
Voss | A Formal Hardware Veri�cation System

User's Guide

Technical Report 93-45

Carl-Johan H. Seger

Department of Computer Science

University of British Columbia

Vancouver, B.C. V6T 1Z4 Canada

Email: seger@cs.ubc.ca

December 6, 1993

Abstract

The Voss system is a formal veri�cation system aimed primarily at hardware veri�cation.

In particular, veri�cation using symbolic trajectory evaluation is strongly supported. The Voss

system consists of a set of programs. The main one is called and is the core of the veri�cation

system. Since the metalanguage in is a fully general functional language in which Ordered

Binary Decision Diagrams (OBDDs) have been built in, the veri�cation system is not only

useful for carrying out trajectory evaluation, but also for experimenting with various veri�cation

(formal and informal) techniques that require the use of OBDDs. This document is intended

as both a user's guide and (to some extent) a reference guide. For the Voss alpha release, this

document is still quite incomplete, but work is underway to remedy this.

1

Contents

1 The Voss System|Background 5

2 Fl|The Meta Language of Voss 10

2.1 Invoking : 10

2.2 Expressions : 10

2.3 Declarations : 11

2.4 Functions : 12

2.5 Recursion : 12

2.6 Tuples : 13

2.7 Lists : 13

2.8 Strings : 14

2.9 Polymorphism : 14

2.10 Lambda Expressions : 15

2.11 Failures : 16

2.12 Boolean Expressions : 16

2.13 Quanti�ers : 17

2.14 Dependency : 18

2.15 Substitutions : 18

2.16 Type Abbreviations : 19

2.17 Concrete Types : 19

2.18 Abstract Types : 20

2.19 In�x Operators : 22

2.20 Circuit Models : 22

2.20.1 Loading a .exe File : 23

2.20.2 Creating an fsm Object Inside FL : 23

2.21 Queries to the Circuit Model : 25

2.22 Symbolic Trajectory Evaluation : 26

3 Syntax Summary 28

3.1 Reserved Words in FL : 29

4 The .vossrc Default File 30

5 Built-In Functions in FL 31

6 Standard Libraries 33

6.1 default. : 33

6.2 veri�cation. : 34

6.3 arithm. : 35

6.4 HighLowEx. : 35

7 Examples of Using the Voss System 37

7.1 AMD2901 : 37

7.1.1 Creating the fsm Model : 37

7.1.2 Structuring the Speci�cation File : 40

7.1.3 Carrying out the Veri�cation : 48

7.1.4 Debugging a Design and/or Speci�cation : 48

7.1.5 Variable Ordering : 55

2

7.1.6 Structural VHDL Description : 56

8 A greater then B circuit 56

9 Binary2BCD 57

10 Mead and Conway Stack 57

11 Tamarack3 57

12 UART 57

13 McMillan 57

14 Model Checking 58

A Informal speci�cation of AMD2901 59

A.0.7 ALU Source Operands Selected : 60

A.0.8 ALU Function : 61

A.0.9 ALU Destination : 61

B Switch-Level Model 62

B.1 Circuit Model : 62

B.1.1 Node Model : 62

B.1.2 Transistor Model : 63

B.1.3 Circuit Partitioning : 64

B.1.4 Timing Model : 65

B.2 Circuit Examples : 65

C .sim format 66

D .ntk Format 67

E .sil format 69

E.1 Syntax of .sil format supported by silos2exe : 70

F VHDL Support 71

F.1 Types Supported : 71

F.2 Structural VHDL Supported : 72

F.3 Behavioral VHDL Supported : 72

3

Preface

This document is meant as an introduction to the Voss formal veri�cation system. In particular, it

is intended as an introduction to using the Voss system for symbolic trajectory evaluation. However,

it is not meant to introduce the complete theory behind the system. For this, the reader is referred

to [SegBry92].

Since the user interface to the Voss system is a complete, fully lazy, functional language similar

to lazy-ML, this document begins by introducing the functional language. This is accomplished

through a number of examples. For someone familiar with functional programming in a lazy

language, these sections can be read very cursory. In the second part of the manual, veri�cation

tasks using the Voss system are explained and some secondary tools introduced. This section is by

its very nature example oriented but I will try to be as precise as I can.

Since the Voss system is under active development, I cannot provide any guarantees for the

correctness, suitability for any particular use. Since I am actively developing the system, I would

appreciate bug reports and examples of dubious correctness. In return, I'll provide as rapid �xes

and updates as humanly possible. Also, since the system is still evolving, it is quite possible that

some examples do not correspond exactly to the way the current system works. However, I have

tried to make the manual as up-to-date as I have been able to. In general, all the examples have

been run using Voss 1.5.

Finally, I have often been asked what \Voss" really stands for, and I have heard various attempts

containing the words Veri�cation, Symbolic and Simulation, but the truth is that the name was

chosen speci�cally not to be an acronym. Voss is a city in Norway between Bergen and Oslo and

is prominently featured on virtually all weather forecasts in Norway. The city is at the west end of

one of the main mountain ranges in Norway and has a special meaning to both my wife and myself.

In recognition of this, I decided to call the veri�cation system Voss.

Carl Seger

4

1 The Voss System|Background

The Voss system, hereafter referred to as Voss, started as a hardware veri�cation system that

supported symbolic trajectory evaluation. However, the main interface to the trajectory evaluator

was a general purpose functional language with ordered binary decision diagrams built in. Conse-

quently, Boolean functions could be represented, manipulated, and compared very e�ciently. Since

these capabilities are highly desirable in formal veri�cation systems, it is perhaps not too surprising

that Voss has become a prototype system for various forms of veri�cation methods. In particular,

there are now both symbolic model checkers as well as small theorem provers written in FL|the

command language of Voss. However, since trajectory evaluation is less well known and also the

main veri�cation methodology supported in Voss, this manual will focus mostly on this technique.

Symbolic simulation is an o�spring of conventional simulation. Like conventional simulation, it

uses a built-in model of hardware behavior and a simulation engine to compute, on demand, the

behavior of some design for some given inputs. However, it di�ers in that it considers symbols

rather than actual values for the design under simulation. In this way, a symbolic simulator can

simulate the response to entire classes of values with a single simulation run.

The concept of symbolic simulation in the context of hardware veri�cation was �rst proposed by

researchers at IBM Yorktown Heights in the late 1970's as a method for evaluating register transfer

language representations. The early programs were limited in their analytical power since their

symbolic manipulation methods were weak. Consequently, symbolic simulation for hardware veri�-

cation did not evolve much further until more e�cient methods of manipulating symbols emerged.

The development of Ordered Binary Decision Diagrams (OBDDs) for representing Boolean func-

tions radically transformed symbolic simulation.

Since a symbolic simulator is based on a traditional logic simulator, it can use the same, quite

accurate, electrical and timing models to compute the circuit behavior. For example, a detailed

switch-level model, capturing charge sharing and subtle strengths phenomena, and a timing model,

capturing bounded delay assumptions, are well within reach. Also|and of great signi�cance|the

switch-level circuit used in the simulator can be extracted automatically from the physical layout

of the circuit. Hence, the correctness results can link the physical layout with some higher level of

speci�cation.

The �rst \post-OBDD" symbolic simulators were simple extensions of traditional logic simula-

tors. In these symbolic simulators the input values could be Boolean variables rather than only 0's,

1's as in traditional logic simulators. Consequently, the results of the simulation were not single

values but rather Boolean functions describing the behavior of the circuit for the set of all possible

data represented by the Boolean variables. By representing these Boolean functions as Ordered

Binary Decision Diagrams the task of comparing the results computed by the simulator and the

expected results became straightforward for many circuits. Using these methods it has become

possible to check many (combinational) circuits exhaustively.

Recently, Bryant and Seger began developing a new generation of symbolic simulator based

veri�er. Since the method has departed quite far from traditional simulation, they called the

approach symbolic trajectory evaluation. Here a modi�ed version of a simulator establishes the

validity of formulas expressed in a very limited, but precisely de�ned, temporal logic. This temporal

logic allows the user to express properties of the circuit over trajectories: bounded-length sequences

of circuit states. The veri�er checks the validity of these formulas by a modi�ed form of symbolic

simulation.

Although the general theory underlying symbolic trajectory evaluation, as described in [Seg-

Bry92], is equally applicable to hardware as software systems, we will only describe a somewhat

specialized version tailored speci�cally to hardware veri�cation. For a more comprehensive discus-

sion of the general case, the reader is referred to[SegBry92].

5

In symbolic trajectory evaluation the circuit is modeled as operating over logic levels 0, 1, a

third level X representing an indeterminate or unknown level and a fourth value > representing

overconstrained values. These values are partially ordered by their \information content" as Xv 0,

Xv 1, 0v >, and 1v >, i.e., X conveys no information about the node value, 0 and 1 are fully

de�ned values, and > represent an overconstrained value or a value that is both 1 and 0 at the

same time [Normally, the > value is treated as an error condition]. The only constraint placed

on the circuit model|apart from the obvious requirement that it accurately model the physical

system|is monotonicity over the information ordering. Intuitively, changing an input from X to

a binary value (i.e., 0 or 1) must not cause an observed node to change from a binary value to X

or to the opposite binary value. In extending to symbolic simulation, the circuit nodes can take

on arbitrary quaternary (four-valued) functions over a set of Boolean variables V. Symbolic circuit

evaluation can be thought of as computing circuit behavior for many di�erent operating conditions

simultaneously, with each possible assignment of 0 or 1 to the variables in V indicating a di�erent

condition.

The biggest di�erence between trajectory evaluation and symbolic simulation is the way setting

nodes to some value is accomplished. In a symbolic simulator, if the user requests the system to

set the value on a node, say node A, to some value, say E, then this node takes on this value

immediately, and if the node is an input node, keeps this value until the user requests the node

to take on another value. In trajectory evaluation, on the other hand, the system only tries to

set the node to the value E. In fact, it will set the node to the least element in the partial order

that is consistent with both the current value on the node and the expression E. For example, if

the node currently has the value bX (i.e., if the Boolean variable b is false, then the value on the

node is 0, otherwise it is X), and we request the system to set the value on node A to cX, then

the node will in fact take on the value bcX (i.e., the node will be X unless at least one of b and c

is false). Furthermore, in trajectory evaluation, inputs do not keep their values. If the user wants

an input to a circuit to stay at 1 for 100 time units, he or she will have to state so explicitly in the

antecedent. More about this later.

Properties of the system are expressed in a restricted form of temporal logic having just enough

expressive power to describe both circuit timing and state transition properties, but remaining

simple enough to be checked by an extension of symbolic simulation. The basic decision algorithm

checks only one basic form, the assertion, in the form of an implication [A =) C]; the antecedent

A gives the stimulus and current state, and the consequent C gives the desired response and state

transition. System states and stimuli are given as trajectories over �xed length sequences of states.

Each of these trajectories are described with a temporal formula. The temporal logic used here,

however, is very limited. A formula in this logic is either:

1. UNC (unconstrained),

2. (a) (n is 1) (node n is equal to 1)

(b) (n is 0) (node n is equal to 0),

3. F1 ^ F2 (F1 and F2 must both hold),

4. F when E (the property represented by formula F need only hold for those assignments

satisfying the Boolean expression E),

5. NF (F must hold in the next state).

The temporal logic supported by the evaluator is far weaker than that of more traditional model

checkers. It lacks such basic forms as disjunction and negation, along with temporal operators

6

expressing properties of unbounded state sequences. The logic was designed as a compromise

between expressive power and ease of evaluation. It is powerful enough to express the timing and

state transition behavior of circuits, while allowing assertions to be veri�ed by an extended form

of symbolic simulation. Note however that the construct 4 above is very powerful. For example,

suppose one would like to express the condition that

[A1 "or" A2 =) C]

Clearly, this cannot be expressed directly in the logic. However, by introducing a new Boolean

variable, say a, we could rewrite the above assertion as:

[(A1whena) ^ (A2when:a) =) C]

Thus, at the cost of introducing one more Boolean variable, we can deal with disjunction too.

However, since the number of Boolean variables used greatly a�ect the e�ciency of the trajectory

evaluation, this should be used sparingly.

The constraints placed on assertions make it possible to verify an assertion by a single evaluation

of the circuit over a number of circuit states determined by the deepest nesting of the next-time

operators. In essence, the circuit is simulated over the unique weakest (in information content)

trajectory allowed by the antecedent, while checking that the resulting behavior satis�es the conse-

quent. In this process a Boolean function is computed expressing those assignments for which the

assertion holds.

The assertion syntax outline above is very primitive. To facilitate generating more abstract

notations, the speci�cation language can be embedded in a general purpose programming language.

When a program in this language is executed, it automatically can generate the low-level temporal

logic formulas and carry out the veri�cation process.

The Voss system is a formal veri�cation system based on symbolic trajectory evaluation devel-

oped by Dr. Carl Seger at University of British Columbia. Conceptually, the Voss system consists

of two parts as shown in Fig. 1. The front-end is a compiler/interpreter for a small, fully lazy,

functional language. A speci�cation is written as a \program" in this language. When this speci�-

cation program is executed, i.e., reduced to normal form, it builds up the simulation sequence that

must be run in order to completely verify the speci�cation.

The back-end of the Voss system is an extended symbolic simulator. The simulator uses an

externally generated �nite state machine description to compute the needed trajectories. This

�nite-state machine is a behavioral model of a digital circuit which can be generated from a variety

of hardware description languages. In particular, the �nite state machine can be generated from:

1. From a transistor netlist in .sim or .ntk format by a suite of programs called sim2ntk and

ntk2exe.

2. From a gate netlist in a subset of Silos format by a program called silos2exe.

3. From a data-ow behavioral VHDL program, a structural VHDL program, or from an EDIF

description, via a program called convert2.

Since we are using the ntk2exe tool1 to pre-compile a switch-level netlist, the Voss system can

carry out switch-level veri�cation using the full MOSSIM II switch-level model. In addition, the

1The ntk2exe program is an extensive re-write of the ANAMOS tool as distributed in the COSMOS compiled

switch-level simulator tool suite developed by Randy Bryant and associates at Carnegie Mellon University. Although

virtually a complete re-write, the fundamental research ideas embedded in ntk2exe all have their roots in the ANAMOS

system.

7

FL

fl libraries

user code

.exe format

silos2exe
.sil

format ntk2exe

.ntk
format

sim2ntk
.sim

format

.fl
format

convert2fl

.edi
format

.vbe
format

.vst
format

Figure 1: The Voss veri�cation system.

8

�nite state machine can be back-annotated with extracted delay values and thus fairly sophisticated

delay simulation can also be carried out.

The gate level simulator is (roughly) functionally equivalent to the SILOS II simulator. In

addition, fairly comprehensive delay modeling capabilities has been added for more accurate ver-

i�cation. In order to achieve good performance, the symbolic simulator employs event scheduling

for both the circuit simulation as well as in maintaining the veri�cation conditions

Behavioral and structural VHDL is currently supported through a translator program that is

a derivative of the VHDL simulator distributed with the Alliance 1.1 tool suite. Thus, only data-

ow behavioral VHDL programs are supported. An extensive rewrite of this part of the system

is currently underway, but it is doubtful that it will be ready for general release until June 1994.

If you desperately need a richer VHDL language to work in, please send me an email and I can

inform you on the current status of the translator.

From the Voss user's point of view the basic veri�cation command in the Voss system looks

like:

FSM options fsm ant-list cons-list trace-list;

where options is a string that can give speci�cation options to the trajectory evaluation simulator,

fsm is a behavioral description of a �nite state machine and ant-list and cons-list denote lists of

atomic constraints used to express the veri�cation conditions Each atomic constraint is a 5-tuples

of the form (b,n,v,s,f) which, for a given trajectory, denotes the constraint that \if the Boolean

expression b is true then the node named by n has the value v in all states of the trajectory from

the start state s up to, but not including, the �nal state f". Finally, the trace-list is a list of triples

of the form (n,f,t) requesting a trace of the node n from time f to time t. If the veri�cation is

successful (we will return to this in greater detail later), FSM will return T (true); otherwise it

will return a boolean expression denoting the condition under which it is valid (if it is never valid,

it will simply return F). If the veri�cation fails for some reason, the system prints out a counter-

example for the �rst node for which it encounters an incorrect value.

To give a very simple example, the command:

FSM "" (load_exe "inv.exe") [(T, "input", F, 0, 1)] [(T, "output", T, 1, 2)] [];

expresses a relationship between the input and output node of the circuit \inv.exe" for one particular

input value and where the output value is delayed by one time unit.

A slightly more sophisticated approach is illustrated by the assertion:

let v = variable "v";

FSM ""(load_exe "inv.exe")[(T, `input`, v, 0, 1)] [(T, `output`, (NOT v), 1, 2)] [];

where the constants F and T have been replaced by the symbolic expressions v and (NOT v).

It may appear that the temporal scope of the above assertion is limited to the �rst two instants

of discrete time|that is, \if the input at time 0 is v, then the output at time 1 will be (NOT v)."

However, the temporal scope of this assertion actually extends in�nitely along every trajectory of

the �nite-state machine. This is because the automatic veri�cation procedure considers every state

of the �nite-state machine to be a possible initial state of the machine. At any point along any

trajectory, the current state corresponds to the initial state of some other trajectory. Because the

temporal scope of the above assertion extends in�nitely along every trajectory, the assertion can be

accurately interpreted to express the property that \for all times t, if the value of the input node of

the inverter is v, then the value of the output node at time t+1 will be (NOT v)". We will return

to the pragmatics of trajectory evaluation later in this document. For now we turn our attention

to the interface language to the Voss system.

9

2 Fl|The Meta Language of Voss

In this section2 we provide an introduction to the functional language FL.

