
Juggling Networks

Nicholas Pippenger*

e-mail: nicholas@cs.ubc.ca

Department of Computer Science

The University of British Columbia

Vancouver, British Columbia V6T 1Z4

CANADA

Abstract: Switching networks of various kinds have come to occupy a prominent position

in computer science as well as communication engineering. The classical switching network

technology has been space-division-multiplex switching, in which each switching function

is performed by a spatially separate switching component (such as a crossbar switch).

A recent trend in switching network technology has been the advent of time-division-

multiplex switching, wherein a single switching component performs the function of many

switches at successive moments of time according to a periodic schedule. This technology

has the advantage that nearly all of the cost of the network is in inertial memory (such as

delay lines), with the cost of switching elements growing much more slowly as a function

of the capacity of the network.

In order for a classical space-division-multiplex network to be adaptable to time-

division-multiplex technology, its interconnection pattern must satisfy stringent require-

ments. For example, networks based on randomized interconnections (an important tool

in determining the asymptotic complexity of optimal networks) are not suitable for time-

division-multiplex implementation. Indeed, time-division-multiplex implementations have

been presented for only a few of the simplest classical space-division-multiplex construc-

tions, such as rearrangeable connection networks.

This paper shows how interconnection patterns based on explicit constructions for

expanding graphs can be implemented in time-division-multiplex networks. This provides

time-division-multiplex implementations for switching networks that are within constant

factors of optimal in memory cost, and that have asymptotically more slowly growing

switching costs. These constructions are based on a metaphor involving teams of jugglers

whose throwing, catching and passing patterns result in intricate permutations of the balls.

This metaphor a�ords a convenient visualization of time-division-multiplex activities that

should be of value in devising networks for a variety of switching tasks.

* This research was partially supported by an NSERC Operating Grant.

1. Introduction

In this paper we will present a metaphor for describing the construction and operation

of time-division-multiplex networks, and use it to present a new time-division-multiplex

implementation of an explicit construction for expanding graphs, which are an essential

component in many constructions for switching networks. Both the new metaphor and the

main techniques for construction of time-division-multiplex networks will be illustrated

in Section 2 by a well known construction for rearrangeable connection networks. This

construction was described in the context of space-division-multiplex networks by Bene�s

[6] in 1964. The time-division-multiplex implementation was �rst described by Marcus

[13] in 1970, and has recently been rediscovered by Ramanan, Jordan and Sauer [23]. The

resulting implementation is \time-slot interchanger" in the sense of Inose [9]. In Section 3

we indicate how these methods can be adapted to other types of switching networks. The

main obstacle for such applications is the requirement for \expanding graphs" (and related

objects) presented by many constructions for switching networks. In Section 4 we present a

time-division-multiplex implementation of a well known construction for expanding graphs

(and, more generally, for graphs with a prescribed \eigenvalue separation ratio"). This

construction was �rst proposed by Margulis [14] in 1974. Quantitative estimates essential

for its application were provided by Gabber and Galil [8] in 1981, and improvements to

these estimates have been given by Jimbo and Maruoka [10], whose version of the space-

division-multiplex construction we follow. In Section 5 we present some open problems

prompted by this work.

2. Connectors

Imagine a juggler who can with complete reliability throw balls to a �xed height, so

that they always return a �xed amount of time after they are thrown. All amounts of time

considered in this paper will be multiples of some �xed unit of time that will be called the

pulse. Suppose that our juggler can take a ball at each pulse from an external agent, the

juggler's source, and can give a ball at each pulse to another external agent, the juggler's

sink. Suppose further that at each pulse the juggler can execute either of two moves, which

will be called the straight and crossed moves. In the straight move, the juggler rethrows

the ball that returns from the air (if any such ball returns), and gives the ball taken from

the source to the sink (if any such ball is taken). In the crossed move, the juggler throws

the ball taken from the source (if any is taken), and gives the ball that returns from the

air to the sink (if any returns).

