
A Model for Coordinating Interacting Agents

Paul Lalonde Robert Walker Jason Harrison David Forsey

Department of Computer Science

University of British Columbia

2633 Main Mall,

Vancouver, B.C. V6T 1Z4,
e-mail: flalondejwalkerjharrisonjdrforseyg@cs.ubc.ca

Abstract

SPAM (Simulation Platform for Animating Mo-
tion) is a simulation software system designed to
address synchronization issues pertaining to both
animation and simulation. SPAM provides appli-
cation programs with the manipulation, con�gura-
tion, and synchronization tools needed when sim-
ulations are combined to create animations. It is
designed to be used as the glue between applica-
tions that supply lists of the parameters to animate
and the callback procedures to invoke when a user
wishes to modify the parameters directly. SPAM
does not impose a particular model of simulation,
accommodating keyframing, physical simulation, or
a variety of other models, providing they can be ab-
stracted into a set of externally modi�able variables.

In SPAM we recognize that the important part
of simulation is not the state of the system at each
time step, but rather the change in states between
steps. Thus SPAM uses an interval representation
of time, explicitly representing the intervals over
which change occurs.

In a complex animation or simulation, multiple
actions will access the same resource at the same
time. SPAM de�nes a strategy for recognizing such
conicts that increases the use and re-use of se-
quences.

R�esum�e

SPAM est un syst�eme de simulation cr�ee pour
adresser les probl�emes de synchronisation pr�esents
dans les syst�emes d'animation et de simulation.
SPAM apporte aux logiciels des outils pour �e��ectuer
les taches de manipulation, con�guration, et syn-
chronisation qui sont n�ec�essaires quand di��erents
mod�eles de simulation sont combin�es pour produire
une animation. SPAM est con�cu pour servir de lien

entre plusieurs constituants qui apportent chaqu'un
une liste de param�etres controlables. On peut se
serveir de n'importe quel mod�ele, soit le \keyfram-
ing," la simulation physique, ou d'autres m�ethodes,
tant qu'elles puissent exporter des variables �a mod-
i�er.

SPAM t�emoigne du fait que l'aspect important de
la simulation n'est pas l'�etat du syst�eme �a chaque
d�emarcation temporale mais plutôt les changements
entre les moments d�emarqu�es. Par cons�equent
SPAM se sert d'une notation d'intervale tempo-
rale, ce qui permet une repr�esentation explicite de
l'intervale dans laquelle le syst�eme change.

Dans une sc�ene complexe, plusieures actions ac-
c�edent �a une resource en même temps. SPAM in-
corpore une strat�egie pour reconnâ�tre ces conits
et encourager la r�e-utilisation de s�equences. Les
r�esolutions des conits peut être soit automatique
ou par l'intervention de l'utilisateur.

Keywords: Animation, simulation, data ow,
keyframing, parametric animation, intervals.

1 Introduction

Animation is the art of manipulating
the invisible interstices that lie between frames.

| Norman McLaren

Computer animation systems aid the traditional
process of animation by providing keyframing, edit-
ing, sequencing, previewing, and mathematical mo-
dels from the realm of simulation: procedural mod-
els, dynamics, kinematic and dynamic constraints,
and inverse kinematics, to name a few. The task

of integrating all of these approaches must address
the problems associated with the interactions be-
tween simulators and their di�ering notions of time.
Animation systems tend to be stand-alone mono-
liths, and although open animation systems have
appeared that allow third-party software developers
to extend the capabilities of the stock product, this
approach is not useful in the highly heterogeneous
and changing environment of an academic research
laboratory. A research lab can generally neither af-
ford the cost of the software, nor the sta� required
to create and maintain all of the packages and con-
version utilities.