Similar to many theorem provers (e.g., the HOL system[HOL]) the Voss command language

for the veri�cation system is a general purpose language. In fact, it shows a strong degree of

similarity to the version of ML used in the HOL system. However, there are several di�erences:

many syntactic but some more fundamental. In particular, the functional language used in Voss

has lazy evaluation semantics. In other words, no expression is evaluated until it is absolutely

needed. Similarly, no expression is evaluated more than once. Another di�erence is that Boolean

functions are �rst-class objects and can be created, evaluated, compared and printed out. For

e�ciency reasons these Boolean functions are represented as ordered binary decision diagrams.

Fl is an interactive language. At top-level one can: 1) perform declarations, and 2) evaluate

expressions. In this section we will introduce the language by several examples.

2.1 Invoking

If the Voss system is installed on your system and you have the suitable search path set up, it su�ces

to type to get a stand-alone version of Fl. In this manual, we have used Voss 1.5 throughout. In

other words, typing yielded:

% fl

/\

/ \/\

/\ / \

/ Voss 1.5 \

VOSS-LIBRARY-DIRECTORY = /isd/local/generic/lib/vosslib

:

Note that the VOSS-LIBRARY-DIRECTORY is installation dependent. We will return to this

later when we discuss the user defaults.

The program can take a number of arguments. In particular,

-f n Start FL by �rst reading in the content of the �le named n.

-I n Set the default search path to n.

-s i Set the default OBDD table to be of size 2i, where i can range from 16 to 22. Normally, this

is not needed. However, if a veri�cation task will be needing more than 1/2 million OBDD

nodes, setting i to some number above 19 will improve performance.

2.2 Expressions

The Fl prompt is : so lines beginning with this contain the user's input; all other lines are output

of the system.

: 2+3;

5

2This chapter is to a large extent modeled after Chapter 1 in the HOL System DESCRIPTION from Cambridge

University. In particular, many of the early examples are taken from this source.

10

Here we simply evaluated the expression 2+3 and FL reduced it to normal form; in this case

computed the result 5. Note that does only support integers as number types. Furthermore,

these integers are limited to +/- 536870912 (two's complement 30 bit numbers). This restriction

on the numbers is likely to disappear shortly, but for Voss 1.5 it is a restriction that is important

to remember.

2.3 Declarations

The declaration let x = e binds a computation of e to the variable x. Note that it does not evaluate

e (since the language is fully lazy). Only if x is printed or used in some other expression that is

evaluated will it be evaluated. Also, once e is evaluated, x will refer to the result of the evaluation

rather than the computation. Hence, the expression e is evaluated at most once, but it may not be

evaluated at all.

: let x = 3+3;

x::int

Note that when expressions are bound to variables, the system simply prints out the inferred type

of the expression. We will return to the typing scheme in FL later. For now, it su�ces to say that

FL tries to �nd as general type as possible that is consistent with the type of the expression.

Contrary to ML, FL 1.5 does not allow simultaneous bindings. Hence, if we would like to bind

the expressions 2 and 4-5 to the variables x and y respectively, we would have to write:

: let x = 2;

x::int

: let y = 4-5;

y::int

A declaration can be made local to the evaluation of an expression e by evaluating the expression

decl in e. For example:

: let y = let x = 4 in x-5;

y::int

would bind the expression 4 to x only inside the expression bound to y. Thus, we get:

: let x = 2;

x::int

: let y = let x = 4 in x-5;

y::int

: x;

2

: y;

-1

FL is lexically scoped, and thus the binding in e�ect at the time of de�nition is the one used. In

other words, if we write:

: let x = 2;

x::int

: let y = x*5;

y::int

: let x = 12;

x::int

and we then evaluate y we will get 10 rather than 60.

11

2.4 Functions

To de�ne a function f with formal parameter x and body e one performs the declaration: let f x =

e. To apply the function f to an actual parameter e one evaluates the expression f e.

: let f x = x+2;

f::(int) -> (int)

: f 4;

6

Note that the type inferred for f is essentially \a function taking an int as argument and returning

an int". Applications binds more tightly than anything else in FL; thus for example: f 3 + 4 would

be evaluated as: ((f 3)+4) and thus yield 9.

Functions of several arguments can also be de�ned:

: let add x y = x+2*y;

add::(int) -> ((int) -> (int))

: add 1 4;

9

: let f = add 1;

f::(int) -> (int)

: f 4;

9

Applications associate to the left so add 3 4 means (add 3) 4. In the expression add 3, the function

add is partially applied to 3; the resulting value is the function of type int->int which adds 3 to

twice its argument. Thus add takes its arguments one at a time. We could have made add take a

single argument of the cartesian product type (int#int):

: let add (x,y) = x+y;

add::((int # int)) -> (int)

: add (3,4);

7

: add 3;

===Type mismatch: (int # int) and int

Run-time error

---- Type error

As well as taking structured arguments (e.g. (3,4)) functions may also return structured results:

: let manhat_dist (x1,y1) (x2,y2) = (x2-x1, y2-y1);

manhat_dist::((int # int)) -> (((int # int)) -> ((int # int)))

: manhat_dist (1,1) (3,5);

(2,4)

Trying to print a function with insu�cient number of actual arguments yield a dash for the

function and the type of the expression is printed out. For example:

: (5, manhat_dist (1,2));

(5,-) ::(int # ((int # int)) -> ((int # int)))

2.5 Recursion

The following is an attempt to de�ne the factorial function:

: let fact n = n=0 => 1 | n*fact (n-1);

Run-time error

---- Undefined variable (fact)

12

The problem is that any free variables in the body of a function have the bindings they had just

before the function was declared; fact is such a free variable in the body of the declaration above,

and since it is not de�ned before its own declaration, an error results. To make things clear consider:

: let f n = n+1;

f::(int) -> (int)

: let f n = n=0 => 1 | n*f (n-1);

f::(int) -> (int)

: f 3;

9

Here 3 results in the evaluation of 3*(f 2), but now the �rst f is used so f 2 evaluates to 2+1=3.

To make a function declaration hold within its own body, letrec instead of let must be used. The

correct recursive de�nition of the factorial function is thus:

: letrec fact n = n=0 => 1 | n*fact (n-1);

fact::(int) -> (int)

: fact 5;

120

It should be pointed out that FL currently does not allow direct de�nition of mutually recursive

functions. One way around this is to de�ne a \wrapper" function that takes as a parameter some

number of name of the mutually recursive function that is intended. Mutually recursive function

de�nitions is quite likely to be added to the next major release of the system.

2.6 Tuples

If e1; e2; : : : ; en have types t1; t2; : : : ; tn, then the FL expression (e1; e2; : : : ; en) have type t1#t2#: : :#tn.

The standard functions on tuples are fst (�rst), snd (second), and the in�x operation , (pair).

: let q = ((1,2),3);

q::((int # int) # int)

: let qq = (1,2,3);

qq::(int # (int # int))

: q;

((1,2),3)

: qq;

(1,2,3)

: let qqq = (1,"abc");

qqq::(int # string)

: qqq;

(1,"abc")

2.7 Lists

If e1; e2; : : : ; en have type t, then the FL expression [e1; e2; : : : ; en] has type (t list). The standard

functions on lists are hd (head), tl (tail), [] (the empty list), and the in�x operation : (cons). Note

that all elements of a list must have the same type (compare this with a tuple where the size is

determined but each member of the tuple can have di�erent type).

13

: let l = [1,2,3,3,2,1,2];

l::(int list)

: hd l;

1

: tl l;

[2,3,3,2,1,2]

: 0:l;

[0,1,2,3,3,2,1,2]

: letrec (len [] = 0) /\ (len (a:rest) = 1+len rest);

len::((* list)) -> (int)

: len l;

7

2.8 Strings

A sequence of characters enclosed between " or ` is a string. The standard functions on strings are

(̂catenation), explode (make string into list of strings) and implode (make list of strings into single

string). There are also int2str and bool2str functions that create a string from an integer or an

object of type boolean. We will return to these later.

: let q = "abc and _12!@@#";

q::string

: let qq = `qw"q qw`;

qq::string

: q^qq;

"abc and _12!@@#qw"q qw"

: explode q;

["a","b","c"," ","a","n","d"," ","_","1","2","!","@","@","#"]

: implode ["1", "2"];

"12"

: int2str (1-34);

"-33"

: bool2str ((variable "a") AND (variable "b"));

"a&b"

2.9 Polymorphism

The list processing functions hd, tl, etc. can be used on all types of lists.

: hd [1,2,3];

1

: hd ["abc", "edf"];

"abc"

: (hd ["a", "b"]), hd [4,2,1];

("a",4)

: let q = [T,T,F];

q::(bool list)

: hd q;

T

Thus hd has several types; for example, it is used above with types (int list) -> int, (string list)

-> string, and (bool list) -> bool. In fact if ty is any type then hd has the type (ty list) -> ty.

Functions, like hd, with many types are called polymorphic, and FL uses type variables *, **, ***,

etc. to represent their types.

14

: let f x = hd x;

f::((* list)) -> (*)

: letrec map fn [] = []

/\ map fn (h:rest) = (fn h) : (map fn rest);

map::((*) -> (**)) -> (((* list)) -> ((** list)))

: letrec fact n = n=0 => 1 | n*fact (n-1);

fact::(int) -> (int)

: map fact [1,2,3,4,5,6,7];

[1,2,6,24,120,720,5040]

The FL function map takes a function f (with argument type * and result type **), and a list l (of

elements of type *), and returns the list obtained by applying f to each element of l (which is a list

of elements of type **). Map can be used at any instance of its type: above, both * and ** were

instantiated to int; below, * is instantiated to (int list) and ** to bool. Notice that the instance

need not be speci�ed; it is determined by the type checker.

: let eq1 x = x=1;

eq1::(int) -> (bool)

: map eq1 [1,2,3,4,12,2,1,2];

[T,F,F,F,F,F,T,F]

It should be pointed out that FL has a polymorphic type system that is sightly di�erent from

standard ML's. In particular, only \top-level" user-de�ned functions can be polymorphic. In other

words, the following works as we would expect.

: let null l = l = [];

null::((* list)) -> (bool)

: let f x y = null x OR null y;

f::((* list)) -> (((** list)) -> (bool))

: f [1,2,3] ["abc", "cdef"];

F

However, if we use the same declaration inside the expression, it must be monomorphic. In other

words, the following example fails.

: let f x y =

let null l = l = [] in

null x OR null y;

f::((* list)) -> (((* list)) -> (bool))

: f [1,2,3] ["abc", "cdef"];

===Type mismatch: int and string

Run-time error

---- Type error

In this respect, FL is similar to the functional language called Miranda3[?].

2.10 Lambda Expressions

The expression \x.e evaluates to a function with formal parameter x and body e. Thus the decla-

ration let f x = e is equivalent to let f = \x.e. The character \ is our representation of lambda,

and expressions like \x.e are called lambda-expressions.

3Miranda is a trademark.

15

: \x.x+1;

- ::(int) -> (int)

: let q = \x.x+1;

q::(int) -> (int)

: q 1;

2

: map (\x.x*x) [1,2,3,4,5];

[1,4,9,16,25]

2.11 Failures

Some standard functions fail at run-time on certain arguments, printing out a string (which is

usually the function name) to identify the sort of failure. A failure with string "t" may also be

generated explicitly by evaluating the expression error "t" (or more generally error e where e has

type string).

: hd(tl [2]);

Failure: ---- Cannot compute hd of the empty list

: 1/0;

Failure: ---- Division by zero

: error "My message";

Failure: ---- My message

A failure can be trapped by catch; the value of the expression e1 catch e2 is that of e1, unless

e1 causes a failure, in which case it is the value of e2. One important property of catch is that it

is (very) strict in its �rst argument. In other words, (hd (e1 catch e2)) will completely evaluate e1
even though only the �rst element in the list may be needed. In view of FL's lazy semantics, the

use of catch should be very carefully considered. In particular, the bindings of catch is dynamic

rather than static so the user beware! It is not unlikely that catch will disappear from FL in future

versions.

2.12 Boolean Expressions

All Boolean expressions in FL are maintained as ordered binary decision diagrams. Hence, it is

very easy to compare complex Boolean expressions and to combine them in di�erent ways. Boolean

variables are created by variable s, where s is of type string. The system uses name equivalence,

and thus

: let v = variable "v";

v::bool

: v=v;

T

: variable "v" = variable"v";

T

The constants true and false are denoted T and F respectively. The standard boolean functions

are available, i.e., AND, OR, NOT, XOR, and = are all de�ned for objects of type Boolean..

Furthermore, there is a special identity operator == that return true or false depending on whether

the two arguments represent the same Boolean function or not.

Note that the variable ordering in the OBDD representation is de�ned by the order in which

each variable function call gets evaluated. Since FL is a fully lazy language, and thus the order

16

in which expressions are evaluated is often di�cult to predict, it is strongly recommended that

each variable declaration is forced to be evaluated before it is being used. In the standard library

default. a function, called declare, is de�ned to simplify this task. We will return to this later

when we discuss the various FL libraries. Also, note that once a variable function call has been

evaluated for a speci�c string argument, the created variable has been placed in the variable order

and thus consequent calls will return this variable. Consequently, the only way of changing the

variable order after a variable has been created, is to quit FL and start it again.

: let a = variable "a";

a::bool

: let b = variable "b";

b::bool

: a AND b;

a&b

: a OR b;

a + b

: NOT a AND NOT b AND T;

a'&b'

: a = b;

a&b + a'&b'

: a == b;

F

: (a=b) == (a AND b OR NOT a AND NOT b);

T

The default style for printing Boolean expressions is as a sum-of-products. Since this may

require printing an extremely large expression, there is a user-setable limit on how many products

that will be printed and the maximum size of a product. For more details how to modify these two

parameters, see the section on the .vossrc �le on page 4.

2.13 Quanti�ers

There are several ways of using quanti�cation. But the \traditional" !x. e (for all x) and ?x. e

(there is an x) can be used as long as the type of x and e is bool. In addition, you can also quantify

away a variable in an expression by quant forall v e or quant thereis v e.

: !a. ?b. (a XOR b);

T

: let a = variable "a"; let b = variable "b"; let c = variable "c";

a::bool

b::bool

c::bool

: : : a AND b OR c;

a&b + c

: quant_forall a (a AND b OR c);

c

: quant_thereis (a OR c) (a AND b OR c);

T

In fact, quant forall and quant thereis quanti�es away all variables in the �rst Boolean expression.

For example:

17

: let v s = variable s;

v::(string) -> (bool)

: let a = v "a"; let b = v "b"; let c = v "c"; let d = v "d";

a::bool

b::bool

c::bool

d::bool

: : : : let ex = (a AND NOT b);

ex::bool

: ex;

a&b'

: let nex = ex AND (a=c) AND (b=d);

nex::bool

: quant_thereis (a AND b) nex;

c&d'

Note that the actual Boolean expression used as �rst argument is irrelevant. The only important

fact is on what variables the expression depends.

2.14 Dependency

Sometimes it is useful to �nd out which Boolean variables a Boolean function actually depends

on. The built-in function depends takes a list of elements of type bool and return the union of the

variables these functions depend on. For example:

: let v s = variable s;

v::(string) -> (bool)

: let a = v "a"; let b = v "b"; let c = v "c"; let d = v "d";

a::bool

b::bool

c::bool

d::bool

: : : : let ex1 = (a=c) AND d;

ex1::bool

: let ex2 = a = b;

ex2::bool

: depends [ex1];

["a","c","d"]

: depends [ex1,ex2];

["a","b","c","d"]

Note that the order of the variables in the list returned by depends is the variable order of the

OBDD representation.

2.15 Substitutions

Given a Boolean function represented as a OBDD, it is convenient to be able to apply the function

to some arguments. This can be accomplished by the substitute command that takes a list of

(variable name, expression) and an expression in which the simultaneous substitution is to be

made. For example,:

18

: let v s = variable s;

v::(string) -> (bool)

: let a = v "a"; let b = v "b"; let c = v "c"; let d = v "d";

a::bool

b::bool

c::bool

d::bool

: : : : let ex = (a AND NOT b);

ex::bool

: ex;

a&b'

: substitute [("a", c), ("b", d)] ex;

c&d'

It should be pointed out that there are no restrictions on the expressions in the substitutions.

In particular, it is possible to \swap" variables. We illustrate this by continuing the example above:

: ex;

a&b'

: substitute [("a", b), ("b", a)] ex;

a'&b

2.16 Type Abbreviations

Types can be given names:

: new_type_abbrev pair = int#int;

: let p = (1,2);

p::(int # int)

However, as can be seen from the example, the system does not make any distinction between the

new type name and the actual type. It is purely a short hand that is useful when de�ning concrete

types below.

2.17 Concrete Types

New types (rather than mere abbreviations) can also be de�ned. Concrete types are types de�ned

by a set of constructors which can be used to create objects of that type and also (in patterns) to

decompose objects of that type. For example, to de�ne a type card one could use the construct

type:

: lettype card = king | queen | jack | other int;

other::(int) -> (card)

jack::card

queen::card

king::card

Such a declaration declares king, queen, jack and other as constructors and gives them values. The

value of a 0-ary constructor such as king is the constant value king. The value of a constructor

such as other is a function that given an integer value n produces other(n).

: king;

- ::card

: other 9;

- ::card

19

Note that there is no print routine for concrete types. If a print routine is desired, one has to

de�ne it. To de�ne functions that take their argument from a concrete type, we introduce the idea

of pattern matching. In particular

let f pat1 = e1

/\ f pat2 = e2

/\ ...

