X TP Application Programming Interface

Roland Mechler and Gerald W. Neufeld
Department of Computer Science
University of British Columbia
Vancouver, B.C., V6T 174
Canada

Abstract

The Xpress Transport Protocol (XTP) is a lightweight transport protocol intended for high-
speed networks. High-speed networks provide bandwidths of 100 Mbps and beyond, enabling
anew class of applications (e.g., multimedia). So as not to be a bottleneck in the delivery of
data, a transport protocol must provide high performance. Features of X TP which enhance
performance include implicit connection setup, sender driven acknowledgement, selective
retransmission, fixed format word aligned packet structures and suitability for paralel
implementation. Since the new generation of applications may require a variety of services
from the transport layer, a transport protocol designed for high-speed networks should also be
flexible enough to provide these services. XTP provides the mechanisms to allow
applications to tailor the functionality of the protocol to their individual needs. In particular,
XTP provides flow contral, rate control and error control, the use of each being optional and
orthogonal to the others. This report describes an Application Programming Interface
designed for a multi-threaded implementation of XTP. The APl alows all XTP parameters to
be set from the application level, and addresses the issue of performance by providing a
mechanism for zero copy transmission and reception of data.

1. Thiswork was supported by grantsfrom the Natural Sciencesand Engineering Research Council of Canada
and the Canadian Institute for Telecommunications Research.

Table Of Contents

1.0 Introduction

2.0 XTP Background

21Packet Types e
22SBIVICES . . . o e e e
23Command Options e
24MOMES. e

3.0 API Reference Guide

31APIROUtINGES
3.2SarviceStructure
3.3 Configuration Structure

4.0 Programming Guide

4.1 XTPInitidization.,
42CoNtexts
4.3 Connection Establishment
44DaaTransmission o
45ClosingProcedures
46 XTPModes e

5.0 Addressing
6.0 Packet Encapsulation

7.0 Example

71SenderProgram.
72ReceiverProgram.

References

14

15
15
16
17
18
19

21

21

22

22
23

24

1 Introduction

This is a brief guide to the Application Programming Interface (APl) for a multithreaded
implementation of XTP (Xpress Transport Protocol), Revision 4.0 [4]. The API is loosely based
on the one outlined in the XTP Definition, Revision 3.6 [3]. Henceforth in this document, XTP
will refer to the X TP Definition, Revision 4.0.

This implementation of XTP was originaly designed to run in the r-kernel* multiprocessor
operating system environment, but now runs in the RT Threads [6] environment as a
multithreaded user level UNIX process. The multicast features of XTP are not included in this
implementation.

Some background on XTP is given in section 2 to provide a better understanding of how to use
the interface?. Section 3 is areference guide for the API, describing the interface features. Section
4 isaprogramming guide, giving a better idea of how to use the interface routines. Sections 5 and
6 give some extra information on addressing and encapsulation. Section 7 shows an example
program.

2 XTP Background

The Xpress Transport Protocol (XTP) is alightweight transport protocol intended for high-speed
networks.

XTP is aconnection oriented protocol which allows bi-directional data transfer. Because implicit
connection setup is possible with XTPR, it can also provide connectionless semantics. At each
endpoint of an X TP connection, a context maintains al state information for the connection. Each
context isidentified by a key, which is unique at a given endpoint.

XTP seeks to provide both better performance and greater functionality than traditional transport
protocols like TCP/IP: better performance because protocols can become a major bottleneck as
network bandwidth increases; greater functionality because new applications making use of high-
speed networks (e.g., multimedia) require services which protocols like TCP do not provide.

The features of XTP which are intended to improve performance include:
* implicit connection setup
» efficient indexed context lookup (key exchange)

» sender driven acknowledgement scheme which can reduce timer overhead and
acknowledgment traffic

1. Ther-kernel isalightweight multiprocessor kernel with user-level threads. It currently runsin the MotorolaMVME188
Hypermodule hardware environment.

2. Because much of the functionality of the XTP protocol can be controlled by the application, knowledge of how the
protocol works is an asset when using the interface. Reading the X TP 4.0 specification [4] is recommended.

» selective retransmission (or no retransmissions)
» fixed format, word-aligned packet structures for efficient processing

o suitability for parallel implementation.

Each byte of datain a stream is represented by a sequence number. X TP uses a 64-bit sequence
gpace in anticipation of sequence number aliasing problems which could occur with 32-bit
sequence numbers in networks with a high bandwidth-delay product.

XTP alows protocol parameters to be set at the application level so the functionality of the
protocol can be tailored to individual application needs. Central to this idea of parameterized
functionality is the orthogonality of the following functions:. rate control, flow control and error
control.

The two streams of a bi-directional XTP connection are independent and may have different
parameter values. For example, the stream in one direction might be flow controlled and error
controlled, but not rate controlled, while the stream in the opposite direction might be rate
controlled but not flow controlled or error controlled.

A short description of the parameterized functions follows:

rate control - Rate control is used to set the maximum rate at which the sender will transmit
data. Thereis no guaranteed minimum rate. The current policy for rate control negotiation
is to use the lower one of each parameter value (i.e., whichever one will lead to a lower
rate). The parameters for rate control are

rate - Thisisthe maximum rate, in bytes/sec, at which the sender will transmit data. A rate
value of zero will halt transmission.

burst - Thisisthe maximum number of bytesthat will be transmitted in asingle burst. The
interval between bursts, known as the RTIMER value, is calculated as rate/burst. A
burst value of zero will allow unrestrained transmission (i.e., no rate control). A burst
value of zero takes precedence over arate value of zero.

flow control - Flow control specifies the maximum amount of outstanding unacknowledged
data which may be transmitted by the sender. A dsliding window mechanism is used,
whereby the receiver transmits alloc values to the sender (at the XTP level), where allocis
one greater than the highest sequence number which the sender is alowed to transmit.
Flow control may turned off (i.e., infinite window size) by using NOFLOW mode. Flow
control has the following parameter:

rwindow - This is the size of the window, in bytes, as set by the receiver. If the sender
wants to transmit data before receiving any acknowledgements (i.e., control packets)

from the receiver, it needs to set its own initial window size, using the swindow
parameter.

error control - Checksums! are used for both the header and the data payload of XTP
packets. The use of checksums for data can be turned off by using NOCHECK mode.