Much of the di�culty involved in using di�erent
models of animation and simulation arises in com-
bining them. Simulation systems evolve from a set
of initial conditions: the state at any point in the
future is unknown and requires considerable com-
putation and data, the details of both frequently
unknown in advance. In contrast, animators often
work towards a �nal state with a preconceived path.
This demands much more control over the animated
elements, and usually includes completely specify-
ing all the motions of all objects. Numerical in-
tegration, especially adaptive methods that use a
variable time increment, is particularly di�cult to
implement correctly in this context. Mixing tradi-
tional animation with simulations requires consid-
erable thought about how the interactions of the
methods should be handled. Ad hoc solutions will
work given enough re�nement of the individual an-
imations, but a more general solution to the prob-
lems is required.

SPAM provides applications with animation, se-
quencing, synchronization, scripting, and coordina-
tion capabilities in a manner similar to the way that
user interface toolkits such as Motif and Open Win-
dows provide applications with window manage-
ment services. The application supplies the func-
tions and parameters to be controlled, and SPAM
coordinates the animation and grouping of those pa-
rameters through a combination of its own separate
user interface and any pre-existing application inter-
face. The interfaces between SPAM and application
code are called actuators, and de�ne an abstract
data type that embodies the particular set of sys-
tem parameters to control, along with the callbacks
or routines used to set or read these values.

The speci�cation of an animation from a graphi-
cal interface is converted into a graph representation
that is subsequently evaluated to update the state
of the system for each time interval. Evaluation is

performed in much the same way as in a traditional
dataow system [dyer90] but SPAM explicitly mod-
els time and has the added capabilities to handle
discrete events, to synchronize actions, and to de-
tect loops and conicts that arise when two actions
share a resource.

For example, for an application that provides
basic forward kinematics for articulated �gures,
SPAM provides all the capabilities of a paramet-
ric animation system [stur84, hanr85]. To control
the pose of, for example, a hand making a �st,
the animator groups the degrees of freedom such
that the degree to which the hand is open is con-
trolled through the manipulation of a single pa-
rameter. Typically the animator de�nes multiple
groups, each controlled by a single parameter and
specifying some other hand posture (e.g. touch-
ing the thumb and fore�nger together). When-
ever these actions are combined in an animation
the groups need to modify a shared resource, e.g.
the angle of one of the �nger joints. SPAM detects
such conicts when the animation sequence is spec-
i�ed and either internally resolves the conict with
a pre-de�ned (possibly interactive) tool, or allows
the application to arbitrate using its own interface
to the animator.

SPAM, however, is more than a parametric ani-
mation system; it is a system for coordinating mul-
tiple models of simulation, and is designed for use
with new or existing simulation software with a min-
imum of additional code. We de�ne an agent as an
object encapsulating data and the simulation soft-
ware that changes the state of the data over time,
while exchanging information to and from the sys-
tem as a whole as needed. SPAM treats simulations,
as well as traditional animation techniques such as
keyframing, as agents.

Consider a situation where several agents in the
application interact. If agent A and agent B pro-
ceed such that agent A interacts with other agents
(requests or supplies data) at a schedule incom-
patible with the schedule of interactions of B, the
situation will arise where the two agents attempt
to modify the same resource at overlapping inter-
vals. SPAM coordinates agents that run at di�erent
rates or with completely di�erent notions of time by
treating time as an interval and allowing the various
simulations to proceed at the appropriate rates and
by providing mechanisms to resolve conicts when
multiple agents access the same resource.

Many simulation and animation systems view the

passage of time as a steady procession forward at
a speci�c rate [bart89]. This view is limited and
restrictive. If di�erent simulation models are to co-
exist in an animation system, any incompatibility
in the representation of time must be resolved and
coordinated. If the only concept of time advance-
ment is a clock tick, it becomes di�cult to integrate
the di�erent simulations without aliasing artifacts,
and the situation is even worse if the integrators
use adaptive step sizes. The cost of imposing the
smallest step size on all the components is too high.