1

Now imagine a chain of jugglers; that is, a �nite sequence of jugglers J1; : : : ; J� in

which J� is the source of J�+1, and J�+1 is the sink of J�, for 1 � � < �. (The source of

J1 and the sink of J� are external to the chain. They will be called the source and sink

of the chain.) We assume that the jugglers may have di�erent \spans" (where the span of

a juggler is the amount of time between the throw of a ball and its return), but that all

of these are multiples of a common pulse. Depending on the spans of the various jugglers,

and on the sequence of straight and crossed moves executed by each juggler, the sequence

of balls passed by the source of the chain (and empty pulses during which no ball is passed)

will be rearranged in some way before being passed to the sink of the chain.

In what follows, we shall regard the span of each juggler as a �xed and unchanging

attribute of the juggler, while we regard the sequence of moves as being variable. How

does each juggler decide what sequence of moves to execute? Our assumption will be that

each juggler has a partner, called the juggler's cox, who calls out the name, \straight" or

\crossed", of the move to execute at each pulse. How does the cox decide what sequence

of moves to call? Our assumption will be that each cox is also a juggler who juggles a

�xed sequence of balls. A cox has no source or sink, and always executes straight moves,

rethrowing each ball as it returns from the air. We shall assume that a ball returns at

each pulse (there are no empty pulses), so that the number of balls being juggled by the

cox is equal to the cox's span (which may be di�erent from the cox's partner's span).

Finally, we shall assume that each ball juggled by the cox has one of two colors, say red

for \straight" and blue for \crossed", and that the cox calls out the move corresponding

to the color of each ball as it is rethrown. Thus each cox calls for a periodic sequence of

moves, corresponding to the cyclic sequence of colors of balls in the cox's pattern, with a

period that is equal to the cox's span.

We can now give a simple example showing how a coxed chain of jugglers can serve

as a model for a time-division-multiplex rearrangeable connection network. Let n = 2�

be an integral power of 2. Consider a chain of 2� � 1 jugglers J1; : : : ; J2��1. Suppose

that jugglers J1; : : : ; J� have spans 20 = 1; : : : ; 2��1 = n=2, respectively, and that jugglers

J�+1; : : : ; J2��1 have spans 2��2 = n=4; : : : ; 20 = 1, respectively. Suppose further that all

2� � 1 coxes have span 2� = n.

Suppose that the source of the chain just described passes it a sequence of balls at

successive pulses. Let us divide the pulses into a sequence of frames, with each frame

comprising n successive pulses. The sequence of balls passed by the source to the chain

may be broken into frames, with each frame of balls comprising the balls passed to the

chain during a frame of pulses. The sequence of balls passed by the chain to its sink may

2

be broken into frames in a similar way. Furthermore, we may establish a correspondence

between source frames and sink frames in the following way. Imagine that each juggler

in the chain executes only crossed moves, so that the stream of balls from the source is

passed on to the sink after a �xed delay, equal to the sum of the spans of the jugglers in

the chain (which is in this case 3n=2� 2). Thus each source frame corresponds to a sink

frame that is the series of n pulses during which the balls of the source frame emerge from

the chain in this situation. The positions of the n balls within their frame will be called

slots. We shall index the slots of each frame from 1; : : : ; n (slot 1 is the earliest, and slot

n the latest, slot of its frame).

Theorem 0: For every permutation � : f1; : : : ; ng ! f1; : : : ; ng, there exist patterns for

each cox that cause each ball that is passed by the source to the chain in slot i of a frame

to be passed by the chain to its sink in slot �(i) of the corresponding frame.

The proof of this theorem, which is implicit in the work of Marcus [13] in 1970, is

based on the construction of Bene�s for rearrangeable connection networks. This space-

division-multiplex construction employs (2� � 1)2��1 switching elements (2 � 2 crossbar

switches), arranged in 2� � 1 stages, with each stage comprising 2��1 crossbars. In the

time-division-multiplex implementation of this construction, each of the 2� � 1 jugglers in

the chain will simulate the 2��1 crossbars of the corresponding stage.