XTP dlows selective retransmission, meaning that only lost or corrupted packets are
retransmitted. This implementation uses selective retransmission. Retransmission can be turned
off by using NOERR mode.

Other features of X TP which are parameterized include:

addressing - Rather than defining a new addressing scheme, or using a single existing one,
XTP alowsthe use of avariety of addressing formats.

timers - Timers are specified by their timeout values, currently measured in microseconds.
The following timers are used by X TP, some of whose values can be set by the user:

WTIMER, retry_count - WTIMER is the wait timer for a response to a status request. Its
valueiscalculated by X TP based on measured round trip times. Aninitial value can be
specified by the user. retry_count (which can be set by the user) specifies the number
of retrieswhich will be attempted before the connection aborts. The WTIMER valueis
doubled for each retry. A successful request/acknowledgement is called a
synchronizing handshake.

CTIMEOUT - Thistimer puts alimit on the overall time for the WTIMER retry sequence
(synchronizing handshake). Its value can be set by the user.

CTIMER - This is the connection keepalive timer. Its value can be set by the user. If no
packets at all are recelved on a connection within this interval, a synchronizing
handshake isinitiated. CTIMER is intended to be along term timer, typically an hour
or more in duration. At the very minimum it should be longer than CTIMEOUT.

RTIMER - This s the rate control burst interval. Its value is determined by the rate and
burst parameters (which can be set by the user).

packet size - The maxdata parameter can be used to set the maximum packet data size for
transmission.

1. The IP checksumming algorithm is used.

2.1 Packet Types

The XTP packet types which are of concern are:

FIRST - These packets are sent by the initiating context to establish a connection. The FIRST
packet contains an Address Segment (used to locate a listening context at the receiving
endpoint) and a Traffic Segment (used to establish rate control parameters and a maximum
datasize). The FIRST packet may carry data as well.

DATA - These are data bearing packets and may travel in either direction since XTP
connections are bi-directional.

CNTL - These contain control information. A receiver (i.e., for a given direction of data
transfer) will usually only send CNTL packets in response to requests from the sender.
CNTL packets are used mostly for flow control. ECNTL and TCNTL packets contain
extrainformation for error control and rate control.

ECNTL - These error control packets contain the same information as CNTL packets, plus a
list of sequence number spans for data to be retransmitted.

TCNTL - These traffic control packets contain the same information as CNTL packets, plus a
Traffic Segment to indicate changes in rate control parameters.

DIAG - Diagnostic packet, returns error information to a sending context (e.g., non-existent
context at receiver).

2.2 Services

Implicit connection setup together with parameterization allows XTP to provide a variety of
connection-oriented and connectionless service semantics. Standard service types are listed
below.

XTPUNSPEC! FI ED - unspecified

XTPUNACKDG - traditional unacknowledged datagram service
XTPACKDG - acknowledged datagram service

XTPTRANS - transaction service

XTPSTREAM - traditional reliable unicast stream service
XTPUMULTI STREAM - unacknowledged multicast stream service
XTPRMULTI STREAM - reliable multicast stream service

Service types are currently not interpreted by the X TP implementation (except for the purpose of
matching incoming requests). It is up to the application to provide these semantics using the
parameterized features of XTP.

2.3 Command Options

There is an options bitfield present in every X TP packet. These option bits are used internally by
XTP, but the following options may also be set at the application level using the options parameter
of XtpWrite() (see section 4.1).

XTPBTAG Packet contains out-of-band data (first 8 bytes of data).

XTPEND Cease further communication.

XTPWCLOSE Local writer is closed. No new datawill be sent.

XTPDREQ Request CNTL packet response from receiver after all queued data has been
delivered to user.

XTPSREQ Request CNTL packet response from receiver immediately upon receiving packet.

Note that an application is not required to request CNTL packet responses using XTPDREQ and
XTPSREQ, as the necessary status requests will be handled internally by XTP. These features are
included in the interface to provide flexibilty, but it is not anticipated that they will be used often
in practice.

2.4 Modes

There are a number of modes under which XTP can operate (on a per connection basis). These
may be used in combination, although when FASTNAK mode is used with NOERR mode,
FASTNAK isignored. The modes are described as follows:

FASTNAK The recelver should send an acknowledgement (i.e., ECNTL packet)
immediately when a misordered packet is encountered.

NOFLOW Flow control isturned off.

RES Reservation mode. The receiver will only accept data for which buffer space
has been reserved at the application level (using Xt pReser ve).

NOERR Error control isturned off (i.e., no retransmissions).

NOCHECK Checksum calculations are not performed on data.

The two streams of a bi-directional XTP connection may operate under different modes. The
mode for a particular stream is determined by the sending endpoint.

3 APl Reference Guide

The API is defined by routines for context creation, connection establishment and reading and
writing data. Service parameters are passed to XTP using the service structure (type
Xt pSer vi ce), which can be passed to the protocol at context creation (thus they apply per
context).