2 Background

There are many examples of treating animation as
a form of simulation. In particular we are inter-
ested in those approaches that address the prob-
lems of dealing with multiple simulation agents and
the conicts generated through their interactions.
Rozenblat and Muntz in their Tangram Animation
System [roze91] use rule and event based animation
control to animate the results of their queueing net-
work and Markov chain simulations. Their system
is based on animating state changes, and as such,
each rule is of the form of a script evaluated when
some condition becomes true. Although useful for
animation based upon events this approach is, in
essence, a discrete event simulation and as such does
not readily deal with continuous processes. They
also do not address the problems that arise when
when multiple rules could be selected by the same
condition.

Kalra and Barr [kalr92] build simulation systems
by composing motion behaviour rules (functions
of time, di�erential equations of motion, or con-
straints) using directed graphs that specify the con-
ditions that should cause the behaviour of the sys-
tem to change. These conditions, event units, and
the associated change in the motion behaviour can
be discontinuous and asynchronous, but the general
principle is that the system of equations governing
the simulation changes when an event occurs. Thus
the state of the system can be continuous, but the
set behaviours can be discontinuous. Since the sys-
tem of equations and the conditions for changing
the system are under the control of a central evalua-
tor inter-object interactions (e.g. collisions) can be
handled e�ciently. However, this framework does
not exactly specify the behaviour of the system if
multiple events occur at the same time. It is also
not apparent how to extend this framework to a col-

lection of simulation engines (agents in our nomen-
clature) where the equations of motion and the as-
sociated state variables are encapsulated within the
agents.

Kazman takes a di�erent approach, building a
system based on modeling continuous dynamic sim-
ulation. HIDRA [kazm93] is structured around au-
tonomous objects, a distributed world manager, and
a collection of servers that handle object-object in-
teractions. By centralizing certain inter-object in-
teraction such as collisions, the servers reduce the
need for each object to independently detect in-
teractions. However, HIDRA's notion of time is
expressed simply as clock cycles, and there is no
structured way of dealing with the classic readers
and writers problem that occurs when the state of
an object is accessed by several interaction servers
[cour71].

Zeleznik et al. [zele91] embody behaviours as con-
trollers that send abstract messages to various ob-
jects in the system who in turn determine how to
react to those messages. In essence, the controllers
are simulation engines (our agents) operating on the
participating objects. For example, an interactive
technique is considered a controller for an object.
When di�erent controllers a�ect the same object at
the same time, the authors propose the use of an
intermediary controller to mediate the use of the
shared resource. The authors did not present a so-
lution to the di�culties that arise when controllers
are running simulations at di�erent rates.

K�uhn and M�uller encapsulate di�erent simula-
tions into independent controllers (agents)[kuhn93].
Though they acknowledge the possibility of multi-
ple controllers a�ecting the state of an object during
the same time step, they do not provide means for
mediating such conicts. This leaves conict resolu-
tion in an ad hoc state, uncontrollable within their
framework. Their notion of time is based on syn-
chronization of local clocks in a hierarchy of object
group (environments) and controller pairs. Each en-
vironment ticks forward at a speci�c rate, invoking
its controllers at each clock tick. The controllers are
responsible for advancing the state of the environ-
ment to the next state, and may in turn activate
other environments. No mechanism is provided to
deal with a non-hierarchical control graphs.

SPAMmediates the progression of time and coor-
dinates communication between components in an
application. The major components of an applica-
tion are:

SPAM

User

Gurn SPAM UI 2

Application
 UI

Agent 1 Agent 2

Figure 1: The structure of an application using
SPAM. The simulation agents communicate to the
animation/simulation interfaces, or directly to the
animator by using an interface associated with an
an actuator.

3 The System

SPAM UI: the user interface used to specify how
agents interact.

Agents: the computational elements to coordinate.
For example, a free-form surface modeller or a sim-
ulator for rigid-body dynamics.

Agent UI: the user interface to an agent. For ex-
ample, the interactive editor for a free-form surface
modeller.