The space-division-multiplex construction is usually described recursively. In the

drawing resulting from this description, crossbars are depicted as \boxes" and the wires

interconnecting them are depicted as \lines" that follow \perfect shu�e" interconnection

patterns. It is possible to redraw the this picture, however, so that the wires that carry

the signals from the inputs to the outputs remain parallel to each other, with the crossbars

of each stage conditionally exchanging the signals on wires separated by a �xed distance

(depending upon the stage). This can in fact be done so that the distance in each stage is

just the span that we have assigned to the corresponding juggler.

When this redrawing has been done, we see that the task of a juggler for each pair

of slots (separated by the span of the juggler) is either to leave them una�ected, or to

exchange the balls in these two slots. In the latter case, we need to \delay" the contents

of the earlier slot by a number of pulses equal to the span, and to \advance" the contents

of the later slot by the same amount. Since we cannot implement negative delays, we add

a constant delay, equal to the span, to all slots of the frame. With this adjustment, each

juggler's task is either to delay both slots by the span (which can be accomplished by three

crossed moves at appropriate pulses), or to delay the earlier slot by twice the span and the

later slot not at all (which can be accomplished by a crossed move, followed by a straight

3

move, followed by another crossed move). Thus in any case the juggler can be instructed

to perform the appropriate sequence of moves by a suitable pattern for the cox.

We may summarize the import of Theorem 0 by saying that a time-division-multiplex

rearrangeable connection network with n = 2� slots can be implemented by a juggling

network with 2��1 = O(logn) jugglers, overall delay 3n=2�2 = O(n), and total memory

(3n=2 � 2) + (2� � 1)2� = O(n log n). (In the expression for the total memory, the term

(3n=2 � 2) represents the memory for the principal jugglers in the chain, while the term

(2� � 1)2� represents the memory of the coxes.) This yields an extremely attractive time-

division-multiplex implementation, since the only aspect of the cost that grows as fast as

the size of the corresponding space-division-multiplex network (as O(n logn)) is the total

memory, which can be furnished by relatively inexpensive technology (inertial delay lines),

whereas the number of high-speed switching elements (represented by the jugglers) grows

much more slowly (as O(logn)).

In our description of juggling networks, we have assumed that jugglers execute their

moves instantaneously, so that a ball received by a juggler executing a straight move is

passed on at the same pulse. In practice there would be a �xed overhead time for a

juggler, which might be a large �xed multiple of the pulse. In the chain of jugglers we

have described, and more generally in any juggling network in which all balls are processed

by the same number of jugglers, this overhead delay can be ignored in the analysis of the

network, and it results merely in the addition of a constant delay per juggler being added

to the overall delay. Even in more complicated juggling networks, with di�erent numbers

of jugglers on various paths between the source and the sink (as is necessary, for example,

for the e�cient construction of superconcentrators), this overhead delay can be taken into

account by setting up \time zones" for the various jugglers, and introducing extra delays

to compensate for di�erences in time zones. Thus we shall maintain the convenient �ction

that jugglers act instantaneously, as it will have no e�ect on our conclusions and will

simplify our analysis.

3. Applications

The great economy and elegance of the construction given in Section 2 leads us to

seek other applications for these ideas. The natural starting point is the class of switching

networks with interconnection patterns similar to that of the Bene�s network. Some promi-

nent members of this class are (1) the spider-web interconnection networks (see Pippenger

[19,20]), (2) the Cantor non-blocking network [7], and (3) the Batcher bitonic sorting

4

network [5]. The �rst two of these are externally controlled interconnection networks anal-

ogous to the Bene�s network, and require no further comment. The Batcher bitonic sorting

network, however, is based on comparators, and we should say something about how these

devices can be realized by jugglers.