3.1 API Routines

The following routines are available. All routines return either XTPOK or XTPFAI LED unless
otherwise noted. Contexts are referenced by context identifiers (of type Xt pCt xt | d):

(1) int Xtplnit(u_int ipAddr, u_int portNo) initializes XTP and should be called only
once per threads environment (UNIX process). The argument ipAddr is used to
specify thelocal |P address, as an unsigned integer value. If O is specified for ipAddr,
XTP will determine the IP address to usel. The argument portNo is used to specify
the local port number for the XTP engine, which must be unique among active XTP
engines using the same IP address. If O is specified for portNo, XTP will choose a
port number. The IP address and port number chosen by XTP can be determined
after the call to Xtplnit() with the routines XtpMyI P() and XtpMyPort().

(2) int XtpMylIP(u_int *ipAddr) and int XtpMyPort(u_int *portNo) return, by reference,
the IP address and port number, respectively, being used by the local XTP engine.
Both routines return XTPFAI LED if called before either Xtpinit() or RttNetInit()
have been called.

(3) int XtpConfiguration(int command, XtpConfig * config, XtpService *svc) allows the
default configuration for the local X TP engine to be set at the application level. The
command argument indicates whether the parameters are to be set or retrieved, by
specifying either XTPSET or XTPGET. The config argument is used to access the
configuration parameters (see section 3.3) for the XTP engine. The svc argument is
used to access the default context parameters (see section 3.2), used to initialize
contexts (unless overridden at context creation). If XTPNULL is used to specify
either config or svc, that argument will be ignored. XtpConfiguration() will fail if
called using the XTPSET command after calling Xtplnit() (the configuration may not
be changed once the XTP engine is started).

(4) int XtpCreateContext(XtpCtxtld *ctxtld, XtpService *svc) creates a new context,
returning a context identifier ctxtld by reference. It takes pointer to service structure
svc as argument, allowing default values of context parameters to be overridden. If
XTPNULL is used to specify svc, the argument will be ignored and the context will
be initialized using the default values.

(5 int XtpCloseContext(XtpCtxtld ctxtld) closes the given context, freeing all of its
resources?. |f the context is an endpoint of an active connection, XtpCloseContext()

1. If the local machine has more than one IP address, then specifying 0 for ipAddr may result in any one of these being
used.

(6)

(7)

(8)

(9)

(10)

will block until the connection has closed gracefully (i.e., al data has been
transmitted reliably, if not in NOERR mode). After the call, ctxtld becomes an
invalid context identifier.

int XtpAbortContext(XtpCtxtld ctxtld) is similar to XtpCloseContext(), except it
forces an abortive close (untransmitted data will be discarded). XtpAbortContext()
will not block.

int XtpEntry(XtpCtxtld ctxtld, int command, XtpService *svc) is used to access the
context parameters. The following commands are available:

XTPGET - Returns context parameters using svc, as requested using the field flags.
XTPSET - Sets context parameters using svc, as requested using the field flags.

int XtpListen(XtpCtxtld ctxtld, int mode, u_int local XtpPort,) allows context ctxtld
to listen for a connection establishment request from a remote endpoint. Parameter
local XtpPort specifies the XTP port number (32-bit unsigned integer) which acts as
afilter for incoming FIRST packets. Parameter mode is used to indicate the desired
blocking semantics, and can take on the following values:

XTPBLOCK - Block until connection is established (FIRST packet received).
XTPNOBLOCK - Don’t block.

int XtpConnect(XtpCtxtld ctxtld, int mode, u_int remoteAddr, u_int remotePort,
u_int remoteXtpPort) establishes a connection. Parameter mode specifies whether it
is an XTPIMPLICIT or an XTPEXPLICI T connection establishment. If
XTPEXPLI CI T is used, a FIRST packet is sent and the call will block until a
response is received. If XTPI MPLI CI T is used, the call will not block, and the
FIRST packet will be sent as a result of the first XtpWrite() call. Parameter
remoteAddr specifies the remote IP address, which can be determined using the
XtpHostnameTol P() routine, see section 4. Parameter remotePort specifies the
remote port number that the destination X TP engine was initialized with. Parameter
remoteXtpPort specifies the X TP port number at which the remote context should be
listening.

int XtpWrite(XtpCtxtld ctxtld, char *data, int len, int options, void (*func)(void *),
void *arg) writes a message of length len bytes from buffer data to the connection,
without copying the data. Option flags specified in options (e.g., XTPWCLOSE) will

2. If XtpCloseContext() or XtpAbortContext() are called by theinitiating endpoint of communication, the resourcesfor the
context may not actually be freed until a period of CTI MEQUT elapses. See [4].

(11)

(12)
(13)

(14)

be set in the XTP packet used to transmit the message. If len is greater than the
maximum data size for an XTP packet (maxdata), the message will be segmented
into multiple XTP packets and options will only cause bits to be set in the last packet
of the message! (with the exception of XTPBTAG, which is set in the first packet of
the message). More than one option can be specified using a logica OR (e.g.,
XTPWCLOSE | XTPSREQ). XTPBTAG s used to tag the first 8 bytes of a message
as out of band data?. X TP does not interpret the XTPBTAG, it merely passesit to the
receiving application.

Function func is called with argument arg when the data is no longer needed by the
XTP implementation, i.e, when it has been successfully transmitted (and
acknowledged when not in NOERR mode). The most common uses are for passing
in afreeing routine to free the data, or for passing in a semaphore and signal routine
so the calling thread can be blocked until the write is complete. If XTPNULL is used
to specify func, this feature will be ignored.

int XtpReadBuf(XtpCtxtld ctxtld, char **data, int *bytes, int *flags, int * options)
returns the data buffer from one X TP packet in data, and returns the number of bytes
read viareference parameter bytes. This data buffer must be freed by the application
using XtpFreeBuf(). Parameter options contains the option bits from the packet. One
or more of the following flags may be returned in flags:

XTPEQC - End-of-context, meaning there will be no more data to read.

