
Ranking and Unranking Trees
Using Regular Reductions

by
Pierre Kelsen

Technical Report 93-37
October 1993

Department of Computer Science
University of British Columbia

Rm 201 - 2366 Main Mall
Vancouver, B.C.

CANADA V6T lZA

Telephone: (604) 822-3061
Fax: (604) 822-5485

Ranking and U nranking Trees
Using Regular Reductions

Pierre Kelsen*

Abstract

We consider the problem of defining a linear order on a set of combinatorial objects so
that the following two operations can be performed efficiently: (1) determine the rank of
an object in the linear order (ranking); (2) compute an object from its rank (unranking).
Typical applications of such an ordering include testing a program on a random or se­
lected set of input instances and searching for counterexamples of a conjecture involving
structured objects.

We reduce the problem of finding such a linear order to the problem of constructing
a special mapping on the set of combinatorial objects; we call such a mapping a regular
reduction. We demonstrate the use of regular reductions by improving several methods
for ordering families of rooted trees: we propose ranking and umanking procedures for
height-balanced trees on n leaves that rnn in time O(n} and O(nlogn), respectively af­
ter O(n2 logn) preprocessing, improved from O(nlog2 n) ranking O(nlog3 n) unran.king,
and 0(n2 log n) preprocessing. For B-trees on n leaves we describe ranking and unrank­
ing procedures that both run in time O(n), after O(n2) preprocessing; previous methods,
although running in linear time, are fairly involved and require exponential time (and
space) preprocessing. Finally, we propose linear time procedures for ranking and unrank­
ing binary trees of bounded height after polynomial time preprocessing; no polynomial
time ordering algorithms for this class of trees were previously known.

1 Introduction

We consider the problem of defining a linear order on a set of combinatorial objects so that
the following two operations can be performed efficiently: (1) given an object, compute its
rank in the linear order, i.e., the number of objects that precede it in the linear order; _{2)
given the rank of an object, construct the object. Tasks (1) and (2) are usually referred to as
ranking and unranking, respectively. Note that we obtain a random combinatorial object by
applying the unranking procedure to a random rank and we obtain a list of all combinatorial
ojects by invoking the unranking procedure for all ranks. We refer to the problem of finding
such a linear ordering as the ordering problem.

There are several natural applications for the ordering problem. We may consider the
input to an algorithm to be a combinatorial object. Ordering the set of these objects allows
us to generate random inputs or certain subsets of possible inputs. This is useful for testing
a program or measuring its running time. Another application is the generation of combi­
natorial objects to test the validity of a conjecture. For instance, one may want to check a
conjecture about graphs by generating all graphs of a given size .or a subset of them.

•The author was supported by the Natural Sciences and Engineering Research Council of Canada. Address
of the author: Department of Computer Science, University of British Columbia, 2366 Main Mall, Vancouver,
B.C. CANADA V6T 1Z4; e-mail: kelsen@cs.ubc.ca.

1

In this paper we shall focus on the ordering problem for rooted trees for two reasons: first,
these trees are among the most widely used struct;med obj cts in the design of computer
algorithms; second, our methods prove particularly effective in this context. Much a.ttentio1
has been devouted t the ordering of trees in the last decade (see e.g. (5, 6, 7 9, 10 11,
12, 13, 17, 18]). referen es). Typically, a given family of trees (e.g. binary trees on n
nodes) is ordered by first establishing a orrespondence between th trees and erta.in integer
sequences. Ordering algorithms are then developed for these integer sequences. This usually
involves assigning a weight to each integer sequenc and deriving a re urrence relation for the
number of sequences of a, given weight. The main drawback f thl approa.ch is that finding
a suitable encoding may be quite difficult. This difficulty is underlined by the lack of linear
time ordering algorithms for many important families of rooted trees.

We propose a new approach that reduces th ordering problem to t,he probleru of finding
a special mapping on the set of combinatorial objects; we call such a mapping a regnlar
reduction. We exhibit an intimate connection behveen regular reductions an.cl recurrence
relations: every regular reduction yields a recurrence relation from which a solut.ion to th
ordering problem can be derived using standard methods. Conv rsely., we may associate wjth
a wide class of recurrence relation regular reductions. As a result most ordering methods
for tr es may be reformulated withiu th fram work of regular reductions.

We demonstrate the power of regular reductions for ordering trees by constructing sim­
ple regular reductions for several faxnili ·s of trees. The resulting ordering prncedures are
simple and efficient and improv several resultR from t4e literature. For h -ight-balanced
trees on n leaves we propose .ranking and unranking algorithms that ·m1 in time G(n) and
O(nlogn), respectively, after O(n2 logn) preprocessing, improv d from O(nlog2 n) ranking,
O(n log3 n) unranking, and 0(1i log n) 'preprocessing. For B-trees on n leaves we describe
ranking and unranking proceduxes that both run in time O(n) after O(n2) preproce sing; pre­
vious metho ls, alt.hough running in linear time are fairly involved and r quire exponential
time preproc ssing. Furthermore, we have linear time pro edures for ranking and unra.nking
binary ti-ees with n nodes and height, a.t most h after O(n4) t.im preprocessing; no poly11omia.l
time ranking or unra.nking a.lgori thms for this lass of trees were previously known.

Thi paper is organized as follows: in se ·tion 2 we formally define the ordering problem
and introduce the combinatorial family of set partitions as a typical example. In section 3
we relate 0U1· methods to previous work in t;his area. In section 4 we introduce the concept
of a r · gular reduction and study the co.nne tion betwe n regular reductions and recunence
relations. In section 5 we outline the va.riou steps in the solution of the ordering problet,n.
We use regular reductions in section G to mder height-balanced trees, binary trees of bounded
h ight, and B-trees and obtain th results mentioned above. We conclude in se tion 7 by
summarizing the contributions of this paper and discussing other pot ntial applications for
regular reductions.

A preliminary version of this work appeared in [7].

2 Preliminaries

2.1 The Ordering Problem

The following is a rather general statement oI the ordering problem: we. are given a set S
of combinMorfo.l objects (e.g., trees), ,\ countable set W of weights and a. weight fimction
w : S - W. We call w(.s) the weight of obje ·t s E S and denote by S(w) the subset of
elements in S of weight w. We shall assume that ·the number of objects of any given weight

2

is finite. The ordering problem is to determine a linear order <w on each set S(w) so that
the following operations can be performed efficiently:

(1) Given an elements E S(w) compul,e the rank of s, i.e., the number of objects in S(w)
that precede it in the linear order <w; we denote this number by the function rank(s).

(2) Given a number i in the range 0, · ... , IS(w) I - 1 return the element s E S(w) with
rank(s) = i; let the function unrank(w,i) denote this element.