As described by Batcher [5], a comparator is a �nite automaton that sorts two records

received at its inputs, producing the same two records in sorted order at its outputs. To do

this, it receives the records one bit at a time, with the bits of the keys by which the records

are to be sorted preceding any other data in the records, and with the bits of the keys being

received in order of decreasing signi�cance. As long as the bits of the two input records

remain identical, these identical streams of bits are reproduced at the outputs. Once the

bits of the input keys di�er, the correct sorted order is established, and the remainders

of the records are reproduced at the outputs in this order. Viewed as a �nite automaton,

a comparator requires two bits of state information to keep track of whether or not the

sorted order has been established and, if so, what that order is.

A time-division-multiplex implementation of a comparator entails three jugglers: a

principal juggler who juggles balls representing the successive bits of the records, an as-

sistant who juggles balls representing the state of the comparator (these balls will be of

three distinct colors, representing the three possible states of the automaton), and a cox

who instructs the other two jugglers as to which of the larger and smaller records should

appear in the earlier and later output slots. In this way one can easily construct a time-

division-multiplex implementation of Batcher's bitonic sorting network [5] with O
�
(logn)2)

jugglers, overall delay O(n) and total memory O
�
n(log n)2

�
.

To go beyond these simple applications, however, it is necessary to employ one of the

essential tools of the theory of switching networks: expanding graphs (or, more generally,

graphs with favorable eigenvalue separation ratios). Armed with an e�cient time-division-

multiplex implementation of this tool, we can explore the possible time-division-multiplex

analogs of the following kinds of networks: (1) concentrators and superconcentrators, as

introduced by Pinsker [16] and Valiant [24] (see also Pippenger [21]), (2) non-blocking

connection networks, following Bassalygo and Pinsker [4] (see also Pippenger [17]), (3)

sorting networks, following Ajtai, Koml�os and Szemer�edi [1,2] (see also Pippenger [18]), and

(4) self-routing networks, as introduced by Arora, Leighton and Maggs [3] and Pippenger

[22]. We shall not delve further into any of these applications here, but will describe in

Section 4 a time-division-multiplex implementation for expanding graphs that should be

of use in attacking all of them.

5

4. Expanders

This section is devoted to the time-division-multiplex implementation of expanding

graphs. Our implementation will be based upon a particular explicit construction for

expanding graphs, originated by Margulis [14], with improvements due to Gabber and

Galil [8] and Jimbo and Maruoka [10].

We shall construct a basic expanding graph, which is a regular bipartite multigraph

G = (A;B;E), in which every vertex (in A[B) has degree 8 (meets 8 edges in E), and in

which A and B each contain n vertices, where n = m2 is a perfect square, and m = 2� is

a perfect power of 2 (so that n = 4� is a perfect power of 4).

We shall do this by describing 8 perfect matchings E1; : : : ; E8 � A � B, the union

E1 [� � � [E8 of which is E. To describe these matchings, we let Zm denote the ring of

integers modulom, and identify both A and B with the direct product Zm�Zm, which we

shall regard as having for its elements the 2-element columns of elements from Zm. Each

of the matchings Ei will then have the form

Ei = f(z; �i(z)) : z 2 Zm � Zmg;

where �i is a permutation of Zm � Zm de�ned by an a�ne mapping of the form

�
x

y

�
7!

�
a b

c d

��
x

y

�
+

�
u

v

�
:

Thus it will su�ce to specify, for each i 2 f1; : : : ; 8g, the matrix

�
a b

c d

�
and the column�

u

v

�
.

For one particular construction given by Jimbo and Maruoka [10], the matrix

�
a b

c d

�

is one of the matrices

�
1 2

0 1

�
,

�
1 0

2 1

�
or their inverses

�
1 �2

0 1

�
,

�
1 0

�2 1

�
, and the

column

�
u

v

�
is one of the columns

�
1

0

�
,

�
0

1

�
or their negatives

�
�1

0

�
,

�
0

�1

�
. Thus

it will su�ce to show how the permutations corresponding to each of these matrices and

columns can be implemented by juggling networks, since then the permutations corre-

sponding to the a�ne transformations can be implemented by connecting two such juggling

networks in series, while the basic expanding graph can be implemented by connecting 8

such series combinations in parallel.