XTPNULLDATA - There is no data. Parameter bytes represents the gap of missing
data (for NOERR mode).

int XtpFreeBuf(char * buf) frees a buffer which was obtained from XtpReadBuf().

int XtpBufAvailable(XtpCtxtld ctxtld) returns XTPOK if there is a buffer available for
reading with XtpReadBuf(), and XTPFAI LED otherwise.

int XtpRead(XtpCtxtld ctxtld, char *data, int len, int *bytes, int *flags, int * options)
reads (copies) len bytes into buffer data from the connection and returns number of
bytes read viareference parameter bytes. Parameters flags and options are as above.
XTPNULLDATA indicates only that at least some of the data is missing, but no
indication is given asto which datais missing.

1. Option hits may also be set by the XTP implementation itself, irrespective of those set by the user.
2. Out of band simply means that the dataistagged for the application to use asit wishes. This datais sequenced with the
rest of the data, X TP does not provide a facility for expedited data within a given connection.

10

(15) int XtpDiagnostic(XtpCtxtld ctxtld, int *code, int *val) returns XTPOK if a DIAG
packet was received by the context, and XTPFAI LED otherwise. If XTPK is
returned, reference parameters code and val will be set to the code and value of the
DIAG packet.

(16) int XtpPrintDiagnostic(char *message, int code, int val) is a convenience routine
which prints a message giving the meaning of the code and val parameters passed in.
This routine will commonly be used in conjunction with the XtpDiagnostic() routine.

(17) int XtpError(XtpCtxtld ctxtld, char * message) when called upon failure of an XTP
interface service routine, prints given message, followed by a message describing
the error.

3.2 Service Structure

The service structure (type Xt pSer vi ce) defines the parameter interfaceto XTP. A reference to
such a structure can passed as an argument to XtpConfiguration(), XtpCreateContext() and
XtpEntry(). The structure is defined as follows:

t ypedef struct {
unsigned long fieldFlags; /* bitwse OR of selected fields*/

unsi gned | ong nodes; [* XTPMODES */
unsi gned int reserveSi ze; | * XTPRESERVESI ZE */
char wservi ce; | * XTPWSERVI CE */
char rservice; | * XTPRSERVI CE */
unsi gned i nt maxdat a; [* XTPNMAXDATA */
unsi gned int rw ndow I * XTPRW NDOW */
unsi gned int sw ndow, [* XTPSW NDOW */
| ong inrate; [* XTPI NRATE */
| ong i nburst; [* XTPI NBURST */
| ong outrat e; [* XTPOUTRATE */
| ong out burst; [* XTPOUTBURST */
unsi gned int ctiner; [* XTPCTI MER */
unsi gned int ctineout; [* XTPCTI MEQUT */
unsigned int winer; [* XTPWI'I MER */
unsi gned int retryCount; [* XTPRETRYCOUI NT */
Xt pAddr ess addr ess; | * XTPADDRESS */
XtpTraffic traffic; [* XTPTRAFFI C */
unsi gned | ong di agCode; [* XTPDI AGCODE */
unsi gned | ong di agVal ue; [* XTPDI AGVALUE */

} XtpService;

The fieldFlags field is a bitmap of the parameters which the user wishes to select at runtime. The
user should set this field as a bitwise OR of the appropriate constants (as listed in comments

11

beside the fields), and set the actual fields to their desired values (each constant corresponds to
one of the fields of the service structure). Any parameters (fields) not specified by fieldFlags will
take on default values.

The modes field is a bitmap used to select the mode(s) (see section 3.4) under which XTP is to
operate. The modes can be selected independently for the stream in either direction, and are set by
the sender in each case. The user should set thisfield as a bitwise OR of the appropriate
constants from those listed below.

XTPFASTNAK - select FASTNAK mode

XTPNOFLOW - select NOFLOW mode

XTPRES - select RES mode

XTPNCERR - select NOERR mode

XTPNOCHECK - select NOCHECK mode

XTPRCLOSE - select simplex (unidirectional) connection from initiator to listener

The following table gives a description of each field of the Xt pSer vi ce structure, aswell asits
default value:

Table 1: Service Fields

Field Name Description Default Value

nodes Bitwise OR of modes selected for context. Will 0
only be set at context creation times.

reservesSi ze Size of reserved buffer space at receiver, in bytes, | 448400
used for RES mode.

wservice Service type requested by the sender (connection | XTPUNSPECI FI ED
initiator).

rservice Service type provided by receiver. XTPUNSPECI FI ED
XTPUNSPECI FI EDindicates that any type will
be accepted.

maxdat a Maximum data (in bytes) per X TP packet. 8968

rwi ndow Window size enforced by receiver for flow 15000
control.

sSW ndow Window size used by sender for flow control, 15000

prior to any CNTL packets from receiver.

inrate Maximum datarate (in bytes/second) enforcedby | 0
receiver for rate control.

i nbur st Maximum burst size (in bytes) enforced by 0
receiver for rate control.

12

Table 1; Service Fields

Field Name Description Default Value
outrate Maximum data rate (in bytes/second) used by 0
sender for rate control, prior to any response from
receiver (for implicit connection establishment).
out bur st Maximum burst size (in bytes) used by sender for | 0
rate control, prior to any response from receiver
(for implicit connection establishment).
ctimer Keepalive timer (in microseconds). 3600000000
ctimeout Handshake timeout (in microseconds), puts an 20000000
overall limit on the time for a synchronizing
handshake.
wti mer Initial value for wait timer (in microseconds). 1000000
Time to wait for response to SREQ. Thisvalue
will change dynamically according to round trip
time estimate cal cul ations.
retryCount Number of retries for a synchronizing handshake. | 4
addr ess Address Segment N/A
traffic Traffic Segment N/A
di agCode DIAG packet code. XTPCONTEXTREFUSED
di agVal ue DIAG packet value. XTPUNSPEC! FI EDVAL