We note that we can generate an object of S(w) uniformly at random by chosing an integer
i uniformly at random from the range O ... IS(w)I - 1 and invoking unrank(w, i). We also
note that we can generate all objects in S(w) by simply invoking unrank(w, i) for i =
0, 1, ... , IS(w)I - 1.

Caveat: It is standard pr'actice to measure the · complexity of algorithms implementing
the functions rank and unrank under the assumption that numbers representing ranks of
elements in S fit into a single memory word (and hence standard RAM instructions on these
numbers can be executed in constant time); this is sometimes referred to as the unit cost
criterion ([l]). One has to bear in mind, however, that these numbers can be quite large.
To get a more realistic estimate on the actual running time one may set the cost of a RAM
instruction proportional to the number of bits in the largest operand; this is usually referred
to as the logarithmic cost criterion. In this paper we express the time and space requirement
in the unit cost model to facilitate comparisons with earlier results. These bounds are easily
converted to the logarithmic cost model.

2.2 An Example: Set Partitions

We shall illustrate various concepts and ideas in this paper using the example of set partitions.
We choose set partitions instead of trees because they are simpler than trees yet complex
enough to illustrate the basic concepts.

For a positive integer n let [n] denote the set { 1, ... , n}. A partition of [n] is a set
of pairwise disjoint nonempty subsets of [n], called blocks, whose union is [n]. It will be
convenient to have a linear order on the blocks of a partition. We define the canonical order
to be the arrangement of blocks in increasing order of their smallest element. Thus, the
blocks of the padition {{3}, {2, 4}, {5, 7}, {1, 6}} of [7] are, in canonical order, {1, 6}, {2, 4},
{3}, and {5, 7}.

Let P(n, k) denote the set of partitions of [n] with exactly k blocks. The following
recurrence relation for S(n, k) = IP(n, k)I (the Stirling numbers of the second kind) is well­
known (see e.g. [3]) and will be repeatedly referred to in the sequel:

S(n, k) = S(n - 1, k - 1) + k · S(n - 1, k) (1)

for 1 < k < n with the boundary conditions S(n, n) = S(n, 1) = 1 for n ~ 1. We place set
partitions within the general framework of the previous subsection as follows: the set S of
combinatorial objects is the union Un2'.1,1knP(n,k); the weight function w assigns to each
partition in S as weight the pair (n, k) where n is the total number of elements it contains
and k is the number of blocks it contains. Thus, P(n, k) comprises exactly those elements in
S of weight (n, k).

3

3 Previous Work

In this section we take a brief look at two general models for ordering combinatorial objects
that have been proposed in the literature and explain how our techniques relate to these
.models.

We first review the model of Wilf ([15]). The basic idea of Wilf is to represent combinato­
rial objects by paths in a digraph, thereby reducing the problem of ordering the combinatorial
objects to that of ordering the associated paths. We illustrate the basic ideas with the help of
set partitions. Construct a directed graph whose nodes are the pairs (n, k) where n ~ 1 and
1 S k 5 n. Connect each vertex (n, k) with 1 < k < n by k directed edges (distinguished by
unique labels) to (n - 1, k) and by a single ed1;e to (n - 1, k - 1); also for each n > 1 connect
vertex (n., ,i) by a single edge to (n - 1, n - 1) and (n, 1) with a single edge to (n - 1, 1). Let
b(n, k) denote th.e number of paths in this directed graph from vertex (n, k) to (1, 1). From
the construction of the digraph it follows that b(n, k) satisfies the sam ' recurrence relation
as S(n; k). Hence we have S(n, k) = b(n, k) for n ~ 1 and 1 S k S n. One can establish a
simple bijective correspondence between partitions in P(n, k) and paths from (n, k) to (1, 1).
Fairly straightforward algorithms for ranking and unranking these pt,1.ths may thus be used
to perform these tasks for the partitions in P(n, k) (see [15]) .

. An equivalent model is proposed Ly Williamson ([16]). Again the basic concepts are best
illustrated with the example of set partitions. We may interpret recurrence relation 1 as
follows: the set P(n, k) may be partitioned into k + 1 subsets Bo, Bi, ... , Bk such that Bo
contains those pal·titions with n in a block by itself and Bi (i > 0) contains those partitions
with n sharing the ith block in anonical order with at least one other.element. By identifying
Do with P(n - 1, k - 1) and each Bi (i > O) with_ P(n - 1, k) we may recursively partition
each Bi in this way. We thus obtain a sequence of partitions of P(n, k), each partition being
a refinement of the preceding one. We can represent this chain of 1 artitions by a tree, the
root of the tree being P(n, k) and each leaf corresponding to a single element in P(n, k).
By ordering the children of each node we induce an ordering on the leaves. Based on this
ordering ranking and unranking may be done in a fairly straightforward way.

Both of these general methods rely on linear recurrence relations (such as equation 1) for
the number of objects of a given weight. Although such recurrcn ·e relations a.re well-known
for many classical combinatorial families such as permutations, derangements or partitions
this is not LTI1e for more omplex objects such as trees. The standard approach for ordering
tree con1;1ists of encoding the-trees by a restricted family of i1Jteger sequences. By associating
suitable weights with each sequen e, one may be able to derive a recurrence relation for the
number of sequences (and hence th number of trees) of a given weight. Once a recurrence
relation has been obtained, methods similar to those described above may then be used to
solve the ordering problem. For restricted families of trees such as those considered in section
6 tihe task of finding a suitable encoding m3:y be quite difficult.

In the next section we reduce the ordexing problem to the problem of defining a special
mapping on the set of combinatorial objects - we call such a mapping a regular reduction. We
show that for any combinatorial family that admits a regular reduction there is a recurrence
relation for the number of objects of a given weight . This will enable us to use methods
similar to those describ d above for ranking and unranking the objects. We demonstrate th.is
approach in se tion 6 where we exhibit simple regular reductions for several families of trees
that yield fast aad simple ordering procedures.

4

4 Regular Trees and Regular Reductions

Up to now we have used the term combinatorial objects in a very general sense: in the
statement of the ordering problem we only require that each object has a weight and that
there are a finite number of objects of a given weight. Clearly, in order to design a solution to
the ordering problem we need to know more about the structure of the combinatorial family.
In this section we restrict the structure of combinatorial families and show that for these
restricted families we can solve the ordering problem in a systematic way.

4.1 Terminology

We first define some basic terms used in the sequel. A rooted tree is a directed graph T =
(V, E) with a distinguished node r E V such that r has outdegree 0, all other vertices are
outdegree 1, and there is a directed path from every vertex to r. In this case we say that r
is reachable from every vertex. If (v, w) is an edge in T, then vis the child of w and w is the
parent of v. A leaf in a rooted tree is a childless node. The subtree off rooted at a node v
of T is the tree consisting of all the vertices in T from which v can be reached (including v)
and having as edges the edges of T between these vertices. The depth of a node in T is the
number of edges on the unique path from this node to the root. An internal node of T is any
node of T other than a leaf.