/\ f patn = en;

denotes a function that given a value v selects the �rst pattern that matches v, say pati, binds the

variables of pati to the corresponding components of the value v and then evaluates the expression

ei. We could for example de�ne a print function for the cards in the following way:

: let pr_card king = "K"

/\ pr_card queen = "Q"

/\ pr_card jack = "J"

/\ pr_card (other n) = int2str n;

pr_card::(card) -> (string)

: pr_card king;

"K"

: pr_card queen;

"Q"

: pr_card jack;

"J"

: pr_card (other 5);

"5"

Mutually recursive types can also be de�ned. To do so, simply list the type names on the left

hand side of the equality sign and list the type expressions on the right hand side. For example:

: lettype IExpr, BExpr = Ivar string | Plus IExpr IExpr,

And BExpr BExpr | GEQ IExpr IExpr;

GEQ::(IExpr) -> ((IExpr) -> (BExpr))

And::(BExpr) -> ((BExpr) -> (BExpr))

Plus::(IExpr) -> ((IExpr) -> (IExpr))

Ivar::(string) -> (IExpr)

2.18 Abstract Types

In FL one can also hide the de�nitions of types, type constructors, and functions. By enclosing a

sequence of type declarations and function de�nitions within begin abstype end abstype elist, only

the constructors and/or functions mentioned in the elist will be visible and accessible for other

functions and de�nitions. Thus, one can protect a concrete type and only make some abstract

constructor functions available. To illustrate the concept, consider de�ning a concrete type called

theorem. The only way we would like the user to be able to create a new theorem is to give a Boolean

expression that denotes a tautology (something always true). First we de�ne the expression type.

20

: lettype expr = Forall string expr |

Thereis string expr |

Var string |

True |

False |

And expr expr |

Or expr expr |

Not expr;

Not::(expr) -> (expr)

Or::(expr) -> ((expr) -> (expr))

And::(expr) -> ((expr) -> (expr))

False::expr

True::expr

Var::(string) -> (expr)

Thereis::(string) -> ((expr) -> (expr))

Forall::(string) -> ((expr) -> (expr))

We then de�ne the concrete type theorem and the constructor function is taut. Note that we

also de�ne a couple of help functions. However, only the is taut function is exported out of the

abstract type, and thus is the only way of creating a theorem.

: begin_abstype;

: lettype theorem = Thm expr;

Thm::(expr) -> (theorem)

: letrec assoc x l = l = [] => error "assoc" |

let h = hd l in

(fst h) = x => (snd h) | assoc x (tl l);

assoc::(*) -> ((((* # **) list)) -> (**))

: letrec (eval (Forall s e) al = !x.(eval e ((s,x):al))) /\

(eval (Thereis s e) al = ?x.(eval e ((s,x):al))) /\

(eval (Var s) al = (assoc s al) catch

(error "Free variable")) /\

(eval True al = T) /\

(eval False al = F) /\

(eval (And e1 e2) al = (eval e1 al) AND (eval e2 al))/\

(eval (Or e1 e2) al = (eval e1 al) OR (eval e2 al)) /\

(eval (Not e) al = NOT (eval e al));

eval::(expr) -> ((((string # bool) list)) -> (bool))

: let is_taut e = ((eval e []) == T) => Thm e |

error "Not a tautology";

is_taut::(expr) -> (theorem)

end_abstype is_taut;

We can now use this very safe theorem system, since we can only generate theorems that are

tautologies. For example

: let e = (Forall "a" (Thereis "b" (And (Var "a") (Var "b"))));

e::expr

: is_taut e;

Failure: ---- Not a tautology

: let f = (Forall "a" (Thereis "b" (Or (Var "a") (Var "b"))));

f::expr

: is_taut f;

- ::theorem

21

2.19 In�x Operators

In order to make the FL code more readable, it is possible to declare a function to be in�x (associat-

ing from the left), in�xr (associating from the right), non�x (really pre�x), or post�x. For the in�x

and in�xr directives, the precedence can be given as a number from 1 to 9, where a higher number

binds tighter. Note that pre�x and post�x functions bind higher than any in�x function. Beware

that the �xity declaration modi�es the parser and thus remains in e�ect whether the function is

exported out of an abstract data type or note. This \feature" is likely to be �xed fairly soon. As

an illustration of this idea, consider the following example:

: lettype expr = Var int |

Mult expr expr |

Plus expr expr |

Negate expr;

Negate::(expr) -> (expr)

Plus::(expr) -> ((expr) -> (expr))

Mult::(expr) -> ((expr) -> (expr))

Var::(int) -> (expr)

: letrec eval (Var i) = i /\

eval (Mult e1 e2) = (eval e1) * (eval e2) /\

eval (Plus e1 e2) = (eval e1) + (eval e2) /\

eval (Negate e1) = 0-(eval e1);

eval::(expr) -> (int)

: let ** a b = Mult a b;

**::(expr) -> ((expr) -> (expr))

: let ++ a b = Plus a b;

++::(expr) -> ((expr) -> (expr))

: infix 4 **;

: infix 3 ++;

: let ' i = Var i;

'::(int) -> (expr)

: let q = '1 ++ Negate ('2) ** Negate ('4);

q::expr

: eval q;

9

The next example illustrates how post�x declarations can make the code more readable.

: let ns i = 1000*i;

ns::(int) -> (int)

: postfix ns;

: let to a b = (a,b);

to::(*) -> ((**) -> ((* # **)))

: infix 3 to;

: 2 ns to 4 ns;

(2000,4000)

2.20 Circuit Models

Since the main use of the FL system, and its historical root, is related to hardware veri�cation, there

are a number of built-in functions speci�cally tailored towards hardware modeling and symbolic

trajectory evaluation in particular. Internally, a circuit is represented by a list of nodes (names), and

a next state function. The next state function is mapping the current state of the circuit (including

the current values on the inputs) to a new state of the circuit. Since the circuit representation is

intended for trajectory evaluation, the value domain for each node in the circuit is f0; 1;X;>g and

thus the next state function consists of quaternary (four-valued) extensions of the usual Boolean

22

function. The type of such circuit is fsm (for �nite state machine) and, by default, it does not

have a print function (since the machines are usually much too large to be meaningful anyway to

the user. However, for the curious reader, the command print fsm will print out a pretty complete

version of the state machine. Note that for e�ciency reasons, the next state function also contains

delay and fan-in and fan-out information to aid in the e�cient simulation.

In general, there are two ways of creating a fsm object:

1. Loading a pre-compiled version of a circuit in .exe format.

2. Converting a FL structure into an fsm.

2.20.1 Loading a .exe File

If the original circuit was described in Berkeley .sim format or as a SILOS II gate list, there are

programs distributed with the system that can be used to compile an fsm model directly from

these formats. The common format for such pre-compiled circuit model is a (binary) �le with a

.exe su�x. Loading in the .exe �le and making it an fsm object simply involves calling the load exe

function.

For example, if there is a full adder.exe �le in the current working directory, the following

command would create an fsm object of the circuit.

: let ckt1 = load_exe "full_adder.exe";

ckt1::fsm

Note that there is no theoretical limit on the number of circuit that can be loaded into the FL

system at any particular point in time. However, since fsm models are often quite large, it is

generally advisable not to load more models than absolutely necessary.

2.20.2 Creating an fsm Object Inside FL

Warning: This addition is fairly young and has thus not been extensively tested. Also, it leaves

quite a bit to be desired in terms of not being very \clean and simple". For a reader that is more

interested in using the Voss system rather than writing a new conversion program from some other

netlist format, this section can be skipped.

The main routine for creating an fsm object is make fsm. The type of make fsm is (Set) -> (fsm)4

Before going into how an object of type Set can be constructed, we need to make a small digression

and introduce the quaternary logic type. For historical reasons, the name of the quaternary objects

is tern, and tern is de�ned as the concrete type:

4Currently, when FL is invoked, the type of make fsm is actually (*)->(fsm), but this is a bug that will be removed

shortly.

23

: lettype tern = One |

Zero |

X |

Z |

Val string |

And tern tern |

Or tern tern |

Not tern;

Not::(tern) -> (tern)

Or::(tern) -> ((tern) -> (tern))

And::(tern) -> ((tern) -> (tern))

Val::(string) -> (tern)

Z::tern

X::tern

Zero::tern

One::tern

where One, Zero, X, And, Or, and Not are the obvious functions. Z is used to represent the top

value. Finally, Val s is used to refer to the value on node s. Thus, as a concrete example, the next

state function of a node "o" may be described as (Not (And (Val "in1") (Val "in2"))).

There are four constructor functions for an object of type Set:

1. Empty,

2. Element (string#((tern#tern) list)),

3. Union Set Set, and

4. Sequential Set Set.

The Empty is introduced to make writing functions that generate objects of type Set easier. Element

is the constructor that actually introduces new nodes and also give driver functions for the node.

In general, Element n gvl, will create a node named n. This node will at least (more about this

later) the drivers listed in the gvl list. A driver is simply a pair of quaternary expressions: the �rst

object of the pair being a guard, and the second part the value being driven when the guard is

true. For a combinational node, the driver list is a single pair whose guard is One and whose value

component is the next state function of the gate. For more complex nodes, like register nodes or

bus nodes, the guard-value list is often much longer.

The Union construct is used to gather a collection of these Element declarations so that an fsm

can eventually be made. Finally, the Sequential constructor takes two objects S1 and S2 of type Set

and merges them into a single object of type Set. In that sense, Sequential behaves pretty much

like Union. The di�erence is how the two deal with nodes de�ned in both set S1 and set S2 and

for which both nodes may have at least one of their guards enabled at the same time. Union will

�nd the greatest lower bound of the values being driven at the same time whereas Sequential will

assume that the driver in the second set overrides the driver in the �rst. To illustrate the di�erence,

consider the following example:

24

: let a = Element ("in1", [(One, One)]);

a::Set

: let b = Element ("in1", [(One, Zero)]);

b::Set

: let ex1 = Union a b;

ex1::Set

: let ex2 = Sequential a b;

ex2::Set

: let m1 = make_fsm ex1;

m1::fsm

: let m2 = make_fsm ex2;

m2::fsm

: m1;

Now m1 and m2 will both be fsm models with a single node called in1. However, in m1, the next

state function of in1 will be X, since that is the most we can say from the inconsistent driver

commands given in the example. On the other hand, the next state function of the in1 node in m2

will be Zero.

For an example of using this facility, the directory HDL in the demo distribution illustrates how

one can go about de�ning a new description language in order to create an fsm object.

2.21 Queries to the Circuit Model

There are four built-in functions that are useful in dealing with an fsm model: nodes, fanin, and

fanout, and get node val. Nodes takes an fsm model and returns a list of lists of circuit nodes.

The reason for the double listing is that a node may have more than one name (only from .exe �le

translations). Fanin takes an fsm model and a name of a node and returns the list of node names

that the next state function depend on. Fanout works in a similar way, but for the fanout nodes.

Finally, get node val takes an fsm object and the name of a node and returns the encoded version

of the current value of the node. The encoding used is: X = (T; T), 1 = (T; F), 0 = (F; T), and

> = (F; F). Of course, the two Boolean values are often Boolean functions over some variables.

The main use of the get node val function is when the simulation is aborted for some reason.

Get node val can then be used to probe the current state of the system. For example, assuming

there is a full adder.exe �le in the current working directory, we would get:

: let ckt = load_exe "full_adder.exe";

ckt::fsm

: nodes ckt;

..[["cout"],["t4"],["t3"],["t2"],["result"],["cin"],["t1"],["b"],["a"]]

: fanin ckt "cout";

["t2","t3","t4"]

: fanout ckt "t3";

["cout"]

: fanout ckt "t4";

["cout"]

: fanout ckt "a";

["t3","t2","t1"]

: get_node_val ckt "t2";

..(T,T)

If the user also loads in the "default." standard library, there is the very useful function

excitation that also takes an fsm model and a node name, but that returns the next state function

for binary inputs. Note, however, that the current version of the excitation function only works

correctly for unit delay nodes.

25

: load "defaults.fl";

-Loading file defaults.fl

T

: excitation ckt "cout";

....

Trace started for node: cout

Current value:X

.Time: 1

.Trace: Node cout at time 1: t4' + t3' + t2'

Time: 2

Trace ended for node: cout

"t4' + t3' + t2'"

We will return to this in Section 4.

2.22 Symbolic Trajectory Evaluation

There is actually only one built-in command for symbolic trajectory evaluation called FSM. In gen-

eral, FSM determines, through symbolic trajectory evaluation, whether an antecedent/consequent

pair hold in for some circuit. FSM will return a Boolean function that gives the condition for the

veri�cation to succeed. For most applications the desired return value is T.

In general FSM is invoked as

FSM options fsm ant_list cons_list trace_list

where options is a string that can contain a combinations of the following ags:

-a Abort the veri�cation at the �rst antecedent or consequent failure. If the veri�cation is aborted,

FSM will return a Boolean function that gives the condition for this failure to manifest itself.

Note that this is contrary to FSM's usual behavior which is to return the Boolean function

that gives the conditions for the veri�cation to succeed.

-m n Abort the veri�cation after reaching time n.

-i Allow antecedent failures. In other words, compute a straight implication. The normal behavior

of the veri�cation process is to disallow antecedent failures. Thus the default veri�cation

condition is both to check that every trajectory the circuit can go thorough that is consistent

with the antecedent is also consistent with the consequent, and that there is at least one (real)

circuit trajectory that is consistent with the antecedent.

-w Do not print out warning messages.

-t s In addition to printing out trace messages on stderr, also send the trace events in Postscript

format to the �le s. By previewing or printing out the �le the user gets a waveform diagram

for the traced signals.

-T s Same as -t, but generate Postscript code in landscape mode.

The second argument to FSM must be an object of the fsm type representing a circuit that is

to be simulated.

The ant list and cons list are both lists of �ve-tuples. Each �ve-tuple is of the form (g; n; v; s; t),

where g is a Boolean function denoting the domain for which this assertion/check should be carried

26

out, n is the name of a node, v is the value to be asserted/checked, and s and t denote the start

and stop times for this assertion/check respectively.

Finally, the last argument to FSM is a list of triples. Each triple is of the form (n; s; t), where n

is a name of a node to be traced and s and t are the start and stop times for this trace respectively.

Of course, in practice, it would be quite tedious to have to write all speci�cations in terms

of lists of �ve-tuples. Consequently, a small language (actually a small set of useful functions)

has been de�ned in the library �le "veri�cation.". These functions make it much easier to write

speci�cation. However, it should be remembered that when the veri�cation is actually performed,

all these higher level constructs gets translated down to the two lists of �ve-tuples.

For more details on how to use the FSM function, we refer the reader to the tutorial section.

27

3 Syntax Summary

This is a (somewhat edited) version of the parser for FL. Since FL is still evolving, the actual

syntax accepted by the program may di�er slightly from this one. However, I have tried to make

the grammar as close as possible to the parser in Voss 1.5.

/* Program */

pgm : pgm ; stmt

| stmt

/* Statements */

stmt : expr

| decl

| type_decl

| print_all_fns

| postfix VAR

| nonfix VAR

| infix NUMBER VAR

| infixr NUMBER VAR

| begin_adt

| end_adt var_list

var_list : var_list VAR

| VAR

/* Function declarations */

decl : let fn_defs

| letrec fn_defs

fn_defs : fn_def /_ fn_defs

| fn_def

fn_def : VAR lhs_expr_list

| (VAR lhs_expr_list)

lhs_expr_list : lhs_expr lhs_expr_list

| = expr

lhs_expr : NUMBER

| T

| F

| []

| STRING

| VAR

| (lhs_expr0)

| [expr_list]

lhs_expr0 : lhs_expr1 , lhs_expr0

| lhs_expr1

lhs_expr1 : lhs_expr1 lhs_expr

| lhs_expr

28

/* Type declarations */

type_decl : lettype type_name = type_expr_list

| new_type_abbrev = simple_type

type_name : type_name , VAR

| VAR

type_expr_list : type_expr_list , type_expr

| type_expr

type_expr : type_expr | type

| type

type : VAR type_list

type_list : type_list simple_type

| /* Empty */

simple_type : VAR

| simple_type -> simple_type

| simple_type # simple_type

| simple_type list

| (simple_type)

/* Expressions */

expr : decl in expr

| ! VAR . expr

| ? VAR . expr

| expr => expr | expr

| _ VAR . expr

| expr POSTFIX_VAR

| expr INFIX_VAR expr

| expr INFIXR_VAR expr

| expr , expr

| expr = expr

| expr expr1

| expr1

expr1 : [expr_list]

| []

| (expr)

| VAR

| NUMBER

| T

| F

| NIL

| STRING

| CONSTANT

expr_list : expr , expr_list

| expr

3.1 Reserved Words in FL

The following list contains all identi�ers that are currently de�ned in FL. This list will likely change

in future releases.

begin abstype end abstype forall last in in�x in�xr let letrec lettype list

new type abbrev non�x post�x print all fns quit

29

4 The .vossrc Default File

If the user puts a .vosrc �le in his/her home directory or in the current directory, FL will read

this �le to set a number of defaults. Below we include a copy of the default .vossrc �le which also

include the acceptable alternatives.

###########################

Run time options for FL

###########################

#VOSS-LIBRARY-DIRECTORY =

#

PRINT-ALIASES: should both primary node name and aliases be printed?

PRINT_ALIASES = TRUE

#

PRINT-FORMAT for Boolean expressions: SOP (sum-of-products) INFIX TREE

PRINT-FORMAT = SOP

MAX-PRODUCTS-IN-SOP-TO-PRINT = 5

#

PRINT-TIME = TRUE

NOTIFY-OK_A-FAILURES = TRUE

NOTIFY-OK_C-FAILURES = TRUE

NOTIFY-TRAJECTORY-FAILURES = TRUE

NOTIFY-CHECK-FAILURES = TRUE

PRINT-FAILURE-FORMULA = TRUE

#

Max number of steps to reach stability before setting to X

STEP-LIMIT = 100

#

DELAY-MODEL is one of: UNIT-DELAY, MINIMUM-DELAY, MAXIMUM-DELAY,

AVERAGE-DELAY, or BOUNDED-DELAY

DELAY-MODEL = UNIT-DELAY

30

5 Built-In Functions in FL

The following list contains all prede�ned functions in FL. The vast majority of these functions can

be re-de�ned. In the list I also indicate whether the function is in�x, whether it associates to the

right and the precedence of the operator.