SPAM: the graph of processes that coordinate the
interaction between the agents, and its evaluator.

A separate interface, called Gurn, builds the

SPAM graph using calls to library routines that
build SPAM sub-graphs that implement interpo-
lators, constraints, and synchronization operators
such as those found in Fiume et al. [�um87]. The
details of Gurn are beyond the scope of this paper.

The interface between an agent and SPAM (ag-
ents do not directly communicate with each other)
is called an actuator and represents the parameter
or group of parameters to animate. Thus for a free-
form surface modeller an actuator is instantiated for
each modi�able degree of freedom available in the
editor. Each agent posts its actuators to SPAM and
provides callback routines for access and modi�ca-
tion of the parameters represented by the actuator.
If the agent has its own user interface for setting a
given parameter, then access to this interface can
be included in the actuator de�nition. Information
is transferred between an agent (via its actuators)

and SPAM through an abstract data type, called
a steward, that encapsulates sources, sinks, conict
resolvers, and forecasters (all described below). A
steward administrates all access to an actuator from
other components within the application.

SPAM implements a simple process control mech-
anism supporting small atomic sequential processes
communicating over �xed, typed, communication
channels. The graph, reminiscent of those gener-
ated using data ow languages [dyer90], is evalu-
ated to advance the state of the system through a
time interval.

One evaluation of the SPAM graph advances time
a speci�ed amount. At the beginning of each cycle
the system is in a particular state | the actuators
reect the internal state of the agents. It is the
job of SPAM to achieve a consensus about the state
of the system at the end of the interval. Because
agents are allowed to run at di�erent time steps,
sometimes a value for an actuator at an interme-
diate time is required that has not yet been com-
puted. Stewards administrate the calculation of this
intermediary information required by other agents.
Once a concensus is reached, an explicit commit ac-
tion sets the internal state of all actuator-mediated
parameters in all agents, and time advances for the
application as a whole.

The graph is evaluated by executing all processes
not blocked awaiting input. These nodes broadcast
the results of any internal computation on their out-
put channels which triggers further computation in
connected processes. Evaluation continues until all
active portions of the graph have been traversed
at which point the commit occurs, all the stewards
write values to their actuators and each agent is in-
voked to deal with the change in its internal state.
Evaluation of the graph is explained in more detail
in Section 4.1.

3.1 Stewards

SPAM is designed to mediate the interaction of mul-
tiple agents by insulating an agent from the ef-
fect of any other agent's notion of how time pro-
gresses. The internal state of an agent (i.e. its actu-
ator values) must be protected from, yet simultane-
ously available to, other components in the system.
The internal state of the agent must be protected
in those situations where constantly updating the
agent's internal state is too costly or is inappropri-

ate, and available if intermediate (i.e. requests to
update the actuator value before the commit) val-
ues can be safely accomodated. SPAM deals with
this by using a steward that controls all access to
an actuator.

Consider a simulation with two agents { A, that
proceeds at a �xed time step, and B that proceeds
with a variable time step and requires a value from
A at the beginning of each of its intervals. Forcing
A to run with small step sizes so that it has values
available when B requires them is ine�cient, if not
impossible. Instead some exible strategy is needed
to produce an appropriate value when needed. De-
pending on the nature of A the agent may produce
an exact value, or the steward can provide an es-
timate. The stewards associated with each of A's
actuators encapsulates this knowledge and allows
the agent to choose the appropriate behaviour.

The steward also deals with those situations
where requests to set an actuator occur more fre-
quently than the agent's internal notion of time al-
lows. Dependant upon the nature of the agent, it
may be reasonable to make these intermediate val-
ues available to the rest of the system as they are
written or retain the old value until the next commit
phase.