6

One approach to the problem of implementing these permutations would be to observe

that, like all permutations, they can be carried out by the network described in Section

2, provided the coxes juggle appropriate patterns. The total number of balls juggled

by coxes in Section 2 is O(n log n), but it might be possible to reduce this to O(n) by

careful analysis of the structure of the permutations. This sort of analysis has been done

by Lenfant [11] for the space-division-multiplex implementation of Bene�s's rearrangeable

connection network. We shall not undertake such an analysis here, but rather will directly

implement the required permutations with juggling networks.

First let us consider the map

% :

�
x

y

�
7!

�
x

y

�
+

�
0

1

�
=

�
x

y + 1

�
:

We may arrange the elements of Zm �Zm in an m�m array, with

�
x

y

�
in the x-th row

(numbered from the top) and the y-th column (numbered from the left). The map % then

corresponds to the operation of cyclically rotating each row one position to the right. Let

the m2 entries in this array correspond to the m2 slots in a frame in \row-major order";

that is, let the �rst m slots in the frame correspond to the entries in the top row of the

array (from left to right), and so forth. The successive rows of the array correspond to

successive intervals of m slots (which we shall call \lines"), and to implement the map %,

we need to cyclically rotate each line of the frame, so that the last slot of the line is moved

to the �rst slot of that line, and each other slot of the line is moved to the immediately

following slot. Since the same operation is to be performed on each line, we may ignore

the overarching organization of lines into frames, and consider simply the operation of

cyclically rotating a line by one position.

We seek to delay slots 0 through m � 2 of each line by 1 pulse and to \delay" slot

m � 1 by �(m � 1) pulses (that is, to advance it by m � 1 pulses). We eliminate the

negative delay by adding a delay of m � 1 pulses to every slot of the line: thus we seek

to delay slots 0 through m � 2 by m pulses, and to delay slot m � 1 by 0 pulses. This

pattern of delays can be achieved by a single juggler who passes balls either immediately

or after a single toss with a delay of m pulses. The corresponding pattern of straight and

crosses moves has a period of m pulses, and thus can be coxed by a juggler with m balls.

To summarize, the permutation % can be implemented by a juggling network with O(1)

jugglers, O(m) memory, and overall delay O(m).

7

We can easily generalize the foregoing argument to the map

%k :

�
x

y

�
7!

�
x

y

�
+

�
0

k

�
=

�
x

y + k

�
;

where 1 � k � m � 1. In this case, we seek to delay the �rst m � k slots of each line by

k pulses, and to \delay" the last k slots by �(m � k) pulses. Adding a constant delay

to eliminate negative delays, we �nd that the resulting pattern of delays can be achieved

by the same juggler and cox as before; only the cox's pattern and the overall delay are

changed, and the overall delay is reduced from its maximum of m � 1. To summarize,

the permutation %k can be implemented by a juggling network with O(1) jugglers, O(m)

memory, and overall delay O(m), where all constants are independent of k.

Next let us consider the map

� :

�
x

y

�
7!

�
1 0

1 1

��
x

y

�
=

�
x

x + y

�
:

Using the same organization of frames into lines as was used above, to implement the map

� we need to cyclically rotate the 0-th line not at all, rotate the 1-st line 1 position to the

right, and in general rotate the x-th line x positions to the right.

To obtain an e�cient implementation of this permutation, we shall assume that m =

2�, for some natural number �, so that each element of Zm can be regarded as a �-bit

word (with the usual binary interpretation). Then, instead of subjecting each line to one

of m di�erent cyclic rotations, we will subject each line to a di�erent subset of � di�erent

rotations, with amounts of 20 = 1 through 2��1 = m=2. In general, we will subject the

x-th line to the rotation 2� positions to the right (for 0 � � � �� 1) if the (� + 1)-st bit

in the binary representation of x is 1 (where the 1-st bit is the least, and the �-th bit is

the most, signi�cant).