String manipulations

chr Convert an integer to the ASCII character corresponding to it.

ord Given a string returns the ASCII code for it.

explode Convert string to list of single character strings.

implode Takes a list of single character strings and catenates them together.

bool2str Convert a Boolean to a string.

int2str Convert integer to string for printing purposes.

General functions

catch in�x 2 Evaluate lhs, if it fails return e2 otherwise return result of lhs.

error Fail and print out message.

empty Applied to a list returns true if list is empty, false otherwise.

load Re-direct standard input to this �le;

print Given a string, prints it out on stdout. Watch out for laziness!

time Given an expression forces it to be completely evaluated and returns

a pair of result, time pair.
seq in�x 1 Evaluate lhs �rst, throw away result and then evaluate rhs.

Boolean

< in�x 3 Less than.

<= in�x 3 Less than or equal.

== in�x 3 Identical.

!= in�x 3 Not equal.

> in�x 3 Greater than.

>= in�x 3 Greater than or equal to.

variable Given a string returns the Boolean variable with this name.

AND in�x 4 Boolean conjunction.

OR in�x 3 Boolean disjunction

XOR in�x 3 Boolean exclusive or

NOT Boolean negation.

!v.e compute for all x in 0,1 e

?v.e compute there is x in 0,1 e

bdd size Given a list of Boolean functions, returns the total size in number of

BDD nodes
depends Given a list of Boolean functions, returns a list of the Boolean vari-

ables the function depends on.
quant forall Universally quantify away all Boolean variables in the �rst argument

from the expression in the second argument.
quant thereis Existentially quantify away all Boolean variables in the �rst argu-

ment from the expression in the second argument.
substitute Applies a substitution to a Boolean expression.

Finite State Machine Manipulation

load exe Read in exe �le and return the fsm.

31

make fsm Converts FL description of system into fsm.

nodes Given fsm returns a list of node lists. Each node list consists of all

aliases for the node.
fanin Given fsm model and node name returns a list of node names the

next state function of the node depends on.
fanout Given fsm model and node name returns a list of node names the

nodes that depend on the value of this node.
get node val Given fsm model and node name returns the encoded version of the

current value on the node.
print fsm Print out an internal representation of FSM. Pretty obscure.

FSM Basic trajectory evaluation function.

Dealing with Cartesian Products

e1 , e2 Returns the tuple (e1, e2)

fst Returns the �rst element in tuple.

snd Returns the second component of tuple.

Dealing with Lists

hd Returns the �rst element in a list.

tl Returns the tail of a list. Note that tl [] = [].

: in�xr 2 Corresponds to the CONS operator in LISP.

Arithmetic Functions

in�x 4 Multiplication.

/ in�x 4 Integer division.

+ in�x 3 Integer addition.

- in�x 3 Integer subtraction.

^ in�x 3 String catenation.

32

6 Standard Libraries

Since Fl is a very young language, there are no extensive standard libraries and thus this section

is very tentative and is likely to be modi�ed signi�cantly in future releases. All standard libraries

reside in the vosslib directory. The easiest way to make sure this directory is in the search path for

 is to create a �le called .vossrc in your home directory that contains a line

VOSS-LIBRARY-DIRECTORY = /path/where/voss/is/installed/vosslib

6.1 default.

This is a basic library that contains many useful general functions.

length l Returns the length of the list l.

append l1 l2 Appends lists l1 and l2. Note '@' and 'and' are in�x aliases to append.

el i l Select element i in list l. List elements are numbered from 1.

last l Return the last element in list l.

butlast l Return the list l with the last element removed.

replicate x n Return a list with n copies of x as elements.

map fn l Apply the function fn to each element of the list l and return the

resulting list.
itlist f l x Combine all the elements in l with the function f, i.e., f (hd l) (f (el

2 l) (f (el 3 l) (... (f (last l) x)))...).
rev itlist f l x As itlist, but do it in reverse.

�nd p l Return the �rst element in the list that makes the predicate p true.

exists p l Determine whether an element exists in the list l that satis�es the

predicate p.
forall p l Determine whether all elements in in the list l satis�es the predicate

p.
mem x l Determines whether there is an element in l equal to x.

assoc x al Return the second component of a pair in the list l whose �rst com-

ponent is equal to x.
rev assoc x l Same as assoc but exchange meaning of fst and snd.

rev xl Reverse list xl.

�lter p l Returns the list obtained by removing from l every element that does

not satisfy p.
at ll Takes a list of lists and return the list obtained by merging all the

lists.
interleave ll Takes a list of lists and returns a single list that is the interleaving

of each list.
combine l r Takes lists l and r and creates a list of pairs whose �rst components

are drawn from l and whose second components are drawn from r.
split pl Takes a list of pairs and returns a pair of lists. The �rst list are all

�rst components of the pairs and the second list contain all second

components of the pairs.
s1 intersect s2 Return the list of elements common to both s1 and s2.

s1 subtract s2 Return the list of elements that are in s1 but not in s2.

s1 union s2 Return the union (no duplicates) of s1 and s2.

distinct l Determines whether there are any duplicates in the list l. If so,

returns false; otherwise returns true.
setify l Take a list and make it into a set (no duplicates).

33

s1 set equal s2 Determines whether the two sets s1 and s2 are equal.

declare vl Takes a list of Boolean variables and forces them to be evaluated

in the order they appear in the list. Useful in declaring Boolean

variables for the OBDD ordering.
num2str n Converts a number (positive) to a string.

lg n Computes the number of bits requires to represent n as an unsigned

binary number.
bdd pro�le expr list Takes a list of Boolean expressions and prints out a histogram over

the width of the combined OBDD forest.
excitation ckt nd Computes the next state function for node nd in circuit ckt. NOTE:

this function only works correctly when using the UNIT-DELAY

model.
node pro�le ckt node list Prints out a bdd pro�le for all the current values on the nodes in

node list. Mostly useful in conjunction with the '-m n' option to

FSM (i.e., abort the simulation at a suitable time and check the size

and pro�le of the OBDDs on the selected nodes.

6.2 veri�cation.

This is the basic veri�cation library that contains useful functions to make writing veri�cation

conditions much more convenient. It should be noted that this is an abstract data type so not all

functions de�ned in the library are exported. In order to shorten the typing information, we use

the following shorthand: voss tuple = (bool, (string, (bool, (int, int)))). All these functions, with

the exception of node vector, variable vector, verify and nverify returns lists of �ve-tuples, of the

form described in the description of FSM. Briey, the functions are as follows:

UNC Unconstrained. Useful as padding when writing functions generating

veri�cation conditions.
n is v Node n is asserted/checked to have the value v with guard true.

nv isv vv Node list nv is asserted/checked to have the values in the value list

vv with guard true.
node vector s n Create a list of strings of the form s catenated with the string repre-

senting integer i, where i goes from (n-1) to 0.
variable vector s n Create a list of Boolean variables of the form s catenated with the

string representing integer i, where i goes from (n-1) to 0. Note that

these variables are not declared until they are forced to be evaluated.

See declare in defaults. for a function to do so.
vl when e Imposes the domain constraint denoted by the Boolean expression e

on all the �ve-tuples in vl.
vl from t Set all the starting times in the �ve-tuples in vl to t.

vl to t Set all the ending times in the �ve-tuples in vl to t.

during f t vl Set all the starting and ending times in the �ve-tuples in vl to f and

t respectively.
vl1 then vl2 Merge the lists together, but adjust the durations for the �ve-tuples

in vl2 so that the \time 0" for vl2 is equal to the maximum time of

any �ve-tuple in vl1
vl for t Same as 'to' above.

verify fsm l ant cons trl An old shorthand for (declare l) seq (FSM "" fsm ant cons trl. Prob-

ably should be removed.
nverify fsm l ant cons trl Same as verify but the �rst argument is the option string to FSM.

Again, should be viewed as obsolete.

34

SymbIndex nl addr fn Symbolic indexing function. Will apply the function fn to every

element i in nl and then apply a when condition to each result that

requires addr to be equal to i.

6.3 arithm.

This is a library of bitvector functions. A bitvector is represented as a list of Booleans and is viewed

as a big-endian vector, i.e, the head of the list is the most signi�cant bit.

num2bv sz n Convert the integer n to a bitvector of size sz.

bv2num bv If the bitvector bv does not contain any Boolean variables, view it

as an unsigned binary number and convert it to a number.
pre�x n av Return the n �rst elements of av.

su�x n av Return the n last elements of av

av add bv Add the two bitvectors together.

increment av Add one to the bitvector av.

ones complement av Return the 1's complement of the bitvector av.

twos complement av Return the 2's complement of the bitvector av.

av subtract bv Subtract bitvector bv from bitvector av.

av greater bv Compute the Boolean expression for the number denoted by av is

greater than the number denoted by bv. Both bitvectors are viewed

as unsigned integers.
av equal bv As for greater, but for equality.

av geq bv As for greater, but for greater than or equal to.

av less bv As for greater, but for less than.

av leq bv As for greater, but for less than or equal to.

av bvAND bv Bit-wise AND.

av bvOR bv Bit-wise OR.

av bvXOR bv Bit-wise XOR.

bvNOT av Bit-wise NOT.

6.4 HighLowEx.

This library de�nes only two funcitons: Hexpl and Lexpl. The basic task of both is to take a

Boolean function and return an assignments to some set of variables that would make the Boolean

function evaluate to true. The two functions di�er only in that Hexpl tries to �nd an assignment

with as many 1's as possible, whereas Lexpl tries to assign as many 0's as possible. In order to

make the output more readable, both functions take as �rst argument a list of pairs. The �rst

element in the pair is a string and the second argument is a list of Boolean variables. The string

will be used as a header for the assignemnts to the list of variables. For example, is i, Aa, Ab, a, b,

d, and q denote lists of Booelan variables, and f denote some Boolean expression over these (and

possibly other) variables, then we may get:

35

: Lexpl [("I",i),("Aa",Aa),("Ab",Ab),("a",a),("b",b),("d",d),("q",q)] f;

"

I = 001011000

Aa = 0000

Ab = 0001

a = 1111

b = 0000

d = 0000

q = ----

"

where 0's and 1's denote assignemnt to the corresponding variables to make f evaluate to 1, whereas

� denote don't care conditions.

36

7 Examples of Using the Voss System

In this section we will give some examples of symbolic trajectory evaluation and how the Voss

system can be used for other veri�cation tasks. The speci�cation code and circuit descriptions for

these examples are available in the directory demos in the Voss demo distribution.

7.1 AMD2901

Our �rst example of symbolic trajectory evaluation is the veri�cation of two di�erent5 descriptions

of the 2901 ALU bitslice from Advanced Micro Devices. In Fig. 2 we show a high level schematic of

the circuit. As can be seen in the �gure, the circuit contains both some non-trivial combinational

circuitry and a fair amount of state storing registers. Of course, it is not a very complex design, but

it is not an altogether trivial one either. For a typical, fairly informal, speci�cation of the design,

we refer the reader to Appendix A.

In this section we will go through the veri�cation, and its various alternatives, in a fair amount

of detail. In the later parts of the document, we will only highlight some speci�c characteristics for

the other veri�cation tasks.

Our �rst veri�cation task is to verify that a behavioral VHDL model is correct. In particular, we

will discuss how to derive the fsm model of the design, how to structure a speci�cation/veri�cation

�le, how to debug the circuit (and the speci�cation!), and how to deal with the issue of variable

ordering. The code for the tutorial is available in the directory demos/AMD2901/behavioral VHDL

in the demo distribution.

7.1.1 Creating the fsm Model

Before we can verify the circuit, we must obtain an fsm model that can be used in the symbolic tra-

jectory evaluation. In this case, the behavioral VHDL model is de�ned in the �le amd2901 beh.vbe.

We are using the convention that behavioral VHDL models have �lenames ending with .vbe, struc-

tural VHDL �les have su�x .vst, EDIF �les have su�x .edi, and sim and ntk �les have su�ces .sim

and .ntk respectively. In this case, we are using the behavioral VHDL model. For a more detailed

discussion on what subset of VHDL that is supported, we refer the reader to Appendix F.

The program convert2 can be used to convert the .vbe (as well as .vst and .edi) �le to a .

�le, ready to be loaded into FL.

% ls

amd2901 beh.vbe spec.fl

% convert2fl amd2901 beh.vbe

% ls

amd2901 beh.fl amd2901 beh.vbe spec.fl

It is worth looking at the amd2901 beh. �le a bit closer. The �le looks roughly as shown in

Fig. 3:

The �le begins by encapsulating all the de�nitions inside an abstract data type. By only

exporting the �nal result in the end, we e�ectively achieve information hiding. We then load in the

library EXE. that contains all the functions used to create an object of type Set that eventually

will be used to create the fsm object. The �le then contains a large number of de�nitions used to

create names that are easier to use in the translation. Finally, the real set of next state functions

are given. There are four basic types of nodes: input, output, bus, and register nodes. An input

5We actually have three di�erent netlist descriptions of the circuit: behavioral VHDL, structural VHDL, and

EDIF. All of these are taken from the Alliance 1.1 distribution.

37

Shifter

 &

 RAM

Shifter
 &
Q_reg

alu_source selector

ALU

output selector

F

A B Q

A

F

F
B_in

I(2,1,0)

I(5,4,3)

I(8,7,6)

I(8,7,6)

I(8,7,6)

I

D

A_add

B_add

Y

Figure 2: Block diagram of AMD 2901

38

begin abstype;

load "EXE.fl";

// Behavioral Description for Entity amd

let VSSP = "vssp";

let VDDP = "vddp";

let VSS = "vss";

let VDD = "vdd";

let Y 0 = "y[0]";

...

let ACCU 3 = "accu[3]";

Set let AMD =

(Output (COUT,

(((Val C SUMRS 3) And (Not (Val I 3) And Not (Val I 4)

And Not (Val I 5))) Or (((Val C DIFSR 3) And ((Val I 3)

And Not (Val I 4) And Not (Val I 5))) Or ((Val C DIFRS 3)

And (Not (Val I 3) And (Val I 4) And Not (Val I 5)

))))))| |

...

(BusDrv(Y 1 , [(

Not (Val NOE),

(((Val RA 1) And (Not (Val I 6) And (Val I 7) And

Not (Val I 8))) Or ((((((((Val ALU OUT 1) And (Not (Val I 6)

And Not (Val I 7) And Not (Val I 8))) Or ((Val ALU OUT 1)

And ((Val I 6) And Not (Val I 7) And Not (Val I 8)

))) Or ((Val ALU OUT 1) And ((Val I 6) And (Val I 7)

And Not (Val I 8)))) Or ((Val ALU OUT 1) And (Not (Val I 6)

And Not (Val I 7) And (Val I 8)))) Or ((Val ALU OUT 1)

And ((Val I 6) And Not (Val I 7) And (Val I 8)))

) Or ((Val ALU OUT 1) And (Not (Val I 6) And (Val I 7)

And (Val I 8)))) Or ((Val ALU OUT 1) And ((Val I 6)

And (Val I 7) And (Val I 8))))))]))| |

...

(RegDrv(ACCU 3 , [(

(Not (Val WCKACCU) And Not (Stable WCKACCU)),

Not (Val ACCU IN 3))]));

let AMD = make fsm AMD;

end abstype AMD;

Figure 3: Structure of FL �le obtained by convert2.

39

node has no next state function given, and thus will always become X unless the value on the node

is asserted. An output node always take on the value of the next state function. A bus node has

several drivers and takes on the value X if no-one is driving the node. Finally, a register node

can also have several drivers. However, if no driver is active, it keeps its latest value. If there are

more than one driver active for a bus or register node, the resulting value will be the greatest lower

bound of the di�erent values being driven. In other words, if all active drivers agree on the value,

this will be the value of the next state function. On the other hand, if the active drivers disagree

on the value, the next state will be X.

Once all nodes, and their associated next state functions, have been given, the FL program

proceed to convert the FL Set object to an fsm object by invoking make fsm. Finally, only the

obtained fsm object is exported out from the abstract data type, and thus, loading amd2901 beh.

will only de�ne the fsm object named AMD.

7.1.2 Structuring the Speci�cation File

Although strictly speaking not necessary, it has been our experience that following a fairly stan-

dardized style when writing a speci�cation/veri�cation program helps both in debugging as well

as in breaking down the veri�cation task into manageable sub tasks. The format we will describe

here has been used quite successfully in teaching the Voss system to a couple of graduate classes

and appears to work well.

Before we go into the details of the structure of the �le, it is worth spending a moment discussing

how to work with the system. The typical work mode in a window environment (or emacs) is

to develop the speci�cation script in a standard text editor and then cut and paste the code into

a running copy of to make sure no syntax errors slip by and also to try things out. In general,

for programmers used with compiled languages, the largest hurdle to overcome is the idea that

you should not write the whole program before testing parts of it. In fact, it is often useful to

test every new function de�ned with some arguments just to make sure they appear to be correct.

Also, quitting the session once-in-a-while and reloading the de�nitions directly from the edited

�le, ensures that no de�nitions gets forgotten to be put it.

The structure of a speci�cation/veri�cation �le is broadly divided into the following sections:

1. Loading of needed library �les and circuit model(s).

2. De�ning short hands for the actual names of nodes in the circuit that needs to be as-

serted/checked.