4.2 Regular Trees

As in ·section 2 we denote by S the set of combinatorial objects and by w(s) the weight of
an object s E S. Suppose that the objects in S are being constructed from simpler objects
using some transformation rules. In the case where each object is built from at most one
other object we may associate with the set S a directed graph G: the vertices in G are the
combinatorial objects in S; there is an edge (s', s) ifs' is constructed from s. Note that each
vertex has outdegree at most 1 in G. An interesting special case arises when the digraph is
a rooted tree, i.e., there is a unique vertex of outdegree O (the root) that is reachable from
all other vertices (having outdegree 1). By labeling each vertex s in this tree with its weight
w(s), we obtain a weighted tree for (S,w). This will usually be an infinite tree.

As an example consider the following construction rule for set partitions: from any par­
tition p E P(n, k) we construct k partitions in P(n + 1, k) by inserting n + 1 in one of the
k blocks of p and a single partition in P(n + 1, k + 1) by creating a new singleton block for
n + 1. An initial portion of the corresponding weighted tree is depicted in figure 1. (Following
standard practice we om.it the direction of the edges; all edges are assumed to point upwards.)
Let T and T' be two weighted trees for (S,-w) and (S',w'), respectively. We say that T and
T' are isomorphic if there exists a bijection h : S --. S' such that the following two conditions
hold: (1) for any x, y ES, y is a child of x in T if and only if h(y) is a child of h(x) in T'; (2)
for any x ES, w(x) = w'(h(x)). A mapping with these properties is called an isomorphism
from T to T'.

The weighted tree for set partitions whose initial portion is shown in figure 1 exhibits
the following important property: if two nodes have the same weight, then the two subtrees
rooted at these nodes are isomorphic. If a weighted tree for (S, w) has this property, then
we call the tree a regular tree for (S, w), or just regular tree if S and w are clear from the
context. Let T be a weighted tree for (S,w). We denote the set of children of a node x by
C(x) and the multiset of the weights of these children by w(C(x)). The following theorem
states a simple condition for a weighted tree to be regular.

5

Figure 1: Initial portion of a weighted tree for set partitions. The weight of a node is written
next to the node.

Theorem 1 A weighted tree T for (S, w) is a regular tree if and only if the multisets w(C(s))
and w(C(s')) are egttal for any two nodes sand i in T with w(s) = w(s').

Proof. Throughout this proof T(s) denotes the subtree of T rooted at a node s in T; its
vertex set are all nodes in T from which s is reachable. If T is regular and s and s1 are
two nodes of equal weight in T, then an isomorphism from T(s) to T(s') must map s to s'
and the children of s to the children of s'. Since the isomorphism is weight-preserving, it
follows that w(C(s)) and w(C(s')) are equal. For the ·onverse assume w(C(s)) = w(C(s')) if
w(s) = w(s'). Fix two nodes sands' in T with 'the same weight; hence w(C(s)) = w(C(s')).
We need to show that T(s) and T(s') are isomm:phi . We de.fine a bije ·tive mapping h from
the vertex set of T(s) to the vertex set of T(s') inductively as follows: h(s) = s' and, if x
is a child of a node y in T(s), then h(x) is a child of h(y) of weight w(x). Note that these
two conditions do not uniquely specify the mapping. The existence of a bijective mapping
with these properties follows, however, from our assumption . Furthermore, such a mapping
is clearly an isomorphism from T(s) to T(s'). Hence Tis regular. D

Corollary 1 Assttme each node in a regular tree T has finite ·intlegree . Then there exists a
linear order <w on W such that each weight w has finite rank 'in <w and w(f(s)) <w w(s)
for e·uery s E S other than the root of T. ·

Proof. For w E W, let d(w) denote the maximum depth of a node of weight w ii1 a regular tree
T. Since each S(w) is finite, d(w) is indeed well-defined. By setth1g w < w' if d(w) < d(w').
we obtain a partial ordering on W that may be extended into a linear oi-der < w n W by
arbitrarily ordering the weights with same d-value. If f (s) denotes the parent of a non-root
node s in T, then theorem 1 implies that d(w(J(s)) < d(w(s)) since every node of weight
w(f(s)) has a child of weight w(s) in T. If in addition each node in T has finite indegree (the
only case that we shall consider in this paper), then each element in W has finite rank in
<w. The result follows. D

Anot.her useful consequence of theorem 1 is the fact that we may extract from a regular
t.r e T a mapping t that assigns to ea.ch weight w the multiset w(C(s)) fo1· an a.rbitrary
s E S(w). We call the mapping t the type of the regular tree. As an example consider the
regular tree for set partitions (figure 1): using the notation m1 • x1 + m2 • x2 + .. . + 771.k • Xk

f r a multiset containing exa ·tly mi copies of some object Xi (1 $ i $ k) we may write the
type of the regular tree for set partitions as t(n, k) = /.; • (n + 1, k) + 1 • (n + 1, k + 1).

6

4.3 Regular Reductions

Each rooted tree comes equipped with a natural mapping, namely the mapping that maps
each node other than the root to its parent. If the rooted tree is a regular tree for (S, w), then
we call this mapping a regular reduction for (S, w). Regular reductions provide an elegant
and convenient characterization of regular trees.

In order to come up with a regular reduction directly (without first constructing the
corresponding regular tree), we need a simple criterion for checking whether a given mapping
is indeed a regular reduction. Such a criterion is provided by the following theorem.

Theorem 2 Fix a combinatorial family (S, w) and a distinguished element so E S. A map­
ping f : S\ {so} --+ S is a regular reduction if and only if the following two conditions are
satisfied:

(i) for any s ES there exists an integer i ~ 0 such that f(i)(s) = so {here f(i) denotes the
function f composed with itself i times) {finiteness condition);

(ii) for any s, s' ES, if w(s) = w(s') then the multisets w(f-1(s)) and w(f-1(s')) are equal
{regularity condition).

Proof. If f is a regular reduction, then certainly the finiteness and regularity conditions hold.
Conversely, if the finiteness condition holds, then the graph with vertex set S and edge set
{(s,f(s)): s E S,s i= so} is a tree rooted at so. From the regularity condition and theorem
1 it follows that this tree is regular and hence f is a regular reduction. □

The type of a regular reduction is the type of the associated regular tree, i.e., the mapping
that assigns tow E W the multiset of weights w(f-1(s)) for s E S(w) . As an example consider
the family of set partitions. Define a mapping cut on Un,kP(n, k) as follows: if p E P(n, k)
where n > 1 then cut(p) is obtained from p by removing element n from its block and
removing the resulting block if it has become empty; if p = {{1}} then cut(p) is undefined.
Thus, if p = {{1, 3}, {2, 5}, {4}} then cut(p) = {{1, 3}, {2}, {4}}, cut(2)(p) = {{1, 3}, {2}},
cut(3)(p) = { {1}, {2}} and cut(4)(p) = { {1} }. The finiteness condition of theorem 2 is easily
checked. For the regularity condition note that if p E P(n, k) then w(cuC1(p)) is the multiset
k • (n + 1, k) + 1 • (n + 1, k + 1). Thus, f is indeed a regular reduction whose type is given
by the last expression. The corresponding regular tree is the tree of figure 1.