The permutation � can thus be implemented by a chain of � jugglers, each of whom

passes each ball to the next juggler in the chain, either directly or after a single toss with

a span of m pulses. Since each juggler contributes at most O(m) to the overall delay, the

chain contributes at most O(�m) = O(m2) to the overall delay. Each of these jugglers

has a cox whose pattern has a period that depends on the position of the juggler in the

chain. The cox for the juggler with rotation amount 1 has a period of 2 lines, the cox

for the juggler with rotation amount 2 has a period of 4 lines, and in general the cox for

the juggler with rotation amount 2� has a period of 2�+1 lines. Summing these periods,

we see that the total memory required by the coxes is O(m) lines, or O(m2) pulses. To

8

summarize, the permutation � can be implemented by a juggling network with O(logm)

jugglers, O(m2) memory, and overall delay O(m2).

We can easily generalize the foregoing argument to the map

�k :

�
x

y

�
7!

�
1 0

k 1

��
x

y

�
=

�
x

kx+ y

�
;

where 1 � k � m � 1. We need only alter the behavior of each juggler to replace a cyclic

rotation of 2� pulses by one of k2� pulses (modulo m), for 1 � � � �� 1. This a�ects the

patterns of the coxes, but not their periods or the spans of the jugglers. To summarize,

the permutation �k can be implemented by a juggling network with O(�) jugglers, O(m2)

memory, and overall delay O(m2), where all constants are independent of k.

At this point we have seen how to implement 4 of the 8 permutations of our expanding

graph, each with a juggling network of O(�) jugglers, total memory O(m2) and overall

delay O(m2). If we were to use the same strategy for the remaining 4 permutations, we

would encounter the following problem: in order to cyclically rotate a column (rather than

a row) we need a juggler with a span of O(m2) (rather than O(m)), and thus a chain of �

such jugglers would require a total memory of O(�m2), which exceeds our goal of O(m2).

We shall therefore use a di�erent strategy for these 4 remaining permutations. We shall

consider the map

� :

�
x

y

�
7!

�
0 1

1 0

��
x

y

�
=

�
y

x

�
:

We shall implement the corresponding permutation using a chain of O(�) jugglers, with

O(m2) memory and overall delay O(m2). We can then implement the permutation corre-

sponding to the map

%0k :

�
x

y

�
7!

�
x

y

�
+

�
k

0

�
=

�
x+ k

y

�

using the identity %0k = � � %k � � , and the permutation corresponding to the map

�0k :

�
x

y

�
7!

�
1 k

0 1

��
x

y

�
=

�
x+ ky

y

�

using the identity �0k = � � �k � � .

The map � corresponds to the permutation that transposes the array of elements of

Zm�Zm. Our implementation of this permutation will be based on the following identity,

9

in which A, B, C and D denote (m=2) � (m=2) subarrays of an m � m array, and a

superscript T denotes \transpose":

�
A B

C D

�
T

=

�
AT CT

BT DT

�
:

This identity suggests a strategy that begins by exchanging the subarraysB andC (without

transposing them), then proceeds recursively to transpose all four subarrays.

The operation of exchangingB and C is straightforward, since it reduces to exchanging

a sequence of pairs of slots at a �xed distance in each frame. Speci�cally, we want to delay

the last m=2 slots of the �rst m=2 lines (the elements of B) by m(m � 1)=2 pulses (m=2

lines minusm=2 pulses), delay the �rst m=2 slots of the last m=2 lines (the elements of C)

by �m(m� 1)=2 pulses, and delay all other slots by 0 pulses. Adding an overall delay of

m(m� 1)=2 pulses to eliminate the negative delays, we see that the required exchange can

be accomplished by a juggler with a span of m(m� 1)=2 pulses, who passes each ball after

0, 1 or 2 tosses, for a delay of 0, m(m� 1)=2 or m(m� 1) pulses. The juggler is coxed by

a partner with a pattern of period 1 frame, or m2 pulses.