3. De�ning the clocking scheme. In particular, de�ne the length of a clock cycle, set-up and

hold times etc.

4. De�ne timing and node abstraction functions that allows the high-level speci�cation to be

stated in terms of abstract entities, rather than be cluttered with details that are largely

irrelevant.

5. Declaring the Boolean variables needed in the veri�cation process. This also includes some

function for declaring the variables in some suitable order to achieve acceptable OBDD per-

formance.

6. High-level speci�cation functions that denotes the desired behavior of the system.

7. Veri�cation conditions in the form of antecedent and consequent de�nitions.

40

Loading the library �les and the circuit model is usually quite straightforward. In our case we

simply have:

load "verification.fl";

load "arithm.fl";

// --

// Load fsm model (called AMD)

load "amd2901 beh.fl";

Finding the names of circuit nodes is usually tedious, but not overly di�cult. Also, it is

highly dependent on the source of the circuit and how well it is documented. One major practical

di�erence between traditional simulation and trajectory evaluation, is the need to �nd names on

internal state storing elements in the circuit. In other words, �nding the names of the nodes in some

of the latches that store important state. It should be emphasized though that the registers that

has to be exposed are the ones that naturally would be discussed when describing the behavior of

the circuit. Thus, fortunately, it is often the case that some of the internal registers in the control

logic never need to be exposed.

In our case, we need to �nd the names of all inputs, outputs, and all the names of the RAM

cells and the Q register cells. There are several ways of doing this, but a combination of looking at

the .vbe and the translated . �le in addition to loading the �le and giving the command: nodes

AMD, will su�ce to �nd the names of the nodes. In Fig. 4 we show the de�nitions we use. Note that

we actually explicitly listed all the nodes. If there are very many nodes, it is often more convenient

to de�ne a function that creates these lists of nodes. For example, we could have replaced the big

listing of all the RAM cell names with the (equivalent) de�nition

let ram =

let rv = rev (node vector "ram" 16) in

let mk nd vec name = [name^"[3]",name^"[2]",name^"[1]",name^"[0]"] in

map mk nd vec rv;

De�ning the clocking scheme and timing parameters are often relatively straightforward as well.

When using a unit delay model, the only constraint on the length of the cycle is usually that it must

be long enough for the circuit to stabilize between consecutive clock signals. Of course, if a more

accurate delay model is used, the exact value of the clock cycle must be in terms of the basic time

unit that was used in the circuit description. In the alpha release of Voss, only circuit descriptions

in Silos netlist format can use average, minimum, maximum and bounded delay timing models6

and thus usually the values for clock cycle length etc. are fairly arbitrary. For our example, we use

the following de�nitions:

// Clocking scheme

let PHASE = 50;

let CYCLE = 2*PHASE;

let LATCH DEL = 5;

let HOLD = 5;

let cycle n = (n-1)*CYCLE;

let phiL n = (n-1)*CYCLE;

let phiH n = (n-1)*CYCLE+PHASE;

Note that we also de�ne some convenient functions for abstracting the time references. Thus, we

de�ne functions that map from an abstract cycle count and relative position in the clock cycle,

6Actually, switch-level models can also use this feature if the .exe �le is accompanied by a .del �le that contains

min/max rise and fall delays for all the nodes in the circuit. For more details, the reader is referred to page 65.

41

// Short-hands for circuit nodes

let I = ["i[8]", "i[7]", "i[6]", "i[5]", "i[4]",

"i[3]", "i[2]", "i[1]", "i[0]"];

let Aadd = ["a[3]", "a[2]", "a[1]", "a[0]"];

let Badd = ["b[3]", "b[2]", "b[1]", "b[0]"];

let D = ["d[3]", "d[2]", "d[1]", "d[0]"];

let Y = ["y[3]", "y[2]", "y[1]", "y[0]"];

let RAM0 = "r0";

let RAM3 = "r3";

let Q0 = "q0";

let Q3 = "q3";

let CLK = "ck";

let C0 = "cin";

let OEbar = "noe";

let C4 = "cout";

let Gbar = "ng";

let Pbar = "np";

let OVR = "ovr";

let F3 = "signe";

let F30 = "zero";

let FUNC = "fonc";

let TEST = "test";

// Names of register nodes

let Q = ["accu[3]", "accu[2]", "accu[1]", "accu[0]"];

let ram = [["ram0[3]", "ram0[2]", "ram0[1]", "ram0[0]"],

["ram1[3]", "ram1[2]", "ram1[1]", "ram1[0]"],

["ram2[3]", "ram2[2]", "ram2[1]", "ram2[0]"],

["ram3[3]", "ram3[2]", "ram3[1]", "ram3[0]"],

["ram4[3]", "ram4[2]", "ram4[1]", "ram4[0]"],

["ram5[3]", "ram5[2]", "ram5[1]", "ram5[0]"],

["ram6[3]", "ram6[2]", "ram6[1]", "ram6[0]"],

["ram7[3]", "ram7[2]", "ram7[1]", "ram7[0]"],

["ram8[3]", "ram8[2]", "ram8[1]", "ram8[0]"],

["ram9[3]", "ram9[2]", "ram9[1]", "ram9[0]"],

["ram10[3]", "ram10[2]", "ram10[1]", "ram10[0]"],

["ram11[3]", "ram11[2]", "ram11[1]", "ram11[0]"],

["ram12[3]", "ram12[2]", "ram12[1]", "ram12[0]"],

["ram13[3]", "ram13[2]", "ram13[1]", "ram13[0]"],

["ram14[3]", "ram14[2]", "ram14[1]", "ram14[0]"],

["ram15[3]", "ram15[2]", "ram15[1]", "ram15[0]"]];

Figure 4: De�nition of short-hands for the node names.

42

to the actual circuit time. For example, the function phiH maps an abstract cycle count n to the

actual circuit time when the clock signal goes high in cycle n.

The next part of the speci�cation �le|abstraction functions for inputs, outputs, and latch

signals|is often the most di�cult to get right. In particular, unless the design is using a very well

de�ned clocking methodology, it is usually non-trivial to determine on what node at what time a

latch is \storing its value". However, there is a very useful trick in determining this information|

simulation. We will return to this topic when we discuss how to debug circuits and speci�cations.

For our veri�cation e�ort, we �rst de�ne a clocking function that, given a parameter n, will

create the assertion list needed for assuming that the input signal "ck" (named CLK above) takes

on the proper values at the proper times. To illustrate the de�nition, below we include both the

de�nition of clock cyc, as well as an example of applying clock cyc to the argument 2.

: letrec clock cyc n = (n = 0) => UNC |

(CLK is F from (phiL n) to (phiH n))@

(CLK is T from (phiH n) to (cycle (n+1)))@

(clock cyc (n-1));

clock cyc::(int) -> (((bool # (string # (bool # (int # int)))) list))

: clock cyc 2;

[(T,"ck",F,100,150),(T,"ck",T,150,200),(T,"ck",F,0,50),

(T,"ck",T,50,100),(F,"",F,0,0)]

The input and output signal abstraction functions are fairly straighforward. The only subtle point

is that they need to take set-up and hold times into account. In this case, we can get by with a

set-up time of 0.

// Input signals timing

let inB cyc = (phiL cyc)+HOLD;

let inE cyc = (phiL (cyc+1))+HOLD;

let AaddIs addr cyc = Aadd isv addr from (inB cyc) to (inE cyc);

let BaddIs addr cyc = Badd isv addr from (inB cyc) to (inE cyc);

let D is val cyc = D isv val from (inB cyc) to (inE cyc);

let I is val cyc = I isv val from (inB cyc) to (inE cyc);

let C0 is val cyc = C0 is val from (inB cyc) to (inE cyc);

let Q0 is val cyc = Q0 is val from (inB cyc) to (inE cyc);

let Q3 is val cyc = Q3 is val from (inB cyc) to (inE cyc);

let RAM0 is val cyc = RAM0 is val from (inB cyc) to (inE cyc);

let RAM3 is val cyc = RAM3 is val from (inB cyc) to (inE cyc);

// Output signals timing

let Y is val cyc = Y isv val from (phiH (cyc-1)) to (phiL cyc);

The abstraction functions for the latches is more intricate. There are three properties an

abstraction function must answer:

1. On what node(s) is this value stored.

2. When is the value stable.

3. What encoding is used.

If we �rst look at the accumulator register de�nition Q is,

let Q is val cyc = Q isv (bvNOT val)

from ((phiL cyc)+LATCH DEL) to ((phiL cyc)+LATCH DEL)+1;

43

we can see that the nodes that correspond to these signals are called "accu[3]", "accu[2]", "accu[1]",

and "accu[0]". Furthermore, the signals are stable from the phiL plus latch delay for one time unit.

Finally, the values are actually stored complemented on the node.

let RamIs addr val cyc =

let ram is n = (n isv (bvNOT val))

from ((phiL cyc)+LATCH DEL) to ((phiL cyc)+LATCH DEL+1) in

SymbIndex ram addr ram is;

The RamIs function above illustrates a more sophisticated abstraction mapping. The function

takes three arguments: a 4-bit address, a value to be asserted/checked, and the abstract cycle in

which the addressed nodes should take on this value. What makes the function more involved is

that the address argument can be a vector of Boolean functions. Thus, at simulation time it may

be impossible to determine which RAM cell is intended. More precisely, the address may refer

to more than one location depending on the assignments to some set of Boolean variables. This

situation is a typical example of symbolic indexing|selecting an element in a list by providing a

symbolic address. The solution to this common case is to use the when condition in a subtle way.

Rather than trying to �gure out which node is actually referred to by the address, we will create a

�ve-tuple assertion/check for each node in the list. However, the �ve-tuple for cell i will have as its

guard a Boolean expression that is only true for interpretations in which the number represented

by the address vector equals i.

To better illustrate symbolic indexing, consider a somewhat simpler example. Suppose we have

a list with four nodes: a0, a1, a2, and a3. Assume furthermore that we would like to say that the

node on address i should be asserted/checked to take on the Boolean value u for 100 time units.

However, the address i is given as a bitvector and may contain Boolean variables. Thus depending

on the values on these Boolean variable, we may in fact select di�erent nodes in the list. Here we

show how SymbIndex can be used to derive a list of �ve-tuples that indeed matches this intuition.

: let ex arr = ["a0", "a1", "a2", "a3"];

ex arr::(string list)

: SymbIndex ex arr [F,T] (\n. n is (variable "u") for 100);

[(F,"a0",u,0,100),(T,"a1",u,0,100),(F,"a2",u,0,100),(F,"a3",u,0,100)]

: SymbIndex ex arr [variable "i1", variable "i0"]

(\n. n is (variable "u") for 100);

[(i0'&i1',"a0",u,0,100),

(i0&i1',"a1",u,0,100),

(i0'&i1,"a2",u,0,100),

(i0&i1,"a3",u,0,100)]

Note that both invocations result in one �ve-tuple for each node in the list. However, the guard

expression di�er. In fact, for the �rst example, where the address is fully de�ned, all but one node

have their guard equal to false. For the second example, the guard for node i is a boolean expression

that must hold for the address to be equal to i.

After the abstraction functions are de�ned, we go on to introduce the Boolean variables needed

for the veri�cation. In general, since the complexity of the veri�cation task depend very greatly on

the number of Boolean variables, it is often extremely useful to formulate the correctness statement

in such a way that it minimizes the number of Boolean variables needed. The veri�cation of the

AMD2901 contains an excellent example of this. Consider verifying that the built-in RAM gets

updated properly. One way of doing this would be to assert that each RAM cell contained a distinct

Boolean variable before an instruction is performed and that every memory cell not addressed in

the operation keep its value and the destination register(s) take on their proper values. However,

this would require at least 16 � 4+4 = 70 Boolean variables. On the other hand, we could rephrase

44

the correctness statement in the following way: Suppose RAM-cell i, for some arbitrary address i

between 0 and 15, contains some value u, then after performing an operation, the content of word i

should still be u, unless i was the destination address of the operation in which case word i should

contain the result of the computation. If we now represent the address i as a vector of four Boolean

variables, we will be able to carry out the veri�cation using only 4+4 = 8 variables|a reduction by

more than 60 variables! In general, this approach of using symbolic indexing and Boolean variables

to select the di�erent cases, is the single most powerful aspect of symbolic trajectory evaluation. In

general, it allows us to verify properties of circuits much larger than what more traditional symbolic

model checking algorithms can handle.

Returning to our example, we have chosen not to completely minimize the number of Boolean

variables used, but rather keep the number small, except when it is more convenient to use a larger

number of variables. In particular, we use a fully symbolic version of the instruction word, input

addresses, and what is stored in the two addresses and what is currently stored in the accumulator

register.

// Boolean variables

// Instruction

let i = variable vector "i" 9;

// Addresses

let Aa = variable vector "Aa" 4;

let Ab = variable vector "Ab" 4;

// Data

let a = variable vector "a." 4;

let b = variable vector "b." 4;

let d = variable vector "d." 4;

let q = variable vector "q." 4;

let c = variable "c";

let q0 = variable "q0";

let q3 = variable "q3";

let ram0 = variable "ram0";

let ram3 = variable "ram3";

The next task to accomplish is to force the evaluation of these variable declarations so that

a suitable variable ordering for the OBDD routines is accomplished. This task is fairly ad-hoc.

However, there are some \rules-of-thumb" that appears to work well. First of all, any variable

vectors that will be added or subtracted should have their variables interleaved in the variable

ordering with their most signi�cant bits �rst. Secondly, variables that greatly a�ect the control

actions of the system should appear early in the ordering. One point making is that one does not

have to declare an ordering for all variables since an undeclared variable will eventually be declared

automatically when it is used. However, by declaring the variables, the user retains control over the

ordering and thus can more easily vary the ordering if that is deemed necessary. In our case, the

variable ordering we selected it pretty much the obvious �rst attempt. In Section 7.1.5 we return

to this topic with some techniques that can be helpful in determining acceptable variable orderings.

Again we see the bene�ts of using as few Boolean variables as possible|here fewer variables have

to be ordered.

// Variable ordering (could be tuned!)

let var order = i @ (interleave [a,b,d,q]) @ (interleave [Aa,Ab]);

declare var order;

We are now ready for de�ning the desired behavior of the circuit. Here we are separating the

abstract functionality description from the actual timing of the various signals. Thus we start by

de�ning functions that denote the desired behavior of the circuit. In order to make this functional

speci�cation as readable as possible, we begin by introducing some helpful functions.

45

// Useful help functions

let getALUsrc [I8,I7,I6,I5,I4,I3,I2,I1,I0] = [I2,I1,I0];

let getALUfun [I8,I7,I6,I5,I4,I3,I2,I1,I0] = [I5,I4,I3];

let getALUdest [I8,I7,I6,I5,I4,I3,I2,I1,I0] = [I8,I7,I6];

let ALUsrc = getALUsrc i;

let ALUfun = getALUfun i;

let ALUdest = getALUdest i;

let member iv lv = itlist (\e.\r. (iv equal e) OR r) lv F;

let ITEv c t e = (map (\v. c AND v) t) bvOR (map (\v. (NOT c) AND v) e);

Next we de�ne functions that are direct translations of the various tables used in the informal

speci�cation of the AMD2901, as given in Appendix A. Thus we �rst de�ne two functions that

compute what the arguments to the ALU should be.

let RE = ITEv (member ALUsrc [[F,F,F],[F,F,T]]) a

(ITEv (member ALUsrc [[F,T,F],[F,T,T],[T,F,F]]) [F,F,F,F]

(d));

let S = ITEv (member ALUsrc [[F,F,F],[F,T,F],[T,T,F]]) q

(ITEv (member ALUsrc [[F,F,T],[F,T,T]]) b

(ITEv (member ALUsrc [[T,F,F],[T,F,T]]) a

([F,F,F,F])));

Next, we take these results and apply the proper function to compute the desired output of the

operation. There is only one subtle point in this example: it would have been tempting to use the

name F for the result and in fact FL allows you to do so. However, that would mean that there

would be no way to refer to \false" after re-de�ning F. Consequently, we use Fr as the name of the

result.

let Fr = ITEv (ALUfun equal [F,F,F]) (RE add S add [F,F,F,c])

(ITEv (ALUfun equal [F,F,T]) ((bvNOT RE) add S add [F,F,F,c])

(ITEv (ALUfun equal [F,T,F]) (RE add (bvNOT S) add [F,F,F,c])

(ITEv (ALUfun equal [F,T,T]) (RE bvOR S)

(ITEv (ALUfun equal [T,F,F]) (RE bvAND S)

(ITEv (ALUfun equal [T,F,T]) ((bvNOT RE) bvAND S)

(ITEv (ALUfun equal [T,T,F]) (RE bvXOR S)

(bvNOT (RE bvXOR S))))))));

We are now ready to state the various correctness statements and the veri�cation conditions that

we wish to check. This is done by de�ning a collection of antecedent/consequent pairs. Intuitively,

one can view an antecedent/consequent pair (A,C) as saying: if, during the lifetime of this system,

we ever encounter a sequence of states satisfying the formula A, then that same sequence of states

should also satisfy the formula C. In our case, two antecedent/consequent pairs su�ce: the �rst

one deals mostly with that all \good" things happen as they should, the second veri�es that no

\bad" things happen.

Intuitively, the �rst assertion is of the form:

Assume the circuit is clocked properly and all the inputs signals take on their respective

values at the correct time. Assume also that the address inputs are Aa and Ab respec-

tively and that word Aa in the RAM contains the word a and that word Ab in the RAM

contains the word b. Finally, assume the accumulator contains the value q. Then, one

cycle later, depending on the destination �eld of the instruction being executed, the

output, the accumulator, or the word Ab in the RAM will hold the proper values.