3.3 Configuration Structure

The configuration structure (type Xt pConfi g) provides the means to set the default
configuration of the XTP engine from the application level. A reference to such a structure is
passed as an argument to XtpConfiguration(). The structure is defined as follows:

t ypedef struct {

nt
nt
nt
nt
nt
nt
nt
nt

bitwise OR of selected fields*/

fiel dFl ags; /*

nunBysBuf s; [* XTPNUMSYSBUFS
nunRecvBuUf s; / * XTPNUMRECVBUFS
nunXbuf s; [* XTPNUMXBUFS
recvBuf Si ze; [* XTPRECVBUFSI ZE

timerlnterval;
timerPriority;
senderPriority;

/*
/*
/*

XTPTI MERI NTERVAL
XTPTI MERPRI ORI TY
XTPSENDERPRI ORI TY

13

*/
*/
*/
*/
*/
*/
*/

int receiverPriority; [/ * XTPRECEI VERPRI ORI TY
i nt maxConnecti ons; [* XTPMAXCONNECTI ONS
} XtpConfi g;

*/
*/

The fieldFlags field is a bitmap of the parameters which the user wishes to select at runtime. The
user should set thisfield as a bitwise OR of the appropriate constants (as listed in comments
beside the fields), and set the actual fieldsto their desired values (each constant corresponds to
one of the fields of the service structure). Any parameters (fields) not specified by fieldFlags will

take on default values.

The priority parameters (timerPriority, senderPriority and receiverPriority) are intended for XTP
debugging purposes and it is highly recommended that they not be modified by applications.

The following table gives a description of each field of the Xt pConf i g structure, aswell asits

default value:
Table 2: Configuration Fields
Field Name Description Default
Value
nunBSysBuf s Number of receive buffers reserved for the system 10
(control packets).
nunmRecvBuUf s Number of receive buffers allocated for application data. | 500
numXbuf s Number XTP internal buffer descriptors allocated (used | 2000
for both sending and receiving).
recvBuf Si ze Size of XTP receive buffers (this value limits the useful | 8968
value of maxdata).
timerlnterval Resolution of XTP timer, in microseconds. 50000
timerPriority RT Threads priority of XTP timer thread. 0
senderPriority RT Threads priority of XTP sender thread. 5
receiverPriority | RT Threads priority of XTP receiver thread. 4
maxConnecti ons Maximum number of simultaneous X TP connections 1024

4 Programming Guide

This section gives a brief description how to use the X TP Application Programming Interface in
writing a program which uses XTP to transmit data between address spaces on the same or on

14

different machines. Refer to section 3 for details (parameters, return values, etc.) on the routines
mentioned in this section.

4.1 XTP Initialization

Using this implementation of XTP requires starting up an XTP engine, which is done by calling
Xtplnit(). One XTP engine runs per address space (i.e., RT Threads environment), thus Xtplnit()
should be called only once by an application. Alternately, RttNetInit() (see [6] for details) can be
used to initialize XTR, since it makes a call to Xtplnit(). Xtplnit() allocates the resources and
creates the threads used by XTP. Its other important function is to establish the engine as an
endpoint for communication by allowing the user to specify the IP address and port number by
which other address spaces can locate the local XTP engine. If O is specifed for the IP address,
XTP will determine the IP address to use, although if the local machine has more than one IP
address, it is not determined which will be chosen. The user can find out the IP address chosen
using the XtpMylP() routine. The port number specified must be unique among XTP engines
using agiven IP address. If 0 is specified, X TP will choose a unigue port number. The chosen port
number can be determined using the XtpMyPort() routine.

A number of default values are used by XTP for resource allocation and for initializing the
parameters used when creating contexts. These defaults can be read and/or modified by the
application using the XtpConfiguration() routine. The default values can only be modified before
the call to Xtplnit() (or RttNetInit()).

The following example shows how the above routines might be used to initialize XTP:

#defi ne SERVER PORT 6789

{
Xt pConfi g config;
u_int ipAddr, portNo;

confi g.recvBuf Si ze = 8000;

config. fieldFl ags = XTPRECVBUFSI ZE;

i f (XtpConfiguration(XTPSET, &config, XTPNULL) == XTPFAI LED) {
printf(“XtpConfigure() failed.\n");

nit(0, SERVER PORT) == XTPFAILED) {
f(“RitNetinit() failed.\n");
0);

Xt pMyl P(& pAddr) ;
Xt pMyPor t (&port No) ;
printf(“1P address = % portNo = %\ n, ipAddr, portNo);

}
4.2 Contexts

A context maintains the state for an endpoint of communication by maintaining various context
variables. Before any XTP communication can take place at an endpoint, a context must be
created. When a context is created, its variables are initialized according to default values. The
values to which some of these variables, the context parameters, are initialized can also be set by

15

the user. This can be done in two ways. The default values can be modified before XTP
initialization using XtpConfiguration(). The default values can also be overridden by specifying
different values using the Xt pSer vi ce structure at context creation time (i.e., the svc parameter
to XtpCreateContext()).

See the example program in section 7 for an example of context creation.
4.3 Connection Establishment

There are a number of prerequisites for the establishment of a connection between two XTP
endpoints. First, each endpoint application needs to create a context to maintain connection state
for that endpoint. Then, one endpoint must listen for an incoming connection request, which it
does by calling XtpListen(). Once one endpoint is listening, the other endpoint can establish a
connection with it by calling XtpConnect().

4.3.1 Listening For a Connection

The local XtpPort parameter for XtpListen() is used to specify alocal X TP port number used to
match incoming connection requests. More than one context may simultaneoudly listen on the
same X TP port number. When a FIRST packet arrives at the local XTP engine, the port number
specified in the packet will be compared to the port numbers for all listeners, until a match is
found, at which point a connection will be established.