4.4 Recurrence relations

The importance of regular reductions in the context of the ordering problem is due to the
fact that each regular reduction (and each regular tree) yields a recurrence relation which
allows us to use ordering procedures similar to those outlined in section 3.

Fix a regular reduction f : S\ {so} --+ S and let T be the corresponding regular tree. As
usual we denote by S(w) the set of elements in S of weight w E W; we write s(w) for IS(w)I ,
the number of objects of weight w. For weights w, z E W let d(w, z) represent the number of
nodes of weight w that are children of a node in T of weight z. Also let < w be a total order
on W such that each weight has finite rank in < w and w (f (s)) < w (s) for all s E S\ {so}.
By corollary 1 such an ordering does exist. The following result elucidates the relationship
between regular reductions and recurrence relations.

Theorem 3 The quantities s(w) satisfy the recurrence relation

s(w) = L d(w, z) · s(z) (2)
zEW,z<ww

7

Figure 2: Structure graph for set p!i,rtitions with respect to reduction cut.,

for w =I= w(so)J with the boundary condition s(w(so)) = l.
Proof. For every s =I= s0 we have w(so) <w w(s), hence the boundary condition. Each node
of weight z has d(w, z) children of weight w. Thus, the set of nodes of weight w whose parent
has weight z has cardinality d(w, z)s(z). Since these sets are disjoint for different values of z
and w(J(s)) <w w for s E S(w), the claim follows. D

We remark that there may be no closed-form expression for the quantities d(w, z).
We may use recurrence relation 2 to represent S by paths in a directed graph as in Wilf's

model (see section 3): the vertex set of the graph is the set W of weights of objects in S.
The edge multiset E is given by the formal expression

E= d(w, z) • (w, z),
wEW\{w(so)},z<ww

i.e., each vertex w =I= w(so) is linked by d(w, z) edges to vertex z for any z E W. We assume
that parallel edges are distinguished by unique labels. We call this graph the structure
g·raph for (S, w) with respect to reduction f - structure graph for short if S, w and / are
understood. The number of (labeled) paths from w to w(so) satisfies the same recurrence
relation as the number s(w) of objects of weight w (see recurrence 2). Hence, there is a
one-to-one correspondence between elements in S(w) and paths from w to w(so). Thus, we
may rank and unrank the objects in S(w) by performing these tasks for the paths from w
to w(so) as in Wilf's model. We shall describe these procedures in more detail in the next
section. Figure 2 shows an initial portion of the structure graph corresponding to regular
reduction cut defined above on set partitions; the corresponding regular tree is the tree of
figure 1.

We have just seen that every regular reduction yields a representation of the combinatorial
objects as paths in the structure graph. The converse holds as well: suppose that G is
a directed acyclic graph with vertex set W and a distinguished vertex wo satisfying the
following three conditions: (1) wo is the unique vertex of outdegree O in G; (2) there is no
infinite path starting at a fixed vertex in G; (3) the number of paths from w to wo equals s(w).
Let P(w) denote the set of paths in G from w to wo and let P = UweW P(w). Let Po denote
the trivial path consisting of the single vertex wo. Consider the mapping g : P\{po} -+ P
that shortens a path in P\ {po} by removing its first edge. This mapping is clearly a regular
reduction for P with a path being assigned as weight its starting vertex. Since IP(w) I = s(w)
for all w E W there exists a bij~ctive correspondence between P(w) and S(w) for w E W.
This correspondence together with regular reduction g yields a regular reduction for (S, w)
in the obvious way. We conclude that a combinatorial family satisfying a recurrence relation
of the general form given by equation 2 admits a regular reduction. Thus, regular reductions

8

do indeed characterize a large class of combinatorial families for which the ordering problem
can be solved in a systematic way (as shown in the next section).

5 Solving the Ordering Problem

The previous sections suggest the following approach to the ordering problem: first, we
construct a regular reduction for the combinatorial family. From the regular reduction we
derive a recurrence relation for the number of objects of a given weight. This recurrence
allows us to reduce the problem of ordering the combinatorial objects to that of ordering
paths in a directed graph, for which we may use the techniques described in section 3. In all
examples that we shall consider the recurrence relations are fairly simple and ranking and
unranking may be done without explicitly constructing this graph.

In the remainder of this section we describe in some detail the various steps that· we have
just outlined. In particular we present techniques for simplifying some of the steps.

5.1 Constructing the Regular Reduction

For the following discussion we fix a combinatorial family (S, w) with weight set W. Our
first goal is to construct a regular reduction for (S, w), i.e., a mapping f : S\ {so} -+ S that
satisfies the conditions of theorem 2.

Although many types of rooted trees admit very simple regular reductions (see section 6),
there are two useful techniques for simplifying the task of finding a regular reduction. For the
first technique we assume that we have constructed a regular reduction for a combinatorial
family (S',w') with weight set W' having the following properties: (1) S ~ S'; (2) for every
w E W there exists a weight w' E W' such that S(w) = S'(w'). Under these assumptions the
problem of ordering the elements in. S of weight w E W reduces to the problem of ordering
the elements in S' of some weight w' E W'. We call this technique the embedding technique.
In subsection 6.4 we shall make use of the embedding technique to order B-trees.

For the second technique assume that we have a mapping f : S\ {so} -+ S that satisfies
the finiteness condition of theorem 2 but not the regularity condition. In some cases we
may be able to define a new weight function w' on S such that the following holds: (1) w'
is a refinement of w, i.e., w'(s) ~ w'(s') implies w(s) = w(s') for any s, s' E S; (2) f is a
regular reduction for (S,w'). If these assumptions hold, then we may write Sw(w) = {s E
S: w(s) = w} as a finite union of sets of the form Sw,(w) = {s ES: w'(s) = w}. We can
thus use ordering procedures for (S,w') to order (S,w) in the obvious way: return as the
rank of an object in Sw(w) the rank of the object in S..:,,(w'(s)) augmented by the quantity
l{s' E Sw(w) : w'(s') <w w'(s)}I, To compute the objects in Sw(w) of rank r compute the
set Sw,(w) containing sand return the object in Sw,(w) of rank r - l{s' E Sw(w): w'(s') <w
w'(s)}I. We call this technique the refinement technique. We shall use this technique to order
height-balanced trees and binary trees of bounded height (subsections 6.2 and 6.3).