After the exchanges performed by the juggler just described, it remains to transpose

each of the subarrays A, B, C and D. To do this we proceed recursively, partitioning

each of these subarrays into four (m=4) � (m=4) subsubarrays, exchanging the two o�-

diagonal subsubarrays of each subarrays, and so forth. Each level of the recursion will

contribute one juggler to a chain of � jugglers, of which the �rst (described above) is

responsible for exchanging two subarrays, the second is responsible for exchanging four

pairs of subsubarrays (one pair in each subarray), and so forth. The �-th juggler will

have a span of m(m � 1)=2� pulses (and will pass each ball after 0, 1 or 2 tosses), and

will be coxed by a partner with a period of m2=2��1 pulses. Adding the contributions

of the jugglers in this chain, we see that the permutation corresponding to the map � is

implemented by a juggling network with O(�) jugglers, total memory O(m2) and overall

delay O(m2), as claimed above.

This completes the implementation of our basic expanding graph, since the 8 per-

mutations required for this graph can be fabricated by composing a bounded number of

permutations, each of the form %k, �k, or � . Furthermore, a graph with any desired �xed

ratio of eigenvalue separation can be obtained by raising our basic expanding graph to a

�xed power (see for example Pippenger [22]). Thus each of the bounded number of permu-

tations required for this desired graph can be fabricated by composing a bounded number

of permutations from the basic expanding graph, and we obtain the following theorem.

10

Theorem 1: For any desired eigenvalue separation ratio (that is, ratio between largest two

absolute values of eigenvalues) R, there exists a natural number d = 2� such that, for every

natural number n = 4�, there exist d permutations �1; : : : ; �d of n objects such that (1)

the sum of the matrices of the permutations �1; : : : ; �d has eigenvalue separation ratio at

least R, and (2) each of the permutations �1; : : : ; �d can be implemented by a juggling

network with O(log n) jugglers, total memory O(n), and overall delay O(n).

5. Conclusion

We have shown in this paper how to construct time-division-multiplex analogues of

expanding graphs, which are an essential component in many asymptotically optimal con-

structions for switching networks. We have described this construction in terms of a

juggling metaphor that is useful in its own right as an aid to visualizing the operation of

switching networks. Aside from more or less routine applications of this construction to

various problems concerning switching networks, some more conceptual problems remain

to be addressed.

At this time there are no lower bounds for time-division-multiplex networks ex-

cept for those inherited in an obvious way from the theory of space-division-multiplex

networks. Consider for example the construction of connectors given in Section 2.

The memory requirement O(n log n) is clearly best possible, since that much memory,

�
log(n!)

�
= O(n logn), is needed to remember the identity of 1 out of n! possible permu-

tations. Similarly, the overall delay of O(n) is best possible, since routing the last slot of

an input frame to the �rst slot of an output frame clearly requires that the frame be de-

layed by
(n) pulses. Finally, the bound of O(logn) switches is best possible, provided we

assume an overall delay of O(n), since the number of switches in a time-division-multiplex

network, times the overall delay of that network, must be at least as large as the number

of switches in a space-division-multiplex network performing the same task. We do not

know, however, how to prove a lower bound to the number of switches when the constraint

on the overall delay is relaxed (say to O(n logn)), or how to prove a lower bound to the

number of switches required to implement speci�c permutations such as those treated in

Section 4.

While the construction for expanding graphs used in Section 4 su�ces to provide any

desired eigenvalue separation ratio (given that the degree is no object), there are other

constructions that are both more economical from a practical point of view and essential

for certain theoretical purposes. The most prominent of these are the Ramanujan graphs

11

introduced by Lubotzky, Phillips and Sarnak [12] and by Margulis [15]. Whether there are

e�cient time-division-multiplex implementations of these graphs remains an open question.

6. References

[1] M. Ajtai, J. Koml�os and E. Szemer�edi, \Sorting in c logn Parallel Steps", Combina-

torica, 3 (1983) 1{19.