There are two possible modes for listening, one of which is to be specified using the mode
parameter of XtpListen(). These modes are XTPBLOCK and XTPNOBL OCK, and are described as
follows.

Using XTPBLOCK mode, the XtpListen() call will block until an incoming connection request has
been accepted by the X TP engine. When XtpListen() returns, data may be read from and written to
the connection.

Using XTPNOBLOCK mode, XtpListen() will return immediately, regardiess of whether a
connection has been established (it is very unlikely that a connection will have been established at
the point when XtpListen() returns). A subsequent call to XtpReadBuf() or XtpRead() will block
until a connection is established and there is data ready to be read. If XtpWrite() is called before a
connection is established, it will return XTPFAI LED.

See the example program in section 7 for an example of context creation.

4.3.2 Initiating a Connection

An application wishing to initiate a connection with another endpoint (which is presumed to be
listening for the request) uses the XtpConnect() routine. The parameters remotel p, remotePort and
remoteXtpPort allow the request to locate the listening context at the other endpoint: remotelp and

remotePort specify the XTP engine at the other endpoint and remoteXtpPort specifies the port at
which the remote context is listening. The request is transmitted to the other endpoint by XTP

16

using a FIRST packet. There are two possible modes for XtpConnect(), as specified by the mode
parameter. These modes are XTPEXPLI Cl T and XTPI MPLI ClI T, and are described as follows.

Using XTPEXPLI CI T mode, XtpConnect() establishes a connection explicitly. In this case
XtpConnect() will block until the connection is successfully established, in which case it returns
XTPOK, or until the request fails (because either the remote XTP engine could not be located,
there was no context listening on the given XTP port, or the request was refused by the listening
context) in which cast XtpConnect() returns XTPFAI LED.

Using XTPI MPLI CI T mode, XtpConnect() establishes a connection implicitly. In this case
XtpConnect() returns immediately, and the connection request (FIRST packet) is not sent by XTP
until thefirst call to XtpWrite(). This allows more than one packet’s worth of datato be sent before
the connection is established. Since at this point (i.e., before the connection is established) the
sender does not know the size of the receiver’s flow control window (alloc value), the swindow
service parameter (Xt pSer vi ce field) can be set at context creation time with an initial valueto
use for flow controlling XtpWrite()s until the connection is established. Should the connection
request eventually fail, subsequent XtpWrite() calls will return XTPFAI LED (previous XtpWrite()
calls will have returned XTPOK, but the data from these calls will not have been successfully
received).

If the connection request finds the target X TP engine, but fails because the request was refused,
the target XTP engine will send a DIAG packet back to the local context. The initiating
application can determine whether a DIAG packet was received, and if so determine the reason
for refusal, using the XtpDiagnostic() routine. XtpDiagnostic() returns XTPOK if a DIAG packet
was received, in which case its code and value parameters are set to the code and value of the
DIAG packet. XtpPrintDiagnostic() is a convenience routine which will print the meaning of
given code and value pairs. It is possible for a context to receive a DIAG packet at any time
during the life of a connection, generally causing the connection to abort. XtpDiagnostic() can be
called at any time to determine whether a DIAG packet was received (usually this would be done
when an XTP API routine fails).

See the example program in section 7 for an example of context creation.
4.4 Data Transmission

Data transmission is accomplished using the XtpWrite() routine. Transmitted data can be read at
the destination context using either XtpReadBuf() or XtpRead().

4.4.1 Writing Data

The XtpWrite() routine provides a zero copy data transmission service. Since XtpWrite() does not
block (except when flow controlled), and does not copy data, care must be taken not to free or
corrupt the data before it has been successfully transmitted. It is for this reason that the func and
arg parameters are provided, allowing a function to be passed in which will be called once the
data has been successfully transmitted. The most common use for this function would be to pass
in aroutine to free the data, but other uses, such as synchronization, are possible.

17

If the data length (len) specified is greater than will fit in a single XTP packet, XtpWrite() will
segment the data over several packets, and set the EOM option bit in the final packet, signifying
end of message. Data from two successive cals to XtpWrite() will never be sent in the same
packet. Some XTP option bits may be set by the application using the options parameter to
XtpWrite(), in which case the specified option bits will be set in the last packet of the message
(with the exception of BTAG, which will be set in the first packet of the message).

The most common option bits to set are WCLOSE (using XTPWCLOSE), END (using XTPEND)
and BTAG (using XTPBTAG). XTPWCL OSE and XTPEND are used to indicate the final messageis
being sent by the context (depending on how the connection is to be closed). Subsequent callsto
XtpWrite() will fail. XTPBTAG s used to indicate that the first eight bytes of data in the message
are to be interpreted (by the receiving application) as out of band data. A common use for
XTPBTAGi s for encapsulation in higher level protocols.

4.4.2 Reading Data

XtpReadBuf() is the primary routine used for reading data from an XTP connection. XtpReadBuf()
returns (by reference) the data from exactly one X TP packet. XtpReadBuf() blocks until at least
one buffer has been received and is ready to be read. The buffer returned is allocated by the XTP
engine and no copies are done. Data read with XtpReadBuf() must be freed using XtpFreeBuf().
Additional information about the data is obtained via the reference parameters options and flags.
The options parameter returns the XTP option bits which were set in the received packet, and is
most useful for determining whether the BTAG bit was set (in which case the XTPBTAG bit of
options will be set). The flags parameter is used to determine the following information. The
XTPNULLDATA bit is meaningful only in NOERR mode, and when set indicates that data was
lost. When XTPNULLDATA is set, the value returned via the bytes parameter indicates the amount
of missing datain the sequence space. Note that this may be more than one packet’s worth of data.
When XTPNULLDATA is set, data does not specify avalid buffer, and should not be freed. When
the XTPEQC hit of flags is set, this indicates the end of context, meaning that there will be no
more data to be read from the connection, and subsequent calls to XtpReadBuf() (and XtpRead())
will fail. Note that when XTPECC is set, bytes may return avalue of O, indicating that the last data
has already been read by a previous call, and in this case data will not be avalid buffer.