5.2 Deriving the Recurrence Relation

Suppose we have found a regular reduction f: S\{so}-+ S for (S,w). We may view fas
a mapping that maps vertices other than the root so in a regular tree T for (S, w) to their
parent. Fix a linear ordet <w on W having the properties given by corollary 1. By theorem

9

3 the quantity s(w) = IS(w)I satisfies the recurrence relation

s(w) = L d(w, z) · s(z), (3)
zEW,z<ww

where d(w, z) is the number of children of weight w of a node of weight z in the regular tree
T; equivalently, d(w, z) is the number of elements in S of weight w that f maps to a fixed
element of weight z.

In all the examples that we shall consider there is a closed form expression for the co­
efficients d(w, z) that can be obtained from the type equation in a straightforward manner.
As an example consider set partitions. In the last section we introduced the reduction cut of
type t(n, k) = k • (n+ 1, k) + 1 • (n+ 1, k + 1). Thus, the coimage of a partition in P(n, k) has
either weight (n-1, k) or (n-1, k-1). Furthermore d((n, k), (n-1, k)) = k and d((n, k), (n-
1, k - 1)) = 1. Thus we get the recurrence relation s(n, k) = k · s(n - 1, k) + s(n - 1, k -1).
This is of course the well-known recurrence for Stirling numbers of the second kind (equation
1).

5.3 Ranking and Unranking

Our first task is to define a linear order <won each set S(w). The linear order and subsequent
ranking and unranking procedures that we present are essentially adaptations of those by
Wilf ([15]) to the framework of regular reductions. Let f and <w be as in the previous
subsection. Fors ES and w E W denote by S(w,s) the set {s' E S(w): f(s') = s}. Note
that IS(w, s)I = d(w,w(s)). Let index be a function from S to the nonnegative integers
that maps elements in S(w, s) bijectively to the set {O, ... , IS(w, s)I - 1} for each s ES and
w E W. The function index induces a linear order on each set S(w, s) in the obvious way.

To define a linear order <w on $(w), let s and s' be. two distinct objects in S(w) with
z = w(f(s)) and z' = w(f(s')). We define <w inductively as follow!;,:

s <w s' iff (z <w z') or

(z = z' and index(s) < index(s')) or

(z = z' and index(s) = index(s') and J(s) <z J(s')). (4)

Since z <w w (see corollary 1), <w is indeed well-defined. It is helpful to interpret the linear
order <w in terms of t,he structure graph (see subsection 4.4). For fixed s E S let k be the
unique integer such tha.t fk(s) = so. Let

for O ~ i < k. In particular to = (w(s),w(J(s)),index(J(s))). We call the sequence
(to, t1, ... , tk-1) the recl-uction sequence for s. We may regard each triple ti as a labeled
edge in the structure graph from vertex w(f (s)) to w(Ji+1(s)) and the reduction sequence
as the path in the structure graph from w(s) to w(so) that represents s. It is not difficult
to see that the linear order <w corresponds to the lexicographic ordering on the reduction
sequences for elements in S(w).

Lemma 1 Lets E S(w) with z = w(J(s)). Let rank(s) = l{s' E S(w): s1 <w s}I. Then

rank(s) = d(w, z') · s(z') + index(s) · s(z) + rank(f(s)).
z'EW,z'<wz

10

Proof. W~ have rank(s) = IAI + IBI + ICI where A= {s' E S(w) : w(J(s')) <w z }, B = {s' E
S(w): w(f(s')) = z /\index(s') < index(s)} and C = {s' E S(w): w(J(s')) = z /\index(s') =
index(s) I\ J(s') <z J(s)}. We have IAI = Ez'<wz d(w, z') · s(z'), IBI = index(s) · s(z), and
ICI = rank(f(s)). The claim of the lemma follows. D

For d(w, z) > _O let g(w, z) denote the quantity Ez'<wz d(w, z')s(:Z'), i.e., g(w, z) is the
number of objects of weight w that map to an object of weight less than z (in <w). We shall
assume that the quantities g(z, z') and s(z) have been precomputed for z, z' ~w w. From
lemma 1 we obtain the following recursive implementation of the function rank:

function rank (s: object in S): integer;
if s = so then rank := 0
else

w := w(s);
z := w(f(s));
return(g(w, z) + index(s) · s(z) + rank(f(s)));

endif;

With the help oflemma 1 it also straightforward to formulate the inverse function unrank(w, r)
which returns the unique object sin S(w) with rank(s) = r (assume O ~ r < s(w)). In the
following formulation, obj(s',w,l) denotes the unique objects E S(w) such that /(s) = s'
(i.e., s E S(w, s')) and index(s) = l.

function unrank (w: weight, r: integer): object in S;
if w = w(so) then return(so)
else

z := largest weight such that g(w, z) ~ r;
l := (r - g(w, z)) div s(z);
r' := r - g(w,z) - l · s(z);
s1 := unrank(z, r'); ,
return(obj(s', w, l));

endif;

6 Applications

6.1 Basic Definitions and Notation

Basic definitions concerning rooted trees are given in subsection 4.1. We denote the number
of nodes in a rooted tree T by n(T). The height of a rooted tree is the maximum number
of edges on a path from a leaf to the root; it is denoted by h(T). A binary tree is a rooted
tree in which every vertex has at most one left child and at most one right child. We call the
subtree rooted at the left (right) child of a node v the left (right) subtree of v. We denote the
left (right) subtree of the root of T by L(T) (R(T)). Binary trees are depicted in the usual
way with the direction of the edges omitted and the root at the top.

Because we are interested in the structure of the trees rather than the actual labeling,
we shall assume that each binary tree has a fixed labeling depending only on the structure
of tree, e.g., the vertex set of a tree Tis the set {1, ... , n(T)} and the vertices are numbered
level-by-level starting at the root. For the remainder of this section all binary trees are
assumed to have such a canonical labeling.

11

0

Figure 3: Three applications of left; one more application yields the empty tree.

6.2 Height-Balanced Trees

A binary tree is height-balanced if at each vertex the height of the left subtree and right subtree
differ by at most one. If a subtree is missing it is deemed to be of height -1. Height-balanced
trees are also caUed AVL-trees after their inventors Adel'son-Vel'skii and Landis ([2]). Li
([9]) describes ordering procedures for AVL-trees with n leaves. The ranking and unranking
proc dm·es ·un in ti.me O(n log2 n) and O(nlog3 n) respe tively, after a preprocessing phase
that takes O(n2 logn) time. We d rive ranking and unranking algorithms that run in time
O(n) and O(nlogn) rcspect.ively, after O(n2 logn) preprocessing. Besides being faster than
those of Li, the algorithms t.hat we propose are also simpler.

The following facts about AVL-trees will be used later: (1) the maximum height of an
AVL-tree on n leaves is 0(logn); (2) the number of nodes in an AVL-tree is within a constant
factor of the number of leaves in the tree. Fact 1 is an easy corollary of [8, Thm A, p. 453].
Fa t 2 follows from the ob ervation that the number of nodes with at least two children is no
mor than tl1e number of 1 aves and any node that is a single child must be a leaf.