There is one subtle point in the above formulation. What if Aa is equal to Ab? In other words,

what happens if both address lines point to the same word in memory. Clearly, this must mean

46

that a and b must be equal (since a and b are meant to represent the current values in words Aa

and Ab in the RAM). We deal with this subtle point by de�ning a \consistent" predicate that we

use as a guard in several \when" conditions to ensure inconsistent assignments are ignored. More

speci�cally, we de�ne:

let consistent = (NOT (Ab equal Aa)) OR (a equal b);

With this in place, we de�ne the �rst antecedent as:

let ant1 = (FUNC is T for (cycle 3)) @

(TEST is F for (cycle 3)) @

(OEbar is F for (cycle 3)) @

(clock cyc 2) @

(I is i 1) @

(AaddIs Aa 1) @

(BaddIs Ab 1) @

(RamIs Aa a 1) @

((RamIs Ab b 1) when consistent) @

(D is d 1) @

(Q is q 1) @

((C0 is c 1) when (member ALUfun [[F,F,F],[F,F,T],[F,T,F]])) @

((Q3 is q3 1) when (ALUdest equal [T,F,F])) @

((Q0 is q0 1) when (ALUdest equal [T,T,F])) @

((RAM3 is ram3 1) when (member ALUdest [[T,F,F],[T,F,T]])) @

((RAM0 is ram0 1) when (member ALUdest [[T,T,F],[T,T,T]]));

and the �rst consequent:

let cons1 = (

// Check outputs

((Y is Fr 2) when (NOT (ALUdest equal [F,T,F]))) @

((Y is a 2) when (ALUdest equal [F,T,F])) @

// Check accumulator

((Q is Fr 2) when (ALUdest equal [F,F,F])) @

((Q is (q3:(butlast q)) 2) when (ALUdest equal [T,F,F])) @

((Q is ((tl q)@[q0]) 2) when (ALUdest equal [T,T,F])) @

((Q is q 2) when

(member ALUdest [[F,F,T],[F,T,F],[F,T,T],[T,F,T],[T,T,T]])) @

// Check RAM

((RamIs Ab b 2) when (member ALUdest [[F,F,F],[F,F,T]])) @

((RamIs Ab Fr 2) when (member ALUdest [[F,T,F],[F,T,T]])) @

((RamIs Ab (ram3:(butlast Fr)) 2)

when (member ALUdest [[T,F,F],[T,F,T]])) @

((RamIs Ab ((tl Fr)@[ram0]) 2)

when (member ALUdest [[T,T,F],[T,T,T]]))

) when consistent;

We then call the FSM function to carry out the symbolic trajectory evaluation and return the

expression for which this assertion to holds in the circuit AMD. Thus, we de�ne:

let check1 = FSM "" AMD ant1 cons1 [];

For the \nothing bad happens" veri�cation, we specify a simpler assertion and calls FSM.

47

// If Ram[Aaddr]=a / ((NOT load regfile) OR (Baddr != Aaddr))

// then we should have Ram[Aaddr]=a one cycle later

let ant2 = (FUNC is T for (cycle 3)) @

(TEST is F for (cycle 3)) @

(clock cyc 2) @

(I is i 1) @

(BaddIs Ab 1) @

(RamIs Aa a 1);

let cons2 = (RamIs Aa a 2) when ((member ALUdest [[F,F,F],[F,F,T]]) OR

NOT (Aa equal Ab));

let check2 = FSM "" AMD ant2 cons2 [];

Finally, we get the �nal correctness statement, in which we require both ckeck1 and check2 to hold:

check1 AND check2;

7.1.3 Carrying out the Veri�cation

Once the speci�cation script has be written, running the veri�er is straightforward: simply load

the �le into FL. In our case we would get an output like the one shown in Fig. 5.

As can be seen, the �nal result of the veri�cation is T, indicating that indeed the circuit satis�es

both veri�cation conditions for every possible assignment to the Boolean variables. Since we are

using 38 Boolean variables, we actually verify more than 1011 di�erent antecedent/consequent pairs

with this veri�cation run!

Before we go into how to �nd errors in the circuit and/or speci�cation, it is worth while ex-

plaining the output of the veri�cation process. First a work about garbage collection. There are

two types of user-visible garbage collections: garbage collection related to executing the functional

language, and garbage collection related to the OBDD representation. The �rst one is virtually

always very quick and can usually be ignored. The second type, OBDD garbage collection is much

more time consuming. It is often a sign of a poor variable ordering. However, a single OBDD

garbage collection is usually acceptable. If there are more than one during a single veri�cation

attempt, experimenting with di�erent variable orderings can pay o� handsomely.

During the veri�cation process7 the system outputs a period for every unit delay that it has to

run the simulator. Since the simulator and the assert/check procedures are using event-scheduling,

the system will often reach \stable" states where nothing is going to happen until the next change in

an assert or check. When the system reaches such a state, it prints out a \stable at time" message,

and jumps ahead to the next \interesting" point in time. Finally, at every time an assert or check

event occurs, the system will print out a \Time:" message. Although these periods and time

commands convey relatively little information, they are often very useful in gouging the progress

of the veri�cation process. In fact, they are often the �rst sign of poor variable orderings, since the

simulation process appears to have ground to a halt. When this happens, it is often useful to abort

the run, restart it but with a \-m' command to the FSM function to abort the simulation run in

a proper manner, and use some of the OBDD pro�ling functions that are de�ned in the dafault.

library. We will return to this later.

7.1.4 Debugging a Design and/or Speci�cation

Although the above script looked quite simple and straightforward and the veri�cation only took a

few minutes (if even that), clearly it is not always this easy. In fact, in practice, what counts more

7Actually during the evaluation of the FSM command.

48

% fl -f spec.fl

/\

/ \/\

/\ / \

/ Voss 1.5 \

VOSS-LIBRARY-DIRECTORY = /isd/local/generic/lib/vosslib

-Loading file spec.fl

-Loading file verification.fl

: T

-Loading file defaults.fl

T

-Loading file arithm.fl

T

-Loading file defaults.fl

T

-Loading file amd2901 beh.fl

T

-Loading file EXE.fl

T

Start garbage collection ...(Used=21138(Shared=303) Freed:33616)...done

T

"Verify the circuit"

..Start garbage collection ...(Used=24543(Shared=814) Freed:46596)...done

...... stable at time 3

Time: 5

.Time: 6

.......... stable at time 15

Time: 50

.... stable at time 53

Time: 100

...Start garbage collection ...(Used=24458(Shared=738) Freed:46681)...

Start bdd garbage collection.

Start with: 189328(189327) bdd nodes in use

Finished bdd garbage collection.

Currently: 136506(136506) bdd nodes in use

done

..Time: 105

.Time: 106

.... stable at time 109

Time: 150

.... stable at time 153

Time: 200

...... stable at time 3

Time: 5

.Time: 6

.......... stable at time 15

Time: 50

.... stable at time 53

Time: 100

.....Time: 105

.Time: 106

.... stable at time 109

Time: 150

.... stable at time 153

Time: 200

T

Figure 5: Output of FL running the AMD2901 spec. �le.

49

than veri�cation speed is how di�cult it is to discover and track down errors in the circuit and/or

the speci�cation8. This is one area where trajectory evaluation is quite powerful. Part of this is of

course that the approach resembles simulation to a large extent, and thus is fairly natural to many

designers.

To illustrate some of the techniques that can be employed using the Voss system, we will return

to the AMD 2901 veri�cation. This time, however, we will use an incorrect speci�cation and

show how to track this down. In the �le \err spec." in the demos/AMD2901/behavioral VHDL

directory, we have a speci�cation �le that contains two errors: the Q is abstraction function does

not say that the values are stored negated, and the timing of the carry-in signal is incorrect. When

loading this program and forcing check1 to be evaluated, we get a response that (after being cut

down signi�cantly) looks like:

: check1;

..Start garbage collection ...(Used=24497(Shared=817) Freed:46642)...done

...... stable at time 3

Time: 5

.Time: 6

.......... stable at time 15

Time: 50

.Warning: Consequent failure at time 50 on node y[3]

Current value:i8&i5&i4&i3&i2&i1&i0&d.3' + i8&i4&i3&i2&i1&i0'&d.3&q.3' +

i8&i5&i4&i3&i1&i0'&d.3'&q.3 + i4&i3&i2&i1'&i0&a.3&d.3 +

i8&i5&i4&i3&i2&i0&a.3'&d.3' OR ... +

X(i8&i5'&i4&i3'&i2&i1&i0&d.2'&d.1'&d.0' +

i8&i5'&i4&i3'&i2&i1&i0'&d.2&q.2'&d.1&q.1'&d.0&q.0' +

i8&i5'&i4&i3'&i2&i1&i0'&d.2&q.2'&d.1&q.1'&d.0'&q.0 +

i8&i5'&i4&i3'&i2&i1&i0'&d.2&q.2'&d.1'&q.1&d.0&q.0' +

i8&i5'&i4&i3'&i2&i1&i0'&d.2&q.2'&d.1'&q.1&d.0'&q.0 OR ...)

Expected value:i5&i4&i3&i2&i1&i0&a.3&b.3&d.3'&a.2&b.2&a.1&b.1&a.0&b.0 +

i5&i4&i3&i2&i1&i0&a.3&d.3'&Aa0&Ab0' + i5&i4&i3&i2&i1&i0&a.3&d.3'&Aa0'&Ab0 +

i5&i4&i3&i2&i1&i0&a.3&d.3'&Aa1&Ab1' + i5&i4&i3&i2&i1&i0&a.3&d.3'&Aa1'&Ab1

OR ... +

X(a.0&b.0'&Aa3&Ab3&Aa2&Ab2&Aa1&Ab1&Aa0&Ab0 +

a.0&b.0'&Aa3&Ab3&Aa2&Ab2&Aa1&Ab1&Aa0'&Ab0' +

a.0&b.0'&Aa3&Ab3&Aa2&Ab2&Aa1'&Ab1'&Aa0&Ab0 +

a.0&b.0'&Aa3&Ab3&Aa2&Ab2&Aa1'&Ab1'&Aa0'&Ab0' +

a.0&b.0'&Aa3&Ab3&Aa2'&Ab2'&Aa1&Ab1&Aa0&Ab0 OR ...)

Strong disagreement when:i8&i5&i4&i1&i0'&a.3&b.3&a.2&b.2&a.1&b.1&a.0&b.0 +

i8&i5&i4&i1&i0'&Aa0&Ab0' + i8&i5&i4&i1&i0'&Aa0'&Ab0 +

i8&i5&i4&i1&i0'&Aa1&Ab1' + i8&i5&i4&i1&i0'&Aa1'&Ab1 OR ...

* * *

... stable at time 202

Time: 205

------WARNING: Some errors not reported

i6&i5&i0 + a.0&b.0'&Aa3&Ab3&Aa2&Ab2&Aa1&Ab1&Aa0&Ab0 +

a.0&b.0'&Aa3&Ab3&Aa2&Ab2&Aa1&Ab1&Aa0'&Ab0' +

a.0&b.0'&Aa3&Ab3&Aa2&Ab2&Aa1'&Ab1'&Aa0&Ab0 +

a.0&b.0'&Aa3&Ab3&Aa2&Ab2&Aa1'&Ab1'&Aa0'&Ab0' OR ...

First of all, the system complains at the �rst node it �nds an error. For every error it �nd (up to

a user setable limit), the system will print out

1. The current value on the node.

8Although, in theory, the speci�cation should always be correct and only the circuit contain errors, in practice it

is very common to have errors in both.

50

2. The expected value on the node.

3. The condition for this error to show up.

For the �rst two values, the print routine prints out the values in the form f1 + X(f2), where f1

and f2 look like Boolean expressions, but should be read as quaternary extensions of the Boolean

expression. One should read this formula as: if f1 is equal to 1, then the expression is equal to 1.

If both f1 and f2 are equal to 0, then the expression is equal to 0. In all other cases the expression

is equal to X.

The third statement that is printed out at a consequent failure is the Boolean condition that

must hold for this error to manifest itself. Here we distinguish between two types of errors: weak

and strong disagreements. A strong disagreement means that there is some assignment to all the

Boolean variables in currently used so that the node value is 1 and the expected value is 0, or vice

versa. This is clearly an error. A weak disagreement, on the other hand, signi�es that the value on

the node is X when a Boolean value was expected. This error condition is not a clear-cut as the

strong disagreement, since it is possible that the pessimism inherent with using X as an unknown

value, may generate responses that have more X's than absolutely necessary. However, in practice,

it usually means that a dependency on some signal was forgotten and thus this signal did not have

a value asserted and consequently stayed at X.

Finally, the result of the veri�cation (after all the error messages) is the Boolean condition for

when the whole veri�cation is successful. This result can sometimes give a clue to what went wrong.

Although the above expressions are often very helpful, they are very di�cult to read and

understand. Consequently, we load in the HighLowEx. library to get access to some concrete

example generating functions. For example, we would get:

: load "HighLowEx.fl";

-Loading file HighLowEx.fl

T

-Loading file defaults.fl

T

: let vl = [(" I",i),("Aa",Aa),("Ab",Ab),(" a",a),(" b",b),(" d",d),(" q",q)];

vl::((string # (bool list)) list)

: Lexpl vl (check1 AND consistent);

"

I = 001011000

Aa = 0000

Ab = 0001

a = 1111

b = 0000

d = 0000

q = ----

"

showing that one instruction that does work as speci�ed is the OR function between word 0 in the

RAM and the content of the accumulator assuming the value stored in the word 0 consists of all

1's.

Although the above may help us pinpoint the error, it is usually easier to catch the error as

soon as they happen. Consequently, we will modify the FSM command and give it the -a option

that will force the symbolic simulation to abort at the �rst error encountered. We now get:

51

: let trac1 = FSM "-a" AMD ant1 cons1 [];

trac1::bool

: trac1;

...... stable at time 3

Time: 5

.Time: 6

.......... stable at time 15

Time: 50

.Warning: Consequent failure at time 50 on node y[3]

Current value:i8&i5&i4&i3&i2&i1&i0&d.3' + i8&i4&i3&i2&i1&i0'&d.3&q.3' OR ... +

X(i8&i5'&i4&i3'&i2&i1&i0&d.2'&d.1'&d.0' +

i8&i5'&i4&i3'&i2&i1&i0'&d.2&q.2'&d.1&q.1'&d.0&q.0' OR ...)

Expected value:i5&i4&i3&i2&i1&i0&a.3&b.3&d.3'&a.2&b.2&a.1&b.1&a.0&b.0 +

i5&i4&i3&i2&i1&i0&a.3&d.3'&Aa0&Ab0' OR ... +

X(a.0&b.0'&Aa3&Ab3&Aa2&Ab2&Aa1&Ab1&Aa0&Ab0 +

a.0&b.0'&Aa3&Ab3&Aa2&Ab2&Aa1&Ab1&Aa0'&Ab0' OR ...)

Strong disagreement when:i8&i5&i4&i1&i0'&a.3&b.3&a.2&b.2&a.1&b.1&a.0&b.0 +

i8&i5&i4&i1&i0'&Aa0&Ab0' + i8&i5&i4&i1&i0'&Aa0'&Ab0 +

i8&i5&i4&i1&i0'&Aa1&Ab1' + i8&i5&i4&i1&i0'&Aa1'&Ab1 OR ...

The important point here is that the return value of FSM with the -a ag is the condition under

which the error manifests itself. Thus, using the Lexp or Hexpl functions can give us a concrete

example to run to see what went wrong.

: Lexpl vl trac1;

"

I = 000000000

Aa = 0000

Ab = 0000

a = 0000

b = 0000

d = 0000

q = -001

c = 0

"

The best approach now is to re-run the veri�cation but instead of using all the Boolean vari-

ables, we would use these values. A useful trick here is to over-ride the de�nitions of the variable

shorthands. For example, we modify err spec. as follows:

let i = variable vector "i" 9;

let i = [F,F,F,F,F,F,F,F,F];

// Addresses

let Aa = variable vector "Aa" 4;

let Aa = [F,F,F,F];

let Ab = variable vector "Ab" 4;

let Ab = [F,F,F,F];

// Data

let a = variable vector "a." 4;

let a = [F,F,F,F];

let b = variable vector "b." 4;

let b = [F,F,F,F];

let d = variable vector "d." 4;

let d = [F,F,F,F];

let q = variable vector "q." 4;

let q = [F,F,F,T];

let c = variable "c";

let c = F;

52

Since FL is lexically scoped, the �le must be reloaded. However, before doing so, it is convenient

also to add some tracing commands in the veri�cation run to get a picture of what is going on.

There are two additions we must to for this to happen. First we must select some set of nodes to

be traced. In this case it is natural to chose the clock and the y outputs. In order to get an easy

to read waveform diagram, we also give a -T plot.ps (or -t plot.ps if we do not want the plot to be

in landscape mode) to the options of the FSM command. In other words, we will have:

let tr list = [CLK] @ Y;

let trac1 = FSM "-T plot2.ps" AMD ant1 cons1

(map (\node. (node,0,cycle 3)) tr list);

trac1;

at the end of the speci�cation �le. Once this �le has been loaded, a postscript �le containing the

waveform diagram shown in Fig. 6 will be generated. From this �le, we can see that y[0] has an

0 50 100 150

ck

y[3]

y[2]

y[1]

y[0]

Figure 6: Waveform diagram generated from trace commands.

X value when it should be 0, and that all the other y nodes have their wrong values. Although

strong disagreements are often easier to trace, in view of the fact that the instruction that we are

considering is addition, it makes sense to �nd the root of the incorrect value on y[0] �rst. In this

case, the obvious method is to trace all fanin nodes to y[0]. However, it is also useful to see the

functionality of the next state function for the node. In the following small script we work ourselves

backwards by using the built-in fanin function and the excitation function de�ned in default..