XtpRead() is provided as a convenience to give more traditional read semantics. XtpRead() is a
blocking call which may read more than one packet’s worth of data, up to len bytes, or up to the
end of a packet with the EOM bit set (i.e., up to the end of a message). The data buffer into which
the data is read must be provided by the application, and XtpRead() copies the received data into
this buffer (XtpRead() frees the X TP buffers for the received packets). The XTPNULL flag isless
useful than for XtpReadBuf(), since it isimpossible to determine which data it is associated with.

4.5 Closing Procedures
The two data streams of a bi-directional XTP connection may be closed independently. When

both streams are closed, the connection is closed. Data streams may be closed gracefully or
abortively.

18

When a stream is closed gracefully, all data sent using XtpWrite() will be transmitted (reliably if
not in NOERR mode) before the stream is closed. A graceful close in one direction can be
accomplished in two ways: by setting the XTPWCLOSE bit in the final XtpWrite(), or by calling
XtpCloseContext() after the final XtpWrite(). Using XtpWrite() with XTPWCLOSE can save the
sending of an extra control packet by the XTP engine. XtpCloseContext() will block until the
stream has gracefully closed. When XtpCloseContext() returns, the context will no longer be
available and the associated context identifier will be invalid. Any received but unread data will
be discarded.

A stream may be closed abortively in two ways. by setting the XTPEND bit in the final XtpWrite(),
or by caling XtpAbortContext(). When XtpWrite() is used with XTPEND, the data for the
XtpWrite() call and previous XtpWrite() calls will be transmitted, but after the last byte has been
sent, no data will be retransmitted (so there is no guarantee of reliable transmission). When
XtpAbortContext() is used to close a connection, the connection is aborted immediately and there
IS no guarantee that data from previous XtpWrite()s will have been transmitted. XtpAbortContext()
will not block, and the context identifier isinvalid upon return.

Unless explicitly closed with XtpCloseContext() or XtpAbortContext(), a context remains valid
after a connection is closed (i.e., if XtpWrite() options bits are used to close the connection, or if
the connection aborts spontaneously at the XTP level). This allows received data to be read using
XtpReadBuf() or XtpRead() after the connection is closed, until XTPECC is returned by one of
these routines (via the flags parameter). At this point the context should be explicitly closed so as
to free its resources.

When a connection is closed abortively, any functions passed in by the func parameter to
XtpWrite() will be called regardless of whether the associated data was transmitted successfully.

4.6 XTP Modes

XTP modes (i.e., FASTNAK, NOFLOW, RES, NOERR, NOCHECK) for a given stream are
selected by the sending context. The set of modes used by the two streams of a bi-directional XTP
connection may be different. Modes are set only at context creation, and cannot change during the
life of the context (attempts to change them using XtpEntry() will beignored). Modes are selected
by setting the modes field of the Xt pSer vi ce structure to a bitwise OR of mode flags chosen
from XTPFASTNAK, XTPNOLFLOW XTPRES, XTPNOERR and XTPNOCHECK. In addition, a
simplex stream can be selected using XTPRCL OSE as a mode flag.

By default, X TP streams are flow controlled, error controlled and perform data checksums. If any
of these features are not desired, they must be explicitly turned off using XTPNOFLOW
XTPNOERR or XTPNOCHECK.

The following brief code sample shows how modes are set for a context. The context created will
be flow controlled, but will not be error controlled and will not perform checksums on data.

19

XtpCtxtld ctxtld;
Xt pServi ce svc;

svc. nodes = XTPNOERR | XTPNOCHECK;
svc. fiel dFl ags = XTPMODES;
Xt pCr eat eCont ext (&ctxt1d, &svc);

}

The following sections give some more details on using X TP modes.

4.6.1 FASTNAK Mode

FASTNAK mode is selected using the XTPFASTNAK flag. When a sending context has
FASTNAK mode set, the receiving context will send an ECNTL packet immediately when
missing data is detected, so that the data will be retransmitted as soon as possible. FASTNAK
mode should only be used when the underlying network does not reorder packets excessively.
FASTNAK mode has no effect when NOERR mode is set.

4.6.2 NOFLOW Mode

NOFLOW mode is selected using the XTPNOFLOWflag. In NOFLOW mode, flow control is
turned off. Thus, XtpWrite() will never block when in NOFLOW mode.

4.6.3 RES Mode

RES (reservation) mode is selected by a sending context using the XTPRES flag. Reservation
mode allows a receiving application to reserve buffer space for receiving data. When a sender
specifies reserved mode, alloc values returned by the receiver will represent the amount of
reserved buffer space available, thus the sender is prevented from overflowing the reserved buffer
space. The receiving context specifies the size of the reserved buffer space at context creation
using the reserveSze field of the Xt pSer vi ce structure. Reserved mode is intended for bulk
data transfer, to avoid exhausting internal X TP buffer resources.

4.6.4 NOERR Mode

NOERR mode is selected using the XTPNOERR flag. When NOERR mode is used, lost or
corrupted data is not retransmitted. When data is received out of order (i.e., later than data with
higher sequence numbers), it is discarded (and considered lost). Gaps in the data are indicated to
the receiving application via t he XTPNULLDATA flag returned in the flags parameter of
XtpRead(). The function func passed into XtpWrite() is called as soon as data is transmitted in
NOERR mode.

4.6.5NOCHECK Mode

NOCHECK mode is selected using the XTPNOCHECK flag. In NOCHECK mode, checksums are
calculated only on the header fields of XTP packets, so user datais not protected from corruption.