We use the following notation: A(n) is the set of AVL-trees on n leav s, A = U11 ~oA(n)
and A(n, h) is the set of AVL-trees with n leaves and height h. Consider the mapping
left that assigns to a non-empty AVL-tree T the left subtl·ee of the root of T (denoted
by L(T)) . Figure 3 depicts a sequence of applicati ns of left to an AVL-tree. Using the
refinement, technique (see subs ction 5.1) we see that left is a regular reduction for (A, w)
where w(T) = (n(T) h(T)). Indeed left trivially satisfies the finiteness condition of theorem
2. It satisfies the regularity condition since its type is given by

Nh-1 Nh Nh+I

t(n, h) = L a(i, h-l)•(n+i, h+l)+ L a(i, h)•(n+i, h+l)+ L a(i, h+l)•(n+i, h+2)

wl1el'e a(n, h) = IA(n, h)I and nh (Nh) denotes the smallest (largest) number of leaves in an
AVL-tree of height h. The three terms on the right.hand side of the type equation correspond
to the ases where the right subtree has height h - 1, h or h + 1 (these are the only possible
heights sinc;e the resulting tree mu.st be height-balanced). From this type equation we obtain
the following recurrence relation:

n n

a(n, h) = L a(i, h - 2)a(n - i, h - 1) + L a(i, h - l)[a(n - i, h - 2) + a(n - i, h - 1)] (5)

with boundary conditions a(n, h) = 0 for n r/. {n1, , ... , Nh} and a(O - 1) = 1. One could
dispose of the first boundary conditions by specifying the precis ranges of i that contribute
non-zero terms to recurrence 5; we prefer the current formulation because it is simpler.

12

Let W = {(n', h') : 0 ::; n' ::; n and - 1 ::; h ::; Hn} where Hn is the maximum height
of an AVL-tree on n leaves. By fact 1 we have Hn = O(logn) and hence IWI = O(nlog n).
Let <w denote the lexicographic order on the weights in W. We precompute two types of
quantities: a(n', h') for (n', h') E W and g(w, z) for w, z E W (see subsection 5.3). The
numbers a(n', h') can be computed from recurrence relation 5 in time O(n2 log n) and space
O(nlogn). Once these quantities have been computed, the g(w, z) can be computed in a
straightforward manner in 0(n2 log n) time and space.

We define a linear ordering <(n',h') on each set A(n', h') as outlined in subsection 5.3.
Let S(n',h',T) denote the subset of trees in A(n',h') •that left maps to a fixed AVL-tree
T. We define a linear ordering <(n',h',T) on each set S(n', h', T) recursively as follows:
T1 <ui',li',T) T2 for T1, T2 E S(n', h', T) if h(R(Ti)) < h(R(T2)) or h(R(T1)) = h(R(T2))
and R(T1) <(n'-n(T),h(R(Ti))) R(T2). For T' E S(n',h',T) we denote by index(T') the rank
of T' in the ordering <(n' ,h' ,T) · The linear order < w and the function index induce a linear
order <(n',h') on each A(n', h') as indicated in definition 4 (subsection 5.3).

The functions rank and unrank are now easily adapted from subsection 5.3. In the
following formulation of rank we assume that we have precomputed the sizes and heights of
all subtrees of T. This is easily done in time O(n) by a postorder traversal of T. (Here we
used fact 2 implying that the number of nodes in T is proportional to the number of leaves.)
The function rank computes the rank of an AVL-tree Tin the linear order <(n(T),h(T))·

function rank (T: AVL-tree): integer;
if Tis the empty tree then rank:= 0
else

(n, h) := (n(T), h(T));
(n', h') := (n(L(T)), h(L(T)));
if (h' = h-1 I\ h(R(T)) = h-1) then d := a(n-n',h- 2)

else d := O; /* now d + rank(R(T)) = index(T) * /
endif;
return(g((n, h), (n', h')) + (d + rank(R(T))) • a(n', h') + rank(L(T)));

endif;

The following function unrank returns the unique AVL-tree in A(n, h) with rank r (in

<(n(T),h(T))).

function unrank ((n, h): weight; r: integer): AVL-tree;
if n = 0 then return(empty tree)
else

search for largest (n', h') such that g((n, h), (n', h')) ::; r (binary search);
l := (r - g((n, h), (n', h'))) div a(n', h');
r' := r - g((n, h), (n', h')) - l · a(n', h');
LT:= unrank((n', h'), r');
if h' = h - 2 then

RT:= unrank((n - n', h - 1), l)
else if l::; a(n - n', h - 2) then RT:= unrank((n - n', h - 2), l) endif
else RT:= unrank((n - n1

, h - 1), l - a(n - n', h - 2))
endif;
return(T) where L(T) = LT and R(T) = RT;

endif;

13

0

Figure 4: Three applications of cutlevel.

Theorem 4 Functions rank and unrank run in time O(n) and O(nlogn), respectively,
where n is the number of leaves in the input (output} tree for rank (unrank}.

Proof. Each execution of the body of rank (excluding the recursive calls) requires time 0(1).
The number of recursive calls to rank is bounded by the number of nodes in T, i.e., it is
O(n). The claim for rank follows. The execution time of the body of unrank is dominated
by the time needed in the binary search for (n', h'). The time for this search is O(logn).
Since unrank is invoked at most once for each node in the output tree T, the claim follows.
D

The above ranking and unranking procedures can easily be extended to ordering proce­
dures for A(n) having the same asymptotic time bounds - O(n) for ranking and O(nlogn)
for unranking (see refinement technique, subsection 5.1).

6.3 Binary Trees of Bounded Height

Although there are several efficient algorithms available for ordering binary trees (e.g. [13),
[17], [18]), not much is known for the family of binary trees of bounded height, i.e., the
family of binary trees with n nodes and height at most h. Lee at ·al. ([10]) describe an
algorit.hm to generate binary trees of bounded height in constant average time. They pose as
an open problem the question of whether there are efficient ranking and unranking algorithms
for these trees. We describe a simple regular reduction that yields ranking and unranking
algorithms that run in linear time.