3.2 Sources

Data is introduced into the SPAM process network
via source nodes in the control graph. Using a time
interval as its input a source returns the value that
represents the actuator's value at the beginning of

the interval. Each source is bound to the steward
that administrates access to the actuator. In gen-
eral, the value of the actuator is accurate only for
the beginning of the interval, not for times within it.
As the result of the steward's operation, there may
be cached values that include the requested interval
or bracket it, and in such cases the steward invokes
an interpolation or extrapolation mechanism to pro-
vide a value for the source. Such a guess is called
a forecast, and will be examined in further detail in
Section 4.2.

3.3 Sinks and Caches

Sink nodes are used to set the value of actuators.
Data sent to a sink is mediated by the steward which
caches the value according to the interval for which

it was calculated. At the commit stage, once all
computation in the process graph is complete for the
given interval, this cache is dumped to the agent.
The steward may pass either the complete list to
the actuator, or just the �nal value, depending upon
the type of steward instantiated.

3.4 Conict Resolution

When multiple values for the same time interval
arrive at a sink node the conict is resolved us-
ing a conict resolver which utilizes one of several
possible strategies ranging from a simple priority
scheme which uses the most recently written value
or a weighted sum of all the inputs in the overlap.
Each conict resolver has its own set of actuators
that control its behaviour (e.g. the weights to ap-
ply to each input) which are also controlled via the
SPAM process graph. In the GURN user interface
to SPAM, the choice of conict resolver (and values
sent to its actuators) is part of the speci�cation for
an animated sequence.

Rather than always determining the �nal value,
resolution of a conict is deferred until a source re-
quests a value falling within the overlapping inter-
val. This is particularly important for computation-
ally expensive resolution strategies, such as those
involving manual intervention by a user.

3.5 Transformers and Synchroniza-

tion Operators

The remaining nodes in a SPAM graph are called
Transformers. A transformer performs an atomic
stateless computation using its inputs, and passes
the result to its output channel(s). A trans-
former may simply generate a constant value, per-
form interpolation, access the operating system,
or partake in a complex calculation incorporating
time, di�erential equation solvers, or constraints
[glei90, haeb88, kass92]. Of particular interest are
a few transformers for manipulating time and pro-
viding ow control.

A splitter provides a simple looping mechanism,
breaking down an input interval into a stream of
�xed or variable size intervals.

A gate clips an input interval to the interval spec-
i�ed at its initialization and is used to ensure that a
sub-graph is evaluated only at certain times. If the

clipped interval is null then no output is written.

4 The Control Graph

Although SPAM graphs can be very general, be-
cause they encode a particular set of operations
and interactions, they typically have a great deal
of structure. Degrees of freedom that do not in-
teract form non-interacting subgraphs. Degrees of
freedom that do interact typically do so in limited
ways, usually simple, uni-directional dependencies.
For instance, in the case where agent A uses the
value of an actuator in agent B, the dependancies
are visible in the graph as a source reading B in the
subgraph that evaluates a result for A. Of course,
cycles can appear in the graph. How they are dealt
with is examined in greater detail in Section 4.7.

4.1 The Structure of the Graph

A SPAM graph consists of a starter node, with no
inputs, connected to other transformers and sinks.
The starter node de�nes the time interval over
which to evaluate the graph. It is strobed with a
sequence of time intervals to advance the state of
the application over time.

Evaluation of the graph is a straightforward
traversal that invokes any node that has all its re-
quired inputs. Not every node is evaluated since
some will never receive their required inputs for a

given interval because some subsection of the graph
is only active for a speci�c period of time. (Gate
nodes are used to fence o� subgraphs in this man-
ner).

4.2 Sources and Deferred Evaluation

Most of the nodes in the graph are simple atomic
operators that provide output once all their inputs
are available. Sources are an exception to this be-
cause of the behaviour of the stewards. When the
value for an actuator (via a source) is requested for
the beginning of an interval, the steward's actuator
value corresponds to the current state in the agent,
and this value is returned immediately. If some in-
termediate value exists in the cache, or if no current
value is available, evaluation of the source node is
deferred with the expectation that more informa-

tion will become available as the rest of the graph
is evaluated.

