has been received and is ready to be read. The buffer returned is allocated by the XTP
engine and no copies are done. Data read with XtpReadBuf() must be freed using XtpFreeBuf().
Additional information about the data is obtained via the reference parameters options and flags.
The options parameter returns the XTP option bits which were set in the received packet, and is
most useful for determining whether the BTAG bit was set (in which case the XTPBTAG bit of
options will be set). The flags parameter is used to determine the following information. The
XTPNULLDATA bit is meaningful only in NOERR mode, and when set indicates that data was
lost. When XTPNULLDATA is set, the value returned via the bytes parameter indicates the amount
of missing data in the sequence space. Note that this may be more than one packet’s worth of data.
When XTPNULLDATA is set, data does not specify a valid buffer, and should not be freed. When
the XTPEOC bit of flags is set, this indicates the end of context, meaning that there will be no
more data to be read from the connection, and subsequent calls to XtpReadBuf() (and XtpRead())
will fail. Note that when XTPEOC is set, bytes may return a value of 0, indicating that the last data
has already been read by a previous call, and in this case data will not be a valid buffer.

XtpRead() is provided as a convenience to give more traditional read semantics. XtpRead() is a
blocking call which may read more than one packet’s worth of data, up to len bytes, or up to the
end of a packet with the EOM bit set (i.e., up to the end of a message). The data buffer into which
the data is read must be provided by the application, and XtpRead() copies the received data into
this buffer (XtpRead() frees the XTP buffers for the received packets). The XTPNULL flag is less
useful than for XtpReadBuf(), since it is impossible to determine which data it is associated with.

4.5 Closing Procedures

The two data streams of a bi-directional XTP connection may be closed independently. When
both streams are closed, the connection is closed. Data streams may be closed gracefully or
abortively.

19

When a stream is closed gracefully, all data sent using XtpWrite() will be transmitted (reliably if
not in NOERR mode) before the stream is closed. A graceful close in one direction can be
accomplished in two ways: by setting the XTPWCLOSE bit in the final XtpWrite(), or by calling
XtpCloseContext() after the final XtpWrite(). Using XtpWrite() with XTPWCLOSE can save the
sending of an extra control packet by the XTP engine. XtpCloseContext() will block until the
stream has gracefully closed. When XtpCloseContext() returns, the context will no longer be
available and the associated context identifier will be invalid. Any received but unread data will
be discarded.

A stream may be closed abortively in two ways: by setting the XTPEND bit in the final XtpWrite(),
or by calling XtpAbortContext(). When XtpWrite() is used with XTPEND, the data for the
XtpWrite() call and previous XtpWrite() calls will be transmitted, but after the last byte has been
sent, no data will be retransmitted (so there is no guarantee of reliable transmission). When
XtpAbortContext() is used to close a connection, the connection is aborted immediately and there
is no guarantee that data from previous XtpWrite()s will have been transmitted. XtpAbortContext()
will not block, and the context identifier is invalid upon return.

Unless explicitly closed with XtpCloseContext() or XtpAbortContext(), a context remains valid
after a connection is closed (i.e., if XtpWrite() options bits are used to close the connection, or if
the connection aborts spontaneously at the XTP level). This allows received data to be read using
XtpReadBuf() or XtpRead() after the connection is closed, until XTPEOC is returned by one of
these routines (via the flags parameter). At this point the context should be explicitly closed so as
to free its resources.

When a connection is closed abortively, any functions passed in by the func parameter to
XtpWrite() will be called regardless of whether the associated data was transmitted successfully.

4.6 XTP Modes

XTP modes (i.e., FASTNAK, NOFLOW, RES, NOERR, NOCHECK) for a given stream are
selected by the sending context. The set of modes used by the two streams of a bi-directional XTP
connection may be different. Modes are set only at context creation, and cannot change during the
life of the context (attempts to change them using XtpEntry() will be ignored). Modes are selected
by setting the modes field of the XtpService structure to a bitwise OR of mode flags chosen
from XTPFASTNAK, XTPNOLFLOW, XTPRES, XTPNOERR and XTPNOCHECK. In addition, a
simplex stream can be selected using XTPRCLOSE as a mode flag.