: fanin AMD "y[0]";

["i[7]","i[6]","i[8]","alu out[0]","ra[0]","noe"]

: excitation AMD "y[0]";

..

Trace started for node: y[0]

Current value:X

.Time: 1

.Trace: Node y[0] at time 1: i[6]&alu out[0]&noe' + i[8]&alu out[0]&noe'

+ i[7]&i[6]'&i[8]'&ra[0]&noe' + i[7]'&alu out[0]&noe' + X(noe)

Time: 2

Trace ended for node: y[0]

"i[6]&alu out[0]&noe' + i[8]&alu out[0]&noe' +

i[7]&i[6]'&i[8]'&ra[0]&noe' + i[7]'&alu out[0]&noe' + X(noe)"

: fanin AMD "alu out[0]";

["i[4]","i[3]","i[5]","s[0]","r[0]","difrs[0]","difsr[0]","sumrs[0]"]

: FSM "-T plot2.ps" AMD ant1 cons1 (map (\node. (node,0,cycle 3)) tr list);

53

0 50 100 150

ck

y[3]

y[2]

y[1]

y[0]

alu_out[0]

ra[0]

s[0]

r[0]

difrs[0]

difsr[0]

sumrs[0]

Figure 7: Second waveform diagram generated from trace commands.

After this, we would get a waveform diagram like the one shown in Fig. 7. Continuing like this, by

�nding the fanin nodes, tracing them, possibly �nding the next state function, we can eventually

determine that the cin node has the wrong value and thus discover that error in the speci�cation.

Similarly, one can relatively easily �nd the error in the Q is function. Of course, in practice there

are often errors in the circuit design itself too, but the same methodology often works well also for

this type of errors.

Finally a word about the waveform diagrams. In Table 8 we give a key for interpreting the

di�erent patterns that can emerge. Note that for symbolic expressions, the information printed out

to stderr is often needed to fully interpret the waveform diagram. Nevertheless, being able to see

the waveforms are often invaluable when determining what values are stored where and when.

Pattern Interpretation

grey X

low solid line 0

high solid line 0

low and high solid line symbolic expression that can be 0 or 1

grey with solid low line symbolic expression that can be 0 or X

grey with solid high line symbolic expression that can be 1 or X

grey with solid high and low lines symbolic expression that can be 0, 1 or X

black overconstrained signal (>)

Figure 8: Patterns and their meaning in waveform diagrams.

54

7.1.5 Variable Ordering

One of the most mysterious aspects of symbolic trajectory evaluation for the novice is the need for

variable ordering. Although the concept is easy to understand, coming up with good orders sounds

very di�cult. However, experience has show this not to be so di�cult as it �rst appears. First of

all, since the Boolean variables are used in a very explicit fashion in symbolic trajectory evaluation,

the user has a much better understanding of the use of the various variables. Also, the fact that we

often reduce the number of variables needed very signi�cantly by using symbolic indexing, means

that there are fewer variables around and thus the need for good ordering is less critical (even in

the presence of exponential blow-up if you are only using a logarithmic number of variables you

may still have acceptable performance!).

To simplify the task of selecting good variable ordering there are some useful functions provided

in the Voss system. Perhaps the most useful ones are: bdd size and bdd pro�le. Both take a list

of Boolean functions as argument. Bdd size will return the width of the multi-root OBDD de�ned

by these Boolean functions for each variable at least one of the Boolean functions depends on.

Bdd pro�le, on the other hand, prints out a histogram to give a quick visual picture of the shape

of the OBDDs. To illustrate this, consider the AMD2901 example again and concentrate on a

good variable ordering for the Fr values. We will show two OBDD pro�les: the �rst one with the

instruction variables last, the second one with these variables �rst. As will be seen, the di�erence

is very signi�cant!

: var order;

[a.3,b.3,d.3,q.3,a.2,b.2,d.2,q.2,a.1,b.1,d.1,q.1,a.0,b.0,d.0,q.0,

Aa3,Ab3,Aa2,Ab2,Aa1,Ab1,Aa0,Ab0,i8,i7,i6,i5,i4,i3,i2,i1,i0]

: bdd profile Fr;

"

a.3* 1

b.3* 2

d.3* 4

q.3* 8

a.2* 17

b.2* 34

d.2* 68

q.2* 136

a.1** 273

b.1*** 546

d.1***** 964

q.1********* 1928

a.0************** 2961

b.0************************* 5282

d.0*************************************** 8260

q.0** 14536

i5** 13840

i4** 13808

i3** 14946

i2******************** 4157

i1* 180

i0* 12

c* 2

"

55

: var order;

[i8,i7,i6,i5,i4,i3,i2,i1,i0,a.3,b.3,d.3,q.3,a.2,b.2,d.2,q.2,

a.1,b.1,d.1,q.1,a.0,b.0,d.0,q.0,Aa3,Ab3,Aa2,Ab2,Aa1,Ab1,Aa0,Ab0]

: bdd profile Fr;

"

i5**** 4

i4******* 8

i3************* 16

i2************************ 31

i1** 52

i0** 92

a.3******************** 26

b.3********* 11

d.3************** 18

q.3************* 17

a.2************************************** 50

b.2****************** 23

d.2**************************** 36

q.2*************************** 35

a.1************************************** 50

b.1****************** 23

d.1**************************** 36

q.1*************************** 35

a.0******************************** 42

b.0********* 11

d.0***************** 22

q.0********* 11

c** 2

"

7.1.6 Structural VHDL Description

Given the above veri�cation script, it is natural to ask how much of this work can be re-used for veri-

�cation tasks later in the design process. What is pleasant about the methodology described above is

that almost all of the speci�cation �le can remain unchanged! To illustrate this, consider verifying a

complete structural implementation of the AMD 2901 circuit. In demos/AM2901/structural VHDL

we have the code for this design. We also have the spec. �le which contains the veri�cation script.

What is satisfying about the example is the fact that the only thing that has changed from the

behavioral veri�cation script is the node name section.

8 A greater then B circuit

In the directory demos/AgreaterB there are three subdirectories: behavioral vhdl, switch level, and

comparison. In behavioral vhdl there is a behavioral description of a circuit that reads in two 32-bit

unsigned integers a and b and determines whether a > b and b > 0. In the same directory there is

also a small veri�cation script that veri�es that this is indeed the behavior of the program.

In switch level there is a fairly complex switch-level implementation of the same circuit. The

implementation uses pre-charged domino-CMOS logic and requires a fairly sophisticated switch-

level simulator to be simulated. In the same directory there is also a spec. �le that contains a

small veri�cation script that veri�es that if the circuit is clocked properly and the input signals are

stable at the right time, the output of the circuit does indeed take on the correct value.

Finally, in the directory comparison there is a small veri�cation script that can be used to

compare two implementations of combinational logic. However, it is more sophisticated than that

56

since it allows either implementation to be clocked. In the �le \check equality." we use this

function to compare the two implementations.

9 Binary2BCD

In the directory demos/Binary2BCD there is a structural VHDL implementation of a circuit that

takes an 8-bit unsigned binary input and after some 11(?) clock cycles have converted this value into

a three digit BCD number. What is interesting in this veri�cation task is that we use a relational

speci�cation. In other words, we never say what the output should be, we only say that it should

have certain properties. In particular, if we convert both the BCD output and the original input

to decimal numbers, we should always get the same number.

For speci�cations where it is di�cult to de�ne a function that actually computes the desired

result, using a relational style can often be very helpful. Note, however, that we must use much

more Boolean variables is this style, and thus it is only recommended for speci�cations in which

the desired function is di�cult to compute.

10 Mead and Conway Stack

In the directory demos/MC stack there is an NMOS stack, as described by Mead and Conway, and

a veri�cation script. The veri�cation is another example of using symbolic indexing.

11 Tamarack3

A complete veri�cation of a switch-level implementation of the Tamarack III processor. The speci�-

cation uses a style that is very natural for micro-coded designs. The speci�cation is also interesting

because it illustrates the use of an invariant. In this case the invariant is simply that the micro-

program counter is always 0 after each complete instruction.

12 UART

A structural VHDL implementation of a programmable UART circuit. The spec. �le contains a

partial speci�cation that illustrates the �rst step away from traditional simulation. Again this is

accomplished by an invariant.

13 McMillan

A complete veri�cation of a pipelined integer unit of a typical RISC processor. The datapath has

a four-stage pipeline with by-pass and stall logic. The circuit is modeled at the switch-level. This

veri�cation is the most complex among all the examples in this demo directory. In particular,

the abstract speci�cation is un-pipelined and uses the recent history of the inputs to compute a

quite sophisticated abstraction function for where (and when) a register contains some value. In

particular, depending on the previous two instructions and the previous cycles stall signal, the

content of a register i may either be in one of the pipe-registers or be in the register �le.

57

14 Model Checking

In the directory demos/ModelChecking there are a couple of �les that illustrates the ease in which

symbolic model checking can be implemented in FL. Although the next state relation is actually

given explicitly in the two examples (of a transition arbiter), there is nothing stopping you from

using trajectory evaluation to derive the next state relation. An example of this will very likely be

in the next release.

58

A Informal speci�cation of AMD2901

The Am 2901 four-bit microprocessor slice (from Advanced Micro Devices Inc.) is a high-speed cas-

cadable ALU intended for use in CPUs, peripheral controllers and programmable microprocessors.

The data is 4 bits wide at all points.

Functional Blocks

The main functional blocks in AMD2901 are as follows:

1. A 16-word by four bit two port RAM, with an up/down shifter at the input.

(a) Port A is an output port.

(b) Port B is a bidirectional port.

2. A register (called Q) with an up/down shifter at the input

3. An ALU source selector which select two inputs out of the following :

(a) Port A of RAM

(b) Port B of RAM

(c) Q register output

(d) External data input

(e) Logical 0

4. A 4-bit ALU, capable of performing arithmetic and logical functions on the selected source

words.

5. A destination selector which decides :

(a) whether to load the ALU output (with or without shifting) into the RAM.

(b) whether to load the ALU output (with or without shifting) or the Q register contents

(with shifting) into the Q register

(c) whether the ALU output or the Port A contents should be forwarded to the External

data output.

NOTE: The destination selector is not shown as an explicit block in the �gure. Its parts are

included in the RAM, Q-register and output selector.

59

Inputs and Output Ports

Port Type Bit

width Description

I in 9 Instruction word (discussed later)

Aadd in 4 Address input to RAM (for READ)

Badd in 4 Address input to RAM (for READ / WRITE)

D in 4 Data input to chip

Y out 4 Data output from chip

RAM0 inout 1 Up/down shifter port connected to LSB of RAM

RAM3 inout 1 Up/down shifter port connected to MSB of RAM

Q0 inout 1 Up/down shifter port connected to LSB of Q-register

Q3 inout 1 Up/down shifter port connected to MSB of Q-register

CLK in 1 clock

C0 in 1 Carry input to ALU

OEbar in 1 Tri-state driver input (if this is not asserted,

the data output Y will be tri-stated to HIGH-Z)

C4 out 1 Carry output from ALU

Gbar out 1 Generate term from ALU for carry lookahead

Pbar out 1 Propagate term from ALU for carry lookahead

OVR out 1 Overow output from ALU (this signals that an

overow has occurred, while performing the operation)

F3 out 1 MSB of the ALU output

F30 out 1 Zero signal (asserted if the all 4 bits of ALU

output are zero).

The Instruction Set

The Am 2901 has a 9-bit instruction, which has three 3-bit �elds whose functions are as follows :

1. I2 downto I0: controls ALU source selector

2. I5 downto I3: controls ALU function

3. I8 downto I6: controls destination selector

A.0.7 ALU Source Operands Selected

Bit ALU source

�eld operands selected

I2 I1 I0 RE S

000 A Q

001 A B

010 0 Q

011 0 B

100 0 A

101 D A

110 D Q

111 D 0

Note: RE and S are the two outputs of the ALU source selector.

60

A.0.8 ALU Function

Bit ALU function

�eld (output --> F)

I5 I4 I3 C0 = 0 C0 = 1

000 RE + S RE + S + 1

001 S - RE - 1 S - RE

010 RE - S - 1 RE - S

011 RE or S RE or S

100 RE and S RE and S

101 not(RE) and S not(RE) and S

110 RE xor S RE xor S

111 RE xnor S RE xnor S

Note: C0 is the carry-in input. F is the output of the ALU.

A.0.9 ALU Destination

Bit RAM Q-REG. RAM Q-REG.

�eld function function Y shifter shifter

I8 I7 I6 SHIFT LOAD SHIFT LOAD RAM0 RAM3 Q0 Q3

000 | | | F F | | | |

001 | | | | F | | | |

010 | F | | A | | | |

011 | F | | F | | | |

100 down F/2 down Q/2 F out in out in

101 down F/2 | | F out in out |

110 up 2F up 2Q F in out in out

111 up 2F | | F in out | out

Note: Data that is loaded into the RAM is written at the RAM word pointed to by the address

input Badd. Note also that the bidirectional ports are active only when some shifting is being

done. Finally, whenever a bidirectional port is NOT being used as an output by the Am2901, the

Am2901 chip tristates it from its own side. Then, it can be used as an input from the external

world or it may be left inactive.

61

B Switch-Level Model

In this appendix we discuss the basic switch-level model used by the switch-level compilers sim2ntk

and ntk2exe. Since sim2ntk is the standard sim2ntk program from the COSMOS system developed

by Randy Bryant and associates at Carnegie Mellon University and the ntk2exe program has

been heavily inuenced by the anamos tool from the same system, the switch-level models are

essentially the same as the ones supported by the COSMOS system. Furthermore, this section is

heavily modeled after the user's guide of the COSMOS system. In particular, the structure and

the examples all follow closely the user guide. For a more formal treatment of the underlying

algorithms employed, the reader is referred to [?] and [?].

B.1 Circuit Model

A switch-level circuit consists of nodes and transistors. The ntk2exe program partitions the nodes

and transistors into subsets that are called channel-connected subnetworks. The basic idea is to

collect all nodes and transistors that are connected through source/drain connections that do not

go through the supply nodes (power and ground). Each such channel-connected subnetwork is then

analyzed in isolation and a behavioral model is automatically derived for the subnetwork. The

behavior of the whole circuit is then derived from the interconnection of these behavioral models

of the sub-networks.

B.1.1 Node Model

Each node can take on four di�erent values 0; 1;X, and >. Normally, >|the overconstrained

value|cannot be generated by the circuit itself. However, it can be introduced by the simulator

and thus the behavior of the network must be able to handle this value as well. The value X is

used to denote an invalid, uninitialized, or changing value.

One basic assumption in the switch-level analysis is that the complete circuit is available. Thus,

if a node is meant to be tri-state (high-impedance), the user must model this by attaching a dummy

driver circuit. We will return to this later.

Note also that the analysis carried out by ntk2exe takes all size and strength e�ects into con-

sideration. Hence, the four values mentioned above su�ce for modeling the complete switch-level

model with a number of di�erent sizes and strengths etc.

There are two types of nodes:

input nodes Provide strong signals from sources external to the network. Examples of this type

of nodes are power, ground, clock and data inputs. Note that power and ground nodes are

treated specially as having �xed logic values 1 and 0 respectively.

storage nodes These nodes have their value determined by the switch-level analysis and (unless

they have size 0) will retain the their current values in the absence of applied signals.

Each storage node is assigned a size in the set 0,...,maxnode to indicate (in a simpli�ed way)

its capacitance relative to other nodes with which it may share charge9 When a set of connected

storage nodes is isolated from any input nodes, they are charged to a logic state dependent only on

the state(s) of the largest node(s). Thus the value on a larger node will always override the value

on a smaller one. Many networks do not depend on charge sharing for their logical behavior and

9This description is accurate for the current release of the sim2ntk and ntk2exe programs. However, a new version
is in early stages of testing that uses a partially ordered size and strength sets. This modi�ed version will be in the

next Voss release.

62

hence can be simulated with only one node size (maxnode = 1). In general, at most two node sizes

(maxnode = 2) will su�ce with high capacitance nodes (e.g. pre-charged busses) assigned size 2

and all others assigned size 1.

Node size 0 indicates that the node cannot retain stored charge. Whenever such a node is

isolated, its state becomes X. This size is useful when modeling static circuits. By assigning size 0

to all storage nodes, the simulation is more e�cient, and unintended uses of dynamic memory can

be detected.

The symbolic analyzer ntk2exe attempts to identify and eliminate storage nodes that serve

only as interconnections between transistor sources and drains in the circuit. It retains any node

that it considers \interesting," i.e., whose state a�ects circuit operation. Interesting nodes include

those that act as the gates of transistors, as inputs to functional blocks, or as sources of stored

charge to other interesting nodes. Sometimes a node whose state is not critical to circuit operation,

however, may be of interest to the simulator user. The user must take steps to prevent ntk2exe

from eliminating these nodes, by identifying them as \visible." A node can be so identi�ed by an

attribute in the .sim �le, or with a command line option to ntk2exe.

B.1.2 Transistor Model

A transistor is a three terminal device with node connections gate, source, and drain. Normally,

there is no distinction between source and drain connections{the transistor is a symmetric, bidi-

rectional device. However, transistors can be speci�ed to operate unidirectionally to overcome

limitations of the network model. That is, a transistor can be forced to pass information only from

its source to its drain, or vice-versa. Unidirectional transistors are required only rarely in such

circuits as sense ampli�ers and pass transistor exclusive-or circuits. Excessive use of unidirectional

transistors can cause the simulator to overlook serious design errors. Any circuit simulated with

unidirectional transistors should be thoroughly analyzed with a circuit simulator such as SPICE.