Let B denote the family of non-empty binary trees. Our goal is to develop ordering
procedures for trees in B with n nodes and height not exceeding h. We shall do so via
ordering procedures for (B,w) where w(T) assigns to a binary tree T the triple (n, h, k)
where n is the number of nodes in T, h is the height of T, and k is the number of leaves
in T of maximum depth. This is an example of an application of the refinement technique
(see subsection 5.1). Consider the function cutlevel that removes all leaves in T of maximum
depth. Figure 4 shows a sequence of applications of cutlevel to a binary tree. We note that
cutl evel is a regular reduction for (B, w). Its type is given by the equation

2
k (2k) t(n,h,k) = L . (n+i,h+l,i).

i=l i

(6)

Let b(n, h, k) denote the number of binary trees of weight (n, h, k). From equation 6 we
obtain the recurrence relation

b(n,h,k)= L (2
t)b(n-k,h-l,j)

k/2-5,j<n

(7)

14

for n > 1 and 1 ~ h, k < n, with the boundary conditions b(l, 0, 1) = 1, b(l, h, k) = 0 for
(h, k) =I= (0, 1) and b(n, 0, k) = 0 for (n, k) =I= (1, 1). Note that we avoided the problem of
determining exactly which b(n, h, k) are nonzero by imposing suitable boundary conditions.

Let W = {(n', h', k') : 1 ~ n' ~ n and O ~ h', k' < n'}. We precompute the v:alues
b(n', h', k') for (n', h', k') E W. For this we first compute the binomial coefficients (;) for

i < 2n and O ~ j ~ i. This takes time and space 8(n2) using the standard recurrence for
binomial coefficients. Now the quantities b(n', h', k') can be computed in space O(n3) and
time O(n4) using recurrence 7. Finally we precompute the quantities b(n, h) = :Ek b(n, h, k)
in time O(n3) and space O(n2). Note that b(n, h) is the number of binary trees with n nodes
and height h.

Next we define a linear order on each set B(n, h, k). As explained in the last section such
an order is uniquely determined by imposing a linear order on the weights and a linear order
on trees of the same weight mapped (by cutlevel) to the same tree. We define the linear
order < w on W to be the lexicographic order on triples (n', h', k') E W. Now fix a binary
tree T of weight (n, h, k). Consider the set Si of trees of weight (n + i, h + 1, i) that map
to T. Note t hat ISil = (2t). We may think of constructing a tree T' E Si by filling i out of
2k "slots" provided by the k leaves at maximum depth in T, where each such leaf provides
two slots (one for a right child and one for a left child). Thus, any linear order on i-subsets
of { 1, ... , 2k} induces a linear order on Si. If we choose as linear order the lexicographic
ordering on the corresponding 2k-bit vectors, then ranking and unranking of i-subsets can be
done in a straightforward way in time O(k) after O(k2) preprocessing. Impo~e a linear order
on each Si that corresponds to this subset ordering. Let index(T') denote the rank that the
tree T' has in this linear order, i.e., 0 ~ index(T') ~ (2t) - 1. The function index and the
linear order <w yield a linear ordering <(n,h,k) for each B(n, h, k) as described in definition
4 (subsection 5.3).

The functions rank and unrank are now easily adapted from subsection 5.3. The function
rank computes the rank of a tree Tin B(n, h, k) with respect to the ordering <(n,h,k)·

function rank (T: binary tree): integer;
if n(T) = 1 then rank := 0
else

(n, h, k) := w(T);
(n', h', k') := w(cutlevel(T));
g := O;
for j := rk/21 to k' - 1 do

2·
g := g + (1)b(n - k, h - 1,j);

/* now g = g((n, h, k), (n', h', k')); * /
return(g + index(T)b(n', h', k') + rank(cutlevel(T)));

endif;

In the following procedure unrank obj(T', (n, h, k), l) denotes the unique tree TE B(n, h, k)
with cutlevel(T) = T' and index(T) = l.

function unrank ((n, h, k): weight, r: integer): binary tree;
if n = 1 then return(tree with single node)
else

g := O; j := rk/21;
while g + b(n - k, h - 1,j) ~ r do

g := g + b(n - k, h - 1,j);

15

0 <=

Figure 5: Four applications of cut to a B-tree of order 4.

j :=j + 1;
end while;
/* now (n - k, h - l,j) is largest weight such that g((n, h, k), (n - k, h - l,j)) ~ r * /
l := (r - g) div b(n - k, h - l,j);
r' := r - g - l · b(n - k, h - l,j);
T' := unrank((n - k, h - l,j), r');
return(obj(T', (n, h, k), l));

endif;

Theorem 5 The functions rank and unrank run in time O(n).

Proof: The time required by the statements in the body of the functions rank and unrank
(other than the recursive calls) is O(p) where pis the number of leaves in T at levels h(T)
and h(T) - l. The claim follows. D

The above ranking and unranking procedures are adapted to the family of trees on n
nodes and height at most h in the obvious way without affecting the linear time bound (see
refinement technique, subsection 5.1).

6.4 B-trees

A B-tree of order m is a rooted tree that satisfies the following three conditions ([4)): (1)
the root is either a leaf or has between 2 and m children; (2) all other non-leaf nodes have
between f m/21 and m children; (3) all leaves are at the same level. We are interested in
ordering B-trees of order m with n leaves (for fixed m).

Gupta, Lee and Wong ((5]) present ordering algorithms for B-trees that are _intimately
related to the generation of certain classes of integer partitions. Although the ordering
algorithms run in linear time they are fairly involved and they require the construction of
an explicit search graph that has exponential size. We describe linear time ranking and
unranking procedures for B-trees that are simpler than those of [5]. In particular they only
require the precomputation of a table of quadratic size.

A closer look at the algorithms of [5] shows that they are in fact based on the regular
reduction that removes all leaves from a B-tree. These algorithms require an explicit search
graph because there is no closed form expression for the number of coimages of a given B-tree
under this reduction. We remark that there is however a closed form expression for 2-3 trees
(B-trees of order 3), leading to fairly simple algorithms for this special case (see [6]). We
consider a different reduction cut: instead of removing all leaves at once, cut removes only
the children (leaves) of the rightmost node on the second to last level that is not childless.

16

Figure 5 depicts a sequence of applications of cut. Let Bm denote the set of B-trees of order
m. Clearly cut cannot be a regular reduction.for Bm since the image of a B-tree is usually not
a B-tree. We remedy this problem by using the embedding technique described in subsection
5.1 : let Pm be the smallest set containing Bm and closed under cut, i.e., Bm ~ Pm and
T E Pm implies cut(T) E Pm, Define weight function w over Pm as follows: for T E Pm,
w(T) = (s, d) where s is the number of leaves in T at level h(T) and d is the number of
childless nodes in T at level h(T) - 1. Let Pm(s, d) denote the set of trees in Pm of weight
(s, d). Note that the set of B-trees on n leaves is exactly the set Pm(n, 0).