By default, XTP streams are flow controlled, error controlled and perform data checksums. If any
of these features are not desired, they must be explicitly turned off using XTPNOFLOW,
XTPNOERR or XTPNOCHECK.

The following brief code sample shows how modes are set for a context. The context created will
be flow controlled, but will not be error controlled and will not perform checksums on data.

20

{
XtpCtxtId ctxtId;
XtpService svc;

svc.modes = XTPNOERR | XTPNOCHECK;
svc.fieldFlags = XTPMODES;
XtpCreateContext(&ctxtId, &svc);

}

The following sections give some more details on using XTP modes.

4.6.1 FASTNAK Mode

FASTNAK mode is selected using the XTPFASTNAK flag. When a sending context has
FASTNAK mode set, the receiving context will send an ECNTL packet immediately when
missing data is detected, so that the data will be retransmitted as soon as possible. FASTNAK
mode should only be used when the underlying network does not reorder packets excessively.
FASTNAK mode has no effect when NOERR mode is set.

4.6.2 NOFLOW Mode

NOFLOW mode is selected using the XTPNOFLOW flag. In NOFLOW mode, flow control is
turned off. Thus, XtpWrite() will never block when in NOFLOW mode.

4.6.3 RES Mode

RES (reservation) mode is selected by a sending context using the XTPRES flag. Reservation
mode allows a receiving application to reserve buffer space for receiving data. When a sender
specifies reserved mode, alloc values returned by the receiver will represent the amount of
reserved buffer space available, thus the sender is prevented from overflowing the reserved buffer
space. The receiving context specifies the size of the reserved buffer space at context creation
using the reserveSize field of the XtpService structure. Reserved mode is intended for bulk
data transfer, to avoid exhausting internal XTP buffer resources.

4.6.4 NOERR Mode

NOERR mode is selected using the XTPNOERR flag. When NOERR mode is used, lost or
corrupted data is not retransmitted. When data is received out of order (i.e., later than data with
higher sequence numbers), it is discarded (and considered lost). Gaps in the data are indicated to
the receiving application via the XTPNULLDATA flag returned in the flags parameter of
XtpRead(). The function func passed into XtpWrite() is called as soon as data is transmitted in
NOERR mode.

4.6.5 NOCHECK Mode

NOCHECK mode is selected using the XTPNOCHECK flag. In NOCHECK mode, checksums are
calculated only on the header fields of XTP packets, so user data is not protected from corruption.

21

4.6.6 Simplex Connections

A unidirectional connection originating at the connection initiator (i.e., the context calling
XtpConnect()) can be selected using the XTPRCLOSE flag. Selecting XTPRCLOSE at the
listening end of a connection will have no effect.

5 Addressing

XTP provides parameterized addressing, so it can use a number of different addressing schemes.
This implementation currently uses only IP addressing (although it is open to the addition of more
schemes). Thus, all addresses should be specified as IP addresses. The following convenience
routines are provided to assist in determining IP addresses:

(1) u_int XtpGetLocalIP() this routine will return the IP address of the local host. If the

local host has more than one IP address, it is not defined which one will be returned.

(2) u_int XtpHostnameToIP(char *hostname) This routine will return the IP address of

the given host. If the specified host has more than one IP address, it is not defined

which one will be returned.

6 Packet Encapsulation

XTP packets are encapsulated in lower level packets, depending on the underlying communication
mechanism. In the UNIX/RT Threads environment, XTP packets are encapsulated in UDP packets
(and transmitted using UDP/IP).

Details of encapsulation are hidden from the user, so encapsulation in other lower level protocols
(e.g., AAL5/ATM) can be supported without affecting applications.

22

7 Example

Two short example programs (a sender and a receiver) follow to demonstrate how the service
interface to XTP is used. Some error checking is omitted for simplicity.