Each transistor has a strength in the set 1,...,maxtran. The strength of a transistor indicates

(in a simpli�ed way) its conductance when turned on relative to other transistors which may form

part of a ratioed path. When there is at least one path of conducting transistors to a storage

node from some input node(s), the node is driven to a logic state dependent only on the strongest

path(s), where the strength of a path equals the minimum transistor strength in the path. Thus, a

stronger signal will always override a weaker one. Most CMOS circuits do not involve ratioing, and

hence can be simulated with one transistor strength (maxtran = 1). However, circuits involving

multiple degrees of ratioing may require more strengths. Ntk2exe will utilize as many node sizes

and transistor strengths as are used in the network �le with the limitation that maxnode + maxtran

< 16.

The simulator models three types of transistors: n-type, p-type, and depletion. A transistor

acts as a switch between source and drain controlled by the state of its gate node as follows: When a

transistor is in an \unknown" state it forms a conductance of unknown value between (inclusively)

its conductance when \open" (i.e. 0.0) and when \closed". The simulator models these transistors

in such a way that any node with state sensitive to their actual conductances is set to X.

Normally, transistor switching is simulated with a unit delay model. That is, one simulation

time unit elapses between when the gate node of a transistor changes state, and the subcircuit

containing the source and drain nodes of the transistor is evaluated. However, a transistor can

be speci�ed to have zero delay, meaning that the subcircuit will be evaluated immediately. The

implications of the transistor delay are discussed more in Section B.1.4. Zero delay transistors are

required only in rare cases to correct for the e�ects of circuit delay sensitivities. They can also be

used to speed up the simulation, by creating rank-ordered evaluation of the circuit components.

63

gate n-type p-type depletion

0 open closed closed

1 closed open closed

X unknown unknown closed

Table 1: Transistor State as a Function of Gate Node State

B.1.3 Circuit Partitioning

D

Module

New inputs

New state
and outputs

Current
state

Figure 9: Finite State Behavior of a Circuit Module.

Ntk2exe partitions the initial circuit description into a set of modules. Each module corresponds

to a transistor subnetwork. A subnetwork consists of a set of storage nodes connected by sources

and drains of transistors, along with all transistors for which these nodes are sources or drains.

Observe that an input node is not in any subnetwork, but a transistor for which it is a source (or

drain) will be in the subnetwork containing the drain (or source) storage node.

The behavior of a module is described by a procedure generated automatically for the corre-

sponding subnetwork.

As illustrated in Fig. 9, each module behaves like a �nite state machine, computing new values

for the results as a function of the old values on the results and inputs. The box labeled with D in

the �gure represent the delays of the various nodes and is always at least one time unit long. We

will return to this shortly.

The partitioned circuit must obey the following rules:

1. A node can be a result connection of at most one module.

2. There can be no zero-delay cycles, i.e., every cycle in the set of interconnected modules must

be broken by at least one unit delay.

64

B.1.4 Timing Model

.

The simulation program is designed primarily for simulating clocked systems, where there is

a well de�ned timing regime for when signals should be stable and when outputs are expected.

Although the sim2ntk and ntk2exe is only able to derive unit/zero delay models, the user can back

annotate the generated .exe �le by creating a �le with the same name as the .exe �le, but with a

.del su�x. In this �le, the user can list node names and bounds on the rise and fall delays of the

nodes. An entry for a node in the .del �le is of the format:

node name |min rise delay max rise delay min fall delay max fall delay|

where the rise and fall delays must be integer multiples of the basic time unit.

The basic Fl system is able to analyze circuits using several timing models:

1. unit delay model

2. nominal delay

3. minimum delay

4. maximum delay

5. bounded delay

In the presence of a .del �le and the appropriate delay model chosen in the .vossrc �le, the FSM

command in Voss will carry out the chosen delay analysis.

B.2 Circuit Examples

In the next release of this document we will provide some examples to illustrate the switch-level

model.

65

C .sim format

The simulation tools crystal(1) and sim2ntk(1) accept a circuit description in .sim format. There

is a single .sim �le for the entire circuit, unlike Magic's ext(5) format in which there is a .ext �le

for every cell in a hierarchical design.

A .sim �le consists of a series of lines, each of which begins with a key letter. The key letter

beginning a line determines how the remainder of the line is interpreted. The following are the list

of key letters understood.

| units: s tech: tech If present, this must be the �rst line in the .sim �le. It identi�es the

technology of this circuit as tech and gives a scale factor for units of linear dimension as

s. All linear dimensions appearing in the .sim �le are multiplied by s to give centimicrons.

Sim2ntk ignores the technology identi�er.

type g s d l w x y g=gattrs s=sattrs d=dattrs De�nes a transistor of type type. Currently,

type may be e or d for NMOS, or p or n for CMOS. The name of the node to which the gate,

source, and drain of the transistor are connected are given by g, s, and d respectively. The

length and width of the transistor are l and w. The next two tokens, x and y, are optional.

If present, they give the location of a point inside the gate region of the transistor. The last

three tokens are the attribute lists for the transistor gate, source, and drain. If no attributes

are present for a particular terminal, the corresponding attribute list may be absent (i.e,

there may be no g= �eld at all). The attribute lists gattrs, etc. are comma-separated lists

of labels. The label names should not include any spaces, although some tools can accept

label names with spaces if they are enclosed in double quotes. Sim2ntk(1) documents the

transistor attributes recognized by sim2ntk.

C n1 n2 cap De�nes a capacitor between nodes n1 and n2. The value of the capacitor is cap

femtofarads. NOTE: since many analysis tools compute transistor gate capacitance them-

selves from the transistor's area and perimeter, the capacitance between a node and substrate

(GND!) normally does not include the capacitance from transistor gates connected to that

node. If the .sim �le was produced by ext2sim(1), check the technology �le that was used

to produce the original .ext �les to see whether transistor gate capacitance is included or

excluded; see \Magic Maintainer's Manual 2: The Technology File" for details. Sim2ntk only

considers capacitors where one terminal is ground. It computes transistor gate capacitances

based on the transistor constructs.

A node attrs Associates the set of attributes attr for node node. The attributes are speci�ed

by a comma-separated list of strings containing no blanks. Sim2ntk(1) documents the node

attributes recognized by sim2ntk.

= node1 node2 Each node in a .sim �le is named implicitly by having it appear in a transistor

de�nition. All node names appearing in a .sim �le are assumed to be distinct. Some tools,

such as esim(1) (and sim2ntk), recognize aliases for node names. The = construct allows the

name node2 to be de�ned as an alias for the name node1. Aliases de�ned by means of this

construct may not appear anywhere else in the .sim �le.

@ �lename Redirects input to the speci�ed �le. When the end-of-�le is reached, input reverts to

the current �le at the following line. Input redirection can be nested.

66

D .ntk Format

An .ntk �le consists of a series of commands, each of which begins with a key character and

terminates with a semicolon `;'. A period `.' terminates the circuit declaration. The key character

determines how the command is interpreted. Elements of a command are separated by spacechar

characters (see below). Note that there must even be space before the terminating semicolon. All

names and key characters are case sensitive.

An .ntk �le declares a circuit as a set of nodes, transistors, and vectors. A node is an electrical

node of type input or storage. A transistor is a MOSFET with gate, source and drain nodes.

In the following description, items enclosed in braces f g may be repeated any number of times

(including 0). Items enclosed in brackets [] are optional. When there is a list separated by vertical

bars |, any item from this list may appear. Parentheses () indicate grouping.

The following syntactic elements are referred to in the document.

spacechar A space character. These are: blank, tab, new-line, carriage-return, and new-page.

noderef A reference to a node. Circuit nodes are numbered from 1 up to the number of nodes. A

reference to the ith node is of the form #i. No node may be referenced before it is de�ned.

attrs An attribute list. This is a sequence of the form /char value, where char is a single character

attribute identi�er, and value is the attribute value.

The components of the �le are:

(i|+|-) f name g [noderef] ; [attrs ;] De�nes an input node. Node type `i' denotes an

ordinary (e.g., data or clock) input node. Node types `+' and `-' denote power and ground

nodes, respectively. The optional list of names declares a set of names for the node. All node

names in the circuit must be unique. The noderef serves only as documentation. It must

refer to the node being de�ned. The optional attribute list de�nes additional properties of the

node. Currently, the only node attribute recognized is /c, followed by the node capacitance

in picofarads (using the C syntax for oats.)

(s | S) size f name g [noderef] ; [attrs ;] De�nes a storage node. Node type `s' denotes

an ordinary storage node. Ntk2exe may optimize such a node out of the network, unless it

is the gate of a transistor, occurs in a vector, is an input or output to a functional block,

or can a�ect the value on some other node. Node type S denotes a visible storage node.

Such a node cannot be optimized away under any condition. The node size is a nonnegative

integer (typically small) specifying the node's precedence when sharing charge with other

nodes. Node size 0 indicates that the node does not store charge. Any time such a node is

isolated, its state is set to the unknown value X. The optional list of names declares a set

of names for the node. All node names in the circuit must be unique. The noderef serves

only as documentation. It must refer to the node being de�ned. The optional attribute list

de�nes additional properties of the node. Currently, the only node attribute recognized is /c,

followed by the node capacitance in picofarads (using the C syntax for oats.)

drainref ; [attrs ;](n | p | d) [U | Z] [> | <] strength gateref sourceref De�nes

a transistor of type `n', `p', or `d'. The transistor may be speci�ed to have unit (`U') or zero

(`Z') delay. Unit delay is the default. The transistor may optionally be speci�ed to conduct

information in only one direction, either from the source to the drain (`>') or to the source

from the drain (`<'). If no direction is speci�ed, the transistor is bidirectional. The strength

is a small, positive integer specifying the transistor's precedence in ratioed circuits. The

67

gate, source, and drain nodes of the transistor are each speci�ed by a noderef. The optional

attribute list speci�es addtional properties of the transistor. Currently, the only transistor

attribute recognized is /r, followed by the e�ective resistance of the transistor in kilo-ohms

(using the C syntax for oats.)

| comment ; All text up to the terminating semicolon is ignored. The comment string must not

contain any semicolons.

. Terminates the .ntk description. Any following text is ignored. A �le that does not contain a

termination command is considered incorrect.

68

E .sil format

The .sil �le format is reserved for SILOS II gate netlists. In fact, the silos2exe converter supports

only a quite small subset of the SILOS II format.

To introduce the format, consider the following small example:

$********* GAte macros with delay parameters *******************

.macro CMOS4Xor2 i1 i2 / o

o .xor 390,25.0 410,22.0 2.5*i1 2.5*i2

.eom

.macro CMOS4Nand2 i1 i2 / o

o .nand 150,19.0 210,22.0 2.0*i1 2.0*i2

.eom

.macro CMOS4Nand3 i1 i2 i3 / o

o .nand 180,21.0 240,24.0 2.0*i1 2.0*i2 2.0*i3

.eom

$********* Main circuit *******************

.TITLE ADDER (On: Mon Feb 8 16:57:12 1993

(X1 CMOS4Xor2 a b t1

(X2 CMOS4Xor2 t1 cin result

(n1 CMOS4Nand2 a b t2

(n2 CMOS4Nand2 a cin t3

(n3 CMOS4Nand2 cin b t4

(n4 CMOS4Nand3 t2 t3 t4 cout

$********* End of netlist file *******************

First, the .xor, and .nand commands refer to two of the 9 built-in function types. The num-

bers after the .xor component represent the rise-delay and the fall-delay of the component and is

calculated as the �rst number plus the second number times the fanout load. The multiplicative

factors in front of input signals are used to denote the load factor. The macro de�nitions can be

nested. However, the scoping rules are not well de�ned (silos2exe uses dynamic scoping), and thus

it is recommended that all macros have distinct names. Finally, the format of a macro call is:

(instance-name name-of-macro followed by arguments.

69

E.1 Syntax of .sil format supported by silos2exe

line : alias line

| macro def

| component

| macro call

|

alias line : $ string = string

macro def : .macro string string+

line*

.eom

macro call : (string string input+

component : string .buf delays input+

| string .clk number string

| string .or delays input+

| string .nor delays input+

| string .nand delays input+

| string .and delays input+

| string .xor delays input+

| string .inv delays input+

| string .tbuf delays input+

delays : delay delay

| /* empty */

delay : number

| number , number

| number , float

input : load string

| load - string

load : number *

| float *

| /* empty */

70

F VHDL Support

The support for behavioral and structural VHDL is through a translation program derived from

the Alliance 1.1 distribution. Since the Alliance 1.1 tools are distributed under the Free Software

Foundations license agreement, the source to this translator is available to whoever wants it.

The VHDL subset supported is fully compatible with the IEEE VHDL standard ref. 1076

(1987). Hopefully this means that any program that is acceptable to the convert2 program,

will also be acceptable to commercial synthesis and simulation tools. However, I don't give any

guarantees. Below we outline the main restrictions of the VHDL subset we support.

A VHDL description of a circuit consists of two parts: the external view and the internal view.

The external view de�nes the name of the circuit and its interface. The interface is a list of ports.

Each port is speci�ed by its name, mode, type, possible constraint, and its kind. The mode of a

port depends only on the manner the port is used inside the circuit (in the internal view of the

circuit). If the value is to be read in the view of the description, the port must be declared with

the mode in. If the value is to be written by the internal view, the port must be declared with the

mode out. If the internal view will both read and write to the port, the mode of the port must be

inout.

Only structural and behavioral data ow representations are supported as internal view. Fur-

thermore, it is not possible to mix behavioral and structural descriptions of a single entity. The

convert2 program requires also that each entity is contained in a �le with the same name as the

entity (lower case letters only!). If the description of the entity is structural, the su�x must be

.vst, whereas if the description if behavioral, the su�x should be .vbe.

A typical VHDL description of a circuit will consist of a collection of �les creating a structural

hierarchy of .vst �les with behavioral .vbe descriptions of the leaf nodes in the hierarchy. Note that

the convert2 program will �rst search for a behavioral description of an entity. Only if this fails,

will the program look for a structural description of the entity10.

F.1 Types Supported

The following set of prede�ned types has been de�ned. No other user-de�ned types are currently

supported.

bit The prede�ned standard bit type ('0' or '1'). In the Voss system, this type is monotonically

extended to the quaternary domain.

bit vector An array of bits.

mux bit A resolved subtype of bit using the mux resolution function. This function computes the

greatest lower bound of the actively driven signals. If all drivers are disconnected, the value

of the signal will be X. Note that signal of type mux bit must be declared with the kind bus.

mux vector An array of mux bits.

reg bit A resolved subtype of bit using the mux resolution function. This function computes the

greatest lower bound of the actively driven signals. If all drivers are disconnected, the value

of the signal will retain its old value. Note that signal of type reg bit must be declared with

the kind register.

10If convert2 fails to �nd either a .vbe or .vst description, it looks for an EDIF description (.edi su�x)

71

F.2 Structural VHDL Supported

The declaration part of a structural description includes signal declarations and component decla-

rations. A signal can be declared to have any of the types mentioned above.

A component declaration must be declared with exactly the same port description as in its

entity speci�cation. This means that local ports are to be declared with the same name, type,

kind, and in the same order as in the entity speci�cation.

A structural description is a set of component instantiation statements. The ports of the

instance are connected to each other through other signals through a port map speci�cation. Both

explicit and implicit port map speci�cations are supported. The current version does not allow

unconnected ports (the open mode is not supported).

Finally, only the catenation operator (&) can be used in the actual pat (e�ective signal connected

to a formal port) in a port map speci�cation.

Note that the generate statement is not currently supported (unfortunately!).

F.3 Behavioral VHDL Supported

The only type of statements supported by convert2 are the following concurrent statements:

1. simple signal assignment

2. conditional signal assignment

3. selected signal assignment

4. block statement

When using concurrent statements, an ordinary signal can be assigned only once. The value

of the signal must be explicitly de�ned by the signal assignment (for example, in a selected signal

assignment, the value of the target signal must be de�ned for every value that the select expression

can take on).

The above constraint is often too harsh when designing hardware that have their control dis-

tributed (e.g., precharged lines, distributed multiplexors, busses, etc.). To remedy this, VHDL uses

guarded-resolved signals. A resolved signal is a signal declared with a resolved subtype. A resolved

subtype is a type together with a resolution function. A resolved signal can be assigned by multiple

signal assignments. Depending on the value of each driver, the resolution function determines the

e�ective value of the signal.

A guarded signal is a resolved signal with drivers that can be disconnected. A guarded signal

must be assigned inside a block statement through a guarded signal assignment.

To illustrate this, consider the following example of a distributed multiplexor:

signal DistributedMux : mux bit bus;

begin

FirstDriver: block (Sel1 = '1')

begin

DistributedMux <= guarded Data1;

end block;

SecondDriver: block (Sel2 = '1')

begin

DistributedMux <= guarded Data2;

end block;

end

72

Sequential elements must be explicitly declared using he type reg bit or reg vector (and must

be of kind register). A sequential element must be assigned inside a block statement by a guarded

signal assignment. For example, a falling edge triggered D ip-op could be de�ned as:

signal Reg : reg bit register;

begin

flip flop: block (ck = '0' and not ck'STABLE)

begin

Reg <= guarded Din;

end block;

end;

On the other hand, a rising edge triggered D ip-op with asynchronous reset (active low) may be

de�ned as:

signal Reg : reg bit register;

begin

flip flop : block ((ck = '0' and not ck'stable) or (resetb = '0'))

begin

Reg <= guarded (resetb and Din);

end block;

Finally, level sensitive latch can be de�ned as:

signal Reg : reg bit register;

begin

latch : block (ck = '1')

begin

Reg <= guarded Din;

end block;

The subset of VHDL supported by convert2 includes only the following built-in VHDL op-

erators: not, and, or, xor, nor, nand, &, =, /=. These operators can be applied on all

types supported. Note that other standard VHDL operators (most notably the arithmetic and

comparison operators) are not supported in this release.

73