When all nodes in the graph are blocked awaiting
input, any source node still deferred is evaluated.
This causes the appropriate steward to invoke its
conict resolver which perform either interpolation
or some other more sophisticated mechanism to es-
timate the current value of the source.

4.3 Cycles

Cycles appear in a SPAM graph as a result of inter-
steward interactions or from constraints enforced
within an agent. The former case is easier to de-
tect and deal with because some SPAM UI in used
in building the graph and thus can ensure that
the graph is built properly. Cycles caused by de-

pendencies between actuators within an agent are
much more di�cult. In general SPAM cannot de-
tect these, and so they must be agged explicitly
when the actuators are instantiated. Strategies for
dealing with such interactions are a topic for future
research and may involve either invoking some gen-
eral constraint resolution method on the a�ected
subgraph or returning control to the agent to deal
with the dependencies internally.

4.4 Building SPAM Graphs

Because SPAM graphs can be very general, it is im-
portant to impose structure on them to make them
easy to generate. Fortunately many common ac-
tions are expressible using simple sub-graphs that
have a simple interface to the rest of the process
graph. These sub-graphs are encapsulated into the
library routines that the SPAM UI uses to construct
the graph.

Consider for example a sub-graph that performs a
summation (�gure 3). Its only interaction with the
rest of the graph is its input, its output and choice
of the source. This sub-graph is made re-useable
by building a library routine that instantiates this
sub-graph given the choice of source and the interval
over which to evaluate the summation.

In a similar fashion, subgraphs that perform in-
terpolations, constraint enforcement, or a complex
simulation, are collected into routines whose inter-
actions with the SPAM graph are set by parameters
supplied at run-time. Assorted synchronization op-

gate

gate

split into
n

or

or

add

[t0, tn]

[ti, ti+1]

[ti, ti+1]
f(ti)

Σ f(tj)
i

j=0

const
0

Σ f(ti)
n

i=0

[tn−1, tn]

source
f(ti)

Input

Output

Figure 2: A SPAM subgraph to perform a summa-
tion. The constant speci�es the zero condition, the
or nodes pass along one of their inputs without wait-
ing for another, and the �nal gate assures that a
result will only leave the sub-graph at the end of the
interval.

erators are implemented in the same way. Fiume
et al. detail a number of useful operators [�um87]
that all have isomorphic representations as SPAM

graphs.

5 Keyframing and Dynamic

Simulation

Using SPAM we built a simple application combin-
ing three agents, a display engine that displays a
double pendulum, a dynamic simulation engine that
performs dynamics on the pendulum, and an input
agent that uses mouse input to set the pendulum's
joint angles and accelerations.

The drawing agent redraws the pendulum every
time a new state vector is written to its actuator.
The dynamics agent, written using SD/fast, a com-
mercial dynamic simulation package, uses a variable

step size integrator to calculate the joint angles of
the pendulum from one iteration to the next. The
input agent is used to interactively control the joint
angles and supply forces and torques applied to the
pendulum.

SPAM coordinates these three agents transfer-
ring values from the input agent to set the positions
or forces on the pendulum that both the dynamics
agent and the drawing agent must respond to.

6 Conclusions and Future

Work

SPAM represents time as an interval, allowing ex-
plicit control of the interval over which values are
requested during the simulation. SPAM's simple
data-ow like graphs, coupled with the structure
imposed on the graphs make it easy to coordinate
complicated agents. SPAM is su�ciently powerful
to deal with the interaction of various simulation
engines, be they integrators, traditional keyfram-
ing, or procedural models.

Outstanding issues remain. When cycles are en-
countered they are agged for the application to
respond to, but no general strategy has been devel-
oped to structure the application's response.