[2] M. Ajtai, J. Koml�os and E. Szemer�edi, \An O(n log n) Sorting Network", Proc.

ACM Sym. on Theory of Computing, 15 (1983) 1{9.

[3] S. Arora, T. Leighton and B. Maggs, \On-Line Algorithms for Path Selection in a

Nonblocking Network", Proc. ACM Sym. on Theory of Computing, 22 (1990) 149{

158.

[4] L. A. Bassalygo and M. S. Pinsker, \Complexity of an Optimal Nonblocking Switch-

ing Network without Reconnections", Problems of Inform. Transm., 9 (1974) 64{66.

[5] K. E. Batcher, \Sorting Networks and Their Applications", Proc. AFIPS Spring

Joint Computer Conf., 32 (1968) 307{314.

[6] V. E. Bene�s, \Optimal Rearrangeable Multistage Connecting Networks", Bell Sys.

Tech. J., 43 (1964) 1641{1656.

[7] D. G. Cantor, \On Non-Blocking Switching Networks", Networks, 1 (1971) 367{377.

[8] O. Gabber and Z. Galil, \Explicit Constructions of Linear-Sized Superconcentra-

tors", J. Comp. and System Sciences, 22 (1981) 407{420.

[9] H. Inose, \Blocking Probability in 3-Stage Time Division Switching Network", J.

IECEJ, 44 (1961) 935{941.

[10] S. Jimbo and A. Maruoka, \Expanders Obtained from A�ne Transformations",

Combinatorica, 7 (1987) 343{355.

[11] J. Lenfant, \Parallel Permutations of Data: A Bene�s Network Control Algorithm for

Frequently Used Permutations", IEEE Trans. on Computers, 27 (1978) 637{647.

[12] A. Lubotzky, R. Phillips and P. Sarnak, \Ramanujan Graphs", Combinatorica, 8

(1988) 261{277.

[13] M. J. Marcus, \Designs for Time Slot Interchangers", Proc. National Electronics

Conf., 26 (1970) 812{817.

[14] G. A. Margulis, \Explicit Construction of Concentrators", Problems of Inform.

Transm., 9 (1974) 71{80.

12

[15] G. A. Margulis, \Explicit Group-Theoretical Constructions of Combinatorial

Schemes and Their Application to the Design of Expanders and Concentrators",

Problems of Inform. Transm., 24 (1988) 39{46.

[16] M. S. Pinsker, \On the Complexity of a Concentrator", Proc. Internat. Teletra�c

Congr., 7 (1973) 318/1{4.

[17] N. Pippenger, \Telephone Switching Networks", Proc. AMS Symp. Appl. Math., 26

(1982) 101{133.

[18] N. Pippenger, \Communication Networks", in J.van Leeuwen (Ed.), Handbook of

Theoretical Computer Science|Volume A: Algorithms and Complexity, Elsevier,

Amsterdam, 1990.

[19] N. Pippenger, \The Blocking Probability of Spider-Web Networks", Random Struc-

tures & Algorithms, 2 (1991) 121{149.

[20] N. Pippenger, \The Asymptotic Optimality of Spider-Web Networks", Discr. Appl.

Math., 37/38 (1992) 437{450.

[21] N. Pippenger, \Rearrangeable Circuit-Switching Networks", Proc. Internat. Conf.

on Graph Theory, Combinatorics, Algorithms and Applications, 7 (1992) (to ap-

pear).

[22] N. Pippenger, \Self-Routing Superconcentrators", Proc. ACM Sym. on Theory of

Computing, 25 (1993) 355{361.

[23] S. V. Ramanan, H. F. Jordan and J. R. Sauer, \A New Time-Domain, Multistage

Permutation Algorithm", IEEE Trans. Info. Theory, 36 (1990) 171{173.

[24] L. G. Valiant, \Graph-Theoretic Properties in Computational Complexity", J.

Comp. and System Sciences, 13 (1976) 278{285.

13