20

4.6.6 Simplex Connections

A unidirectional connection originating at the connection initiator (i.e., the context calling
XtpConnect()) can be selected using the XTPRCLOSE flag. Selecting XTPRCLOSE at the
listening end of a connection will have no effect.

5 Addressing

XTP provides parameterized addressing, so it can use a number of different addressing schemes.
Thisimplementation currently uses only |P addressing (although it is open to the addition of more
schemes). Thus, all addresses should be specified as IP addresses. The following convenience
routines are provided to assist in determining |P addresses:

(1) u_int XtpGetLocallP() this routine will return the IP address of the local host. If the
local host has more than one IP address, it is not defined which one will be returned.

(2) u_int XtpHostnameTol P(char *hostname) This routine will return the |P address of
the given host. If the specified host has more than one IP address, it is not defined
which one will be returned.

6 Packet Encapsulation

XTP packets are encapsulated in lower level packets, depending on the underlying communication
mechanism. In the UNIX/RT Threads environment, X TP packets are encapsul ated in UDP packets
(and transmitted using UDP/IP).

Details of encapsulation are hidden from the user, so encapsulation in other lower level protocols
(e.g., AAL5/ATM) can be supported without affecting applications.

21

7 Example

Two short example programs (a sender and a receiver) follow to demonstrate how the service
interface to XTP is used. Some error checking is omitted for simplicity.

7.1 Sender Program

#i nclude “rtthreads. h”
#i ncl ude “xtp.h”

#def i ne RCVR_UDP_PORT 5000
#defi ne XTP_PORT 25

static void sender(void *);
void mai np(int argc, char *argv[])

int renotelp;
Rt t SchAttr attr;
Rtt Threadl d sndr;

if (argc = 2)
printf(“usage: % renote_hostnane\n”, argv[O0]);
exit(1);

}

if ((renptelp = XtpHostnameTol P(argv[1])) == XTPFAI LED){
printf(“host ‘%’ not found.\n", argv[1]);
exit(0);

}

Xtplnit(0, 0);

/* create the sender thread, schedule it to be ready inmediately */
attr.startingti ne = RTTZEROTI Mg

attr.priority = RTTNORM

attr.deadl i ne = RTTNODEADLI NE;

Rtt Create(&sndr, sender, 8192, “sender”, (void *) renotelp, attr, RTTUSR);

}

static void sender(void *renotelp) {
XtpCixtld ctxtld,;
int flags, options;
int bytes = 0;
static char buf[100];
u_int route;

if (XtpCreateContext(&ctxtld, XTPNULL) == XTPFAILED) ({
printf(“unable to create context\n”);
exit(1);

/* explicitly open a connection (block until established) */
Xt pConnect (ctxtld, XTPEXPLICIT, (u_int)renotelp, RCVR_UDP_PORT, XTP_PORT);

/* send a nessage to the receiver */
XtpWite(ctxtld, “How are you?”, 13, XTPWCLOSE, XTPNULL, O0);

/* wait for reply
b

fromreceiver */
Xt pRead(ct xt1d, f,

u 100, &bytes, &flags, &options);

22

printf(“Reply: %\n", buf);

Xt pCl oseCont ext (ctxt1d);
}

7.2 Receiver Program

#i ncl ude “rtthreads. h”
#i nclude “xtp.h”

#def i ne RCVR_UDP_PORT 5000
#def i ne XTP_PORT 25

static void receiver(void *);
voi d mainp(int argc, char *argv[])

RttSchAttr attr;
Rtt Threadld rcvr;

Xt pl nit(0, RCVR _UDP_PORT);

/* create the receiver thread, schedule it to be ready inmediately */
attr.startingti ne = RTTZEROTI Mg

attr.priority = RTTNORM

attr.deadl i ne = RTTNODEADLI NE;

RttCreate(&r cvr, receiver, 8192, “receiver”, (void *) 0, attr, RTTUSR);

}

static void receiver(void *arg) {
XtpCixtld ctxtld,;
Xt pServi ce svc;
int flags, options;
int bytes = 0;
static char buf[100];

/* assign service structure field values */

svc. rwi ndow = 20000;

svc.inrate = 300000;

svc. i nburst = 100000;

svc. fiel dFl ags = XTPRW NDOW | XTPI NRATE | XTPI NBURST;

if (XtpCreateContext(&ctxtld, &vc) == XTPFAI LED) {

printf(“unable to create context\n”);
exit(1);

/* listen for a connection request (block until established) */
Xt pListen(ctxtld, XTPBLOCK, XTP_PORT);

/* read up to 100 bytes */
Xt pRead(ctxtld, buf, 100, &bytes, &flags, &options);

printf(“Message: %\n", buf);

/* let sender know |’ m done */
XtpWite(ctxtld, “Just fine.”, 11, XTPWCLOSE, XTPNULL, O0);

Xt pd oseCont ext (ctxt1d);

23

References

[1]

(2]

(3]
[4]
(5]

6]

Greg Chesson. XTP/PE Design Considerations. In IFIP WG6.1/6.4 Workshop on Protocols for High-
Foeed Networks, May 1989

Greg Chesson. The Evolution of XTP. In Proceedings of the Third International Conference on High
Soeed networking. North-Holland, 1991.

Protocol Engines Incorporated. X TP Protocol Definition, Revision 3.6, January, 1992.
XTP Forum. Xpress Transport Protocol Specification, Revision 4.0, March, 1995.

W. T. Strayer, B. J. Dempsey, and A. C. Weaver. XTP: The Xpress Transfer Protocol. Addison-Wesley,
Reading, Massachusetts, 1992.

David Finkelstein, Norman C. Hutchinson, Dwight J. Makaroff, Roland Mechler and Gerald W. Neufeld.
Real Time Threads Interface. UBC Technical Report 95-07, May 1995.

24