Although SPAM deals with mediating informa-
tion transfer between simulation engines, we have
not addressed the complications arising from fun-
damental di�erences in representations used by dif-
ferent simulation models, as would occur if one sim-
ulation used, for example, a height �eld represen-
tation while another used a �nite volume model.
This problem of di�ering representations would re-
quire considerable support for appropriate shared

data structures and domain-speci�c knowledge of

the representational-level interactions, and is cur-
rently beyond the scope of the toolkit approach
pro�ered here.

References

[bart89] Richard H. Bartels and Ines Hardtke.
\Speed adjustement for key-frame inter-
polation". Proceedings of Graphics Inter-
face '89, pp. 14{19, June 1989.

[corm90] Thomas H. Cormen, Charles E. Leiserson,
and Ronald L. Rivest. Introduction to Al-
gorithms. The MIT Press, 1990.

[cour71] P. J. Courtois, F. Heymans, and D. L.
Parnas. \Concurrent Control with `Read-
ers' and `Writers' ". Communications of
the ACM, Vol. 14, No. 10, pp. 667{668,
October 1971.

[dyer90] D. Scott Dyer. \A Dataow Toolkit for
Visualization". IEEE Computer Graphics
and Applications, Vol. 10, No. 4, pp. 60{
69, July 1990.

[�um87] E. Fiume, D. Tsichritzis, and L. Dami. \A
Temporal Scripting Language for Object-
Oriented Animation". Eurographics '87,
pp. 283{294, August 1987.

[glei90] M. Gleicher and A. Witkin. \Snap
Together Mathematics". Eurographics
Workshop on Object-Oriented Graphics,
pp. 21{34, 1990.

[haeb88] Paul E. Haeberli. \ConMan: A Vi-
sual Programming Language for Interac-
tive Graphics". Computer Graphics (SIG-
GRAPH '88 Proceedings), Vol. 22, No. 4,
pp. 103{111, August 1988.

[hanr85] Pat Hanrahan and David Sturman. \In-
teractive animation of parametric mod-
els". The Visual Computer, Vol. 1, No. 4,
pp. 260{266, December 1985.

[kalr92] Devendra Kalra and Alan H. Barr. \Mod-
eling with time and events in com-
puter animation". Computer Graphics
Forum (EUROGRAPHICS '92 Proceed-
ings), Vol. 11, No. 3, pp. 45{58, Septem-
ber 1992.

[kass92] Michael Kass. \CONDOR: Constraint-
based dataow". Computer Graphics
(SIGGRAPH '92 Proceedings), Vol. 26,
No. 2, pp. 321{330, July 1992.

[kazm93] R. Kazman. \HIDRA: An Architec-
ture for Highly Dynamic Physically Based

Multi-Agent Simulations". International
Journal in Computer Simulation, 1993.

[kuhn93] Volker K�uhn and Wolfgang M�uller. \Ad-
vanced Object-oriented Methods and
Concepts for Simulations of Multi-body
Systems". The Journal of Visualization
and Computer Animation, Vol. 4, pp. 95{
111, 1993.

[roze91] G.D. Rozenblat and R.R. Muntz. \The
Tangram Simulation Animation System".
Eurographics Workshop on Animation
and Simulation, pp. 153{167, 1991.

[snyd92] John M. Snyder. \Interval analysis for
computer graphics". Computer Graphics
(SIGGRAPH '92 Proceedings), Vol. 26,
No. 2, pp. 121{130, July 1992.

[stur84] David Sturman. \Interactive keyframe
animation of 3-D articulated models".
Proceedings of Graphics Interface '84, pp.
35{40, 1984.

[zele91] Robert C. Zeleznik, D. Brookshire Con-
ner, Matthias M. Wloka, Daniel G.
Aliaga, Nathan T. Huang, Philip M.

Hubbard, Brian Knep, Henry Kauf-
man, John F. Hughes, and Andries van
Dam. \An object-oriented framework for
the integration of interactive animation
techniques". Computer Graphics (SIG-
GRAPH '91 Proceedings), Vol. 25, No. 4,
pp. 105{112, July 1991.