7.1 Sender Program

#include “rtthreads.h”
#include “xtp.h”

#define RCVR_UDP_PORT 5000
#define XTP_PORT 25

static void sender(void *);

void mainp(int argc, char *argv[])
{

int remoteIp;
RttSchAttr attr;
RttThreadId sndr;

if (argc != 2) {
printf(“usage: %s remote_hostname\n”, argv[0]);
exit(1);

}

if ((remoteIp = XtpHostnameToIP(argv[1])) == XTPFAILED){
printf(“host ‘%s’ not found.\n”, argv[1]);
exit(0);

}

XtpInit(0, 0);

/* create the sender thread, schedule it to be ready immediately */
attr.startingtime = RTTZEROTIME;
attr.priority = RTTNORM;
attr.deadline = RTTNODEADLINE;
RttCreate(&sndr, sender, 8192, “sender”, (void *) remoteIp, attr, RTTUSR);

}

static void sender(void *remoteIp) {
XtpCtxtId ctxtId;
int flags, options;
int bytes = 0;
static char buf[100];
u_int route;

if (XtpCreateContext(&ctxtId, XTPNULL) == XTPFAILED) {
printf(“unable to create context\n”);
exit(1);

}

/* explicitly open a connection (block until established) */
XtpConnect(ctxtId, XTPEXPLICIT, (u_int)remoteIp, RCVR_UDP_PORT, XTP_PORT);

/* send a message to the receiver */
XtpWrite(ctxtId, “How are you?”, 13, XTPWCLOSE, XTPNULL, 0);

/* wait for reply from receiver */
XtpRead(ctxtId, buf, 100, &bytes, &flags, &options);

23

printf(“Reply: %s\n”, buf);

XtpCloseContext(ctxtId);
}

7.2 Receiver Program

#include “rtthreads.h”
#include “xtp.h”

#define RCVR_UDP_PORT 5000
#define XTP_PORT 25

static void receiver(void *);

void mainp(int argc, char *argv[])
{

RttSchAttr attr;
RttThreadId rcvr;

XtpInit(0, RCVR_UDP_PORT);

/* create the receiver thread, schedule it to be ready immediately */
attr.startingtime = RTTZEROTIME;
attr.priority = RTTNORM;
attr.deadline = RTTNODEADLINE;
RttCreate(&rcvr, receiver, 8192, “receiver”, (void *) 0, attr, RTTUSR);

}

static void receiver(void *arg) {
XtpCtxtId ctxtId;
XtpService svc;
int flags, options;
int bytes = 0;
static char buf[100];

/* assign service structure field values */
svc.rwindow = 20000;
svc.inrate = 300000;
svc.inburst = 100000;
svc.fieldFlags = XTPRWINDOW | XTPINRATE | XTPINBURST;

if (XtpCreateContext(&ctxtId, &svc) == XTPFAILED) {
printf(“unable to create context\n”);
exit(1);

}

/* listen for a connection request (block until established) */
XtpListen(ctxtId, XTPBLOCK, XTP_PORT);

/* read up to 100 bytes */
XtpRead(ctxtId, buf, 100, &bytes, &flags, &options);

printf(“Message: %s\n”, buf);

/* let sender know I’m done */
XtpWrite(ctxtId, “Just fine.”, 11, XTPWCLOSE, XTPNULL, 0);

XtpCloseContext(ctxtId);
}

24

References

[1] Greg Chesson. XTP/PE Design Considerations. In IFIP WG6.1/6.4 Workshop on Protocols for High-
Speed Networks, May 1989

[2] Greg Chesson. The Evolution of XTP. In Proceedings of the Third International Conference on High
Speed networking. North-Holland, 1991.

[3] Protocol Engines Incorporated. XTP Protocol Definition, Revision 3.6, January, 1992.

[4] XTP Forum. Xpress Transport Protocol Specification, Revision 4.0, March, 1995.

[5] W. T. Strayer, B. J. Dempsey, and A. C. Weaver. XTP: The Xpress Transfer Protocol. Addison-Wesley,
Reading, Massachusetts, 1992.

[6] David Finkelstein, Norman C. Hutchinson, Dwight J. Makaroff, Roland Mechler and Gerald W. Neufeld.
Real Time Threads Interface. UBC Technical Report 95-07, May 1995.