Lemma 2 The mapping cut is a regular reduction for (Pm, w) whose type is given by

m
t(l,0) - L 1 • (i,0), (8)

i=2
m

t(s, d) = E l•(s+i,d-1) ifd>0, (9)
i=fm/21

m
t(s,0) = E 1 • (i, s - 1) if s > 1. (10)

i=f m/21

Proof. The mapping cut trivially satisfies -the finiteness condition of theorem 2. We show
that it satisfies the regularity condition as well by proving that its type is indeed as given
above. The trees in Pm mapped to the single node tree with weight (1, 0) are exactly the
trees of height 1 with i children and weight (i, 0) where 2 S: i S: m, hence equation 8. Now
consider a tree TE Pm(s, d) with d > 0. The coimages of Tare obtaineq by adding between
f m/21 and m children to the leftmost childless node at level h(T) -1, thus yielding equation
9. Finally, let TE Pm(s, 0) withs> 1. The coimages of Tare exactly the trees obtained by
adding between f m/21 and m children to the leftmost leaf in T, hence equation 10. D

Let b(s, d) = IPm(s, d)I (for fixed m). From the type equations 8-10 we derive the following
recurrence relations for b (s, d):

m

b(s,d) = L b(s-i,d+ 1) for s > m,
i=rm/21

b(m, d) _ { b(d + 1, 0) + b(m/2, d + 1) if m even
b(d+l,0) ifmodd

b(s, d) - b(d + l, 0) for f m/21 S: s < m,

b(s,0) - 1 for 1 S: s < fm/21,

In the asymptotic bounds given below the constant implied by 'O' is independent of both n
and m. Let W = { (s, d) : 1 S: s S: n, 0 S: d S: n }. We precompute the quantities b(s, d) for
(s, d) E W. This takes time and space O(n2) by using the above recurrences as well as the
observation that b(s + 1, d) - b(s, d) = b(s - f m/21 + 1, d + 1) - b(s - m, d + 1) for s > m.

Before we describe the ordering procedui-es we need to define a linear order <(s,d) on
Pm(s, d). We proceed as outlined in subsect ion 5.3. We let <w be the lexicographic order
on the weights of trees in Pm, Since there is at most one tree of a given weight mapping to a
given tree in Pm, we set index(T) = 0 for each TE Pm : The linear order on Pm is now given
by definition 4 (subsection 5.3).

17

The following ranking and unranking procedures are straightforward adaptations of their
counterparts in subsection 5.3.

function rank (T: tree in Pm): integer;
if T has a single node then rank := 0
else

compute g((s, d), (s1
, d'));

(s, d) := w(T);
(s1

, d') := w(cut(T));
return(g((s, d), (s', d')) + rank(cut(T)));

endif;

In the formulation of the procedure unrank, obj (T', (s, d)) denotes the unique tree in Pm (s, d)
that cut maps to T'.

function unrank ((s, d):weight; r: integer): tree in Pm;
if (s, d) = (1, 0) then return(single node tree)
else

compute g((s, d), (s', d')) for relevant (s', d');
(s', d') := largest weight such that g((s, d), (s', d')) ~ r;
r' := r - g((s, d), (s1

, d');
T' := unrank((s', d'), r');
return(obj(T', (s, d)));

endif;

Theorem 6 Procedures rank and unrank run in time O(n) (independe·nt of m).

Proof. The number of recursive calls is O(n) for rank and unrank. The time spent in the
body of rank is proportional to the number of nodes removed by cut. Similarly, the time
spent in the body of unrank is proportional to n(obj (T', (s, d))) - n(T'). Thus the total time
spent by rank and unrank is proportional to the number of nodes in the input (output) tree,
i.e., it is O(n) as claimed (independent of m). D

7 Concluding Remarks

We consider the concept of a regular reduction to be the main contribution of this paper. We
have shown how regular reductions may be used in a systematic solution of the ordering prob­
lem. We have illustrated this by providing improved algorithms for ordering height-balanced
trees, B-trees and binary trees of bounded height. Our algorithms are based on simple regular
reductions and have the same simple structure. It would be worthwhile studying applications
of regular reductions to ordering other families of trees and other combinatorial objects.

We believe that regular reductions have applications beyond the solution of the ordering
problem. One obvious application is the derivation of recurrence relations. A less obvious
application concerns the problem of est~blishing bijective correspondences between different
combinatorial families. This application is based on the observation that the type of a regular
reduction completely characterizes a combinatorial family and that two families that have the
same type equation (up to boundary conditions) can be put into a bijective correspondence.
This will be the subject of further research.

18

References

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The design and analysis of computer algorithms,
Addison-Wesley, 1974.

[2] G.M. Adel'son-Vel'skii and Y.M. Landis, An algorithm for the organization of informa­
tion, Doklad. Akad. Nauk SSSR, 146 (1962), pp. 263-266; Soviet math. Dokl., 3 (1962),
pp. 1259-1262.

[3] C. Berge, Principles of combinatorics, Academic Press, New York, 1971.

[4] R. Bayer and E. McCreight, Organization and maintenance of large ordered indexes,
Acta Inform. 1 (1972), pp. 173-189.

[5] U.I. Gupta, D.T. Lee and C.K. Wong, Ranking and unranking of B-trees, Journal of
Algorithms 4(1983), pp. 51-60.

[6] U.I. Gupta, D.T. Lee and C.K. Wong, Ranking and unranking of 2-3 trees, SIAM J.
Comput. 11(1982), pp. 582-590.

[7] P. Kelsen, ;Ranking and unranking· of trees using regular reductions, M.S. Thesis, De­
partment of Computer Science, University of Illinois, Urbana, IL, 1989.

[8] D.E. Knuth, The art of computer programming, vol. 3: Sorting and Searching, Addison­
Wesley, Reading, MA, 1973.

[9] L. Li, Ranking and unranking of AVL-trees, SIAM J. Comput. 15 (1986), pp. 1025-1035.

[10] C.C Lee, D.T. Lee and C.K. Wong, Generating binary trees of bounded height, Acta
Informatica 23, 529-544 (1986).·

[11] D. Roelants van Baronaigien and F. Ruskey, Generating t-ary Trees in A-O.rder, IPL 27
(1988), pp. 205-213.

[12] F. Ruskey, Generating t-ary Trees Lexicographically, SIAM J. Comput., Vol. 7, No. 4,
1978, pp. 424-439.

[13] F. Ruskey and T.C. Hu, Generating binary trees lexicographically, SIAM J. Comput. 6
(1977) , pp. 745-758. t

[14] F. Ruskey and D. Roelants van Baronaigien, Fast recursive algorithms for generating
combinatorial objects, Congressus Numerantium, vol. 41 (1984), pp. 53-62.

[15] H. Wilf, A unified setting for sequencing , ranking and selection algorithms for combi­
natorial objects, Advances in Mathematics, 24 (1977), pp.281-291.

[16] S.G. Williamson, On the ordering, ranking and random generation of basic combinatorial
sets, Lecture Notes in Mathematics, 579, Springer-Verlag, Berlin, 1976.

[17] S. Zaks, Lexicographic generation of ordered trees, Theoretical Computer Science 10
(1980), pp. 63-82.

[18] S. Zaks, Generating trees and other combinatorial objects lexicographically, SIAM J.
Comput. 8 (1979), pp. 73-81.

19

